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Abstract—On-device transfer learning suggests fine-tuning pre-
trained neural networks on new input data directly on edge
devices. The memory limitation of edge devices necessitates
the use of memory-efficient fine-tuning methods to enable on-
device transfer learning. Fine-tuning involves two primary phases:
the forward-pass phase and the backward-pass phase. The
forward-pass phase generates output activations for each layer
given the input activations coming from the preceding layer,
and the backward-pass phase computes gradients and updates
the parameters accordingly. Although the forward-pass phase
demands a temporary memory to store the input and output
activations of a layer when conducting its inference, the backward-
pass phase may call for storing the output activations from all
layers to compute gradients. This fact introduces the memory
cost of the backward-pass phase as the main contributor to the
huge training memory demands of deep neural networks (DNNs),
which has been the focus of many previous research studies.
However, little attention has been made to how the temporary
activation memory involved in the forward-pass phase may also
act as the memory bottleneck, which is the main focus of this
paper. This paper aims to mitigate this memory bottleneck by
pruning unimportant channels from layers that require significant
temporary activation memory. These layers are initially identified
using a memory usage analysis. Our approach not only reduces
the memory footprint for temporary activation memory in the
forward-pass phase but also reduces the memory requirements
for the backward-pass phase of training. Experimental results
demonstrate how the proposed method effectively reduces the
memory footprint for on-device transfer learning.

Index Terms—On-device transfer learning, memory efficiency,
activation memory, deep neural networks (DNNs)

I. INTRODUCTION

The growing use of IoT devices has led to a continuous
stream of new data being generated. This new data can assist
in adapting pre-trained neural networks to new task domains,
introducing the transfer learning paradigm. [1], [2]. With
transfer learning, a pre-trained network is fine-tuned from
a primary task to adapt itself to a new task [3], [4]. On-device
transfer learning eliminates the need to move data to the cloud
and preserves data privacy.

In transfer learning, there are two primary approaches to
adjusting a pre-trained network during fine-tuning: 1) utilizing
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the pre-trained network as a fixed feature extractor and solely
fine-tuning the last layer of the network [5], [6], and 2) fine-
tuning either the entire network or some specific parts of
it [7], [8]. While the first approach is memory-efficient since
it does not require storing intermediate activations during fine-
tuning, its performance is constrained by a limited transfer
capacity [8]. The second approach offers good performance but
is not memory-friendly for on-device training as it necessitates
storing all intermediate activation values to calculate gradients
during fine-tuning.

Network expansion [1], [9]-[11], layer selection [11], [12],
and gradient quantization and filtering [2], [13]-[15] methods
have been proposed to reduce the memory cost of gradient com-
putations. Network expansion methods employ a lightweight
neural network alongside the fixed main backbone. The focus
is on fine-tuning the parameters of this smaller network, which
helps reduce the memory cost of gradient computations. While
network expansion methods effectively reduce the gradient
computation memory, they do not address the temporary
activation memory used during the forward-pass phase in the
fine-tuning process. Layer selection methods aim to identify
the crucial layers within the network and only fine-tune those
layers. Although layer selection methods reduce the memory
cost of gradient computations by storing activations only for
some specific layers, the selected layers themselves tend to be
computationally demanding. Gradient quantization methods
decrease the number of arithmetic operations involved in
gradient computation and employ lower-bit representations
to minimize memory usage. Furthermore, gradient filtering
methods enhance gradient quantization by reducing both
memory usage and computational costs. Nevertheless, these
methods fail to address the issue of temporary activation
memory and lack support for widely used deep neural network
(DNN) frameworks like PyTorch [16] and TensorFlow [17].

The primary limitation in previous research studies lies in the
temporary activation memory utilized during the forward-pass
phase of the fine-tuning algorithm, which poses a significant
bottleneck. To tackle this issue, we present a method that
seamlessly integrates with other approaches to minimize the
temporary activation memory and reduce the overall memory
footprint required for transfer learning. More specifically, we



decrease the temporary activation memory by utilizing channel
pruning techniques. First, we identify the layers contributing to
increased memory demand during on-device training. Next, we
identify and eliminate insignificant channels from activation
feature maps, effectively pruning them from the backbone
network. To restore the accuracy of the pruned backbone
network, we conduct retraining by focusing on the remaining
weights within the network. Ultimately, we employ this
lightweight backbone network in network expansion methods
to minimize the gradient computation memory and facilitate
the utilization of transfer learning.

