
Interplay of Human and AI Solvers on a Planning
Problem

Afshin Ameri E.∗, Branko Miloradović∗, Baran Çürüklü∗, Alessandro V. Papadopoulos∗,
Mikael Ekström∗, Johann Dreo†

∗Mälardalen University, Västerås, Sweden. Email: {name.surname}@mdu.se
† Computational Biology dept., Université Paris Cité, Institut Pasteur, Paris, France. Email: johann.dreo@pasteur.fr

Abstract—With the rapidly growing use of Multi-Agent Sys-
tems (MASs), which can exponentially increase the system
complexity, the problem of planning a mission for MASs became
more intricate. In some MASs, human operators are still involved
in various decision-making processes, including manual mission
planning, which can be an ineffective approach for any non-trivial
problem. Mission planning and re-planning can be represented as
a combinatorial optimization problem. Computing a solution to
these types of problems is notoriously difficult and not scalable,
posing a challenge even to cutting-edge solvers. As time is usually
considered an essential resource in MASs, automated solvers
have a limited time to provide a solution. The downside of this
approach is that it can take a substantial amount of time for the
automated solver to provide a sub-optimal solution.

In this work, we are interested in the interplay between a
human operator and an automated solver and whether it is
more efficient to let a human or an automated solver handle
the planning and re-planning problems, or if the combination of
the two is a better approach. We thus propose an experimental
setup to evaluate the effect of having a human operator included
in the mission planning and re-planning process. Our tests are
performed on a series of instances with gradually increasing
complexity and involve a group of human operators and a
metaheuristic solver based on a genetic algorithm. We measure
the effect of the interplay on both the quality and structure of
the output solutions. Our results show that the best setup is to
let the operator come up with a few solutions, before letting the
solver improve them.

Index Terms—Mixed Human-AI Planning, Human-AI Collab-
oration, Multi-Agent Mission Planning.

I. INTRODUCTION

In recent years, Multi-Agent Systems (MASs) have gained
more popularity due to their ability to solve problems that
are hard to solve by a monolithic system. The technological
advancements, regarding both software and hardware aspects
of the system, have sped up the adoption process of MAS.
Consequently, systems that include more agents tend to be
more complex to control and use. The aspect of MAS, that we
are interested in, is mission planning for multi-robot systems.

The goal of mission planning is to produce a plan, i.e., a
course of action for every agent, in order to achieve some
given goal. What makes this part challenging is the potential
complexity of the mission, which is usually correlated to the

This work was supported by the Swedish Research Council (VR) with the
PSI project (No. #2020-05094), by the Knowledge Foundation (KKS) with
the FIESTA project (No. #20190034).

number of agents, the number of tasks, and the constraints
included in the mission. In the general sense, the aim is to
allocate tasks to agents with respect to given constraints, so
that all the tasks are successfully completed. Finding a feasible
plan may be sufficient in some cases, but in many other
cases, one is interested in optimizing the plan with respect to
some relevant metrics. For this purpose, the mission planning
problem is usually formulated as an optimization problem,
where the optimization function targets the minimization of
a cost, like for example the mission’s makespan. Depending
on the mission requirements, different formal models exist that
can be used in order to mathematically define such missions.

In practice, MASs usually come with Command & Control
(C2) systems that require a human to operate them. The
operator has an overview and control —through the C2—
of information gathering, data processing, mission definition,
planning, and plan execution. It is not uncommon for the
operator to be directly in charge of the mission planning [1].
This option gives more flexibility to mission planning, as
humans have the ability to adjust to unforeseen changes in the
mission. However, while creating a plan, a human operator has
no guarantee of the optimality of the produced plan. Moreover,
humans can hardly deal with large problem instances, with
several tasks and agents, and some of the mission constraints
might be difficult to take into account.

To circumvent this issue, automated planners have been
developed, that rely on Artificial Intelligence (AI) for op-
timization of the planning problem. AI solvers have the
ability to handle complex missions, with a large number
of constraints [2]. The downside of this approach is that
sometimes it can take a lot of time to produce a solution
that is sub-optimal. In order to overcome the aforementioned
issues, we try to combine the best of both approaches in
order to try and understand what is the interplay between
the human operator and the automated planner. We provide
a comprehensive analysis of how the two can coexist in the
domain of mission planning. More specifically, we investigate
how to include a human operator in the loop of the mission
planning process. The contribution of this paper is twofold:

1) We conducted a series of experiments to assess the effect
of a human using a metaheuristic optimization solver to
improve their solution.

2) We measure this effect on both the quality and the



structure of the output solutions, along with how solvers
transition from initial to final solutions.

