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In the Systems Engineering (SE) domain there has been a paradigm shift from document-based to model-based system
development artefacts; in fact, new methodologies are emerging to meet the increasing complexity of current systems and the
corresponding growing need of digital worklows. In this regard, Model-Based Systems Engineering (MBSE) is considered
as a key enabler by many central players of the SE community. MBSE has reached an adequate level of maturity and there
exist documented success stories in its adoption in industry. In particular, one signiicant beneit of utilising MBSE when
compared to the traditional manual and document-centric worklows is that models are available from early phases of systems
development; these enable a multitude of analyses prior any implementation efort together with other relevant capabilities,
like the automation of development tasks. Nonetheless, it is noticeable there is a lack of a common understanding for how
formal analyses for the veriication and validation (V&V) of systems behaviour, speciically in the early phases of development,
could be placed in an MBSE setting.

In this article, we report on the planning, execution, and results of a systematic literature review regarding the early V&V of
systems behaviour in the context of model-based systems engineering. The review aims to provide a structured representation
of the state-of-the-art with respect to motivations, proposed solutions, and limitations. From an initial set of potentially
relevant 701 peer-reviewed publications we selected 149 primary studies, which we analysed according to a rigorous data
extraction, analysis, and synthesis process. Based on our results, early V&V has usually the goal of checking the quality of a
system design to avoid discovering laws when parts are being concretely realised; SysML is a de facto standard for describing
the system under study, while the solutions for the analyses tend to be varied; also V&V analyses tend to target varied
properties with a slight predominance of functional concerns, and following the variation mentioned so far the proposed
solutions are largely context speciic; the proposed approaches are usually presented without explicit limitations, while when
limitations are discussed, readiness of the solutions, handling of analyses simpliications/assumptions, and languages/tools
integration are among the most frequently mentioned issues.

Based on the survey results and the standard SE practices, we discuss how the current state-of-the-art MBSE supports
early V&V of systems behaviour with a special focus on industrial adoption, and identify relevant challenges to be researched
further.

CCS Concepts: · Computing methodologies→Model veriication and validation; Modeling methodologies.

Additional Key Words and Phrases: MBSE, Validation, Veriication, System behaviour, Systematic literature review

1 INTRODUCTION

Systems engineering (SE) is a paradigm that involves various processes and methodologies for life-cycle man-
agement of systems [9]. In its basic form a system is deined as ł... an integrated set of elements, subsystems, or
assemblies that accomplish a deined objective.ž in the SE handbook by the International Council on Systems
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Engineering (INCOSE) [88]. The practices of SE are meant to aid the engineers and practitioners of various
disciplines to communicate and rigorously perform activities to ensure that the system is delivered correctly.
Indeed, SE prescriptions and guidelines are followed for larger projects and activities typically encompassing a
multitude of disciplines across various ields (e.g., satellites, aeroplanes, nuclear plants, etc.); in these development
endeavours it is vital that the participants can communicate eiciently and align eforts via standard practices
and methods. Viewing SE from the INCOSE SE handbook, it is clear that there is a multitude of processes and
methodologies that could be utilised when performing activities related to a system’s life-cycle. The life-cycle
of a system is usually divided into stages with clear separations. Notably, the ISO generic life-cycle standard
(ISO/IEC/IEEE 15288:2015)1 formulates the following stages of a system life-cycle: Concept, Development, Pro-
duction, Utilisation, Support, and Retirement. Similar deinitions are found in various SE methodologies across
diferent domains and although stages might difer in scope depending on any speciic standard or methodology,
a clear distinction of activities before implementation begins and after implementation has started is found in
most standards (e.g., the V-model is a very common example [35, 88]). Indeed, standard SE practices put a lot of
emphasis on the precondition that starting to build/implement a System of Interest (SoI) should be only done once
there exists enough conidence that it will meet stakeholder expectations and needs [88]. Therefore, the initial
phases of the system life-cycle, related to stakeholders’ requirements and system design, are key for the rest of
the development. In fact, these activities are performed before the SoI enters the development or production
stages and need to convey strong arguments that the design meets all the considered requirements.

