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Abstract— Intelligent transportation systems face various
challenges, including traffic congestion, environmental pollu-
tion, and inefficient transportation management. Optimizing
routes and schedules for efficient delivery of goods and services
can mitigate the aforementioned problems. Many transporta-
tion and routing problems can be modeled as variants of the
Traveling Salesmen Problem (TSP) depending on the specific
requirements of the scenario at hand. This means that to
efficiently solve the routing problem, all locations have to be
visited by the available salesmen in a way that minimizes the
overall makespan. This becomes a non-trivial problem when the
number of salesmen and locations to be visited increases. The
problem at hand is modeled as a special TSP variant, called
Extended Colored TSP (ECTSP). It has additional constraints
when compared to the classical TSP, which further complicates
the search for a feasible solution. This work proposes a new
metaheuristic approach to efficiently solve the ECTSP. We
compare the proposed approach to existing solutions over a
series of test instances. The results show a superior performance
of our metaheuristic approach with respect to the state of the
art, both in terms of solution quality and algorithm’s runtime.

I. INTRODUCTION

Among all the optimization problems that can be formu-
lated in scenarios related to Transportation and Mobility, the
Travelling Salesman Problem (TSP) can be regarded as the
most widely studied one in the literature for decades [1]. In
essence, the TSP seeks to discover the shortest route that
a salesman can take to visit a set of cities and return to its
starting point, without visiting any city more than once. This
classic optimization problem is representative of a myriad of
practical use cases in transportation and logistics, including
the optimization of delivery routes, travel itinerary planning,
flight scheduling, or the design of supply chain networks, to
mention a few [2]. Furthermore, finding an optimal solution
to the TSP can help minimize a diversity of objectives related
to the optimized routes, such as transportation costs, delivery
times or fuel consumption.

Since its inception in the early XIX century, the combi-
natorial complexity of the TSP problem and its variants has
spurred the search for approximated and heuristic solvers to
find near-optimal solutions to these problems, particularly
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for large-scale instances with a high number of cities [3],
[4]. Optimization algorithms as such inspired by principles
and behaviors observed in nature and physical phenomena
(namely, bio-inspired optimization) have become prevalent
over the years for this purpose. The adoption of this family
of solvers has risen sharply within the research community
when the complexity of the scenario being modeled requires
adding further ingredients to the seminal TSP formulation,
including the presence of multiple salesmen, time windows,
or capacity constraints of the vehicles. Consequently, well-
established flavors of the TSP problem have been studied
over the years, such as the Multiple Traveling Salesman
Problem (MTSP, [2]), which aims to find the optimal set
of routes for several salesmen such that each city is visited
exactly once and the total distance traveled by all sales-
men is minimized. Likewise, the Time-Dependent Traveling
Salesman Problem (TD-TSP, [5]) targets the scenario in
which the travel time between cities vary over time due to
weather conditions, traffic status, and other impacting factors.
Similarly, the Dynamic Traveling Salesman Problem (DTSP,
[6]) models the real-world situation in which the set of
available cities vary over time. Several surveys have exposed
the vigor of this area and the multiplicity of problem for-
mulations rooted on the seminal TSP, reviewing the diverse
optimization techniques used to address them efficiently [7].

In this context, this work focuses precisely on one of
these TSP variants proposed in the recent past: the so-called
Extended Colored TSP (ECTSP [8]). ECTSP has practi-
cal applications in the Multi-Agent Mission Planning [9]
domain. This problem considers multiple salesmen, each
qualified to access certain cities (represented by colors),
with precedence constraints between cities, several possible
source and destination locations, and heterogeneous charac-
teristics of the salesmen (i.e., different velocities, starting
points, qualifications to visit the cities, etc). Therefore,
the time for a salesman to visit all cities involved in a
route depends on its qualification and speed. Precedence
constraints impose an ordering constraint between cities,
such that some cities must be visited before or after some
other cities along a given route. The work in [8] also
defined genetic search operators and a precedence constraint
reparation method to deal with this problem formulation
effectively. Later, the follow-up work in [10] extended this
prior work by reformulating the ECTSP as a Mixed-Integer
Linear Programming problem (MILP), changing the way
precedence constraints can be formulated. CPLEX was used
to solve this alternative formulation, showing that it can
be used for small instances of this problem. Recently, a



similar problem to ECTSP has been formulated, denoted as
Precedence CTSP (PCTSP) [11].

