
Architecting ML-enabled systems: challenges, best practices, and design decisions

Roger Nazir, Alessio Bucaionia,, Patrizio Pelliccioneb,

aMälardalen University, Väster̊as, Sweden
bGran Sasso Science Institute, L’Aquila, Italy

Abstract

Context. Machine learning is increasingly used in a wide set of applications ranging from recommendation engines to
autonomous systems through business intelligence and smart assistants. Designing and developing machine learning
systems is a complex process that can be eased by leveraging effective design decisions tackling the most important
challenges and by having a good system and software architecture.

Goal. The research goal of this work is to identify common challenges, best design practices, and main software architecture
design decisions of machine learning enabled systems from the point of view of researchers and practitioners.

Method. We performed a mixed method including a systematic literature review and expert interviews. We started with
a systematic literature review. From an initial set of 3038 studies, we selected 41 primary studies, which we analysed
according to a data extraction, analysis, and synthesis process. In addition, we conducted 12 expert interviews that
involved researchers and professionals with machine learning expertise from 9 different countries.

Findings. We identify 35 design challenges, 42 best practices and 27 design decisions when architecting machine learning
systems. By eliciting main design challenges, we contribute to best practices and design decisions. In addition, we identify
correlations among design challenges, decisions and best practices.

Conclusions. We believe that practitioners and researchers can benefit from this first and comprehensive analysis of
current software architecture design challenges, best practices, and design decisions.

Keywords: Machine learning, software architecture, challenges, best practices, design decisions.

1. Introduction

Machine learning (ML) is attracting increasing interest
in the marketplace of applications and services. Companies
that produce software witnessed increasing customers in
their software systems that require ML-based components
and solutions [1]. ML solutions are used in several fields,
including computer defence, computational biology, au-
tonomous vehicles, robotics, and Internet of Things (IoT).
Software engineering is one of the key instrument support-
ing the growth of ML and promoting its deployment and
success [2]. ML is also requiring a substantial change on
organisational aspects and development processes [3].

Properly architecting ML-enabled systems, both in
terms of the pipeline that produces the ML model and
the system that uses and interacts with the Artificial In-
telligence (AI)/ML components, is of key importance for
various factors:

• Maintenance and Evolution are important aspects of ML

Email addresses: alessio.bucaioni@mdu.se (Alessio Bucaioni),
patrizio.pelliccione@gssi.it (Patrizio Pelliccione)

Models Life Cycle [3]: software architecture plays a key
role in building solutions for deploying reliable AI sys-
tems timely, for model maintenance, and for evolution.
Moreover, ML components may degrade at a different
rate than the rest of the system components and this
should be properly architected and engineered.

• Quality aspects of ML-enabled systems [4]: properly un-
derstanding and managing key quality attributes of ML-
enabled systems avoid failures, e.g., boundary erosion,
entanglement, hidden feedback loops, undeclared con-
sumers, data dependencies, configuration issues, and
changes in the external world [5]. This aspect is very
important for ML-enabled systems that concern with the
CACE principle of “changing anything changes every-
thing” [5].

• Integration with other components: properly designing
and integrating ML components with other components,
as well as understanding architectural dependencies, is
a key aspect for the successful development of effective
ML-based systems. In fact, as highlighted by [5], “only a
small fraction of real-world ML systems is composed of
the ML code [..] The required surrounding infrastructure

Preprint submitted to Journal of Systems and Software September 27, 2023



is vast and complex”.
• Uncertainty management [6]: properly managing uncer-

tainty permits to avoid significant resource expenses dur-
ing development. This includes properly (i) architecting
data pipelines from training, to deployment, maintenance,
and evolution, and (ii) accounting for retraining models
and incorporating new data.

Researchers and experts are investigating best design
practices in the software architecture design for ML sys-
tems and further about the ML systems complexity [2].
However, at the best of our knowledge, we are still missing
a study that analyses how practitioners perceive and use
ML design decisions in the architecture of ML systems and
applications.

In this work, we aim at filling this research gap, by iden-
tifying software architecture design challenges, best prac-
tices, and architectural design decisions for ML-enabled
systems. We formulated the research goal according to the
Goal-Question-Metric in [7] as follows: identify (purpose)
common challenges, best design practices, and main soft-
ware architecture design decisions (issue) of ML-enabled
systems (object) from the point of view of researchers and
practitioners (viewpoint).

This research goal is then refined into the following
Research Questions (RQs):

• RQ1 : What are the most common software architecture
design challenges in ML-enabled systems? Architecting
ML systems may be a daunting task due to the inherit
demands of such systems with respect to heterogeneous
qualities such as performance, scalability, etc.

• RQ2 : What are the best practices in architecting ML-
enabled systems? The inherit complexity of ML systems
favour the birth of a set of guidelines that are know to
produce good outcomes in given contexts.

• RQ3 : What are the main software architectural design
decisions for ML-enabled systems? Architectural design
decisions are practical design choices that provide con-
crete solutions to the design of the software architecture.

Answers to RQ1 provide a set of commonly found
software architecture design challenges that can help re-
searchers and practitioners in understanding and avoid-
ing them. By answering RQ2, we provide a catalogue of
commonly used best practices that can be exploited by
researchers and practitioners to conceive an architecture
for ML-enabled systems. Answering to RQ3 provides a list
of design decisions that can concretely help researchers and
practitioners in taking decisions when architecting their
ML-enabled systems.

To provide an answer to the above RQs, we make use
of a mixed research methodology able to extract insights
from both the state of the art and the state of practice.
Specifically, we adopted two complementary research meth-
ods, i.e., systematic literature review and expert interviews.
From an initial set of 3038 peer-reviewed publications, we
identified 41 primary studies, which we analysed thoroughly

following a meticulous data extraction, analysis, and syn-
thesis process. We performed 12 expert interviews with
researchers and professionals with ML expertise from 9
different countries. Also, we compared and discussed the
findings from the systematic literature review and expert
interviews. Finally, we highlight interesting correlations
among challenges, best practices, and design decisions.

The remainder of this work is organised as follows:
Section 2 describes the research methodology we used for
performing the study. Then, Sections 3, 4, and 5 report
the main findings for RQ1, RQ2, and RQ3, respectively.
Section 6 summarizes the findings by correlating challenges,
best practices, and design decisions. Section 7 discusses
related works. The paper concludes in Section 8 with final
remarks and future research directions.

2. Research method

We designed and conducted this work using a research
method that combines a set of complementary research
methodologies for compensating single method limitations.
In particular, we built on the systematic literature reviews
guidelines in software engineering by Kitchenham and Br-
ereton [8] and on the interviews and empirical software
engineering guidelines by Wohlin et al. [9]. Figure 1 shows
the process we followed, which consists of three main phases
being planning, conducting, and documenting.

Planning Conducting Documenting

Motivation

RQs definition

Protocol definition

Protocol

2

3

Synthesised data
analysis

Threats analysis

Report results

Final report

17

18

161

4 19

Search and selection

Defintion extraction
form

Extraction form

7

5

8

Primary studies
6

Interview questions
definition

Interviews

Interview
questionnarie

Data extraction

Data synthesis

Synthesised data

Extracted data

9

10

11

12

13
14

15

Fork/join

Action

Outcome

Flow

Figure 1: Overview of the adopted research method.

Planning. The main goals of the planning phase are
to (i) establish the need for this work, (ii) define an over-
reaching research goal (RG) and related research questions
(RQs), and (iii) define the research protocol to be followed
by the researchers to carry out the study in a system-
atic manner. The main output of the planning phase is a
detailed research protocol describing the main activities
to be performed for the systematic literature review and
the interviewees. It is worth remarking that the protocol

2



prescribes different activities for the systematic literature
review and the interviews. The former involves the activ-
ities marked with tags 5, 6, 7 and 8. The latter involves
activities marked with 9, 10 and 11.

Conducting. In the conducting phase, we performed
all the activities defined in the research protocol (activities
5 to 15), which are search and selection (5), definition of
the data extraction form (7), definition of the interview
questions (9), interviews (11), data extraction (12), and
data analysis (14). We started the search and selection
step by performing an automatic search of peer-reviewed
literature on four scientific databases and indexing systems.
We defined and used selection criteria for filtering the iden-
tified studies to obtain the set of primary studies to be
included in later activities of the review. We complemented
the initial automatic search with an exhausting backward
and forward snowballing as suggested by Wohlin et al. [10].
Starting from the research questions and by systematically
and iteratively using the standard key-wording process [11],
we defined the set of parameters that we used for classi-
fying and comparing the primary studies. According to
Hackett et al. the most common data collection method
in surveys is interviews and questionnaires as they have
the potential of providing effective and thorough inputs
on specific subjects [12]. We defined the questions for the
interviews using only open-ended questions as they allow
respondents to address the question in depth hence obtain
more knowledge. Eventually, the interview questionnaire
consisted of 15 questions. We sent interview invitations
to several industry professionals, and academic researchers
having ML expertise. We contacted 74 ML architects and
engineers through LinkedIn and 9 of them agreed to be
interviewed. We also contacted 15 ML experts through our
contact networks and 3 of them agreed to the interview.
A total of 12 ML experts answered the interview question-
naire. In the data extraction step, we analysed each of
the identified primary studies to fill the data extraction
forms. We collected and aggregated the filled forms for
data analysis and synthesis. In addition, we analysed the
interview data using a five-step process based on the coding
technique [13]. In the data analysis step, we analysed the
extracted data. The main goal of such an analysis was to
provide answers to the research questions. To this end, we
performed both quantitative and qualitative analysis.

Documenting. In the documenting phase, we anal-
ysed and documented possible threats to validity affecting
the study, and documented the results. To support the
independent replication and verification of this work, we
provide a complete and public replication package [14] con-
taining the data from search and selection, the complete
list of primary studies, and the data extraction forms, as
well as the interview data.

2.1. Search and Selection Strategy

We collected a set of 41 relevant research studies for
our investigation by following the steps shown in Figure 2.

ACM Digital
Library

IEEE Explore

Scopus

Web of 
Science

Automatic 
search

Duplicates and  
impurity removal Selection criteria

34 7

Final set 

2017

331

610

80

41
3038

2766

Snowballing

Figure 2: Overview of the search and selection process

We started with selecting four of the largest and most com-
plete scientific databases and indexing systems in software
engineering [8] that are IEEE Xplore Digital Library, ACM
Digital Library, SCOPUS, and Web of Science (Table 1).

The selection was based on their high accessibility and good
reputation in supporting systematic reviews in software
engineering [15]. We exercised the selected databases and
indexing systems using a search string that we created
starting from our research goal and questions.

According to the guidelines by Kitchenham and Brere-
ton on systematic literature reviews in software engineering,
we defined a control group of studies that we used for vali-
dating our research string [8]. The control group included
the studies by Amershi et al. [3], Washizaki et al. [2] and
by Washizaki et al. [16]. In addition, we tried to keep the
search string simple and inclusive so to collect as many
relevant research works as possible. We discuss threats to
validity related to the search string in Section 2.5. The
search string is:

(“software architecture” AND (“machine learn-
ing” OR “artificial intelligence” OR AI OR
“deep learning”) AND (challenge OR problem
OR issue) AND (“best practice” OR “recom-
mendation” OR tactics))

We performed the search during a period from January to
June 2021 and obtained an initial set of 3038 potential
peer-reviewed studies. We followed the selection process

Table 1: Electronic databases, indexing systems and search engine
used in this study

Name Type URL

IEEE Xplore
Digital Library

Electronic
database

http://ieeexplore.ieee.org

ACM Digital
Library

Electronic
database

http://dl.acm.org

SCOPUS Indexing
system

http://www.scopus.com

Web of Science Indexing
system

https://www.webofscience.

com/wos/woscc/basic-search

3

http://ieeexplore.ieee.org
http://dl.acm.org
http://www.scopus.com
https://www.webofscience.com/wos/woscc/basic-search
https://www.webofscience.com/wos/woscc/basic-search


proposed by Ali and Petersen [17] and we removed impu-
rities and duplicated and applied selection criteria to the
search results to ensure an objective selection. The set of
selection criteria that we used for filtering search results
studies is reported in the following.
Inclusion criteria:

1. Studies subject to peer review [9].

2. Studies written in English.

3. Studies available as full-text.

4. Studies discussing software architecture challenges
or architecture best practices or design decisions for
machine learning systems.