II. BACKGROUND AND MOTIVATION

The computation of the optimal solution of combinatorial
optimization problems does not scale with the size of the
problem. Even for small instances, the computation of the
solution may be intractable. A typical example is the well-
known Traveling Salesman Problem (TSP) [3]. TSP is an NP-
Hard problem, meaning that no algorithm currently exists that
can solve these kinds of problems in polynomial time. How-
ever, TSP has several very important applications in different
domains, including manufacturing, transportation systems, and
mission planning. The latter is the focus of our work.

Current-day mission command centers are operated by
human operators. In some cases, a human operator is in charge
of the mission planning. The alternative is to use automated
planners that, given the mission inputs, can provide a solution
in the form of allocation of tasks to agents, and ordering the
execution of those tasks in such a way as to minimize the
overall execution time.

On the other hand, automated planners may take a long time
to produce a good solution. This has led some researchers to
investigate if humans may be able to produce a good solution
in a reasonable time. Dry et al. [4] showed that humans
are capable of solving TSP problems up to the size of 120
nodes. The provided solutions are within 11% of the optimal
solution. Moreover, they showed that the relationship between
the number of cities and the solution quality is linear, meaning
that the problems with the size of 10-20 cities were solved
within 1% of the optimal solution. These findings are similar
to the ones in the work of Vickets et al. [5], where even larger
instances with about 40 cities were solved within 2.5% of
the optimal solution. There are more studies conducted on
the human ability to solve TSP problems. An overview of
the literature on this subject is given by MacGregor and Chu
[6]. It has been shown that spatial heuristics help humans
to reduce the search space to a smaller size for similar
planning problems [7], [8]. This human insight has been shown
to be helpful in reducing planning time and plan quality
in a collaborative setting by Kim. et al. [9]. However, the
solution presented by Kim. et al. requires a domain expert
to translate human planning strategies into computer code.
Although TSP is a very hard problem to solve, it can be further
generalized with additional constraints. These constraints are
necessary to describe more complex missions. All of this led
us to investigate how those performances translate to more
complex problems, specifically a generalization of the TSP
involving additional constraints like multiple salesmen with
limited access to the cities, i.e., not every salesman can visit
every city. This problem is known in the literature as Colored
TSP (CTSP) described by Li. et al. [10].

In this study, we focus on the efficiency of a user using
an AI as a support tool on the multi-agent mission planning
problems set in the domain of underwater robotic mission

planning without the need of employing domain experts to
translate the human contribution.

III. EXPERIMENTS SETUP

The overall goal of the conducted experiments is to un-
derstand if including the human operator, at any stage of
the planning process, can help improve the overall mission
plan, especially considering that humans can use spatial cues
in solving such planning problems [8]. In order to evaluate
this, we set up a number of experiments. Firstly, the mission
problem is solved with an automated planner. The planner is
based on a meta-heuristic approach, specifically, the Genetic
Algorithm (GA), and as such does not guarantee that the
provided solution is optimal. More information on the planner
implementation can be found in Sect. III-C1. Secondly, the
mission problem is presented to the human subjects and they
have a limited time to provide a solution, like in an operational
setting. They are allowed to evaluate their plan as many times
as they want within the given time span. Evaluation of the plan
gives the human subject the idea of the quality of their solution
compared to the best solution found by the automated planner.
The quality difference is expressed in percentages after each
plan submission. Thirdly, the tests are performed where the
solutions provided by the human subjects are submitted to
the automated planner as the initial solutions. The reasoning
behind this is that those solutions might help the automated
planner to avoid local minima pitfalls and produce overall
better solutions.

A. Scenarios
The experiments are based on an underwater environment

scenario using Autonomous Underwater Vehicles (AUVs). The
aim is to plan missions involving a group of heterogeneous
AUVs to perform a set of tasks. Each AUV might be equipped
with one or more of the following sensors (i) a Camera capable
of taking photos; (ii) a Sonar used for measuring acoustic
characteristics of the target location; and (iii) a H2S chemical
sensor to measure the level of Hydrogen Sulfide in the water.
In such scenarios, an agent1 (in this case, an AUV) is expected
to start its mission from a source depot, visit all necessary
locations in order to complete allocated tasks and go to the
destination depot. It is the planner’s job to make sure the agent
to which the tasks are allocated to has the necessary equipment
to perform those tasks. The destination depot is represented as
a surface point where AUV ends its mission, resurfaces, and
awaits to be picked up by a surface vehicle.