This paper builds upon these previous efforts to propose
a new metaheuristic solver for the ECTSP solver which
incorporates novel algorithmic components in its search
procedure. More concretely, the main contributions of this
method are i) a new solution creation method; and ii)
modified 2-opt and 3-opt operators [12] that account for the
needed satisfaction of the precedence constraints imposed
in the problem formulation. Experimental results over a
set of public ECTSP instances are discussed and compared
to those produced by the previously proposed solvers for
this problem. As evinced by our experimental results, the
proposed algorithm outperforms existing approaches in the
discovered routes for the salesmen, improving with statistical
significance its predecessors.

The rest of the manuscript is structured as follows: first,
Section II briefly reviews the state of the art related to TSP,
TSP variants, and meta-heuristic algorithms used for these
problems, towards clearly stating the contribution of this
work. Next, Section III describes the problem formulation
of ECTSP, whereas Section IV shows in detail the proposed
algorithm, including the creation, evaluation, and mutation of
the population of candidate solutions held during the search.
Section V presents the experimental setup and discusses on
the results obtained therefrom. Finally, Section VI ends the
paper with concluding remarks and an outlook toward future
research lines departing from our findings.

II. RELATED WORK

Before delving into the details of the ECTSP and the pro-
posed algorithm, we briefly revisit the long history between
TSP variants and metaheuristic optimization algorithms (Sec-
tion II-A), followed by an examination of formulations that
comprise multiple salesmen, different qualifications (colors)
and precedence constraints (Section II-B). Finally, we frame
the novelty and contribution of this work within the literature
reviewed in this section (Section II-C).

A. TSP variants and metaheuristic optimization

The TSP has grown to be one of the most studied problems
in operations research and computational intelligence. Over
the years, the TSP has demonstrated a great flexibility to
model real-world optimization problems in fields such as
robotics [13], agriculture [14], or disaster logistics [15].

Several intelligent approaches have been adopted for ef-
ficiently solving TSP and its variants, even in recent years.
Among these approaches, classical techniques such as ge-
netic algorithms [16], or simulated annealing [17] can be
found. More recent methods have also been employed for this
purpose, such as Ant Colony Optimization [18] or Particle
Swarm Optimization [19]. Besides these widely known algo-
rithms, the TSP has been used as a benchmark problem for
assessing the performance of modern biologically inspired
metaheuristics [20], [21], such as the Bat Algorithm [22],
or the Firefly Algorithm [23]. Recently, the TSP has also

been tackled by revolutionary computing paradigms, such as
quantum computing [24].

All this vigorous scientific activity around TSP confirms
that the interest behind this problem and its variations
remains alive today. For readers interested in this problem,
we refer to the comprehensive surveys in [1], [7].

B. Precedence constraints, coloring, and multiple salesmen

Apart from its canonical formulation, many different TSP
variants have been addressed over the years, aiming to
model specific features present in real-world logistics and
transportation problems. We now list known variants of the
TSP that connect to the ECTSP problem tackled herein:
• TSP with time windows: This is arguably the most popular

variant of the TSP, in which each node has an associated
time window. Thus, each node must be visited at a time
that falls within its window [25].

• Generalized TSP: In this variant, the group of nodes is
organized in groups or clusters. The main objective is to
find a route that visits each cluster exactly once (i.e., visit
a single node per cluster) [26].

• Open TSP: In this formulation, the goal is to find the short-
est route by starting from a predefined node, and without
needing to complete a cycle (i.e., the salesman does not
need to return to the starting point of the route) [27].