Our method is designed to target both the temporary
activation memory during the forward-pass phase and the
gradient computation memory involved in the backward-pass
phase and reduce them jointly.

Our main contributions are summarized as follows:

1) Investigating the bottleneck caused by temporary activa-
tion memory and identifying the layers that contribute
to this bottleneck.

2) Incorporating channel pruning into bottleneck layers of
the backbone network to decrease temporary activation
memory and combining it with network expansion to
decrease the memory footprint.

3) Evaluating the effectiveness of the proposed method on
datasets such as Cifar-10 and experimentally demon-
strating how it successfully reduces the overall memory
requirement for on-device transfer learning.

II. RELATED WORK

On-device training methods confront two main challenges:
computational and memory constraints inherent in the backprop-
agation algorithm to compute the gradients. We can categorize
on-device training methods into four distinct groups based on
the specific solutions devised to tackle these issues.

A. Network Expansion

This solution involves introducing a lightweight neural
network alongside the backbone network, where only the
parameters of this simplified network are updated. The final
decision is made by leveraging the predictions of both networks
during the inference phase [1], [9]. TinyTL [9] introduced a
lightweight module that can be incorporated alongside the
frozen backbone. They updated only the parameters of this
smaller module as well as the biases of the original backbone
network. In this approach, the lightweight module is developed
separately from the backbone network, and there is no direct
connection between the two. In order to maintain the linkage
between the backbone and lightweight networks, Rep-Net [1]
employed feature reprogramming as a means to construct
the lightweight network. In particular, Rep-Net introduced an
activation connector that serves as a link between the backbone
and reprogramming network, enabling mutual benefits for both
networks. Nevertheless, these techniques reduce the memory
demands during training by simply augmenting the fixed
backbone network with a lightweight module without making
any alterations to the backbone itself. Furthermore, they have

the ability to decrease only the overall gradient computation
memory while keeping the temporary activation memory
unchanged. In this research paper, we employ channel pruning
to modify the backbone network and achieve a reduction
in memory usage. This approach effectively lowers both the
temporary activation memory and the gradient computation
memory.

B. Layer selection

Various methodologies are employed by these techniques
to choose specific layers of the network for fine-tuning [11],
[12]. More specifically, [12] introduced an important metric
to determine the selection of layers, whereas [11] employed
an evolutionary algorithm for the same purpose. Nevertheless,
the layers chosen by these methods tend to be computationally
intensive and do not provide substantial reductions in memory
usage during training. Our approach effectively complements
these methods by utilizing channel pruning to reduce the
computational load of the selected layers.

C. Gradient quantization and Filtering

Gradient quantization has the potential to decrease the
computational expenses involved in arithmetic operations
during the backpropagation algorithm [13]. Nevertheless, this
method has limitations in terms of reducing the total number
of operations and achieving significant speed improvements.
To address this limitation, the gradient filtering method has
been introduced as a solution to decrease both memory usage
and computational requirements [2]. Nevertheless, this method
solely focuses on reducing the overall gradient computation
memory and can be combined with our approach to achieve a
reduction in the total activation memory.

III. PRELIMINARIES

Transfer learning methods involve fine-tuning a neural
network pre-trained on a large-scale dataset like ImageNet [18]
on a new dataset. Fine-tuning involves performing a forward-
pass phase to calculate the activations and a backward-pass
phase to compute gradients and update the parameters. In the
following, we analyse the memory usage during fine-tuning.

The maximum activation memory usage, called peak activa-
tion memory, during each round of fine-tuning is represented
by M**' and computed as follows:

M*t = max

b;€{b1,b2,...,bL

}{M“‘(bi)}, (0
wherein b; refers to the i block; L is the total number of
blocks within the network; and M?*'(b;) denotes the peak
activation memory for the i block.