Exclusion criteria:

1. Secondary and tertiary studies (e.g., systematic liter-
ature reviews, surveys, etc.).

2. Studies in the form of tutorial papers, short papers,
poster papers, editorials, and manuals, because they
do not provide enough information.

We included in the next step only those studies meeting
all the inclusion criteria and none of the exclusion criteria.
We iteratively applied the selection criteria on title, abstract
and full text and obtained a set of 34 potentially relevant
studies. Then, we performed a closed recursive backwards
and forward snowballing activity [10], which helped us in
minimising potential bias concerning construct validity [18].
As a result, we found 79 additional peer-reviewed studies
that we filtered using the same selection criteria. Eventu-
ally, we selected 7 additional studies and obtained the final
set of 41, which is attached as appendix of this paper.

2.2. Definition of the extraction form

We created the extraction form shown in Table 2 to
extract and collect data from the primary studies. The ex-
traction form is composed of three facets, one per research
question. For each facet, we carried out a key-wording sys-
tematic process to develop an extraction form that could
fit the set of primary studies and take their characteristics
into account [11]. We first collected keywords and con-
cepts by reading the full text of the primary studies and,
then, we clustered the elicited keywords and concepts into
categories by using a process similar to the sorting phase
of the grounded theory methodology [19]. We refined the
extraction form when new information deemed relevant
was collected and was not already captured by the cur-
rent extraction form. Finally, we re-analysed the primary
studies according to the refined form and extracted new
data.

Table 2: Data extraction form facets, clusters and categories

Facet Category Description Value

RQ1 Challenges most common design challenges
in architecting machine learning
systems as identified in the studies

String

RQ2 Best prac-
tices

list of best practices in architect-
ing machine learning systems as
identified in the studies

String

RQ3 Design de-
cisions

list of design decisions in archi-
tecting machine learning systems
as identified in the studies

String

2.3. Interview questions definition, interviews and inter-
viewees

In this step, we built on the guidelines by Shull et
al. [20] and performed a total of 12 interviews. Interviews
are among the most common and effective data collection
methods as they help in gathering effective and thorough
inputs on given subjects from practitioners across organisa-
tions [20]. We conducted online, semi-structured, in-depth
interviews for collecting quantitative and qualitative data;
this allowed us to enhance our findings on architecting ML
systems [21]. We composed the interviews using 15 open-
ended questions that helped us minimise possible threats to
validity and gather more detailed answers. We selected our
target population to be researchers and practitioners with
experience in ML systems. We created an interview invita-
tion letter that outlined the main focus of the interview, its
expected duration and the measures we took for ensuring
privacy and confidentiality. We distributed the invitation
letter to 89 researchers and practitioners from our contact
networks or found via the LinkedIn1 professional social
network.

A total of 12 ML experts answered the interview ques-
tionnaire. Table 3 provides information on role, ML experi-
ence, domain and affiliation of the interviewees. The pool
of interviewees included 7 ML engineers, 4 ML researchers
and 1 manager. Of these, 9 interviewees worked in industry
while 3 worked in academia. Looking at the ML experience,
the majority of experts had 5 years of experience or more
(41%). 33% of the interviewees had 3 to 5 years experi-
ence, while the remaining experts had less than 3 years
of experience. All the interviews were carried out online
using the Zoom platform2 and video- and audio-recorded
(except for one interview as the expert did not agree to
it). The anonymized transcripts and notes taken during
the interviews are available in the replication package [14].
The interviews lasted between 30 and 45 minutes.

2.4. Data extraction, synthesis and analysis

We extracted, analysed, and synthesised the extracted
data using the guidelines presented by Cruzes et al. [22]. In

1http://www.linkedin.com
2https://zoom.us

4

http://www.linkedin.com
https://zoom.us


Table 3: Statistical representation of the interviewees

ID Role ML Expe-
rience

Domain Affiliation

I1 ML engineer 1 - 3 years Industry Confidential
I2 ML engineer ≤ 1 year Industry Upland soft-

ware
I3 ML researcher 3 - 5 years Academia Chalmers

University
I4 ML researcher > 10 years Academia University of

L’Aquila
I5 ML engineer 3 - 5 years Industry Quantiphi
I6 ML engineer > 10 years Industry PlayGround

XYZ
I7 ML researcher 5 - 10 years Academia Chalmers

University
I8 ML engineer > 10 years Industry Cubic Corpo-

ration
I9 ML researcher ≤ 1 year Industry Cresta
I10 ML engineer 3 - 5 years Industry Inception In-

stitute of Ar-
tificial Intelli-
gence

I11 ML manager > 10 years Industry Macquarie
group

I12 ML engineer 3 - 5 years Industry Visionet Sys-
tems Inc.

this research, we performed both quantitative and qualita-
tive analyses combining content analysis [23] and narrative
synthesis [24]. The combined analyses helped us in cate-
gorising and coding challenges, best practices and design
decisions under thematic categories. The latter analysis
technique provided a detailed explanation and interpreta-
tion of the findings coming from the former analysis. We
used the so-called line of argument synthesis process [9] for
finding trends and collecting information on each facet of
the data extraction form. First, we analysed each primary
study and interview individually for classifying its main
features according to the parameters in the data extrac-
tion form. Later, we analysed the whole set of primary
studies and interviews to uncover and reason about po-
tential patterns. Finally, we grouped and cross-tabulated
extracted data and compared pairs of facets of the data
extraction form for identifying possible relations among
different facets. To this end, we used contingency tables
for extracting and evaluating relevant pair-wise relations.

2.5. Threats to validity

We carried out this research according to well-established
guidelines for empirical studies in software engineering in-
cluding those by Kitchenham and Brereton [8] and by
Wohlin et al. [9]. Hereafter, we describe the main threats
to validity according to the scheme by Wohlin et al. [9] and
elaborate on mitigation strategies.

Internal validity is a concern that arises when the design
of a study may compromise the accuracy of the results [9].
To minimize this risk, we employed a research protocol that
adhered to established guidelines for systematic studies,

surveys, and interviews in software engineering. The pro-
tocol was developed and validated by all authors through
consensus. To further ensure the validity of our data, we
applied rigorous descriptive statistical methods for analysis.
To minimise the risk of finding practitioners missing the
required knowledge, we relied on our knowledge network
and through LinkedIn where experience and expertise is
visible.

Construct validity is a concern that arises when the
connection between theory and observation may be com-
promised [9]. To mitigate this risk, we ensured that the
primary studies selected for our research were representa-
tive of the population defined by our research questions by
following a well-defined and validated protocol. We further
minimised the risk of data extraction errors by using a
framework based on the identified questions. To minimise
risks related to a non representative search string, we identi-
fied main terms and synonyms or abbreviations. Eventually,
we tested the string prior to the search and selection and
observed it identified a set of known relevant studies. Each
author independently checked the extracted data from the
studies, and any doubts were resolved through annotations
and consensus. One potential threat in the survey method
is the possibility of hypothesis guessing or confirmation
bias, where respondents adjust their answers to align with
the main goal of the study. To prevent this, we posed
the questions objectively and used references to relevant
sources.

External validity is a concern that arises when the re-
sults and outcomes of a study may not be generalizable
to a wider population [9]. In our research, the main con-
cern that could impact external validity is whether the
set of primary studies we selected is representative of the
state-of-the-art and practice. To mitigate such a potential
threat, we targeted four different databases and indexing
systems among the largest and most complete in the field
of software engineering [15]. Besides, we complemented
the automatic search with closed recursive backward and
forward snowballing. However, it is important to note that
because the literature review was conducted in 2021, the
results may not offer insights into the most current trends
in this extensively studied field. Furthermore, these best
practices may be context-dependent and may not be univer-
sally applicable, nor can they be considered a universally
accepted set of procedures.

Conclusion validity is a concern that arises when the
relationship between the extracted data and the obtained
findings may compromise the credibility of the conclusions
drawn [9]. To mitigate this risk, we applied best practices
from systematic studies and survey guidelines throughout
our research. This includes documenting every step of
our research and providing a public replication package
to ensure transparency and replicability. Additionally, we
reduced potential bias during the data extraction process
by using an extraction form. All authors participated in
data extraction, analysis, and synthesis steps. We also took
measures to mitigate other threats, such as lack of expert

5



evaluation and fishing for results.

3. Design challenges in architecting machine learn-
ing systems (RQ1)

By answering this research question, we aim at identi-
fying the main challenges affecting Software Architectures
(SAs) for ML systems. According to the synthesised data
from the systematic literature review and the interviews,
there are 6 main categories of challenges listed in Table 4.

Table 4: Main design challenge categories identified in the primary
studies and by the interviewees.

Category Primary study Interviewee

Architecture [P18], [P22], [P26],
[P28], [P30], [P32],
[P38], [P39]

I4, I7

Data [P15], [P16], [P38] I1, I2, I3, I5, I6, I7, I8
Evolution [P27], [P34] I9, I12
Quality as-
surance

[P14], [P22] I1, I10

Model [P8], [P22], [P39] -
Software de-
velopment
life cycle

[P4] I10, I11

The primary studies and the interviewees identified a com-
mon set of 5 design challenge categories: Quality Assurance
(QA), data, architecture, evolution, and Software Devel-
opment Life Cycle (SDLC). Primary studies identified an
additional category, i.e., model. Architecture and data
are by far the most mentioned categories (29% each) and
they are followed by a cluster of 4 challenge categories be-
ing evolution (12%), QA (9.6%), model (9.6%) and SDLC
(9.6%). In the following subsections, we detail each identi-
fied category by presenting and discussing the list of specific
sub-challenges for each category.

3.1. Architecture design challenges

In the architecture category, we find a number of differ-
ent architectural challenges as shown in Table 5.

Table 5: Main architectural design sub-challenges as identified in the
primary studies and by the interviewees.

Specific architectural challenge Source

Failure recovery in micro-service architectures [P18]
Hard to achieve heterogeneous redundancy [P22]
Reuse in ML-based systems is hard [P26]
Lack of knowledge required to build ML-based
systems

[P28], I4

The use of ML components might introduce uncer-
tainty

[P30]

Lack of architectural expertise [P32]
Difficult to identify design smells [P38], [P39]
Run-time architecture due to distributed execution I7

Table 6: Main data design sub-challenges as identified in the primary
studies and by the interviewees.