• Asymmetric TSP: This variant is characterized by having
asymmetric costs, meaning that going from one node to
another has a different cost than the reverse trip [28].

Apart from these variants, the following TSP problem for-
mulations are especially interesting for our study:
• Multiple TSP: As already mentioned in the introduction, in

this problem a fixed group of vehicles is available, which
must be used for visiting all the available nodes. Also, each
route should start and finish in a defined starting node [2].

• Colored TSP: In this formulation, nodes are divided into
n exclusive groups and one shared set. The goal is to find
n shortest routes, considering that an exclusive set must
be visited in the same route, while shared cities can be
visited by any route [29].

• TSP with precedence constraints: some nodes present
precedence restrictions. In other words, prior to visiting a
node, a list of preceding nodes must be visited before [30].

• TSP with pickup and delivery times and/or capacity: In this
variant, the traveling salesman has an associated capacity,
whereas all nodes have a predefined demand/capacity that
may reflect the pickup or drop-off of materials/goods. The
objective is to find the shortest route, not exceeding the
capacity of the traveler [31].

C. Contribution

In light of the reviewed literature, the contribution of this
paper is the improvement of previous attempts at efficiently
solving the ECTSP problem, showing that the exploitation
of problem-specific knowledge in the design of the search
algorithm can improve the quality of the solutions and reduce
its execution time.



III. PROBLEM DESCRIPTION

In this section, we briefly describe the problem addressed
in this work (ECTSP). Detailed mathematical formulations
are given by Miloradović et al. [8], [10].
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Fig. 1: Diagram describing a solution to an ECTSP problem
with M = 3 salesmen, N = 15 cities, K = 6 colors, and a
single destination depot (|∆| = 1).

Let s ∈ S be a salesman, in a set S := {s1, s2, . . . , sM}
of M salesmen, that need to visit N cities in a set V :=
{v1, v2, . . . , vN}. Also, let c be a color that varies in a set
C := {c1, c2, . . . , cK} of K colors. Each salesman sm must
start its tour from a source depot σm ∈ Σ and finish at
a destination depot δm ∈ ∆. Source and destination depots
are not considered to be cities. Traversing from either source
depots or nodes to other nodes or destination depots is
associated with a cost of ωij . In addition, every node has
a weight ξn that is added to the total cost when the node
is visited. This weight represents the duration salesman sm
is required to stay in city vn. Every city is associated with
one color from set C, and every salesman is associated with
a subset of colors from set S. If the intersection between the
color of the city and the subset of colors of a salesman is
not an empty set, the given salesman can visit that city. In
addition, cities may have precedence relations, i.e., it might
be needed for city vn to be visited before city vn′ . This is
defined with πn,n′ = 1 ⇐⇒ n ≺ n′, and 0 otherwise.

This problem can be formulated over a directed graph G =
(Ṽ,E), with Ṽ being a set of vertices, and E : Ṽ× Ṽ→ R+

0

being a set of edges. The solution to the aforementioned
problem is a set of Hamiltonian paths, one for each salesman.
Note that a Hamiltonian path can contain 0 vertices. A
Hamiltonian path is defined as a path in a graph that visits
each vertex in a set of vertices exactly once. Finally, we can
define the goal as the allocation of cities to salesman in a
way to minimize the overall cost (i.e., the sum of all edge
and node weights along the routes of the salesmen), while
respecting color and precedence constraints.

A visual example of a possible solution to an ECTSP
problem is given in Fig. 1. The problem consists of three
salesmen (S1, S2, and S3), 14 cities in total allocated to
the available salesmen. The cities have 6 different colors in
total. In the example, there is only one destination depot.

IV. PROPOSED SOLVER

The proposed algorithm, hereafter referred to as
MDUTEC, follows the well-established paradigm of evo-
lutionary algorithms. The initial population is seeded with
solutions drawn from the feasible search space, and pro-
gressively improved through a number of search operators.
More specifically, the algorithm begins by creating an initial
population (Section IV-B) in the feasible region of the search
space. In order to ensure that the candidate solutions are
feasible, each solution undergoes a precedence constraint
reparation procedure, described in Section IV-C. The new
candidate solutions are introduced in the population through
variation operators explained in Section IV-E. Finally, the
optimization process stops when a predefined time limit is
reached. In the rest of this section, we elaborate on each part
of the algorithm.