Providing guarantees that a system will meet the stakeholders’ expectations requires irstly that these expecta-
tions are correctly interpreted in the system requirements, and poor communication with a system stakeholder
has direct impact on poor development results [46]. Once the requirements have been analysed and deemed
correct, it is necessary for a rigorous process to design a system accordingly. It is important to note that often
there exist many potential designs to satisfy a particular set of requirements, and in this case there is a need to
additionally decide which design is the most suitable for a particular SoI [69]. The INCOSE handbook recommends,
among other things, that during the concept stage early validation should be performed to align requirements
with stakeholder expectations and for identiication of problems of the concepts used in the system design [88].
As a matter of fact, discovering errors or faulty design issues during the implementation of the SoI is costly,
and improper estimations of system properties at design time can lead to dramatic efort increases and even
termination of the system implementation [81].
While the arguments for assuring that a design will meet the requirements are widely accepted, there is less

agreement about the involved assurance processes and approaches. In fact, providing evidence that a system
not yet developed will be produced and will perform correctly with some level of conidence is not simple [88].
A common strategy adopted at this stage is the re-use of previously successful processes and solutions; this
strategy however comes with the risk to overlook certain viable and perhaps more attractive alternatives [1, 22].
Moreover, always re-using the same solutions will eventually lead to missing out on potential new advancements
or improvements, regardless of how important and necessary re-use is from an industrial perspective.

Traditionally SE has been document-centric in its activities, however with the rise in complexity and growing
needs of industry, more methods and practices are becoming model-centric, i.e., utilising models as the main
artefacts during the SE phases, and in particular the stages before implementation [45, 61]. To conirm this, the
INCOSE 2035 vision states: łThe future of Systems Engineering is predominantly Model-Basedž2. A model
is any description of a system that is not the thing-in-itself [56]. The quote: łall models are wrong, but some are
usefulž, from Box and Draper [10], captures a vital essence of modelling. Modelling is often not for the sake of
describing something in great detail, in fact it is often the opposite, to describe a subject łgood enoughž with as a

1https://www.iso.org/standard/63711.html
2The INCOSE 2035 vision can be found at: https://www.incose.org/about-systems-engineering/se-vision-2035
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high degree of abstraction as possible in a particular context. A natural trade-of comes between abstraction and
detail, and deining a model with a high level of abstraction that still contains the necessary details is a diicult
task, but is often a precondition for a łusefulž model [30, 52].
INCOSE deines Model-Based Systems Engineering (MBSE) as ł[...] the formalised application of modelling

to support system requirements, design, analysis, veriication and validation activities beginning in the conceptual
design phase and continuing throughout development and later life-cycle phases.ž [88]. Therefore, it is expected that
modelling will assist the user from the irst phases of the system life-cycle until the last ones, with models as the
primary artefacts to support the SE activities. However, modelling at early phases of a system life-cycle comes
with important challenges: by deinition, capturing properties and making design decisions at an early phase is
performed with a limited understanding of the system, and parts of the system might even not be understood or
remain to be determined.

The behaviour of a system is one aspect that is paramount to validate and verify, but when dealing with early
phases of development the lack of detail especially limits the understanding and the analytical power of modelled
behaviour. Besides, the competition between abstraction and detail mentioned before becomes critical, since
hidden details might convey implicit hypotheses and/or design decisions that could be contradicted in later
development phases. With this in mind, it is of interest to understand how behavioural models are created, both
in industry and academia, and for what validation or veriication purpose the models are useful for, together with
corresponding identiied limitations. Therefore, in this article we contribute a systematic literature review that
aims to answer various questions regarding validation and veriication of system behaviour in early MBSE phases.
Through the review process we identiied 149 papers, which have been processed systematically and key data
have been extracted to be presented in this work. We illustrate our indings from the review and discuss their
implications with a speciic emphasis on the industrial perspective in contrast with the academic one. Notably,
from an industrial perspective we aim to elicit the kind of V&V analyses available in the state-of-the-art together
with the preconditions/eforts demanded, from a modelling perspective, to adopt such analyses. Instead, from an
academic point of view, we aim to identify open challenges that could be worth to investigate as future research
directions.