Specific data challenge Source

Data management [P15], I2, I8
Data visualisation I2
Data dependencies [P38]
Data observability I1
Privacy I3
Data Accuracy I5
Use cloud with high-volume of data I5
Establishing a proper ML infrastructure for
managing data

I7, [P16]

Use of batching scoring for saving in the
database

I6

Jin et al. observe that micro-service architectures are par-
ticularly challenging when used for developing ML systems
with respect to failure recovery as the failure of a service
may be propagated to other services if the fault is not
promptly amended [P18]. In his paper, Serban observed
that heterogeneous redundancy is hard to achieve in ML-
based systems [P22]. This is because only a few algorithms
achieve the needed accuracy for ML tasks and all these
algorithms exhibit the same weaknesses [P22]. Kusmenko
et al. argue that the use of neural networks with ML as
reusable building blocks with clear interfaces is still chal-
lenging [P26]. Muzaffar et al. investigate the use of ML for
building mobile robots and conclude that the selection and
design of an architecture for a mobile robot that satisfies
both functional and quality attribute requirements is a
big challenge due to less available knowledge of computer
algorithms and probability theory [P28]. ML knowledge
is important for developers that need to understand the
data and the ML model, interviewee I4 says. Serban et
al. noticed that the use of ML components may intro-
duce uncertainty when evaluating the reliability of software
architecture design [P30]. Prior information on the uncer-
tainty of ML components employed at design time is often
incomplete and their usage can influence other components
in the system. Bhat et al. argued that it is challenging
to identify and quantify architectural expertise in ML sys-
tems [P32]. ML design smells are challenging to find [P38].
Design smells manifest in several ways. For example, using
multiple languages in the development of ML systems often
increases the cost of effective testing and makes it more
difficult to transfer ownership to other team members [P38].
Another design smell is that maintaining the prototyping
environment is costly, and small scale rarely reflects reality
at full scale [P38]. One interviewee (I7) identified run-time
architectures for ML as challenging with respect to the
distributed execution of the ML model.

3.2. Data design challenges

Table 6 shows the data design sub-challenges. Castel-
lanos et al. identified data management, e.g., pre-processing
and preparation, as significant design issues in ML systems

6



Table 7: Main evolution design sub-challenges as identified in the
primary studies and by the interviewees.

Specific evolution challenge Source

Support continuous change and evolution [P27]
Updatability & maintainability of ML-based systems [P34], I9
Scalability of the model I12

with consequences lasting even after the system develop-
ment [P15]. For example, to infer contextual information on
extensive data as scientific imaging is challenging and time-
consuming as a large amount of similar data is needed as
input to the ML training system [P15]. Another challenge
related to data management is reported by an interviewee
(I2); he indicated that the cleaning of the data is cum-
bersome but crucial for guaranteeing that it is not biased
and it does not break the algorithm. The same intervie-
wee (I2) stated that data visualisation is also challenging
as bioinformatic information is not common, and current
techniques are rarely applied. I8 argued that data prepara-
tion is difficult especially making statistics of it. Sculley
et al. looked at the dependencies between lines of code
and configuration and concluded that in an ML system
that is actively being developed, the number of configu-
ration lines tends to considerably outnumber the number
of lines of code and such an increment in configuration
lines is challenging to handle [P38]. Data observability
was reported as challenging by I1 when dealing with large
ML models. One interviewee (I3) noted that one of the
main challenges related to data is how to ensure privacy
and confidentiality. Interviewee I5 identified 2 challenges,
i.e., data accuracy and cloud. Data accuracy and comple-
tion of data are crucial when training the models of ML
systems. Cloud is regarded as not suitable when a high
volume of data is handled. One interviewee (I7) stated
that establishing a proper infrastructure for, e.g., storing,
accessing, and updating data efficiently, is also one of the
main challenges. Biondi et al. remarked that ML systems
have high demands on setting up and maintaining the pro-
totyping environment as small-scale environments usually
do not reflect reality in full scale [P16]. However, such
demands are challenging to meet. Related to this, another
interviewee (I6) acknowledged as challenging of the use of
batching scoring for saving in the database.

3.3. Evolution design challenges

Table 7 shows the evolution design sub-challenges. Möstl
et al. recognised that cyber-physical systems (CPSs) de-
veloped using ML have design challenges in managing the
system and its operational environment needs for contin-
uous change and evolution [P27]. As an example, they
mention the interaction design challenges related to the dy-
namic allocation of software when multi-core architectures
are used [P27].

Both Baylor et al. [P34] and an interviewee (I9) refer to
updatability as one of the main challenges. In fact, input
data changing over time would require updating ML-based
systems since updates in models can impact system out-
comes and its performance [P34]. The scalability of the
model was reported as a design challenge by one intervie-
wee (I12). In particular, the interviewee remarked that
when ML models do not scale, the engine can get busy and
lose some requests.

3.4. Quality assurance design challenges

Table 8 shows the QA design sub-challenges. Serban
et al. identified several QA-related design challenges in
the development of ML-based safety-critical systems [P22].
Some of these challenges are: (i) formal verification is either
impossible or impractical [P22], (ii) ML systems that are
sensitive to variations in distribution [P22], (iii) limited
scenario testing [P22], and (iv) fault tolerance [P22]. One
interviewee (I1) remarked that being able to explain why
an ML system makes a prediction is an important challenge
especially when the size of the model is increasing.

Scheerer et al. argue that deductive verification and model
checking would be very useful for increasing qualities such
as safety, robustness, or dependability. However, because
ML is fundamentally probabilistic and non-linear in nature,
methods to ensure system correctness are barely applicable
and only marginally relevant [P14]. One interviewee (I10)
stated that a lack of documentation can affect the quality
of ML systems together with a lack of QA guidelines.

3.5. Model design challenges

Table 9 shows the model design sub-challenges. Amer-
shi et al. identify two main design challenges related to
the ML model, which are managing and versioning, and
reuse [P8]. First, maintaining and versioning models re-
quired for ML systems is far more complicated and demand-
ing than maintaining and versioning other types of data
in software engineering [P8]. In fact, ML/AI models are
more difficult to manage as separate modules than other
software components because models can get entangled
in complicated ways and exhibit non-monotonic error be-
haviours [P8]. The authors claim that this issue is worsened

Table 8: Main QA design sub-challenges as identified in the primary
studies and by the interviewees.

Specific QA challenge Source

Formal verification [P22]
Variation in distribution [P22]
Limited scenario testing [P22]
Fault tolerance [P22]
Limited reasoning on system and code [P22]
Explainability I1
Deductive verification [P14]
Lack of documentation I10

7



by the lack of knowledge of the problems and best practices
for ML model maintenance, due to ever-evolving research
in both ML infrastructure and algorithms [P8]. Secondly,
model customization and reuse may be difficult considering
that some of the required abilities are not commonly found
in software teams.

Table 9: Main model design sub-challenges as identified in the primary
studies and by the interviewees.

Specific model challenge Source

Managing and versioning models [P8]
Model customization and reuse [P8]
Selecting appropriate models [P39]
Increasing complexity of models [P22]

Schelter et al. claim that wrong management of the ML
model can lead to poor performance of ML systems [P39].
Model management involves training, maintenance, deploy-
ment, monitoring, organisation, and documentation of ML
models. Incorrect model management can result in poor
performances and high maintenance costs [P39]. In ad-
dition, Serban identified other challenges related to the
increasing complexity of models and their opacity [P22].

3.6. Software development life cycle design challenges

Table 10 shows the software development life cycle
(SDLC) design sub-challenges. Among the SDLC design
challenges, Wan et al. highlighted that the reuse of tradi-
tional, non-ML, software processes is problematic [P4]. ML
or non-ML processes have different practices with respect
to requirements, design, testing/quality, process, and man-
agement. ML system architectures generally include data
gathering, data cleansing, feature engineering, modelling,
execution, and deployment [P4]. In contrast, non-ML sys-
tem architectural design is a more creative approach that
implements different structural divisions of software com-
ponents and provides behavioural descriptions [P4]. The
distributed architecture style is commonly favoured for ML
systems due to the large volume of data. In addition, ML
systems have less emphasis on low coupled components
than non-ML software systems: even though various fea-
tures of ML systems have distinct capabilities, development
teams are closely linked [P4]. This is also remarked by an
interviewee, I11, who claims that the development of ML

Table 10: Main SDLC design sub-challenges as identified in the
primary studies and by the interviewees.

Specific SDLC challenge Source

Reuse and adoption of non ML-processes [P4], I11
Continuous integration for ML-based systems I10
Lack of available documentation [P4]

systems should not be driven by processes for non-ML sys-
tems. One interviewee (I10) noticed that most practices
like continuous integration are not followed and that in-
creases the complexity at the time of system completion.
Similar to Wan et al. [P4], the interviewee claimed that
the lack of available documentation negatively affects the
reuse of processes.

We identified several design challenges that affect
ML-enabled systems and that should be taken into ac-
count when architecting these systems. Primary studies
and interviewees shared some challenges, but they also
reported on different challenges. The challenge that is
largely identified by primary studies and interviewees
concerns data design challenges, including data man-
agement, dependencies, observability, accuracy, privacy,
visualization, and so on. The most rated category of
challenges identified in primary studies is architecture,
spanning from the adoption of specific architectural
styles to reusability, identification of bad smells, and
how to deal with uncertainty. Other challenge categories
- also important, but supported by fewer primary studies
and interviews - are detailed in the section.

RQ1 findings

4. Best practices in architecting machine learning
systems (RQ2)

By answering this research question, we aim at identi-
fying the main best practices in architecting ML systems.
According to the synthesised data from the systematic liter-
ature review and the interviews, there are 7 main categories
of best practices listed in Table 11.

Table 11: Main best practices categories identified in the primary
studies and by the interviewees.

Category Primary study Interviewee

Architecture [P6], [P17], [P28],
[P30], [P32], [P36],
[P38], [P39]

I3, I5, I10, I12

Quality assurance [P14], [P16], [P18],
[P22], [P24], [P38]

I6, I9

Software development
life cycle

[P4], [P11], [P20],
[P35]

I7, I9, I11, I12

Hardware & platform [P25], [P34], [P40] I8, I9
Model [P8], [P26] I1, I4
Evolution [P1], [P39] -
Data - I2

The primary studies and the interviewees identified a com-
mon set of 4 best practices categories: QA, architecture,
model, and Hardware (HW) & platform. Primary studies
identified 2 additional categories, i.e., evolution and SDLC,
while interviewees identified one additional category, i.e.,
data. Architecture (32%) and QA (21.6%) are by far the
most mentioned categories. They are followed by SDLC

8



and HW & platform (13.5% each) and model (10.8%). Fi-
nally, evolution and data are reported by two studies and
one interviewee. In the following subsections, we detail
each identified category by presenting and discussing the
list of specific sub-practices for each category. As evolu-
tion and data account for only two best practices and one
best practice, respectively, we present them together in
Section 4.6

4.1. Architecture best practices

In the architecture category, we find a number of dif-
ferent architectural best practices ranging from specific
architectures (e.g., in-memory distributed learning architec-
tures [P17] or three layers [P6]) to design smells [P38, P39].

Table 12: Main architectural best practice as identified in the primary
studies and by the interviewees.