A. Solution encoding

A candidate solution is encoded as an array of length
N ·M , where N represents the total number of cities and M
is the total number of agents1 available for a specific mission.
A graphical representation of a candidate solution is given
in Fig. 2. The elements in the array are integers ranging
from 1 to N depending on the number of cities assigned
to a specific agent. These integers also determine the order
of cities to be done in ascending order. If we focus on the
provided example in Fig. 2, city 1 (C1) has ID 1, which
means it will be done first by agent 1, C3 has ID 2, which
means it is the second city to be performed, and finally, C2
has ID 3, which is consequently done as the 3rd city in the
plan. Agent 2 has only one city, i.e., C4 with ID 1.

1 3 2 0 0 0 0 1
1 2 3 4 1 2 3 4

Agent 1 Agent 2

Path:  Path: 

Fig. 2: An example of an encoded solution for a plan
comprising M = 2 agents and N = 4 cities.

B. Creating the initial population

The initial population is created based on a nearest-
neighbor heuristic. Each candidate solution is formed in the
same manner. First, the list of all cities to be done is created
and shuffled. The list is then iterated through, and each city
is allocated to the closest agent (as per the coordinates of
every node and the agents) or the closest previously allocated
city. This process takes into account color constraints, but
not precedence constraints. In order to ensure that initial
candidate solutions fall within the feasible region of the
search space, a precedence constraint reparation algorithm
is developed.

1We use the terms salesman and agent interchangeably in this work.



C. Reparation of precedence constraints

Each candidate solution is submitted to a Precedence
Violation Check (PVC). It is important to note that in this
context, precedence strictly refers to the ordering of cities.
For the sake of simplicity and without loss of generality,
we assume only precedence relations between two cities,
however, the transitive property still applies, i.e., if T1 ≺ T2
and T2 ≺ T3, then T1 ≺ T3. The PVC determines
whether there is an ordering violation between the cities,
and identifies the type of conflict. In general, there can be
two types of conflict. The first one occurs when both cities
are allocated to the same agent but in reverse order. In the
second case, one of the cities is allocated to a different agent,
and by the definition of the problem, this is not allowed.
When conflicts are identified, the algorithm proceeds with
solution reparation. In the first case, the reparation approach
is straightforward: the location of the cities in the plan is
swapped. This simple move is enough to solve the prece-
dence violation. The second case is more complicated as
first, the agents to which both cities are allocated have to
be found. Then a coin flip is performed to determine which
city should be moved. This procedure is repeated until there
are no more precedence violations in the candidate solutions
and, consequently, in the population.

D. Population evaluation

Candidate solutions are evaluated based on the objective
function in use: the sum of makespans over all salesmen.
After all candidate solutions have been evaluated and their
cost calculated, the population is sorted based on the cost.
In addition, a Hamming distance (H) is calculated between
the best candidate solution in the population and all other
candidate solutions. This value is used to determine if the
algorithm should take a bigger or a smaller move when
creating new candidate solutions.

E. Creation of new candidate solutions

The process of creating new candidate solutions is pro-
vided as a pseudocode in Algorithm 1. In the first step, we
find the best solution in the population. In the next step, the
Hamming distance (H) between the candidate solution and
the best solution in the population is calculated. Following
is a random selection of value rnd in the range from 1 to
H . After this the variation operations are performed, namely
Insert city, Insert to Closest (ITC), and Swap city, in that
order. For every candidate solution, this process is repeated
r times, where r is a tunable parameter. In our experiments
presented in Section V, we used the value r = 3, as this
value showed to give a good balance between computational
complexity and solution quality. Finally, the value of rnd is
used to determine if the algorithm should perform 2-opt or
3-opt heuristics. More specifically, if the rnd value is larger
than a quarter of the number of total cities (N ), a bigger
leap in the search space is taken by using 3-opt heuristics.
Otherwise, 2-opt is used. These steps are repeated for all
candidate solutions in the population.