B. Human Setup
A total of 16 participants were involved in the tests. The

participants were in the age range of 24-41 (11 males, 5
females), and they volunteered to take part in tests. Throughout
the tests, the only information gathered from the participants
is the solutions that they provide to the planning problems. No
personal data is stored in any form during the experiments, as
no stratification is performed in the analysis.

1In the context of this paper, we use the terms robot, agent, vehicle, vessel
and AUV interchangeably.



Fig. 1: MMT’s User Interface while planning a mission. Each
vehicle is color-coded and represented by a name and list of
its available equipment. The tasks are also marked with the
sensor required to perform the task. The green line represents
the path that the vehicle takes to the next task (H2S(171)).

1) User Interface: The experiments are performed through
the Mission Management Tool [11] (MMT), which provides a
Graphical User Interface (GUI) for planning and supervising
multi-agent missions (Fig. 2). The MMT’s GUI represents
mission tasks and agents as markers on a map. During mission
planning, the operator’s goal is to define a path that connects
an agent with a set of tasks and ends in a Surface Point
(Fig. 1). Each section of the path connecting two tasks, i.e.,
their locations, is called a transit. The vehicles and their paths
are color-coded. When a vehicle visits a task, that task assumes
the vehicle’s color. For defining a new transit, the operator
can drag the end point of a path, to the location of a new
task. During this operation, the UI highlights the tasks that the
selected vehicle can perform with white circles. These circles
are shown on the map near the task marker location. This
means that tasks which the vehicle cannot perform will not
be highlighted as drop targets, hence preventing the user from
erroneous task-vehicle assignments. For example, in Fig. 1,
VESSEL2 (the green vehicle) does not have a sonar, therefore
while creating a path for this vehicle, all sonar tasks are not
recognized as drop points for it and do not show the white
circular drop point. The exclamation marks on tasks, inform
the user that the task is not included in the plan or one of the
following conditions apply (i) The task is not visited by any
vehicle; (ii) The task is visited by a vehicle, but the vehicle
has not moved to another task or a surface point; and (iii)
The task is visited by more than one vehicle. During mission
(re)planning, the operators are allowed to edit their plans. The
editing assumes two types of operations. The first one is the
deletion of the path between two task locations by selecting
the path (by clicking on one of the endpoints) and pressing
the delete key. The second edit operation assumes the selection
of one of the two connected task locations, disconnection of
the path link from that task location, and the execution of a
drag-and-drop operation to make a connection with a new task
location. When all vehicles have a path that ends at a surface
point and there are no tasks marked with an error icon, the
planning process is finished.

2) User Tests: Each user is presented with 6 different
scenarios. Each scenario involves a different number of tasks

TABLE I: Test missions provided to the users.

Test Name No. Tasks No. Vehicles Time Type

P-S 10 2 4 min. Planning
P-M 23 3 7 min. Planning
P-L 32 4 10 min. Planning
RP-S 10 2 4 min. Re-planning
RP-M 21 3 7 min. Re-planning
RP-L 32 4 10 min. Re-planning

and vehicles. More information about the mission settings can
be found in (Table I). The users were given the set of problems
as a whole, and they had the liberty to choose their preferred
order of solving them. For each test, the user has to plan or re-
plan a mission within a given amount of time. The re-planning
scenarios are different from the planning scenarios of the same
size (i.e., P-S and RP-S involve two different missions). This
choice has been made to prevent the experience gained by
the human, while solving a planning problem, to be used in
solving the re-planning problem of the same size.

Mission planning problems are presented to the user in the
form of a map with markers denoting the location of tasks and
vehicles, as well as, equipment availability. The user is then
required to provide a valid plan by creating a path from the
starting location of a vehicle through the locations of allocated
tasks and ending the path at a surface point. The set of tasks to
allocate to each vehicle is determined by the user. This is not
the only step in the optimization process. The users also have
to come up with the ordering of the tasks they allocate. Hence,
the mission planning problem consists of two optimization
sub-problems, task allocation, and task order. The same applies
to re-planning problems.

In a re-planning scenario, the user is presented with an
already generated plan, and they are asked to improve upon
that plan by reducing the mission’s overall execution time.
Although the six missions are the same for all the users, the
map is randomly rotated at the start of each test, to avoid
any bias from the perception of the geometry of the scenario.
This is inline with observations that show humans use spatial
cues in planning scenarios [8]. Since the AI solver does not
use spatial cues, rotating the map reduces the human bias. A
plan is considered incomplete/infeasible if (i) not all tasks are
included in the plan; (ii) a task is visited more than once; (iii)
one or more tasks are allocated to vehicles that do not have
appropriate equipment; and (iv) the end location of a vehicle is
not a surface point. The User Interface has checks in place to
avert these types of errors by either providing visual feedback
to the user of potential issues (cases 1 and 2) or completely
preventing the user to make such allocations (cases 3 and 4).
Therefore user generated plans will be infeasible if the user
ignores the warnings from the UI regarding task allocations.
Similar checks are also implemented in the AI Solver, thus AI
Solver results will not include infeasible solutions.