Specific architecture best practice Source

Use in-memory distributed learning architecture for
sophisticated learning and optimisation techniques

[P17]

Use the Siemens four-views architecture for better sep-
aration of concerns

[P28]

Explicitly model uncertainty for assessing its propaga-
tion and impact

[P30]

Exploit knowledge and experience of architects and
developers

[P32]

Single container, single mode and multiple node pat-
terns

[P36]

Use Plain-Old-Data, Multiple-Language, and Proto-
type smell to identify design smells

[P38],
[P39]

Use three layers architecture for separating the business
logic from the ML-specific aspects

[P6]

Use the microservice architecture for better focusing on
the business functionalities and for facilitating mainte-
nance and cohesion

I3, I5,
I12,

Use unified architecture and minimise architectural
decisions before deployment

I3

Use the client-server pattern for pipeline management I10
Aim for low cohesion to improve modifiability I10

Table 12 shows the architectural best practices. Panou-
sopoulou et al. recommended to use in-memory distributed
learning architectures to achieve sophisticated learning and
optimisation techniques on scientific imaging data sets:
they are very effective in removing distortion on ML scien-
tific imaging databases [P17]. The four-view architecture
designing approach (i.e., the conceptual, the module, the
execution architecture, and the code architecture views) en-
sures a better separation of concerns and, hence, decreases
the development complexity of mobile robotic systems de-
veloped using ML [P28]. Schleier-Smith et al. highlighted
the benefit of using a three layers architecture for separating
the business logic from ML components [P6]. They show
the benefit by focusing on troubleshooting ML systems that
might have tightly coupled functions, e.g., inference engine
derived from data, and business logic code from design.
In this context, the three layers architecture (i) assists

engineers in breaking down the failure and traces it to the
business logic part or ML components, and (ii) allows engi-
neers to rollback the inference engine independently of the
business logic when the inference engine encounters some
issues. Several interviewees (I3, I5, I12) recommended the
use of micro-service architectures for several reasons includ-
ing the following: (i) microservice architectures enable the
engineers to concentrate on building the business function-
alities rather than writing glue code, (ii) microservice archi-
tectures are easier to maintain as compared to monolithic
architectures as they tend to use smaller and independent
components, and (iii) the low cohesion among these compo-
nents helps in increasing the modifiability of ML systems
(I10). I10 also suggested to use the client-server pattern
for reducing the risks of breaking pipelines. Another inter-
view (I3) suggested using unified architectures and try to
minimize architectural decisions before development. Ser-
ban et al. stated that it is best to explicitly model the
intrinsic uncertainty of ML components and assess how it
propagates and impacts other elements in the system at the
designing stage [P30]. Burns et al. suggested using a single
container, single-node patterns, and multiple-node patterns
for improving reusability of components and distributed de-
velopment [P36]. They argue that with the above patterns
it is simpler to distribute implementation across various
teams and reuse components in new situations. These in-
clude the ability to upgrade components separately and
the ability to write them in different languages. According
to Bhat et al. [P32] it is important to properly identify
individuals who could be involved in tackling new design
concerns. In fact, the experience and knowledge of archi-
tects and developers play a crucial role in design decisions
making: experienced architects and developers use efficient
decision-making strategies. The best practice to find design
smells is to focus on three types of ML design smells that
are Plain-Old-Data, Multiple-Language, and Prototype
smells [P38, P39]. The Plain-Old-Data smell refers to the
fact that too often complex information used and produced
by ML systems are encoded with plain data types such
as raw floats and integers. The second smell refers to the
use of multiple languages that often increases the cost of
effective testing and makes transferring ownership to other
team members more difficult. The Prototype smell refers
to the dangerous practice of using the prototyping system
as a production solution.

4.2. Quality assurance best practices

Table 13 shows the QA-specific best practices. In their
paper, Biondi et al. discussed several best practices for
improving certifiability, safety, time predictability and se-
curity [P16]: (i) Certifiability - use of strict and certified
coding standards when developing safety-critical ML com-
ponents, (ii) Safety - implement proper mechanisms for
tolerating faults and failures that may occur in complex
software routines; (iii) Security - explicitly designing and

9



Table 13: Main QA best practices as identified in the primary studies
and by the interviewees.

Specific QA best practice Source

Certifiability - coding standards [P16]
Safety - mechanisms for fault-tolerance [P16],

[P22]
Time predictability - techniques for improving confi-
dence

[P16]

Security - design for security [P16]
Use principal component analysis method for compo-
nents interoperability

[P18]

Federated learning simulation framework (FLSim) [P24]
Debt for data testing, reproducibility, process manage-
ment and debt to culture

[P38]

Preliminary classification using static, monitor, a pos-
teriori and non-analysability

[P14]

Standardisation of the training and testing process I6
Test-driven development I9

developing ML systems to defend vulnerable sections of the
code that may be subject to cyber-attacks, and (iv) Time
predictability - static, monitor, a-posteriori analysability,
and non-analysability are the best practices for preliminary
classifications, that in turn can provide confidence to the
design process for ML systems. Concerning safety, Serban
recommends to focus on guaranteeing that safety-critical
systems developed using ML do not reach hazardous condi-
tions [P22]; to this end, they suggest to turn off components
to reach a safe state quickly. Li et al. recommend the use
of FLSim that is a reusable and extensible federated learn-
ing simulation framework [P24]. FLSim commonly assists
deep learning, machine learning frameworks, for example,
PyTorch and Tensor-Flow. The authors suggest to use
FLSim for creating simulators for the above mentioned
type of frameworks. Jin et al. stated that the principal
component analysis method is known to assist in reducing
the dimension of data sets and extend the components in-
teroperability [P18]. Sculley et al. identified best practices
related to the reduction of debt for data testing, debt for re-
producibility, and debt in process management [P38]. One
interviewee (I9) remarked on the importance of following
a test-driven development for QA and suggested the use
of the Jupiter Notebook. Another interviewee (I6) argued
that a standardisation of the training and testing process
would improve the verifiability of the ML models.

4.3. Software development life cycle best practices

Table 14 shows the software development life cycle best
practices. Anjos et al. advocated that proper documen-
tation increases the efficiency, reusability, reproductivity,
and shareability of ML-based systems and can assist in
designing them [P35]. In fact, a lack of documentation
hampers use, reuse, and extension of ML-based systems.

Spalazzi et al. focused on the development of ML-based
digital forensics systems. These systems are part of the

Table 14: Main SDLC best practices as identified in the primary
studies and by the interviewees.

Specific SDLC best practice Source

Main phases when architecting ML-based systems [P20]
Importance of documentation [P35]
Main activities and design of ML-based systems [P4]
Divide et impera [P11]
Adapt SDLC to product type, organisation and busi-
ness goals

I7

Ensure proper ML infrastructure I7
Object-oriented development I9
Prototyping I11
Avoid hiring new resources while building the ML
framework

I11

Avoid changing technology I11
Identify whether the ML-based system requires real-
time capabilities or not

I12

forensic science that deals with recovering and investigat-
ing the information contained in digital devices [P20]. For
these systems, Spalazzi et al. suggested following a four
phases development process that includes: seizure, acquisi-
tion, analysis, and reporting [P20]. Wan et al. [P4] provide
various best practices related to the software development
life cycle. First, they identify the activities that are of-
ten relevant when architecting ML-based systems: data
gathering, data cleansing, feature engineering, modelling,
execution, and deployment [P4]. Even though various
features of ML-based systems have distinct capabilities,
development teams are closely linked; for example, the
performance of data modelling is dependent on data pro-
cessing. Moreover, the large volume of data often favours
the selection of distributed architectures. Finally, a de-
tailed design for ML-based systems is often unfeasible due
to systems complexity as, e.g., data modelling might con-
tain tens to hundreds of ML algorithms [P4]. Muccini et
al. suggested using a divide et impera approach that is to
brake down the ML-based system design into sub-concerns
that can be handled with proper and tailored design de-
cisions [P11]. One interviewee (I11) suggested tailoring
the SDLC to accommodate prototyping. The interviewee
also recommended avoiding changing technology as well
as hiring new resources as it may negatively affect the
ML systems under development. Similarly, it can lead
to changes or updates in the data architecture. Another
interviewee (I12) recommends to investigate whether or
not the system needs real-time capabilities before starting
its design. When dealing with general purpose ML-based
systems, I9 recommends the use of test-driven development
coupled with Object-Oriented programming and Jupiter
Notebook. I7 remarked the importance of a proper ML in-
frastructure and of the training and deployment processes.
For example, Federated Learning requires a distributed
architecture hence the team needs to design a distributed
and dynamic system.

4.4. Hardware and platform best practices

10



Table 15: Main HW & platform best practices as identified in the
primary studies and by the interviewees.

Specific HW & platform best practice Source

Use TensorFlow-based learner [P34], [P40], I8
Jupiter notebook I9
Use ML Cloud technologies [P25]

Table 16: Main model best practices identified in the primary studies
and by the interviewees.

Specific model best practice Source

Select modelling languages supporting specific concerns [P26]
Consider training a partial model in combination with
transfer learning for better performance

[P8]

Focus on data to have a correct and “fresh” model I1
Align the creation and training of the model to require-
ments

I4

Table 15 shows the HW & platform-specific best prac-
tices. Baylor et al. suggested the use of TensorFlow-based
learner implementation with support for continuous train-
ing and serving with production-level dependability [P34].
Similarly, Abadi et al. advocated the use of TensorFlow as a
way of providing improved data visualisation [P40]. In fact,
thanks to its graphical approach, TensorFlow assists the de-
velopment team in debugging the nodes reducing the need
for code inspections [P40]. One interviewee suggested the
use of TensorFlow and pipelining to enhance the security of
ML systems (I8) while another interviewee (I9) suggested
the use of Jupiter notebook when dealing with general
purpose ML-based systems. Fomin et al. recommended
using ML cloud technologies for increasing the quality of
cutting tool states recognition in the industry [P25].

4.5. Model best practices

Table 16 shows the specific best practices related to
the model. When building an artificial neural network
in ML systems, Kusmenko et al. recommended selecting
modelling languages taking into account three specific con-
cerns: network architecture, network training, and data set
model [P26]. Network architecture plays a pivotal role as
it constrains the organisation of neurons and connections
among them that define the data flow [P26]. Once properly
defined, the network architecture needs to be trained: a
developer can modify the training procedure without chang-
ing the architecture or a developer can combine existing
architectures and training models without changing the
models at all [P26]. Finally, the compiler needs to know
where to look for training data and how to load it to train
a network. Furthermore, the data set must be divided into
training and test data [P26].

Amershi et al. suggested a best practice for object identifi-
cation systems using ML [P8]. They suggested training a
partial model using existing general data sets (e.g., Ima-
geNet for object identification) and then combining them

with specialised data using transfer learning for better per-
formance [P8]. One interviewee (I1) suggested focusing on
analysing data so as to always have a model that is correct
and not obsolete. Another interviewee (I4) focused on the
practice of aligning the creation and training of the model
according to system requirements.

4.6. Evolution, and data best practices

Table 17: Main evolution and data best practices as identified in the
primary studies and by the interviewees.

Specific evolution best practice Source

Train a single model for time series and retrain it each
time a new forecast needs to be made

[P39]

Consider having methods to adjust the parameters of
noise-cleaning algorithms when light changes

[P1]

Specific data best practice Source

Build the grids (data preparation technique) for natural
language techniques

I2

Table 17 shows the specific best practices related to
evolution (first two rows) and data (last row). Schelter et
al. proposed an evolution best practice when developing
large-scale forecasting problems and time series prediction
systems using ML [P39]. They suggested training a single
model per time series and retraining the models every time
a new forecast needs to be created [P39]. Some classi-
cal forecasting techniques can be used to develop similar
systems, such as auto-regressive integrated moving aver-
age models, exponential smoothing methods, state-space
formulation, etc.

Wnag et al. focused on ML systems for image recogni-
tion and suggested a best practice that takes into account
the performance of these systems with respect to environ-
mental changes [P1]. For example, the object recognition
rate for these systems is higher when the environment
is brighter, i.e., with more light. The best design prac-
tice to increase the efficiency of recognition is to adjust
the algorithm parameters when the intensity of the light
changes [P1]. Simultaneously, to complete image enhance-
ment, the composition model of related algorithms may
need to be reconstructed [P1]. Furthermore, all pattern
recognition algorithms and the composition model builder
should be capable of checking the information of related
sensors when necessary [P1].

Grid is a data preparation technique that transforms
data as other hyperparameters of the modelling pipeline.
One interviewee (I2) recognised that the grid searching
data preparation technique suits the processing of natural
language hence the interviewee recommended best prac-
tice is to build the grids when developing ML systems for
natural language processing.