a) Insert city: The insert city operator starts by ran-
domly selecting an agent (A1) and randomly selecting a city
(C1) from the set of cities allocated to agent A1. City C1
is then removed from its location in the plan and inserted
in the randomly determined new location in the plan. It can
happen that city C1 is allocated to the same agent A1 from
where it has been previously removed, just in a different
location in the plan, or it can be inserted in the plan of some
other available agent in the mission. In the case city C1 has
a precedence relation with some other city, the insertion is
limited to only A1 with respect to precedence constraints.
For example, if C1 is the 5th city in the plan of agent A1,
and it is a predecessor city to the 7th city in agent’s A1 plan,
then city C1 can only be inserted between location 1 and 7
in agent’s A1 plan.

Algorithm 1 Creation of new candidate solutions

function CREATENEWSOLUTION(candidateSol)
bestSol← GETBESTSOLUTION(population)
H ← CALCHAMMINGDIST(candidateSol, bestSol)
rnd← RANDOMINTEGER(1, H)
for 1 : r do

INSERTCITY(candidateSol)
INSERTTOCLOSEST(candidateSol)
SWAPCITY(candidateSol)

if rnd < N/4 then
TWOOPT(candidateSol)

else
THREEOPT(candidateSol)

return candidateSol

b) Swap city: The swap city operator starts by ran-
domly selecting two agents (A1 and A2). It may also happen
that the two selected agents are the same. In the next step,
we check if color sets of agents A1 and A2 have intersecting
elements. If that is the case, the next move is to find all cities
whose color is the element of the set of intersecting colors of
agents A1 and A2. Randomly, two cities should be selected
for swapping, unless they are having precedence relationship
between them. In case they have a precedence relationship
with other cities, those cities should be moved as well. For
example, if C1 from A1 is selected for swapping with C2
allocated to A2, and C2 has precedence relation with city
C3 on A2, then both cities C2 and C3 will be moved to A1,
and C1 will be moved to A2.

c) Insert To Closest: This operator starts by selecting
a random agent (A1) from the set of available agents. The
next step is to randomly select a city (C1) among the cities
allocated to agent A1. In the next step, we create a list of
the closest cities to city C1 and select a city (C2) from the
list. Cities that are closer to C1 have a higher probability
of being chosen. At this point, another check is performed
to determine if it is better (shorter path) to add C1 before
or after C2. When the insert position is determined, C1 is
removed and inserted at the new position in the plan. In
case C1 had precedence relations, there are additional steps



to be done. The first one is to determine if C1 is succeeding
or preceding the city. Depending on this, a list of cities is
created, either from the start of the plan up to the location
of C1 in the plan if C1 is a preceding city, or from the
location of C1 in the plan until the end of the plan if C1 is
a succeeding city. The city that has precedence relations with
C1 is then inserted in the appropriate sequence at the location
in the path that is closest to it. In order to better illustrate
how ITC operator works, we provide Fig. 3. The figure shows
two agents (salesmen) and their routes (Fig. 3 up) and their
routes after applying ITC operator (Fig. 3 down). ITC is
applied to city v3 which is added to the route of salesman
s2. It is added in the route of s2 after the closest city to it,
which is city v8.