Before performing the experiments with users, we ran the
AI solver on all test problems used in this paper. The AI
solver was given 2 hours per problem to try and find the best



Fig. 2: A full mission planned in MMT with the color-coded Gantt chart showing the makespan of each agent’s plan. The
lines represent the vehicles’ paths between the tasks.

solution possible for each of the instances used in the tests.
The best-found solutions are then used to provide feedback to
the user during the experiments. More specifically, a user is
given the option to evaluate their current plan by pressing the
evaluate button in the UI. This starts the process of evaluation
by comparing the makespan of the submitted plan with the
makespan of the best-found solution by the AI solver. The user
is then informed of his performance, with a number showing
the gap between the submitted solution and the best-found
solver’s solution. This gap is expressed in percentages, e.g.
if the gap is 0% it means that the user’s solution matches
the best-found solver’s solution. This “score” solely serves
the purpose of motivating the test subjects to continue and
improve the plan if they see there is room for improvement. In
the realistic scenario the system will have no way of knowing
how good the users solution is, since there would not exist an
AI solution to compare with.

For each scenario, the user is allowed to edit their plan as
many times as they wish during the session, as long as the
deadline for that test has not reached. If the deadline for a test
has reached, no more plan evaluations are allowed and the
user has to move to the next test, or if all tests are finished,
the user is done with the experiment. The test procedure
for each participant is as follows: (i) A video tutorial, of
approximately 10 minutes, is presented to the user on how
to use the MMT’s UI and plan a mission; (ii) The user is
then given 15 minutes to practice on a sample mission using
the UI. During this period they can ask the test supervisor to
clarify any misunderstanding they might have about the UI or
mission planning; (iii) The user starts the tests. Each test has a

limited time during which the user can create their solutions to
the given (re)planning problem (Table I) and evaluate them.
During this period, the test supervisor is not present in the
room; and (iv) Every user plan and its evaluation result are
automatically saved for further analysis.

C. Solver Setup

The mission planning problem in this paper has a theoretical
background in the CTSP. It was introduced by Li et al. [10].
In our scenario, a city corresponds to a task that must be
completed, a salesman to a robot, and a color to an equipment
type (e.g., Camera, Gripper, etc.). The colors associated with
a robot represent the robot’s equipment, while the colors
associated with a task indicate the equipment required for its
successful completion.

1) AI solver: The solver used in this setup is based on
the Genetic Algorithm (GA) adapted to this specific planning
problem. The GA solver is based on the solver presented
by Miloradović et al. [12], with the difference being that
the problems used in this paper do not have precedence
constraints. However, for completeness, a short description of
the solver will be presented here.

Chromosomes (candidate solutions) are encoded as two
arrays of integers, where the first array consists of integers
representing tasks and agents, and the second array represents
task parameters (equipment requirements, task duration, and
location). Each array begins with an agent gene, followed
by the array of task genes that are allocated to that agent.
Chromosome length varies from n + 1 to a maximum of
n +m genes, depending on the number of agents used. The



initial population is randomly created with respect to the
given constraints, hence, initial solutions are all feasible. The
crossover operator has not been used since it did not have
positive effects on the convergence process.

The mutation is the only source of variability, as it allows
genetic diversity in the population. Every individual has a low
probability (10%) to be selected for mutation. Increasing the
mutation probability beyond this value does not benefit the
overall results. In this paper, two types of mutation schemes
are used. One operates on the task genes by swapping tasks
and inserting new genes, whereas the other mutates agent
genes through growing (adding agents) and shrinking (re-
moving agents) from the chromosome. A task swap mutation
swaps two task genes in a chromosome, meaning that it can
swap tasks within a single agent or between two agents.
An insert mutation chooses a task and inserts it in a new
location, similarly to the previously explained mutation, the
insertion can be within the same agent or a different one. An
agent shrink mutation removes one agent from a chromosome,
reallocating its tasks to other agents. Growth agent mutation
adds a new agent to the plan. The new agent gene is randomly
inserted in the chromosome, acquiring tasks from that location
in the chromosome up to the next agent gene or end of
the chromosome. If there are conflicting tasks (a task not
supported by an assigned agent), they are randomly reallocated
to other agents that can successfully complete them. Both
algorithms take into account given constraints, ensuring that
the mutation process does not produce infeasible solutions.