The memory footprint in each block comprises two parts:
(1) the temporary activation memory, which is defined as the
memory amount temporarily required for storing the input and
output activations of a layer when conducting its inference in
the forward pass phase, and (2) the cumulative gradient memory,
which is defined as the amount of memory required for storing
activations of all the previous trainable layers. Therefore, the



peak activation memory for the i*" block (i.e., M%ct(b;)) is
computed as follows:

M (67,) _l aX {Mtﬂ ( ) Mugrd(l )}’
i,je{li,l,lig,...,l : C
2—1727...71/,

in which [; ; denotes the j™ layer within the i™ block; L; is
the total number of layers within the i™ block; M5 (1; ;) and
M gra(li ;) represent the temporary activation memory and
cumulative gradient memory for the layer I; ;, respectively. The

cumulative gradient memory is computed as follows:

lij—1
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where M (p) refers to the memory requirement for storing
activations involved in computing the gradients of the layer
p; and grd(p) is an indicator variable returning 1 if the layer
p is trainable and returning O otherwise. The total memory
cost is calculated by considering the memory required for
parameters, denoted by MP¥, and the batch size, denoted by
B, as formulated below:

M = M* x B+ MP™, )

IV. RESEARCH MOTIVATION

Equation (2) introduces the temporary activation memory
(.e., Z\l{j‘ﬁ;)) and the cumulative gradient memory (i.e., Mc“jérd)
as two contributors to the peak activation memory, as mentioned
previously. Previous research endeavors have aimed to decrease
the cumulative gradient memory by fine-tuning a smaller
network and keeping the backbone model unchanged. However,
in spite of decreasing the cumulative gradient memory, the
substantial temporary activation memory in specific blocks
continues to have a notable impact on the overall peak memory
footprint. In other words, our research is motivated by the
idea that peak memory will remain large no matter how small
the cumulative gradient memory is as long as the temporary
activation memory in some blocks is larger than the cumulative
gradient memory.

To verify the idea, we utilize the Rep-Net [1] in conjunction
with the MobileNetV2 [19] architecture as the backbone. Rep-
Net [1] attempts to mitigate the cumulative gradient memory
by allowing only a compact network to fine-tune, while the
memory-intensive backbone architecture is frozen. Three types
of memory costs are measured for each inverted residual block
within the architecture: the peak activation memory calculated
using (2), the temporary activation memory, and the cumulative
gradient memory. The temporary activation memory for each
block b; is determined by calculating the maximum memory
usage among the layers within that block, as formulated below:
Mdct (b ) —
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Fig. 1. Illustration of memory cost profiling for Rep-Net [1] with MobileNetV2
as the backbone model.

The cumulative gradient memory for each block is determined
by summing up the gradient memory costs of the previous
blocks and the current block as follows:

lij—1
act act
cugrd E gI‘d grd( )’

p=l11

i=1,2,...,L. (6)

The measured memory costs are depicted in Figure 1. As
shown, the second block has the highest peak activation memory
among other blocks, and thus it is the block that establishes
the peak activation memory for the entire network, which is
5.72 MB. However, the overall cumulative gradient memory
obtained by Rep-Net is 1.9 MB. This gap comes from the
enormous temporary activation memory within the second
block, which is 5.6 MB. This observation implies that no
matter how much a memory-reduction technique like Rep-Net
decreases the cumulative gradient memory in the backward-pass
phase, the temporary activation memory in the forward-pass
phase can still act as a memory wall. As a result, memory
reduction techniques must affect memory requirements in both
phases jointly.

V. METHOD

Using memory-reduction techniques like Rep-Net [1] to
reduce the cumulative gradient memory will not effectively
impact the peak activation memory unless the temporary
activation memory remains below the reduced amount for the
cumulative gradient memory. Therefore, to effectively reduce
the overall peak activation memory, we propose adjusting
temporary activation memory usage in accordance with the
cumulative gradient memory usage. For this, we present a
framework to make this adjustment by keeping temporary
activation memory usage close to the cumulative gradient
memory.