ITC

Fig. 3: An example of an ITC operation.

d) 2-opt: The 2-opt algorithm was first proposed by
Croes [32] to solve the TSP problem. In order to be used
for the ECTSP tackled in this work, this operator must be
adapted. In our algorithm, 2-opt is used to perform a local
refinement of the plan, i.e., it is applied to each agent’s plan.
The algorithm loops over cities and in each iteration, two
points (cities) are selected (C1 and C2), where C2 always
comes after C1 in the plan. After two cities have been
selected, the plan is refined in the way that the sequence
starting from the first city in the plan up to C1 is unchanged.
The sequence of cities from C1 to C2 is reversed, and
finally, the sequence from C2 until the end of the plan is
unchanged. What has been so far described is the typical
2-opt implementation, the rest of the paragraph described
the added parts to the 2-opt heuristics. If the new plan
has a lower overall cost, the algorithm moves to the next
step, which is precedence constraint violation checking. If
reversing the sequence of cities from C1 to C2 did not
violate precedence constraints, the new plan is inserted in the
solution. Otherwise, another step is performed that checks if
adding C2 immediately after C1 in the plan would improve
the solution cost. If this step does not yield positive results,
the new plan is discarded, new C1 and C2 are selected, and
the process is repeated until all city combinations are tried
out.

e) 3-opt: The 3-opt algorithm is an improved version
of the 2-opt algorithm at a higher computational cost. The
algorithm loops over cities and in each iteration, 3 cities
are selected (C1, C2, and C3), where C1 comes before C2
which comes before C3 in the plan. We remove the three
routes from the plan that connect C1 → C1 + 1, C2 →
C2 + 1, and C3 → C3 + 1. Now, there are 7 possible new
ways of reconnecting the cities. In total, 3 of those 7 ways
are equivalent to a single 2-opt move. The other 4 cannot be
achieved with a single 2-opt move, and we focus on them.
We calculate the impact of each move on the overall cost
and sort the moves based on their impact. In the next step,
each of the moves is tested to assess whether it satisfies all
precedence constraints. If so, the move is applied. Otherwise,
the move is discarded, and the algorithm tests the next move
in the list. Depending on the selected move, different parts
of the path are reversed to create a new plan. If no move is
applicable, the algorithm continues iterating through the city
list until all city combinations are considered.

V. EXPERIMENTS AND RESULTS

In order to assess the performance of the proposed
MDUTEC algorithm, several experiments have been per-
formed to compare its computational efficiency and the
quality of its discovered routes when compared to the best-
known solver for this problem, namely, the so-called Ge-
netic Mission Planner (GMP) from [10]. Both solvers are
implemented in C++ programming language. The compar-
ison is performed over a set of 10 ECTSP instances with
increasing complexity. Table I summarizes the configuration
of such benchmark instances. Each (algorithm, instance)

TABLE I: Parameters of the ECTSP benchmark instances,
with N being the number of cities, M the number of sales-
men, |∆|, and #PC is the number of precedence constraints
in the mission.

ID N M |∆| K #PC

1 10 1 1 1 1
2 30 2 1 2 5
3 50 3 2 2 5
4 75 4 2 3 13
5 100 5 3 3 6
6 150 6 3 3 25
7 200 7 4 3 14
8 300 8 4 3 51
9 400 9 5 3 60
10 500 10 5 3 30

combination is run for 30 times with different seeds, in
order to account for the statistical variability of the fitness
of the solutions and to reduce the impact of reaching a good
solution by simple chance on the conclusions drawn from the
results. The evaluation is done on an x64 platform with i9-
9980XE @3.8GHz CPU and 128GB of DDR4 memory. The
time limit has been set for both algorithms to 300 seconds
and for comparison purposes, both algorithms are running
on a single thread. Instances used in this paper have been
released in a public repository (https://github.com/

https://github.com/mdh-planner/ECTSP
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mdh-planner/ECTSP) for the sake of reproducibility and
to support follow-up studies.
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A. Results and discussion

To begin with, Fig. 4 shows the histogram of the overall
cost of the routes (the fitness of the best solutions) discovered
by the GMP and MDUTEC solvers over each ECTSP in-
stance. We note that Instance 1 is excluded from the analysis
of the results, since both algorithms were able to find the
same solution in each run. It can be observed that both
solvers perform similarly in terms of median solution quality
for Instances 2 and 3, with GMP having one and two solution
outliers, respectively. The similarity between the results can
be seen in Fig. 5, where for Instances 2 and 3, there is no
difference in terms of the best solution found or median cost.