The rest of the paper is structured as follows: Section 2 describes the background and motivation for the review.
In Section 3 related work is discussed in regard to MBSE and V&V. Our research methodology is described in
Section 4 in addition to our research questions. Section 5 discusses the threats to validity. In Section 6 we present
our results, and in Section 7 we perform a horizontal mapping of results. We discuss our indings in Section 8 and
present challenges for industrial adoption of early behaviour validation in MBSE. Finally, Section 9 summarises
the paper with our conclusions, key indings, and future work.

2 BACKGROUND AND MOTIVATION

Model-based practices are often considered as an enabler for performing early V&V as part of the life-cycle of SE
processes [27, 73]. In particular, the improvement of early analysis is expected from the usage of models, which
enable more robust reasoning and evaluation compared to traditional document-centric development [36]. In
the early phases of SE processes much emphasis is put on requirements management and conceptual design,
often related to some system architecture. In this respect, MBSE is often deemed to have several beneits when
compared to the traditional means of SE; some of these beneits are more intuitive and easy to identify, like added
capabilities of traceability and understandability/communication from diagrams [31, 55]. Nonetheless, as the main
artefacts of MBSE at all stages of development are models, it becomes interesting to understand and demonstrate
the beneits and advantages of modelling activities. Notably, a key motivation often referred to as a main beneit
of MBSE is the increased opportunity for V&V [17, 36]. On the one hand, when dealing with models the balance
between idelity and purpose of modelling has large implications leading to modelling trade-ofs with respect to
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partially or fully developed models: too little details and the model cannot provide much in terms of analysis; too
many details and the beneit of modelling early is reduced, as developing models often involves a signiicant
efort [77]. On the other hand, SE practices and experience demonstrate that the cost of addressing faults and
errors increases rapidly as development progresses [88], emphasising a clear incentive towards moving V&V
activities earlier rather than later. When dealing with early behaviour analysis, it is often required to understand
the dynamics of the system at a iner level of granularity than what is captured by standard languages like
SysML3; these additional details can either be embedded/hard-coded in the analysis tools, or need to be explicitly
provided by introducing more details in the models. In addition, most tools do not support execution of many
standard MBSE languages, therefore transformations to other languages and platforms are typically required to
perform behavioural analyses.

Representing and analysing system behaviour at an early stage falls into the SE modelling activities mentioned
so far, both in terms of potential beneits and challenges [64]. In particular, a beneit of utilising models as the
primary artefacts is the improved semantic integration of digital assets, enabling more robust early analysis
towards an integrated system behaviour. Notably, the simulation of systems is seen as an essential capability
of MBSE [25]. However, the current landscape lacks system simulation maturity regarding commonly used
languages such as SysML [67, 94]. The lack of analytical capabilities, further noted from an industrial perspective
[25, 83], hampers potential adoption. Additionally, tooling is often seen as a limiting factor regarding model-based
practices, especially in industry [20, 53]. A remarkable gap in this regard is the interoperability between tools and
languages: since the analysis of complex system behaviour often entails the incorporation of several domains,
the lack of interoperability represents a prominent limiting factor (particularly for industrial SE processes) [66].
In this regard, there is a need to further investigate the common view of what early V&V details for system
behaviour, considering the beneits and limitations of current technologies and techniques.

By summarising what we discussed so far, it is widely accepted that a move towards early V&V is an attractive
endeavour and MBSE is considered as a possible way forward; however, the adoption of MBSE is not trivial, and
research literature reports on several practical and fundamental challenges in the adoption [61, 83, 87]. Therefore,
in this article we survey the state-of-the-art related to early V&V of systems’ behaviour to elicit what are the
properties of interest for the existing analyses and the corresponding proposed approaches.