The rest of the solver settings include the stopping criteria
of 500 generations. One solver run consists of 10 restarts,
meaning that after the stopping criterion is reached, the solver
performs a restart and the population is initialized again from
scratch. The best solution found is then sent back to the MMT.
To keep the comparisons fair, for each test, AI gets the same
amount of runs as the number of user solutions. Note that
for each run, multiple independent restarts are necessary to
assess the performance of our randomized solver. So having
multiple independent restarts does not bias the performance,
as the solver does not get any information from one restart
to the other. These restarts are a feature of the solver, as
reseeding (restarting) the population can lead to different
overall performance, meaning they do not bring any advantage
to the AI-only approach.

2) Test scenarios: The solver is given the same scenarios
as humans and is limited by the number of generations,
which always results in less run-time than the human’s time
budget (see Sect. III-B2). The solver either starts from random
feasible initial solutions (AI-only), or from the solutions
produced by the user (User+AI). In all cases, multiple runs
are performed to correctly assess the solver’s performance.
One run of the solver is performed for each solution provided
by the human, for each problem instance. In the AI planning
setup, 41 independent runs are performed for the small-sized
(P-S) problem instance, 52 independent runs for the medium-
sized problem instance (P-M), and 83 independent runs for the
large-sized problem instance (P-L). Similarly, in the User+AI

setup, for each human plan, the AI runs once, hence the total
number of runs equals the total number of human plans.

For assessing the performance, we consider a confirmatory
analysis of the distributions of the costs of the best solu-
tions produced by all runs. This corresponds to the fixed-
budget benchmarking recommended by [13], considering cen-
tral tendency and dispersion for confirmatory analysis, with
a simple design of experiments, without tuning. In our case,
the solving time is a more important constraint for the C2
system, than the quality of the plan or the ratio of fixed-
target success. Additionally, users alone very often don’t reach
good solutions, and don’t necessarily behave by incrementally
improving the solutions, so that a fixed-target setting would
recover less information. Finally, the users do not evaluate
many solutions sufficiently to consider a cumulative approach,
simulated restarts or feasibility rates [13].

IV. RESULTS

In the result section, we analyze the performance of the
three approaches based on solution quality expressed through
cost and distance in the decision space. For simplicity, and
without loss of generality, we chose the duration of every
task to be 0. Hence, the overall cost is a reflection of travel
times between tasks. We also made each vehicle’s velocity
the same. These choices simplify the solution of the problem
on the human side, as it reduces the variables to consider
while identifying a solution, but they can be easily handled
by the automated planner. The distance between solutions
is calculated using Hamming distance algorithm [14]. The
Hamming distance between two strings of symbols (e.g.,
letters, numbers, etc.) is the measure of the number of places
at which the corresponding symbols are different. This metric
is useful as it shows us how many perturbations are needed to
move from one solution to the other in the decision space.

A. End cost distributions

This first set of results considers the distribution of the best
solutions found at the end of the three different approaches
(Fig. 3). Results show that in all planning tests, the AI solver
has produced plans with better costs than the human alone.
For the P-S problem, all instances of the AI solver were able
to find a solution with the same cost as the best human plan.
In the P-M problem, the solver can either match or outperform
the best human solution, while in the P-L problem, the solver
has outperformed the humans (all solver solutions have lower
costs). In re-planning tests, apart from the RP-S problem where
the results are similar to the above, for both RP-M and RP-L
problems, there have been instances where the human plans
had better cost than the re-plans found by the AI solver.

The User+AI results do not show any improvement in the
P-S and RP-S cases over the AI-only results, and it might be
that the problem is solved to optimality by AI-only in both
cases. For P-M and P-L problems, it can be observed that the
User+AI results improve on the AI-only solutions as now there
are more plans with better cost compared to AI-only solutions,
although the value of the best cost remains the same in the



5.5 6 6.5
0

5

10

15

5 6 7 8
0

5

10

15

6 8
0

2

4

6

8

4 4.5 5
0

5

10

15

4.5 5 5.5 6
0

5

10

15

5.5 6 6.5
0

5

10

15

·104

Cost

R
un

s
Planning - Small (P-S)

·104

Cost

Planning - Medium (P-M)

·104

Cost

Planning - Large (P-L)

·104

Cost

R
un

s

Re-planning - Small (RP-S)

·104

Cost

Re-planning - Medium (RP-M)

·104

Cost

Re-planning - Large (RP-L)

User
AI-only
User+AI

Fig. 3: The best solution distribution from the AI solver, User alone, and User+AI. The X-axis shows the cost and Y-axis is
the number of runs ending with a solution of such cost. Vertical dashed lines in the figures represent the median of each of
the 3 distributions, for each of the six different instances. Please note that in some cases bins overlap, e.g., in P-S case bins
for AI-only and User+AI are on top of each other. There are other partial overlapping, e.g., in RP-M case, at the value of
5.3 · 104 User+AI has 5 results, User only 10 results, and AI-only 16 results.