11



We identified several best practices improving the devel-
opment of ML-enabled systems. Both primary studies
and interviewees identified most of the best practices
categories although they also reported on exclusive ones.
Similar to the challenges, the most mentioned best
practice category is architecture with practices spanning
from use of specific patterns, architectures or tools to
recommending low cohesion for maintainability. Other
less mentioned practices are detailed in the section.

RQ2 findings

5. Design decisions in architecting machine learning
systems (RQ3)

By answering this research question, we aim at iden-
tifying the main design decisions that are taken when
architecting ML-based systems. According to the system-
atic literature review and the interviews, there are 7 main
categories of design decisions listed in Table 18.

The primary studies and the interviewees identified a com-
mon set of 5 design challenge categories data, architecture,
model, evolution and HW & platform. Primary studies
identified 2 additional categories, namely quality assurance
and software development life cycle. Architecture (25%)
and HW & platform (21.4%) are the most mentioned cate-
gories. They are followed by SDLC and model (14% each),
and data and evolution (10.7%). QA is the least mentioned
design decision. In the following subsections, we detail
these 7 main architectural design decisions. Each design
decision has a dedicated subsection, with an exception of
data, evolution, and quality assurance design decisions that
are discussed together in Section 5.5. Indeed, architec-
tural design decisions have some connections with the best
practices we described in Section 4 whereas architectural
decisions are more concrete. However, this does not mean
that each best practice is refined by design decisions. We
discuss how best practices relate to design decisions and
how they both connect to challenges in Section 6. When
possible, for each decision we report advantages, disad-
vantages, class of systems for which the decision works

Table 18: Main design decisions identified in the primary studies and
by the interviewees.

Category Primary study Interviewee

Architecture [P18], [P22], [P28] I7, I9, I10, I11
Hardware & platform [P15], [P25], [P40],

[P41]
I8, I12

Software development
life cycle

[P20], [P21], [P24],
[P38]

I1, I3, I7, I8

Model [P8], [P26] I5, I6
Data [P17] I2, I7
Evolution [P1], [P36] I4
Quality assurance [P16], [P34] -

best (Good for) or should be avoided (Not good for), and
examples clarifying the decision.

5.1. Architecture design decisions

Table 19 shows the HW & platform-specific design
decisions. Several studies and interviewees focused on the
importance of choosing the right architecture as the main
design decision. Both Jin et al. [P18] and one interviewee
(I9) suggested the use of micro-service architecture.

Table 19: Main architecture design decisions identified in the primary
studies and by the interviewees.

Specific architecture design decision Source

When architectural patterns are not available, perform
an early evaluation of architectural safety methods.

[P22]

Choose an appropriate architecture, both overall ML
architecture and run-time architecture, based on the
input data to train. This general design decision is
opened in the following architectural decisions, by re-
ferring to specific architectural styles.

I11, I7

Micro-service architecture [P18],
I9, I11

Pros: help decompose a system, reduce coupling, promote
flexibility ([P18]).
Good for: ML-based natural language processing systems
(I9).
Not good for: large systems where the input data change
frequently (I11).

Siemens four views [P28]
Good for: ML-based robot navigation component.

Client-server architecture I10
Pros: promote low coupling and high cohesion, and enhance
security.
Good for: object recognition and image processing systems.

Jin et al. proposed to use micro-service architecture as
a way of decomposing a big service into discrete services
that can help reduce the system coupling and provide more
flexibility [P18]. The interviewee (I9) advocated that micro-
service architectures are a better design decision when de-
veloping ML-based natural language processing systems
as they assist in performing better data cleaning that, in
turn, helps the accurate parsing of the document in natural
language. However, the use of micro-service architecture is
not supported by all. One interview (I11) stated that such
an architecture is not optimal for large systems where the
input data change frequently. So the interviewee’s main
design decision is to choose an appropriate architecture
based on the input data to train. Muzzafar et al. sug-
gested the use of the Siemens four views architecture when
developing ML-based robot navigation component [P28].
The choice of an appropriate architecture is highlighted as
an important design decision by interviewee I7 that recom-
mended considering the overall ML architecture as well as
the run-time architecture in terms of, e.g., heterogeneous
computing units. Interviewee I10 suggested opting for a
client-server architecture when developing object recogni-
tion and image processing systems as this architecture can

12



provide low coupling and high cohesion besides enhancing
the system security (for example, with the use of a fire-
wall). Serban et al. suggested including the evaluation
process of architectural safety methods before moving to
the development stages when developing safety-critical ML
systems [P22]. They advocate that this step is crucial when
existing architectural patterns are not available and new
ones need to be developed [P22].

5.2. Hardware and platform design decisions

Table 20 shows the HW & platform-specific design
decisions. Infrastructure as Code (IaC) is known as the
method of managing and providing computer data centres
through machine-readable specification files, rather than
actual hardware setup or interactive configuration tools.
Catellanos et al. pointed out that one effective design deci-
sion when building ML systems associated with databases,
servers, and other IT infrastructure is to employ IaC so as
to use the same structures and rules used for code develop-
ment. This can reduce cost, time and risks associated with
the IT infrastructure [P15].

Table 20: Main HW & platform design decisions as identified in the
primary studies and by the interviewees.

Specific HW & platform design decision Source

Use of Infrastructure as Code [P15]
Pros: (i) permit to use for HW the same structures and rules
used for code development, (ii) reduce cost, time, and risks of
the IT infrastructure

Use of Cloud technologies [P25]
Pros: more efficient in cutting tools state recognition systems
than other alternatives such as diagnostic feature selection
using combinatorial analysis

Use of TensorFlow [P40],
I8

Pros: higher performance and easy to scale

Use an architectural solution based on Residue Number
System (RNS)

[P41]

Pros: permit to reduce the number of resources used, both in
terms of hardware and time
Good for: Convolutional neural networks (CNN) and other
ML computing operations

Use different branches for training the pipelines I12
Pros: permit to avoid the so-called pipeline jungles

Fomin et al. advocated that the use of cloud technolo-
gies is more efficient in cutting tools state recognition
systems than other alternatives such as diagnostic feature
selection using combinatorial analysis [P25]. Chervyakov
et al. described how to reduce the number of resources
used, both in terms of hardware and time, for Convolu-
tional neural networks (CNN) and other ML computing
operations [P41]. They achieve this by proposing a CNN
architecture based on Residue Number System (RNS) and
a new Chinese Remainder Theorem [P41]. Abadi et al.
recognised as beneficial the use of TensorFlow for large-
scale ML systems [P40]. TensorFlow provides a higher

level of performance that is also easy to scale [P40]. The
authors recognised that other tools like Keras and PyTorch
are better for smaller systems [P40]. One interviewee (I12)
suggested that an important design decision when archi-
tecting ML-based systems is to separate the branches for
the training of the pipelines from the training of the model
avoiding the so-called pipeline jungles.

5.3. Software development life cycle design decisions

Table 21 shows the SDLC-specific design decisions.
Spalazzi et al. discuss a design decision for ML-based
digital forensics systems [P20]. According to the authors,
these systems have four main phases that are seizure, ac-
quisition, analysis and reporting. Their design decision is
to explicitly focus on the four phases of digital forensics
systems during the design-making process to achieve more
design simplicity than applying traditional development
stages [P20].

Berquand et al. focused on a design decision for ML sys-
tems that manipulate a large amount of spatial data [P21].
For such systems, they advocated that concurrent engi-
neering methods and model-based system engineering are
better design choices for analysing the space data and

Table 21: Main SDLC design decisions as identified in the primary
studies and by the interviewees.

Specific SDLC design decision Source

Explicitly focus on four main phases: seizure, acquisi-
tion, analysis, and reporting

[P20],
I8

Pros: simplify the design with respect to the one obtained by
applying traditional development phases
Good for: ML-based digital forensics systems

Adopt concurrent engineering methods and model-
based system engineering

[P21],
I8

Pros: lower the development time and productivity costs
Good for: ML-based systems that manipulate a large amount
of spatial data

Use federation learning [P24]
Pros: (i) enable continuous learning on end-user devices, (ii)
reduce data loss, and (iii) improve the preservation of data
privacy
Good for: ML-based mobile computing systems

Develop models separately to mitigate ML-based sys-
tems configuration

[P38]

Pros: (i) reduce cost in terms of time, computing resources,
etc., (ii) help visualise the difference in the configurations,
(iii) help to detect unused or redundant models in ML-based
systems

Use of prototyping to receive fast feedback about busi-
ness goals fulfilment

I1

Pros: align the design of the ML systems to the related
business goals

Complement the expertise of architects with practical
experience of ML developers

I3

Pros: improve the development process

Exploit ML development and run-time architectures I7
Pros: enable continuous ML

13



space mission system design as compared to, e.g., sequen-
tial engineering methods [P21]. Concurrent engineering
methods and model-based system engineering can deal
with big space data and divide it into different stages in-
stead of treating them sequentially. The different stages
can run simultaneously potentially lowering the develop-
ment time as well as productivity costs [P21]. Li et al.
suggested federated learning as a design decision when de-
veloping ML-based mobile computing systems [P24]. The
authors claimed that federated learning can enable contin-
uous learning on end-user devices, reducing data loss as
well as improving the preservation of data privacy [P24].
Configurations of ML-based systems are hard to modify
and configuration mistakes can be costly in terms of time,
computing resources, etc. According to Sculley et al. a
design decision to mitigate ML systems configuration issues
is to develop all models separately [P38]. This will help
visualise the difference in the configurations as compared
to other approaches [P38]. For example, the debugging
model training approach can help detect common errors
during the training of the model, but it is less efficient
with respect to time and costs in eliminating configura-
tion issues [P38]. Further, developing all models separately
also helps to detect unused or redundant models in the
ML-based systems [P38]. One interviewee (I1) suggested
that an important design decision is to align the design of
the ML systems to the related business goals. To ensure
this, the interviewee suggests the use of prototyping hence
the fast realise of system prototypes that can be sued to
collect feedback from stakeholders with respect to business
goals fulfilment. I7 focused on how to enable continuous
ML by focusing on the ML development architecture and
run-time architecture with heterogeneous computing units
(e.g., CPU, GPU). I3 argued that a good decision is to
leverage the practical experience of ML developers as a
complement to the expertise of architects.

5.4. Model design decisions

Table 22 shows the model-specific design decisions. Two
interviewees agreed that one important design decision is
the selection of a model. Interviewee (I6) suggested select-
ing a model depending on the ML systems domain type
for example batch system or real-time system. Such a de-
sign decision is also suggested by Amershi et al. that add
that a wrong model may not help in fulfilling the require-
ments [P8]. For example, they claim that the EfficientNet
model is better than the ResNet model for image classifica-
tion systems due to the scaling of image dimensions by a
fixed number of layers that can provide better performance
in real-time ML systems [P8].

Kusmenko et al. advocated that a design decision to achieve
better performance concerns modelling and training neural
processes in ML-based systems [P26]. They argued that
it is preferable to have a domain-specific language (DSL)

Table 22: Main model design decisions as identified in the primary
studies and by the interviewees.

Specific model design decision Source

Properly select a model based on the domain type [P8], I6
Pros: help in fulfilling the requirements
Example: EfficientNet model is better than the ResNet model
for image classification systems

Model and train neural processes in ML-based systems
at a higher level of abstraction

[P26]

Pros: a DSL helps democratise the use of ML and makes more
accessible modelling and training.
Example: deep learning technologies are more accessible by
expressing layered structures as YAML or prooftext descrip-
tions or offering high-level Python interfaces like Keras and
Lasagne.

Make a general model and preserve it I5
Pros: do not compromise the overall performance by permit-
ting newly hired members to change it.

rather than dealing with low-level constraints. For exam-
ple, deep learning technologies have been more accessible
by expressing layered structures as YAML or prooftext
descriptions or offering high-level Python interfaces [P26].
Interviewee I5 argued that it is important for the develop-
ment team to first make a general model and then retain
it and avoid newly hired team members changing it as this
would impact the overall performance.