2.1 Motivating example

To situate our paper more clearly, we extract a typical industrial scenario from our MBSE experience in Con-
struction Equipment (CE) [18, 83]. We refer to the SE discipline and relate to the notion of diferent stages
of development as deined by standards such as ISO 15268 and common processes such as the V-model. In
particular, we focus on the early phases of system development, where the system under study still contains
much uncertainty towards the eventual design and implementation. At this stage the system often is made-up of
system views at high levels of abstraction. This is typically guided by standards such as ISO 420104 and has clear
industrial deinitions regarding view deinitions. Here, it is worth noting that early stage is a relative concept:
it could refer to a completely new system design, starting from łscratchž with customer’s requirements and
feasibility analysis; it could also refer to re-designing an already in-use system, perhaps a new variant of a product
family (typical for domains as CE). What associates these cases is that a new idea or concept is to be evaluated and
the available artefacts and information contain limited details. Nonetheless, these evaluations are important since
they are used as a base to reduce the solution space, which otherwise can be considered practically endless, and
hence support the engineers progress in the development. With the advent of MBSE, companies are incentivised
to change their processes to incorporate models for increasing design efectiveness and improve decision-making.

3The SysML speciication is found at: https://www.omg.org/spec/SysML
4The ISO 42010 standard can be found at: https://www.iso.org/standard/74393.html
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Fig. 1. Typical MBSE views early in system development.

However, changing the way of working in industrial processes is a costly endeavour, thus requiring convincing
proofs that the Return of Investment (RoI) motivates the move to change.
The CE domain has a strong legacy in hardware-intensive SE, which relies heavily on re-use and product

families with high variability [8]. The development processes are mature and rooted in well established standards.
With the digitalisation paradigm shift, there has been a growing interest in MBSE as a critical enabling technology
to manage the complexity increase. Due to the heavily integrated variability, change and coniguration manage-
ment techniques already rely on modular model approaches, particularly for system architectures. A product
can be customised depending on stakeholder needs in the form of customer or regulatory concerns. Various
drawings/diagrams are typically used in conjunction with tables to present variable options in design, and the
customer is free to pick options suitable for the context. Similarly, engineers utilise various system deinitions
and drawings to deine valid system compositions and perform feasibility/trade-of analysis toward customer
demands. In this respect, the traditional SE development already includes system model views of various types.
Some examples are provided in Figure 1 from the CE domain at its early stages (architecture and high-level
design). Although we do not discuss any of the views in detail, we emphasise the wide range of artefacts available
as a result of several parallel/joint engineering activities. Despite many of these system views being models, it
is worth noting that often they are not linked meaningfully and/or they rely on informal semantics (e.g., Visio
drawings), which limits model-based analysis łas isž.
In these early stages it is often the case that what if analysis or high-level trade-ofs are required to make

high-impact early design decisions. A common example to be considered even at the very start of a design process
is a machine’s brake functionality, as design guarantees are required as per industrial standards for several aspects
(e.g., maximum brake distance, fault tolerance, environmental robustness, etc.). In this context, early V&V of
both functional and non-functional requirements could front-load activities to speed-up the decisions related to
high-level design and reduce risk of extensive iterations on design. However, providing guarantees that a system
will meet strict requirements demands strong conidence, and in early phases the high-degree of uncertainty
makes that challenging, and often pessimistic assumptions are used to make łsafež estimations for the design.
With the considered legacy as a starting point, MBSE is being gradually adopted by the CE domain. In particular,
taking the already-in-place model views and further leveraging them for model-based analytical capabilities
currently not in place could increase competitiveness by improving the ability of early valid analysis. Notably, the
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behavioural aspects of systems become easier to analyse via rigorous methods compared to legacy SE methods
that rely on semi - or non-formal models and often implicit expert knowledge. By leveraging the traditional SE
views with MBSE technologies, design decisions could be made earlier than traditional worklows. The value
proposition from early V&V relates to the diference from traditional decision-making, for example, via the time
required to reach decision maturity or analysis coverage with system descriptions. Practically, information to
make informed decisions about system viability can become available earlier by leveraging model-based methods
for re-use, analysis, simulation, etc. However, as anticipated earlier in this article, MBSE adoption is an industrial
challenge. In our experience within CE, model-based methods generally map poorly to the overall SE context and
are overly complex and/or abstract. The value proposition is also challenging to be demonstrated in practice,
leading to łconvincingž stakeholders of the potential value. Additionally, MBSE is associated with tooling and
extensive training to change the way of working.
By considering industrial contexts like the CE domain, this article and subsequent research questions aim to