(a) P-M User+AI (b) P-M AI-only

Fig. 4: Sankey diagrams comparing the medium-sized plan-
ning problem. (a) Cost results made by AI starting from user
plans. (b) AI-only results starting from random solutions. The
vertical axis shows the ranked histogram of costs. The left
(and right) side displays the distribution of the initial costs,
and the center part of the diagram shows the end costs. Lines
linking initial and end buckets demonstrate the number of
runs resulting in such transitions. Numbers in brackets are
the buckets’ ranges, the last number is the number of runs.

P-M case. In the P-L case, the User+AI approach is actually
able to find new, better solutions at a lower cost. This is also
the case for RP-M and RP-L problems, as in these cases, the
User+AI approach has clearly produced plans that have much
better cost than the solutions produced by the AI or humans
alone. This is especially visible in the RP-M problem, where
the median has reduced from 54 000 to 49 000. In addition,
the User+AI approach managed to find new, better solutions,
for both RP-M and RP-L cases, as can be seen in Fig. 3. This

TABLE II: p-values of the corrected statistical test between
the three pairs of experiments, for all the problem instances.

Instance P-S P-M P-L RP-S RP-M RP-L

User / AI 5.3 · 10−5 3.0 · 10−6 2.3 · 10−6 1.1 · 10−5 0.81 2.8 · 10−5

User / UAI 5.3 · 10−5 1.6 · 10−5 4.1 · 10−6 1.1 · 10−5 4.2 · 10−4 1.7 · 10−4

AI / UAI / 0.18 1.3 · 10−4 / 7.9 · 10−5 3.7 · 10−4

figure also shows that in all three re-planning scenarios, the
results provided by the AI-only approach fall into a single
bin, with little to no variance. This supports the assumption
that the AI-only approach gravitated toward a local minimum
point and exactly in these situations, using the approach of
User+AI seems the most beneficial. User-produced plans have
higher variance, thus using them as the input to the AI solver
increases the chances of escaping the local point of attraction.
They also help improve the overall solution quality.

Table II shows p-values computed by a non-parametric
Mann-Whitney-Wilcoxon test, where three different cases are
compared (i) User vs. AI; (ii) User vs. User+AI; and AI vs.
User+AI. This test is used since sample data can be highly
skewed and have extended tails, in which case the measure of
the average is known to be non-robust. In order to circumvent
this potential issue, the median value was used instead of
the mean. For user results, the cost of the best plan (lowest
cost) is considered. Costs distribution for the small planning
problem (Fig. 3, top left) shows that the user alone is not
able to out-compete the AI solver (p < 10−4). Whenever AI
is involved, it leads to the very same cost. For medium and
large planning problems (Fig. 3, top right), the distributions
of costs produced with the AI solver involved show some
variance, but overall significantly outperform the user alone
(p < 10−4). For all planning problems, the involvement of



(a) P-L User+AI (b) P-L AI-only

Fig. 5: Sankey diagrams comparing the large-sized planning
problem. (a) Cost results made by AI starting from user plans.
(b) AI-only results starting from random solutions.

the AI solver thus leads to better performance than those
of the user. This observation holds for the small re-planning
scenario as well (Fig. 3, bottom left, p < 10−4 in Table II).
For the medium re-planning scenario (Fig. 3, bottom middle),
only the difference between the AI and User has no statistical
significance, while the difference between AI and User+AI,
and User and User+AI is statistically significant in favor
of User+AI in both cases. However, there is no significant
difference between the User and AI distributions. For the
large re-planning problem (Fig. 3, bottom right), there is a
significant difference between each category, i.e., User+AI
outperforms both User and AI approaches. The AI approach
outperforms the User only approach. Overall, the use of an AI
solver allows for better performance in planning and simple
re-planning scenarios, while in other problems the results show
that the approach of combining User+AI yields the best results.