5.5. Data, evolution and quality assurance design decisions

Table 23 shows the data, evolution, and quality assurance-
specific design decisions.

With respect to data design decisions, Panousopoulou et al.
suggested adding data visualisation techniques in the design
process as it can help express the relationships between
data and computing tasks [P17]. In fact, large ML-based
learning systems require a special focus on facilitating data
analytics [P17]. Similarly, one interviewee (I7) stated that
the main design decisions to take when building ML-based
systems are on how to manage and access data.

I2 suggested always building the grids for ML-based
natural language systems to enhance their performance.
Particularly, the interviewee suggests using already existing
solutions to reduce time consumption.

Evolution-specific design challenges relate to the use
of the multi-node approach and how to adapt parameters
to environmental scenarios. Components-based ML dis-
tributed systems are multi-node ML systems that increase
efficiency and improve performance by handling large-scale
input data and ML components [P36]. For these systems,
Burns et al. suggested the use of the multi-node approach
as it allows disturbed ML systems components to be up-
graded independently [P36]. This allows the development
team to handle the component as it grows even using dif-
ferent ad hoc technologies or languages [P36]. Wang et al.
suggested design decisions for the development of ML-based
mobile robots using visual capabilities [P36].

14



Table 23: Main data, evolution and quality assurance design decisions
as identified in the primary studies and by the interviewees.

Specific data design decision Source

Add data visualisation techniques in the design process [P17]
Pros: (i) help expressing the relationships between data and
computing tasks, (ii) help data analytics

Manage and access the data I7

Build grids for ML-based natural languages I2
Pros: enhance their performance

Specific evolution design decision Source

Use of the multi-node approach [P36]
Pros: (i) increase efficiency and improve performance, (ii)
allow independent upgrade of components
Good for: ML-based mobile robots using visual capabilities

Adapt and evolve ML-based systems: adapt param-
eters to environmental scenarios [P21] or adapt the
ML-based system software architecture to input data
changes (I4)

[P1], I4

Pros: flexibility and robustness
Example: the noise-cleaning algorithm should update its
parameters to adapt to changes in light intensity

Specific QA design decision Source

Use of strict coding standards and the use of (safety)
certification from authorised bodies

[P16]

Pros: improve quality

Check the validation results before pushing the algo-
rithm into the production environment and combine
model validation with data validation

[P34]

Pros: (i) predict how a learning algorithm will behave on new
data and (ii) detect corrupted training

Their main design decision is to account for parameter
changes in relation to environmental scenarios [P1]. For
example, they suggested that the noise-cleaning algorithm
should update its parameters to adapt to changes in light
intensity [P1]. I4 suggested considering the evolution of the
ML system accounting for input data change and updating
the ML system software architecture accordingly.

When it comes to design decisions for QA, Biondi et al.
suggested the use of strict coding standards and the use of
(safety) certification from authorised bodies [P16]. Baylor
et al. recognised model validation as an essential phase
to predict how a learning algorithm will behave on new
data [P34]. They suggest (i) always checking the validation
results before pushing the algorithm into the production
environment, and (ii) combining model validation with
data validation to better detect corrupted training [P34].

We identified concrete design decisions that impact the
development of ML-enabled systems. Primary studies
and interviewees identified seven categories of design
decisions of which five were identified by both studies
and interviews. The architecture category collected the
higher number of decisions. Micro-service architecture
and other patterns such as the Siemens four views
and the client-server ones were strongly suggested
for different systems like natural-language processing,
robotics and object recognition systems, respectively.
Several design decision were provided for the HW &
platform category, too. Other less mentioned practices
are detailed in the section.

RQ3 findings

6. Summary of the findings

In this section, we highlight interesting correlations
among challenges, best practices, and design decisions.
They are clustered into six categories, namely architecture,
data, evolution, QA, model, and SDLC, i.e., those that
have interesting correlations. This is shown in Table 24.
We omit those categories for which we could not identify
any relations at all.

Architecture. The use of architectural patterns or styles is
generally recognised as a best practice. Our best practices
and design decisions identify benefits for specific archi-
tectures: e.g. the Siemens four view brings as benefit
separation of concerns, while a microservice architecture fa-
cilitates maintenance and cohesion since it helps decompose
the system, reducing coupling, and promoting flexibility.
At the same time, it helps engineers and developers to focus
on business functionalities. In the design decisions, we also
identify the class of systems for which a specific pattern or
style is good. For example, a microservice architecture is
good for ML-based natural language processing systems,
but it is not the ideal architecture for large systems where
the input data change frequently. Architecture design deci-
sions mainly refer to the adoption of architectural patterns
and style; when a pattern is not available the recommen-
dation is to perform an early evaluation of architectural
safety methods. The use of specific architectural styles
also introduces challenges; for instance, failure recovery
is challenging in micro-service architectures. Among the
other challenges, we mention uncertainty that is introduced
by the use of ML components. Explicitly modelling un-
certainty is a best practice for mitigating this challenge.
No concrete architectural decision is related to uncertainty.
Identifying design smells is also a challenge and the associ-
ated best practice recommends making use of techniques
like Plain-Old-Data, Multiple-Language, and Prototype
smell to identify design smells. Challenges to lack expertise
and knowledge related to a best practice that recommends

15



Table 24: Summary of the findings.

Category Sub-category Design challenge Best practice Design decision

Architecture Micro-service architec-
ture

Failure recovery is chal-
lenging in microservice
architectures

Use the microservice architec-
ture for better focusing on
the business functionalities
and for facilitating mainte-
nance and cohesion

Pros: help decompose a system, reduce
coupling and promote flexibility.
Good for: ML-based natural language
processing systems.
Not good for: large systems where
the input data change frequently

Siemens four-views - Use the Siemens four-view ar-
chitecture for better separa-
tion of concerns

Good for: ML-based robot navigation
components.

Client-server - Use the client-server pattern
for pipeline management

Pros: promote low-coupling and high
cohesion, and enhance security
Good for: object recognition and im-
age processing systems

Uncertainty The use of ML compo-
nents might introduce
uncertainty

Explicitly model uncertainty
for assessing its propagation
and impact

-

Design smells Difficult to identify de-
sign smell

Use Plain-Old-Data,
Multiple-Language, and
Prototype smell to identify
design smells

-

Data Data management Data pre-processing,
cleaning and analysis

The grid searching data
preparation technique suits
the processing of natural lan-
guage

Build grids for ML-based natural lan-
guages
Pros: enhance their performance

Data visualisation Lack of techniques for
bioinformatic informa-
tion

- Add visualisation techniques in the de-
sign process
Pros: (i) help addressing the rela-
tionships between data and computing
tasks, (ii) help data analytics

Privacy Ensure privacy and con-
fidentiality

- Properly manage ad access data

Evolution Updatability & main-
tainability

Change in data invali-
dating models

Train a single model for time
series and retrain it each time
a new forecast needs to be
made

-

Consider having methods
to adjust the parameters
of noise-cleaning algorithm
when light changes

Adapt and evolve ML-based systems:
adapt parameters to environmental sce-
narios or adapt the ML-based system
software architecture to input data
change
Pros: flexibility and robustness
Example: the noise-cleaning algo-
rithm should update its parameters to
adapt to changes in light intensity

Model Selection of proper
models and/or lan-
guages

Select appropriate mod-
els

Select modelling languages
supporting specific concerns

Properly select a model based on the
domain type
Pros: help in fulfilling the require-
ments
Example: EfficientNet model is bet-
ter than the ResNet model for image
classification systems

Model bias Make a general model and preserve it
Pros: do not compromise the overall
performance by permitting newly hired
members to change it

HW & plat-
form

Cloud - Use ML Cloud technologies Pros: more efficient in cutting tools
state recognition systems than other
alternatives such as diagnostic feature
selection using combinatorial analysis

TensorFlow - Use TensorFlow-based
learner

Pros: Higher performance and easy to
scale

exploiting the knowledge and experience of architects and
developers.

Data. In the data category, we find nine design challenges,
one best practice and three design decisions. From these,
we identified three relations between design challenges and
design decisions and one relation between best practices and

16



design decisions. Undoubtedly, handling data is challenging
in several aspects such as management, visualisation and
privacy. Some of these challenges are tackled by specific
design decisions as reported in Table 24. However, we
found that a high number of data-related challenges like
data dependencies and accuracy lack both best practices
and design decisions.

Model. In the model category, we have four design chal-
lenges, four best practices and three design decisions. Con-
sidering these, we identified 2 relations between challenges,
best practices and decisions. Both the identified relations
aim at supporting the resolution of the challenging task of
choosing proper models. In this respect, some of the best
practices and design decisions suggest letting requirements
and the domain type drive the selection of the modelling
languages and models. We noticed that some model-related
challenges like versioning of models are not tackled by any
best practice or design decision.

Cloud technologies together with TensorFlows seem to
be the most effective way of setting up the hardware and
the platform for ML-enabled systems. In particular, cloud
technologies seem to improve the efficiency of cutting tools
state recognition systems while cloud technologies seem to
provide a natural solution for scaling ML-based systems.

7. Related Work

To the best of our knowledge, this work represents
the first mixed-method study assessing current software
architecture design challenges, best practices and design de-
cisions for ML systems. However, there is an existing body
of literature that systematically reviews complementary
aspects of ML systems or architectural aspects of software
systems.

Amershi et al. report on a case study on software
engineering for machine learning at Microsoft [3]. The
study uses prior knowledge of developing AI applications
and data science tools documented in the literature and
identifies a software engineering development process and
a set of development challenges. Eventually, the authors
use a questionnaire involving 551 software engineers for
validating the identified challenges. Compared to our work,
the study by Amershi et al. addresses a much broader
scope, which is the software engineering of machine learning
systems. We only focus on architectural aspects of machine
learning systems being design challenges, best practices
and design decisions. Moreover, we use different research
methods than those used by Amershi et al., i.e., systematic
literature review and expert interviews.

Washizaki et al. perform a multi-vocal systematic liter-
ature review on design patterns for ML systems [2]. While
the work by Washizaki et al. is relevant to our study, its
scope is much narrower as the authors only analyse 10
peer-reviewed publications and 25 grey sources. Washizaki
also conducted another study on product quality attributes,
model quality attributes prediction, and ML pattern Pi [16].

The work starts with a literature review, which uncovers 15
ML trends. Then, the authors use surveys for understand-
ing the sentiment of practitioners towards these trends. 43%
of the respondents declared they reused previous solutions
in the form of internal guidelines or trends. Eventually,
the study recommends a larger adoption of existing ML
patterns. Another systematic study on design patterns for
ML systems is the work by Watanabe et al. [25]. In this
study, the authors survey the grey literature and practition-
ers’ knowledge and identify a total of 33 design patterns.
Compare to our research, the works by Watanabe et al.
and Washizaki et al. use similar research methods, but they
focus on complementary aspects being design patterns.