provide a better understanding of the literature landscape for early V&V of system behaviour. We aim to elicit and
disseminate the current research results and industrial readiness for early behaviour validation utilising MBSE.
Notably, we want to understand how it is deined and motivated, how it is implemented, what tools, languages,
and methods are used, what aim the authors have in mind with early V&V, and inally, observed limitations.
In this way, the review can serve the necessary information due to a step forward for MBSE adoption of SE
disciplines already considering models as a part of development. Moreover, it can highlight potential challenges
to be addressed in the wider community. In particular, the review results would clarify what types of early V&V
behaviour analysis can be expected in MBSE, what is the required efort in terms of modelling activities, what
are the methods, languages, and tools involved. In other words, this review aims to elicit the distance between
currently used early stage artefacts as the ones described in Figure 1, and the models necessary to enable MBSE
early analysis techniques. Furthermore, we aim to shed the light on open research challenges and possible future
investigation directions, especially to close the gap between research and practice.

3 RELATED WORK

Although we have found no other survey or literature review regarding the subject described and reported in
this article, several other works address similar or related issues. Therefore, in this Section we highlight other
reviews discussing related aspects of MBSE.
Ma et al. [60] aimed to understand the state-of-the-art and state of practice for the tool chains used for

MBSE. They deine a tool chain as two or more modelling, simulation, and design tools which when combined
support/construct SE worklows with advanced features. The review identiies that SysML is the most adopted
modelling language for MBSE tool chains. The authors note that although tool chains based on SysML are the
most mature, there are still major challenges for robust industrial adoption. Furthermore, the authors highlight
some primary indicators of tool readiness, namely integration capabilities, interoperability, and traceability. While
Ma et al. discuss some aspects of MBSE that are related to this review, there are signiicant diferences in scope,
depth, and context. Notably, we emphasise the notion of early phases in MBSE, and focus our analysis around
system behaviour analysis while their work does not necessarily consider system behaviour analysis. In addition,
we emphasise an industrial perspective through a motivational example and present a deeper analysis from that
context in addition to adoption barriers for early V&V.
Another study from Rashid et al. [73] investigated the tools used for MBSE activities within the embedded

systems domain. Similar to other reviews, they identify that UML and the proiles SysML and MARTE are the most
commonly utilised means of modelling. They also note that UML proiles or UML alone do not meet the existing
modelling challenges, and some combination of languages is often employed. On the contrary, the authors note
that SysML provides a suicient foundation to model structure and behaviour. The work by Rashid et al. focuses
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on embedded systems while the work in this paper is not tailored for a particular domain. Additionally their
paper is situated more towards code implementation as opposed to early V&V, so to this regard the observations
in the reviews capture diferent aspects of MBSE.
De Saqui-Sannes et al. [25] provide a taxonomy of MBSE approaches in the scope of languages, tools, and

methods. In the review, they note the prominence of SysML as a MBSE language, with an assortment of tools to
support SysML. However, the authors note that robust methods of MBSE are still lacking. In addition, they argue
that many challenges still exist for the industrial adoption of MBSE and that SE education needs to capture the
current reality of MBSE better. The work by De Saqui-Sannes et al. has a diferent focus compared to this work as
it aims to give a brief overview of the ield. Further, the work discusses experiences from the authors’ experience
with a drone project. Comparatively, our work has a narrower view on the behaviour of systems but provides a
more complete review in terms of literature coverage and corresponding results.

Nigischer et al. [66] provide a systematic review on multi-domain simulation utilising SysML. In their review,
they argue that MBSE provides support for analysis at early stages, utilising SysML to capture information that
can be exchanged with suitable simulation tools. The review discusses various means of managing simulation
via SysML and notes that the Functional Mock-up Interface (FMI)5 is a promising standard. However, the
authors conclude that there are still many issues with SysML-based simulation, and a particular challenge is
interoperability between tools. While the review by Nigischer et al. covers aspects present in this review, it
focuses on SysML and simulation, which can be considered as a subset of early V&V of system behaviour.
Zeigler et al. [94] argue that simulation is an essential capability for MBSE toolsets, which they identify as