However, there can be observed a different pattern in
Fig. 6, which depicts the empirical cumulative density func-
tion (ECDF) of both algorithms over time. In general, it can
be observed that it takes longer for GMP to reach 10% of the
best-known solution, by the order of magnitude. Instance 4
is the only instance where GMP outperforms MDUTEC by
3% on the best solution (Fig. 5 on the left) and by 2% on

https://github.com/mdh-planner/ECTSP
https://github.com/mdh-planner/ECTSP
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Fig. 6: Empirical CDF for Instances 2–10. The target value is within 10% of the best known solution for each instance.

median cost (Fig. 5 on the right). However, Fig. 6 shows that
GMP takes a much longer time to reach the solution quality
of within 10% of the best-known one. This means that even
in the case when the GMP outperforms the MDUTEC solver
in terms of solution quality, it requires a much longer time to
converge. Starting from Instance 5 until Instance 10, the gap
between the two solvers widens progressively, as MDUTEC
outperforms GMP in each of such instances. In Fig. 5 it is
shown that the difference in solution quality increases as the
complexity of the test instances increases, and it ranges from
2% for Instance 5 to 41% for Instance 10. The median cost
difference follows a similar trend and the difference is even
larger, ranging from 10% in Instance 5 to 42% in Instance 10.
In the case of Instances 8 to 10, the GMP solver is unable
to find any solution that is within 10% of the best-known
solution (Fig. 6).

Fig. 4 also shows p-values computed by a non-parametric
Mann-Whitney-Wilcoxon test between the sets of results
obtained by GMP and MDUTEC. This test is used to gauge
the statistical significance of the observed performance gaps,
since the distribution of the fitness values over which the
comparison is made can be highly skewed and long-tailed.
Should this occur, discussing on average performance statis-
tics may give rise to misleading conclusions. To circumvent
this potential issue, the median value was used instead of

the mean. The p-value test shows that the gap by which
MDUTEC outperforms GMP in Instances 5–10 is statis-
tically significant. Conversely, MDUTEC is surpassed by
GMP in Instance 4 with a p-value of 2.55 ·10−5, which even
if significant under typical confidence levels (e.g. α = 0.05),
is notably larger than p-values obtained for larger instances.

Based on the above analysis, it is fair to conclude that
for MDUTEC performs clearly better than GMP, with dif-
ferences that progressively increase with the complexity of
the ECTSP problem instance.

VI. CONCLUSIONS AND FUTURE RESEARCH

This paper has elaborated on a variant of the TSP rout-
ing problem known as ECTSP, which extends the seminal
TSP formulation by including additional ingredients such
as multiple salesmen, color, and precedence constraints. To
efficiently solve this problem, we have proposed a new
metaheuristic solver (MDUTEC) that incorporates multiple
heuristics extended and adapted to this kind of problem, such
as 2-opt, 3-opt, and the novel Insert to Closest (ITC) operator.
To comparatively evaluate the performance of the proposed
algorithm, a discussion has been held on the performance of
MDUTEC and the best solver known so far for this problem
(GMP) when solving a set of 10 test instances. These two
solvers have been compared in terms of solution quality
and convergence. The experimental results have revealed that



MDUTEC outperforms GMP in most test instances. In the
case of solution quality, MDUTEC is able to perform equal
to or better than its counterpart in 9 out of 10 tests. In
what refers to convergence, MDUTEC was found to converge
faster than GMP in all 10 test instances.

The promising results presented in this work suggest
several research directions to be pursued in the near future.
Among them, we plan to investigate other variation operators
commonly used for TSP. Our idea is to study how to
adapt them to the specifics of the ECTSP variant, and to
verify whether such adaptations reflect on a performance
improvement of the metaheuristic algorithm presented in this
work. We will also address more complex formulations of
this problem. For instance, the dynamic ECTSP, in which
costs associated to nodes and links in the underlying graph
vary over time; or the multi-objective ECTSP, in which
several conflicting cost functions are defined on nodes and
edges, requiring the search for Pareto-optimal routes.
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