Architectural patterns are a core concept in software
architecture. In practice, finding and applying the most
appropriate architectural patterns largely remains an unsys-
tematic task linked to the architect’s knowledge. Avgeriou
et al. surveyed architectural patterns and proposed a pat-
tern language that supersets existing architectural pattern
collections and categorisations [1]. Other works that shed
some light on architectural patterns in a specific domain
are those by Apostolos et al. [26], by Growin et al [27],
by Washizaki et al. [28] and by Shirwaikar et al [29]. The
work by Apostolos et al. researches the state-of-the-art
on the Gang of Four (GoF) design patterns by surveying
120 primary studies through a systematic mapping study.
The work by Growin et al. focuses on reviewing design
patterns for multi-agent application systems (MAS) and
indicates a lack of MAS patterns. Washizaki et al. [28] and
Shirwaikar et al [29] analyse and report on patterns for the
Internet of Things (IoT) and patterns addressing security,
respectively. Similar to our work, all the above studies em-
ploy a systematic approach to survey the literature. In our
work, we do not focus on architectural patterns explicitly
although some design decisions and best practices point
to patterns. Wang et al. propose a scenario-based archi-
tecture for the reliability design of artificial intelligence
software, which takes into account two main categories of
scenarios, i.e., environmental and structure scenarios [30].
Using the proposed architecture, the quantitative reliability
of the software could be evaluated and predicted with the
design and scenario-based analysis to allow it to be eligible
for safety-sensitive applications.

Mayer et al. performed a comprehensive survey of chal-
lenges, methods, and resources for scalable Deep Learning
(DL) on distributed facilities [31]. The paper focuses on the
scalability of DL systems that must continue to be enhanced
to improve DL performance. Some of their findings point
to DL infrastructures, parallel DL training approaches,
multi-tenant resource planning, and training and model
data management. They also reviewed and evaluated 11
existing open-source DL frameworks and concluded that
more research efforts on DL systems are needed.

Muccini et al. highlight the different architecting prac-
tices that exist for ML-based software systems [32]. They
start from their experience in architecting an ML-based
software system for solving queuing challenges in one of the

17



largest museums in Italy and identify four key areas of soft-
ware architecture that need the attention of both ML and
software practitioners with the aim of defining a standard
set of practices for architecting ML-based software systems.
Both our work and the work by Muccini et al. aim at
providing concrete guidelines to practitioners approaching
the development of ML systems. However, the work by
Muccini et al. is a retrospective work based on a single use
case. Our work surveys the current body of knowledge and
complements it with practitioner knowledge.

8. Conclusions and future Work

In this work, we provided insights into design challenges,
best practices, and design decisions when designing software
architectures for ML-enabled systems.

The study is based on a systematic literature review
and interview questionnaire that help in providing two
complementary views being academic and industrial. While
these views share most of the identified design challenges,
best practices, and design decisions, we found some key
differences as well.

Concerning design challenges (RQ1), we observed that
the model category is only supported by primary studies,
while the architecture challenges are much more popu-
lar in peer-reviewd publications than among interviewees.
Moreover, even those interviewees mentioning architecture
challenges, I4 and I7, are academic experts. Therefore,
we can deduce that no architectural challenge has been
identified by practitioners. Quality assurance challenges
have been identified by both primary studies and intervie-
wees. However, they have slightly different focuses with
primary studies touching more on specific techniques for
verification and validation and practitioners focusing on
highlight explainability and lack of documentation.

Concerning best practices (RQ2), practitioners have not
identified any evolution related best practices that were
instead identified by some primary studies. On the con-
trary, data related best practices were only identified by
interviewees. When focusing on architecture best practices,
there are no common best practices among those proposed
by interviews and those extracted from peer reviewed publi-
cations. The most popular best practice from interviewees
concerns the use of micro-service architectures. These dis-
crepancies may come from the fact that interviewees and
papers focus on different domains. This interpretation
comes from the design decisions discussed in Section 5,
where we highlight which decision is appropriate for which
domain; e.g. Siemens four-view is good for ML-based robot
navigation. When focusing on QA best practices, intervie-
wees only focus on testing while papers refer also to other
techniques, e.g. simulation, time predictability and so on.
Regarding SDLC best practices, interviewees recommend
best practices covering also organisational aspects while the
ones extracted from papers are mainly identifying the main
phases or activities when architecting ML-based systems.

Concerning design decisions (RQ3), we identified less
discrepancies among those coming from primary studies
and those coming from data collected via interviewees. We
did not identify quality assurance design decisions from
practitioners, while we identified a couple of design deci-
sions in primary studies.

It would be interesting to better investigate whether
the identified discrepancies might be confirmed and in case
to better understand the reasons for that. However, with
the data we have we can not go further in the analysis
and we leave this to future works. For instance this can be
done by performing an in-depth analysis of the challenges
and best practices identified in this study by conducting
questionnaires and arranging a validation workshop with
practitioners. However, we believe that reading about these
differences is already valuable for academics and practition-
ers and it can stimulate discussion, cross-fertilisation, and
analysis.

In addition, we would like to extend this study including
the analysis of the so-called grey literature to capture a
broader view on this topic. Eventually, we would like
to examine how well the findings of this study can be
applied to other areas within the broader field of AI. This
would provide a more comprehensive understanding of the
challenges and best practices in the field of ML. Another
direction would be to develop a framework for ML teams.
The framework would allow the development team to easily
find relevant best design practices and software architecture
design decisions for a given challenge.

Acknowledgment

The authors acknowledge the support of the PNRR
MUR project VITALITY (ECS00000041), Spoke 2 ASTRA
- Advanced Space Technologies and Research Alliance, and
of the MUR (Italy) Department of Excellence 2023 - 2027
for GSSI. The involvement of Mälardalen University in this
research has been supported by KK-stiftelsen through the
project MoDEV and by by the Excellence in Production
Research (XPRES) Framework.

Selected Papers

[P1] J. Wang, G. Li, and Y. Pu, “A scenario-based architecture for
reliability design of artificial intelligent software,” in International
Conference on Computational Intelligence and Security, 2010.

[P2] A. Serban, K. van der Blom, H. Hoos, and J. Visser, “Adoption
and effects of software engineering best practices in machine
learning,” in Proceedings of the 14th ACM/IEEE International
Symposium on Empirical Software Engineering and Measurement
(ESEM), 2020.

[P3] J. Schleier-Smith, “An architecture for agile machine learn-
ing in real-time applications,” in Proceedings of the 21th ACM
SIGKDD International Conference on Knowledge Discovery and
Data Mining, 2015.

[P4] Z. Wan, X. Xia, D. Lo, and G. C. Murphy, “How does ma-
chine learning change software development practices?” IEEE
Transactions on Software Engineering, 2019.

18



[P5] J. Musil, A. Musil, and S. Biffl, “Introduction and challenges of
environment architectures for collective intelligence systems,” in
Agent Environments for Multi-Agent Systems IV, 2015.

[P6] H. Yokoyama, “Machine learning system architectural pattern
for improving operational stability,” in 2019 IEEE International
Conference on Software Architecture Companion (ICSA-C), 2019.

[P7] A. Musil, J. Musil, and S. Biffl, “Major variants of the sis
architecture pattern for collective intelligence systems,” in Pro-
ceedings of the 21st European Conference on Pattern Languages
of Programs, 2016.

[P8] S. Amershi, A. Begel, C. Bird, R. DeLine, H. Gall, E. Kamar,
N. Nagappan, B. Nushi, and T. Zimmermann, “Software engi-
neering for machine learning: A case study,” in 2019 IEEE/ACM
41st International Conference on Software Engineering: Software
Engineering in Practice (ICSE-SEIP), 2019.

[P9] H. Washizaki, H. Takeuchi, F. Khomh, N. Natori, T. Doi, and
S. Okuda, “Practitioners’ insights on machine-learning software
engineering design patterns: a preliminary study,” in 2020 IEEE
International Conference on Software Maintenance and Evolution
(ICSME), 2020.

[P10] R. Mayer and H.-A. Jacobsen, “Scalable deep learning on
distributed infrastructures: Challenges, techniques, and tools,”
ACM Computing Surveys (CSUR), 2020.

[P11] H. Muccini and K. Vaidhyanathan, “Software architecture for
ml-based systems: what exists and what lies ahead,” in 2021
IEEE/ACM 1st Workshop on AI Engineering-Software Engineer-
ing for AI (WAIN). IEEE, 2021, pp. 121–128.

[P12] A. Ahmad and M. A. Babar, “Software architectures for robotic
systems: A systematic mapping study,” Journal of Systems and
Software, vol. 122, pp. 16–39, 2016.

[P13] H. Washizaki, H. Uchida, F. Khomh, and Y.-G. Guéhéneuc,
“Studying software engineering patterns for designing machine
learning systems,” in 2019 10th International Workshop on Em-
pirical Software Engineering in Practice (IWESEP). IEEE,
2019, pp. 49–495.

[P14] M. Scheerer, J. Klamroth, R. Reussner, and B. Beckert, “To-
wards classes of architectural dependability assurance for machine-
learning-based systems,” in Proceedings of the IEEE/ACM 15th
International Symposium on Software Engineering for Adaptive
and Self-Managing Systems, 2020, pp. 31–37.

[P15] C. Castellanos, B. Pérez, D. Correal, and C. A. Varela, “A
model-driven architectural design method for big data analyt-
ics applications,” in 2020 IEEE International Conference on
Software Architecture Companion (ICSA-C). IEEE, 2020, pp.
89–94.

[P16] A. Biondi, F. Nesti, G. Cicero, D. Casini, and G. Buttazzo,
“A safe, secure, and predictable software architecture for deep
learning in safety-critical systems,” IEEE Embedded Systems
Letters, vol. 12, no. 3, pp. 78–82, 2019.

[P17] A. Panousopoulou, S. Farrens, K. Fotiadou, A. Woiselle,
G. Tsagkatakis, J.-L. Starck, and P. Tsakalides, “A distributed
learning architecture for scientific imaging problems,” arXiv
preprint arXiv:1809.05956, 2018.

[P18] M. Jin, A. Lv, Y. Zhu, Z. Wen, Y. Zhong, Z. Zhao, J. Wu,
H. Li, H. He, and F. Chen, “An anomaly detection algorithm for
microservice architecture based on robust principal component
analysis,” IEEE Access, vol. 8, pp. 226 397–226 408, 2020.

[P19] I. Alarcon, P. Gomez, M. Campos, J. Aguilar, S. Romero,
P. Serrahima, and P. Breuer, “A holistic approach to intelligent
automated control,” in International Conference on Information
Technology for Balanced Automation Systems. Springer, 1995,
pp. 301–308.

[P20] L. Spalazzi, M. Paolanti, and E. Frontoni, “An offline parallel
architecture for forensic multimedia classification,” Multimedia
Tools and Applications, vol. 81, no. 16, pp. 22 715–22 730, 2022.

[P21] A. Berquand, F. Murdaca, A. Riccardi, T. Soares, S. Generé,
N. Brauer, and K. Kumar, “Artificial intelligence for the early
design phases of space missions,” in 2019 IEEE Aerospace Con-
ference. IEEE, 2019, pp. 1–20.

[P22] A. C. Serban, “Designing safety critical software systems to
manage inherent uncertainty,” in 2019 IEEE International Con-

ference on Software Architecture Companion (ICSA-C). IEEE,
2019, pp. 246–249.

[P23] V. Indhumathi and G. Nasira, “Fault tolerance in job schedul-
ing through fault management framework using soa in grid,”
ICTACT Journal on Soft Computing, vol. 7, no. 2, 2017.

[P24] L. Li, J. Wang, and C. Xu, “Flsim: An extensible and reusable
simulation framework for federated learning,” in International
Conference on Simulation Tools and Techniques. Springer, 2020,
pp. 350–369.

[P25] O. Fomin and O. Derevianchenko, “Improvement of the quality
of cutting tools states recognition using cloud technologies,” in
Design, Simulation, Manufacturing: The Innovation Exchange.
Springer, 2020, pp. 243–252.

[P26] E. Kusmenko, S. Nickels, S. Pavlitskaya, B. Rumpe, and
T. Timmermanns, “Modeling and training of neural processing
systems,” in 2019 ACM/IEEE 22nd International Conference on
Model Driven Engineering Languages and Systems (MODELS).
IEEE, 2019, pp. 283–293.