lacking in the current landscape. Their paper states that MBSE practices need to be expanded to manage more
complex systems engineering practices, especially when dealing with System of Systems (SoS). The authors
identify that most of the eforts in MBSE regard implementations in notations such as UML and SysML. However,
such notations are limited regarding simulation capabilities, which the authors argue could raise questions
regarding the adequacy of those notations for developing complex systems. The review by Zeigler et al. provides
arguments and insight into simulation, instead the work presented in this paper aims to discuss and review
concepts related to early V&V. Although simulation is a commonly used technique in early phases of systems
engineering, we are not focusing on these speciic techniques and their applicability. Further, the distinct focus
on SoS is not present in this review.

Henderson and Salado [41] review the reported beneits and value of MBSE practices from the existing literature.
The primary inding of the authors is that most of the argued beneits in literature are expected and not measured,
leading to their conclusion that MBSE beneits remain inconclusive. Li et al. [58] also identify that although
MBSE-ailiated research is growing, several independent research clusters exist with little interaction. These
works discuss topics also relected in our review, however our focus is diferent. Firstly our work has a strict
focus on early V&V in the context of MBSE, and while the other reviews also regard MBSE the focus is broader.
Secondly, our work discusses similar topics, but it is part of the work and not the main focus of the work, creating
a more holistic view for the aforementioned area of early V&V. And lastly, the aim of the reviews are diferent,
we catalogue and review aspects of interest for early V&V while Henderson and Salado call for more empirical
studies in MBSE and Li et al. aims to promote collaboration across existing domains to address future concerns.
Laing et al. perform a survey of industrial MBSE practitioners in France regarding model-based veriication

[53]. They identify several success criteria that if met are believed to lead to positive efects in the adoption of
MBSE. They also note two major weaknesses from an industrial perspective for model-based veriication, namely
for verifying the system architectures and how multi-physics or multi-disciplinary designs can be integrated in
MBSE frameworks. While the review by Laing et al. focus on veriication in MBSE, they catalogue industrial

5https://fmi-standard.org/
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views on the subject and present success criteria, while the review presented in this article instead focuses on the
V&V in itself via a systematic study.

Arauju et al. [5] perform a systematic literature review on testing, veriication, and validation of robotic and
autonomous systems (RAS). Their review indicates a growing need for extending traditional means of testing
and V&V for complex RAS systems. Similar to our work their review also focused on the industrial perspective,
targeting both industry and academia and inding a lack of industrial applications of methods and tools. While the
review discusses similar concepts to this work, its focus is narrower and systems descriptions are not expected to
be given by means of low-idelity models (as investigated in this review). In addition the focus of their review is
closely related to the technical aspects, while our work also discusses MBSE from a more holistic view.

Ahmad et al. perform a survey on model-based testing utilising UML activity diagrams [2]. A few results of the
review are highlighted, namely the lack of non-functional testing, lack of industrial or elaborate evaluation, high
representation of domain speciic solutions with tight restrictions, and the lack of holistic approaches. While the
review shares some common aspects with the work presented in this article, it focuses on UML and model-based
testing speciically as opposed to the broader and diferently positioned review presented here. Further, the work
by Ahmad et al. does not consider the context of MBSE.

Chaudemar and De Saqui-Sannes [21] investigated the combination of Multidisciplinary Design Analysis and
Optimisation (MDAO) and MBSE for early validation of design. The authors argue that MDAO could be a good
it with MBSE as it, among other things, can be integrated with low-idelity models and take model uncertainty
into account. However, the authors note that these methodologies remain mostly separated in the literature, and
some challenges must be addressed to join them. While our work discusses many concepts related to design, we
do not have the same strict focus as Chaudemar and De Saqui-Sannes about early validation. Further, this review
considers early behaviour validation independently of its coupling with MDAO.
Tsioptsias et al. [86] investigated the simulation model validation and testing via a literature review. Three

distinct ields of research are observed: Operational research, Modelling & Simulation, and Computer Science.
Some of their main indings include the distinct lack of common terminology for the reviewed concepts, a lack
of linkage between theory and practice, and insuicient empirical studies to support the claims in papers. The
authors also argue that validation should be performed continuously and that modellers and users should work
closely during simulation model validation. Although discussing models, the review by Tsioptsias et al. focuses on
a diferent scope compared to the review presented in this article. Their focus is on simulation model validation,
while this review is centred around V&V in the context of MBSE. While simulation model validity is central
to V&V, it can be considered a sub-problem of (early) V&V as a whole and our review presents a more broad
discussion.