In our framework, blocks causing a memory bottleneck
are identified at the first step, and we refer to them as
sensitive blocks. These blocks are characterized by having
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Fig. 2. The overview of the proposed framework to reduce the overall memory footprint for on-device training.

a high amount of temporary activation memory, larger than the
cumulative gradient memory. Next, [-norm is used to identify
and eliminate unnecessary channels within the identified blocks.
In order to improve the performance of pruned blocks, the
backbone network is retrained for a few epochs. Ultimately,
we utilize the lightweight pruned backbone as the foundational
module in Rep-Net [1] to effectively minimize peak activation
memory. The overview of our framework is illustrated in
Figure 2. In the following, we provide a detailed explanation
of each individual step in the framework.

Stepl: A lightweight network (such as MobileNetV2) is
chosen as the compact backbone for on-device learning. To
identify the sensitive blocks within the network, we conduct
an analysis of each block using memory cost profiling. For
each block, denoted as b; with ¢ = 1,2, ..., L, three metrics
are calculated: peak activation memory (M**(b;)), temporary
activation memory (Mg, (b;)), and cumulative gradient memory
(Mj‘jérd(bi)), which are computed using equations (2), (5), and
(6), respectively. These calculations provide us with detailed
information about the memory consumption of each block
when using network expansion techniques (such as RepNet
[1]) for on-device training. The sensitive blocks are identified
by comparing the temporary activation memory with the
cumulative gradient memory for each block. If the temporary

activation memory is higher than the overall cumulative gradient
memory, the block is considered as sensitive. The overal
cumulative gradient memory is the cumulative gradient memory
for the last block, i.e., Mgy (b ). Thus, a block b; is sensitive
if M2 (b;) > ML (b ).

Step2: In this step, lo-norms of the activation channels within
each convolution layer of the identified sensitive blocks are
calculated. By analyzing these norms, we can determine the
importance of each channel in terms of its contribution to the
overall accuracy. Channels with low importance are considered
unimportant and are subsequently removed. We carefully select
pruning ratios for the identified sensitive blocks to ensure
that the temporary activation memory achieved by pruning
is lower than the overall cumulative gradient memory before
pruning. For the purpose of illustration, in Figure 1, we can
apply pruning to blocks 1, 2, 3, and 4 with pruning ratios of
0.3, 0.78, 0.46, and 0.46, respectively, to make the temporary
activation memory costs close to the overall cumulative gradient
memory (which is 1.9 MB).

Step3: To maintain the performance of the pruned backbone
network, the network is retrained for a few epochs after the
pruning process. This retraining phase allows the network
to adapt and fine-tune its parameters, compensating for any
performance loss incurred during channel pruning. By doing
so, it is ensured that the network maintains its optimized
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Fig. 3. Tllustration of memory cost profiling for Rep-Net [1] with the first,
second, third, and fourth blocks from the backbone model pruned with ratios
of 0.3, 0.78, 046, and 0.46.

performance while benefiting from the memory reduction
achieved through channel pruning.

Step4: The concept of feature reprogramming introduced in
RepNet [1] is jointly used with our pruned backbone model to
reduce the peak activation memory during on-device training.
This involves incorporating a lightweight pruned side-network
that operates in parallel with our lightweight backbone network.

VI. EXPERIMENTS

In this section, we provide the setup for our experiments,
and then the experimental results are presented.

A. Setup

1) Datasets and Models: We used MobileNetV2 as the
backbone model and followed two training series: (1) Pre-
training the backbone model on a large-scale dataset and
(2) transfer learning the pre-trained backbone on downstream
datasets using Rep-Net. For transfer learning, the pre-trained
backbone model was set as frozen, with only Rep-Net being
fine-tuned on downstream datasets. Imagenet was used as the
large-scale dataset, and CIFAR10 [20], Flowers [21], Pets [22],
and CUB [23] were used as the downstream datasets. Rep-Net
has six modules corresponding to inverted residual blocks 2,
4,7, 11, 14, and 17 from the backbone model, following [1].