B. Optimization paths

This set of results considers improvements in solution costs
while using different categories of solving methods. Figs. 4,
5, and 6 show the results in the form of Sankey diagrams2,
demonstrating the transition from an initial solution cost to a fi-
nal solution cost. The sides of the diagrams contain histograms
presenting plan costs ranked vertically on a relative scale
(histograms to the bottom of the diagram have lower costs).
The vertical position is not a function of the cost values, but of
the rank of the bucket among other cost targets. The left side
of the diagrams represents cost histograms for plans provided
by the users, while the right side of the diagrams contains
cost histograms for plans generated by the AI solver using the
user plans as initial solutions. Figs. 4 and 5 present User+AI
and AI-only diagrams for medium and large problems side
by side. In both figures, the Sankey diagram for the AI-only
solution is flipped. Note that the end of those diagrams (in the
middle of the figures) shows the same data as Fig. 3. Flipped
AI-only diagram for the small problem is not presented here
as all the AI-only solutions for the small problem have the

2Generated by SankeyMatic tool: https://sankeymatic.com/

(a) P-S (b) RP-S

(c) RP-M (d) RP-L

Fig. 6: User+AI Sankey diagrams for (a) small planning, (b)
small re-planning, (c) medium re-planning and (d) large re-
planning problems.

same initial and final costs. This is also observed for all re-
planning missions, as the AI solver starts from the same initial
plan/cost and the low variance in final costs (Fig. 3) means
that they result in the same final cost. First, it can be observed
that the AI-only initial (feasible random) solutions rank worse
than most of the user solutions in Figs. 4, and 5. Only a small
part of user solutions rank worse, and they are all infeasible
solutions. For the medium-sized problem, a good proportion
of those infeasible solutions actually lead to the best solutions
found. This is not observed for the problem of large size.
However, in all cases, several solutions produced by the user
can actually lead the AI to find solutions of the best cost.

C. Decision Space

Solutions, as mentioned in Sect. III-C1, are represented as
integer arrays. It is thus possible to measure a distance between
them in the decision space. Fig. 7 shows the distribution of
Hamming distances between all possible pairs of starting and
final solutions, for the planning problems. Note that the small
problem instances have smaller solutions, i.e., the strings being
compared are of shorter lengths. Therefore, the maximum
value for the distance metric is the length of the strings being
compared, and the minimum one is 0 if the two solutions
are exactly the same. In this work, we are comparing the
distributions within each problem. In all cases, the median
distance between pairs of solutions is smaller when the user
is involved. Additionally, the variance is greater in those cases.



0 2 4 6 8 10
0

5

10

15

5 10 15 20 25
0

5

10

10 15 20 25 30 35
0

10

20

Distance

R
un

s
Planning - Small (P-S)

Distance

Planning - Medium (P-M)

Distance

Planning - Large (P-L)

AI-only
User+AI

Fig. 7: Distribution of the distances between the starting and final solution. Vertical dashed lines show the median value.

D. Discussion

The general tendency is that the size of the problem is
akin to its difficulty, for both the AI solver and the human
operator, such a correlation fits the common knowledge of the
planning domain. Based on the results, it can be argued that
the inputs from the human operator have helped the AI solver
to move outside of local minima and explore solutions that
lead to lower costs (Fig. 3). Perhaps surprisingly, this ability
can come even from infeasible solutions, albeit the random
(but feasible) solutions produced by the initialization of the
solver do not necessarily allow for the same improvement. This
behavior has been observed in the evolutionary computation
community [15], where it is sometimes advised to not over-
constrain the problem model, and allow the search process to
go through infeasible areas of the decision space.

We believe that this means that a human is able to capture
some heuristics about what makes a good solution. Given the
2D embedding of the problem, this may be some geometric
feature, that the solver, based on a combinatoric model, is not
yet equipped to handle. This hypothesis finds some support in
the fact that the solver has to search comparatively less (in the
decision space) to find good solutions, if it starts from the user
ones (Fig. 7). In any case, the use of the AI solver to improve
user solutions is the best option. It seems still probable that
allowing a larger computational budget to the solver would
increase its performances to the point that no strong difference
would be seen between AI and User+AI results. However, as
soon as the complexity of the instance increases, the User+AI
approaches may be interesting to reduce the planning time.

V. CONCLUSION

In our setting, the User+AI approach proved to be useful in
planning/re-planning of larger instances. In addition, some of
the best solutions produced by this approach came from the
(sometimes infeasible) solutions created by the user.