[P27] M. Möstl, J. Schlatow, R. Ernst, N. Dutt, A. Nassar, A. Rah-
mani, F. J. Kurdahi, T. Wild, A. Sadighi, and A. Herkersdorf,
“Platform-centric self-awareness as a key enabler for controlling
changes in cps,” Proceedings of the IEEE, vol. 106, no. 9, pp.
1543–1567, 2018.

[P28] A. W. Muzaffar, S. R. Mir, M. Latif, W. H. Butt, and F. Azam,
“Software architecture of a mobile robot,” in 2015 International
Conference on Computational Science and Computational Intel-
ligence (CSCI). IEEE, 2015, pp. 102–107.

[P29] B. Vinayagasundaram and S. Srivatsa, “Software quality in
artificial intelligence system,” Information Technology Journal,
vol. 6, no. 6, pp. 835–842, 2007.

[P30] A. Serban, E. Poll, and J. Visser, “Towards using probabilistic
models to design software systems with inherent uncertainty,” in
European Conference on Software Architecture. Springer, 2020,
pp. 89–97.

[P31] E. Di Buccio, A. Lorenzet, M. Melucci, and F. Neresini, “Un-
veiling latent states behind social indicators.” in SoGood@ ECML-
PKDD, 2016.

[P32] M. Bhat, K. Shumaiev, K. Koch, U. Hohenstein, A. Biesdorf,
and F. Matthes, “An expert recommendation system for design
decision making: Who should be involved in making a design
decision?” in 2018 IEEE International Conference on Software
Architecture (ICSA). IEEE, 2018, pp. 85–8509.

[P33] B. Venthur, S. Dähne, J. Höhne, H. Heller, and B. Blankertz,
“Wyrm: a brain-computer interface toolbox in python,” Neuroin-
formatics, vol. 13, no. 4, pp. 471–486, 2015.

[P34] D. Baylor, E. Breck, H.-T. Cheng, N. Fiedel, C. Y. Foo,
Z. Haque, S. Haykal, M. Ispir, V. Jain, L. Koc et al., “Tfx: A
tensorflow-based production-scale machine learning platform,” in
Proceedings of the 23rd ACM SIGKDD International Conference
on Knowledge Discovery and Data Mining, 2017, pp. 1387–1395.

[P35] A. Anjos, M. Günther, T. de Freitas Pereira, P. Korshunov,
A. Mohammadi, and S. Marcel, “Continuously reproducing
toolchains in pattern recognition and machine learning exper-
iments,” 2017.

[P36] B. Burns and D. Oppenheimer, “Design patterns for container-
based distributed systems,” in 8th USENIX Workshop on Hot
Topics in Cloud Computing (HotCloud 16), 2016.

[P37] P. P. Raut, N. R. Borkar, M. Student, A. Professsor, and
S. Kamlatai, “Machine learning algorithms: Trends, perspectives
and prospects,” International Journal of Engineering Science,
vol. 4884, 2017.

[P38] D. Sculley, G. Holt, D. Golovin, E. Davydov, T. Phillips,
D. Ebner, V. Chaudhary, M. Young, J.-F. Crespo, and D. Denni-
son, “Hidden technical debt in machine learning systems,” Ad-
vances in neural information processing systems, vol. 28, 2015.

[P39] S. Schelter, F. Biessmann, T. Januschowski, D. Salinas,
S. Seufert, and G. Szarvas, “On challenges in machine learning
model management,” 2018.

[P40] M. Abadi, P. Barham, J. Chen, Z. Chen, A. Davis, J. Dean,
M. Devin, S. Ghemawat, G. Irving, M. Isard et al., “{TensorFlow}:
a system for {Large-Scale} machine learning,” in 12th USENIX

19



symposium on operating systems design and implementation
(OSDI 16), 2016, pp. 265–283.

[P41] N. I. Chervyakov, P. A. Lyakhov, M. A. Deryabin, N. Nagornov,
M. V. Valueva, and G. V. Valuev, “Residue number system-based
solution for reducing the hardware cost of a convolutional neural
network,” Neurocomputing, vol. 407, pp. 439–453, 2020.

References

[1] H. Liu, S. Eksmo, J. Risberg, R. Hebig, Emerging and changing
tasks in the development process for machine learning systems,
in: Proceedings of the international conference on software and
system processes, 2020.

[2] H. Washizaki, H. Uchida, F. Khomh, Y.-G. Guéhéneuc, Studying
software engineering patterns for designing machine learning
systems, in: 2019 10th International Workshop on Empirical
Software Engineering in Practice (IWESEP), IEEE, 2019, pp.
49–495.

[3] S. Amershi, A. Begel, C. Bird, R. DeLine, H. Gall, E. Kamar,
N. Nagappan, B. Nushi, T. Zimmermann, Software engineering
for machine learning: A case study, in: 2019 IEEE/ACM 41st
International Conference on Software Engineering: Software
Engineering in Practice (ICSE-SEIP), 2019.

[4] L. Pons, I. Ozkaya, Priority quality attributes for engineering
ai-enabled systems, in: Association for the Advancement of
Artificial Intelligence AI in Public Sector Workshop. Washington,
DC, November 7-9, 2019.

[5] D. Sculley, G. Holt, D. Golovin, E. Davydov, T. Phillips,
D. Ebner, V. Chaudhary, M. Young, J.-F. Crespo, D. Den-
nison, Hidden technical debt in machine learning systems, in:
Proceedings of the 28th International Conference on Neural In-
formation Processing Systems - Volume 2, NIPS’15, MIT Press,
Cambridge, MA, USA, 2015, p. 2503–2511.

[6] I. Ozkaya, What is really different in engineering ai-enabled
systems?, IEEE Software 37 (4) (2020) 3–6. doi:10.1109/MS.

2020.2993662.
[7] V. R. Basili, G. Caldiera, H. D. Rombach, The Goal Question

Metric Approach, in: Encyclopedia of Software Engineering,
1994.

[8] B. Kitchenham, P. Brereton, A systematic review of systematic
review process research in software engineering, Information and
software technology.

[9] C. Wohlin, P. Runeson, M. Höst, M. Ohlsson, B. Regnell,
A. Wesslén, Experimentation in Software Engineering, Com-
puter Science, 2012.

[10] C. Wohlin, Guidelines for snowballing in systematic literature
studies and a replication in software engineering, in: Procs of
EASE, 2014.

[11] K. Petersen, R. Feldt, S. Mujtaba, M. Mattsson, Systematic
mapping studies in software engineering, in: Procs of EASE,
2008.

[12] G. Hackett, Survey research methods, The Personnel and Guid-
ance Journal 59 (9) (1981) 599–604.

[13] C. B. Seaman, Qualitative methods in empirical studies of soft-
ware engineering, IEEE Transactions on software engineering.

[14] P. P. Roger Nazir, Alessio Bucaioni, Replication pack-
age for the paper, https://github.com/nazirroger7/

Studying-Software-Architecture-for-ML (January 2023).
[15] P. Brereton, B. A. Kitchenham, D. Budgen, M. Turner, M. Khalil,

Lessons from applying the systematic literature review process
within the software engineering domain, Journal of Systems and
Software.

[16] H. Washizaki, H. Takeuchi, F. Khomh, N. Natori, T. Doi,
S. Okuda, Practitioners’ insights on machine-learning software
engineering design patterns: a preliminary study, in: 2020 IEEE
International Conference on Software Maintenance and Evolu-
tion (ICSME), 2020.

[17] N. B. Ali, K. Petersen, Evaluating strategies for study selection
in systematic literature studies, in: Procs of ESEM, 2014.

[18] T. Greenhalgh, R. Peacock, Effectiveness and efficiency of search
methods in systematic reviews of complex evidence: audit of
primary sources, BMJ.

[19] K. Charmaz, L. L. Belgrave, Grounded theory, The Blackwell
encyclopedia of sociology.

[20] F. Shull, J. Singer, D. I. Sjøberg, Guide to advanced empirical
software engineering, Springer, 2007.

[21] T. Punter, M. Ciolkowski, B. Freimut, I. John, Conducting
on-line surveys in software engineering, in: 2003 International
Symposium on Empirical Software Engineering, 2003. ISESE
2003. Proceedings., 2003.

[22] D. S. Cruzes, T. Dyba, Recommended steps for thematic syn-
thesis in software engineering, in: Procs of ESEM, IEEE, 2011,
pp. 275–284.

[23] R. Franzosi, Quantitative narrative analysis, 2010.
[24] M. Rodgers, A. Sowden, M. Petticrew, L. Arai, H. Roberts,

N. Britten, J. Popay, Testing methodological guidance on the
conduct of narrative synthesis in systematic reviews: effective-
ness of interventions to promote smoke alarm ownership and
function, Evaluation.

[25] Y. Watanabe, H. Washizaki, K. Sakamoto, D. Saito, K. Honda,
N. Tsuda, Y. Fukazawa, N. Yoshioka, Preliminary systematic lit-
erature review of machine learning system development process,
arXiv preprint arXiv:1910.05528.

[26] A. Ampatzoglou, S. Charalampidou, I. Stamelos, Research state
of the art on gof design patterns: A mapping study, Journal of
Systems and Software.

[27] J. Juziuk, D. Weyns, T. Holvoet, Design patterns for multi-agent
systems: A systematic literature review, in: Agent-Oriented
Software Engineering, 2014.

[28] H. Washizaki, N. Yoshioka, A. Hazeyama, T. Kato, H. Kaiya,
S. Ogata, T. Okubo, E. B. Fernandez, Landscape of iot pat-
terns, in: IEEE/ACM 1st International Workshop on Software
Engineering Research & Practices for the Internet of Things
(SERP4IoT), 2019.

[29] P. Ponde, S. Shirwaikar, An exploratory study of the security
design pattern landscape and their classification, International
Journal of Secure Software Engineering (IJSSE).

[30] J. Wang, G. Li, Y. Pu, A scenario-based architecture for relia-
bility design of artificial intelligent software, in: International
Conference on Computational Intelligence and Security, 2010.

[31] R. Mayer, H.-A. Jacobsen, Scalable deep learning on distributed
infrastructures: Challenges, techniques, and tools, ACM Com-
puting Surveys (CSUR).

[32] H. Muccini, K. Vaidhyanathan, Software architecture for ml-
based systems: what exists and what lies ahead, in: IEEE/ACM
1st Workshop on AI Engineering-Software Engineering for AI
(WAIN), 2021, pp. 121–128.

20

http://dx.doi.org/10.1109/MS.2020.2993662
http://dx.doi.org/10.1109/MS.2020.2993662
https://github.com/nazirroger7/Studying-Software-Architecture-for-ML
https://github.com/nazirroger7/Studying-Software-Architecture-for-ML

	Introduction
	Research method
	Search and Selection Strategy
	Definition of the extraction form
	Interview questions definition, interviews and interviewees
	Data extraction, synthesis and analysis
	Threats to validity

	Design challenges in architecting machine learning systems (RQ1)
	Architecture design challenges
	Data design challenges
	Evolution design challenges
	Quality assurance design challenges
	Model design challenges
	Software development life cycle design challenges

	Best practices in architecting machine learning systems (RQ2)
	Architecture best practices
	Quality assurance best practices
	Software development life cycle best practices
	Hardware and platform best practices
	Model best practices
	Evolution, and data best practices

	Design decisions in architecting machine learning systems (RQ3)
	Architecture design decisions
	Hardware and platform design decisions
	Software development life cycle design decisions
	Model design decisions
	Data, evolution and quality assurance design decisions

	Summary of the findings
	Related Work
	Conclusions and future Work