2) Training details: Two pre-trained versions of the back-
bone model were obtained, one without pruning and one with
pruning. First, the backbone model was trained on ImageNet
for 100 epochs, reaching an accuracy of 65.2%. Then, the
first four blocks from the pre-trained backbone model were
pruned with ratios of 0.3, 0.78, 0.46, and 0.46 in the order of
their indices. The pruning ratios were obtained as explained
in step 3 of the Method section. The pruned backbone model
was then retrained on Imagenet to reach a similar accuracy. In
our case, retraining the pruned backbone model reached an
accuracy of 64.6%. Fine-tuning involved in transfer learning
was performed for five epochs using the Adam optimizer [24]

with a batch size of 8 on a single GPU. The initial learning
rate for each dataset was adopted from [1], and the cosine
schedule was used for learning rate decay.

B. Results

This subsection compares our proposed method with Rep-
Net in [1]. The compared methods differ only in the employed
backbone model in that Rep-Net [1] uses the pre-trained
backbone model with no pruning applied, while our method
uses the pre-trained backbone model with blocks 1, 2, 3, and
4 pruned with ratios of 0.3, 0.78, 0.46, and 0.46, respectively.
The pruning ratios are chosen so that the temporary activation
memory usages of the blocks within the backbone model are
adjusted in accordance with the cumulative gradient memory
cost, as described in our methodology.

Two series of results are included. The first series emphasizes
how our proposed method effectively reduces the peak activa-
tion memory cost. The second series highlights the effectiveness
of our proposed method in reducing the total memory cost
considering overall accuracy.

1) Peak Activation Memory Reduction: Figure 3 illustrates
the memory cost profiling results for our proposed method.
The following observation is made from Figure 3.

Observation 1. Adjusting the temporary activation memory
costs of the blocks in accordance with the cumulative gradient
memory cost has made the peak activation memory reduce
from 5.72MB in Figure 1 to 2.02MB, reporting a 65% memory
reduction in peak activation memory.

This observation demonstrates how the peak activation
memory is effectively reduced by applying our proposed
methodology, which is adjusting the temporary activation
memory usage and the cumulative gradient memory cost in
accordance with each other. In other words, using channel
pruning to keep the temporary activation memory costs of
the blocks close to the cumulative gradient memory cost has
provided extensive room for the peak activation memory to
reduce.

2) Total Memory Reduction versus Accuracy: Table I reports
the total memory costs and accuracy levels for Rep-Net [1]
and our proposed method. This table implies the following
observation.

Observation 2. Using channel pruning to reduce the
temporary activation memory involved in the forward pass
phase resulted in a 59% reduction in total memory with an
average accuracy loss of 3%.

This observation signifies the predominant role of the
temporary activation memory in training memory cost, and
it shows how applying channel pruning based on our initial
memory cost profiling analysis can lead to more than 50%
memory savings. However, the obtained memory saving was
subjected to 3% accuracy degradation on average, which can be
considered acceptable in that at least around 50% of the weight
channels within the initial blocks were pruned in a greedy
manner to reduce the memory cost. Pruning the initial blocks
may lead to more accuracy drop compared to the others since
these blocks typically capture low-level features and provide



TABLE I
REPORTING TRAINING MEMORY COST AND ACCURACY FOR REP-NET [1]
AND OUR PROPOSED METHOD.

Method Train. Mem. | CIFAR10 Flower CUB Pets
Rep-Net [1] 51MB 88.9 78.6 66.5 85.2
Ours 21MB 88.7 74.3 62.0 82.1

a foundation for subsequent blocks to build upon. Pruning
these initial blocks might remove crucial information at the
early stages of the network, which can have a more significant
impact on accuracy compared to pruning later blocks.

VII. CONCLUSION AND FUTURE WORK

In this work, we attempted to address the high memory
footprint issue in on-device training algorithms by proposing
keeping high temporary activation memory demands close to
the cumulative gradient memory cost. We suggested performing
a memory cost profiling to identify blocks with high temporary
activation memory costs. After identifying these blocks, their
high temporary activation memory costs were mitigated by
taking a channel-pruning approach. It was then shown how
incorporating the backbone model pruned based on our
methodology to network expansion methods can further reduce
peak activation memory and total memory costs by 65% and

59%, respectively, at the cost of a small drop in accuracy.

In future endeavors, we plan to explore the application of
quantization methods to further reduce memory usage in our
approach. Additionally, we aim to develop and incorporate new
learning methods to enhance the accuracy of the model.
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