There is always a compromise between the complexity
of the problem instance and the time available to solve it.
A well-known tendency in C2 systems is to target more
complex problems (more agents, more tasks, etc.) and more
reactive systems (hence shorter planning time). This paper has
shown that the adoption of User+AI approaches would live
at the edge of what a purely automated approach can solve,
making it a possibly beneficial tool for C2 systems targeting
challenging problems. For such challenging problems, there

are no expert operators available for experiments, because
the problem is new and has generally not been deployed on
sufficiently many real use cases. However, whether people
having more background knowledge in similar setups would be
more efficient in solving the problem remains to be explored.

REFERENCES

[1] C. Ramı́rez-Atencia, V. Rodrı́guez-Fernández, A. González-Pardo, and
D. Camacho, “New artificial intelligence approaches for future uav
ground control stations,” IEEE CEC, pp. 2775–2782, 2017.

[2] S. A. Zanlongo, F. Abodo, P. Long, T. Padir, and L. Bobadilla,
“Multi-robot scheduling and path-planning for non-overlapping operator
attention,” in 2018 Second IEEE International Conference on Robotic
Computing (IRC). IEEE, 2018, pp. 87–94.

[3] G. Dantzig, R. Fulkerson, and S. Johnson, “Solution of a large-scale
traveling-salesman problem,” Journal of the Operations Research Soci-
ety of America, vol. 2, no. 4, pp. 393–410, 1954.

[4] M. Dry, M. D. Lee, D. Vickers, and P. Hughes, “Human performance on
visually presented traveling salesperson problems with varying numbers
of nodes,” The Journal of Problem Solving, vol. 1, no. 1, p. 4, 2006.

[5] D. Vickers, M. Butavicius, M. Lee, and A. Medvedev, “Human perfor-
mance on visually presented traveling salesman problems,” Psychologi-
cal Research, vol. 65, no. 1, pp. 34–45, 2001.

[6] J. N. MacGregor and Y. Chu, “Human performance on the traveling
salesman and related problems: A review,” The Journal of Problem
Solving, vol. 3, no. 2, p. 2, 2011.

[7] T. T. Brunyé, S. B. Martis, and H. A. Taylor, “Cognitive load during
route selection increases reliance on spatial heuristics,” Quarterly Jour-
nal of Experimental Psychology, vol. 71, no. 5, pp. 1045–1056, 2018,
pMID: 28326966.

[8] S. Rosenthal and L. M. Hiatt, “Human-centered decision support for
agenda scheduling,” Proceedings of AAMAS, vol. 2020-May, pp. 1161–
1168, 2020.

[9] J. Kim, C. J. Banks, and J. A. Shah, “Collaborative planning with
encoding of users’ high-level strategies,” in Proceedings of the 31st AAAI
Conference, ser. AAAI’17. AAAI Press, 2017, p. 955–961.

[10] J. Li, M. Zhou, Q. Sun, X. Dai, and X. Yu, “Colored traveling salesman
problem,” IEEE Trans. on Cyb., vol. 45, no. 11, pp. 2390–2401, 2015.

[11] E. A. Ameri, B. Cürüklü, B. Miloradovic, and M. Ektröm, “Planning
and supervising autonomous underwater vehicles through the mission
management tool,” in Global Oceans 2020: Singapore, 2020, pp. 1–7.

[12] B. Miloradović, B. Cürüklü, M. Ekström, and A. V. Papadopoulos,
“A genetic algorithm approach to multi-agent mission planning prob-
lems,” in Operations Research and Enterprise Systems: ICORES 2019.
Springer, 2019, pp. 109–134.

[13] T. Bartz-Beielstein, C. Doerr, J. Bossek, S. Chandrasekaran, T. Eftimov,
A. Fischbach, P. Kerschke, M. López-Ibáñez, K. M. Malan, J. H.
Moore, B. Naujoks, P. Orzechowski, V. Volz, M. Wagner, and T. Weise,
“Benchmarking in optimization: Best practice and open issues,” CoRR,
vol. abs/2007.03488, 2020.

[14] R. W. Hamming, “Error detecting and error correcting codes,” The Bell
System Technical Journal, vol. 29, no. 2, pp. 147–160, 1950.

[15] H. K. Singh, K. Alam, and T. Ray, “Use of infeasible solutions during
constrained evolutionary search: A short survey,” in Artificial Life and
Computational Intelligence, T. Ray, R. Sarker, and X. Li, Eds. Cham:
Springer International Publishing, 2016, pp. 193–205.


	Introduction
	Background and Motivation
	Experiments Setup
	Scenarios
	Human Setup
	User Interface
	User Tests

	Solver Setup
	AI solver
	Test scenarios


	Results
	End cost distributions
	Optimization paths
	Decision Space
	Discussion

	Conclusion
	References