4 RESEARCH METHOD

This section presents the research methodology used to conduct the survey. We followed the steps described by
Kitchenham for a systematic literature review [51]. In particular, the research method included three distinct
phases, planning, performing, and reporting.
The purpose of the planning phase included: i) the identiication of gaps in the literature and needs for the

review, discussed in Section 2 and 3; ii) the deinition of the research questions to drive the work, presented in
Section 4.1; iii) the deinition of the review process and guidelines for the involved authors, illustrated in the
remaining of this section.
During the performing phase, we executed the review in several concrete steps, namely Search, Selection,

Snowball,Deinition of data collection table,Data extraction, andData analysis. The search step consisted of deining
a search string and a consequent automated search for relevant papers through several scientiic databases.
The selection consisted of a rigorous process for identifying primary studies for the review. We complemented
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the identiied papers via an exhaustive snowballing process [91] to identify potentially missing papers. At this
point, a data collection table was constructed and validated on a few pilot papers. Finally, we performed the
data extraction on the included papers and coded data for easier interpretation. We analysed the extracted data
vertically and horizontally, resulting in the indings of this review.

In the reporting phase, we documented the indings resulting from the review (see Section 6). Further, we
analysed potential threats to validity and corresponding mitigation strategies to be employed (see Section 5).

4.1 Research questions

This study aims to investigate the current methods and practices for describing and analysing behaviour by means
of system models in early stages of development when adopting MBSE. We are also interested in inspecting
model-based techniques from an academic and industrial perspective, highlighting the current similarities and
diferences with respect to adopted methods and tools. With this and the motivating scenario illustrated in
Section 2.1 in mind, we formulated the following research questions (RQs) to drive the work:

RQ1: How is early V&V deined and motivated in the MBSE literature? This question investigates the deinition of
early V&V activities in the literature together with the main motivations reported for performing those activities.

RQ2: What are the means for describing system behaviour at an early stage of development? By considering the
trade-of between purpose of modelling and idelity of the models, it is of interest to understand how a system
behaviour is initially described. Moreover, it is relevant to capture the languages and formalisms utilised for
analytical purposes, since they might difer from the initial behavioural descriptions. Eventually, in the cases
where diferent models are used due to behaviour description and analysis, it is of interest to elicit the types of
approaches adopted to map the diferent representations.
RQ3:What are the results of interest for the early V&V, and what techniques are employed for performing the

analysis? Given the early stage of the development, it is relevant to understand what type of analysis results
are reported in the literature. Similarly, it is important to elicit what methods or techniques are suitable for
computing the analysis results, and to understand how these results are presented to the user.

RQ4:Which are the application domains employing early V&V? By considering the trade-of between modelling
eforts and reliability of the analysis results, it is interesting to know which application domains adopt the
proposed solutions and whether these solutions are domain-speciic or not. Additionally, it is important to report
whether the solutions have been validated in an industrial setting or not, aiming to elicit potential gaps between
academia and industry.

RQ5:What are the limitations of the existing approaches for early V&V? By considering the growth in complexity
of the developed systems and the impacts of problems discovered late in the development process, it is critical to
understand what limitations are reported when performing early V&V, both speciic for the proposed solution
and more broadly for early V&V in general.

4.2 Search-process

To ind the papers included in the study we opted for an automatic search across several scientiic databases.
By operating some preliminary exploration of the databases of interest we noticed a limited number of hits on
relevant publications; moreover, based on our own experience we expected a relevant spread of keywords and
deinitions due to MBSE being broad in nature. For example, the notion of validation and veriication will difer
between several domains, and the łMBSEž keyword is used in several orthogonal disciplines. Therefore, we kept
the search strings relatively tight and decided to perform an exhaustive snowballing to ensure the search process
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would capture as many relevant papers as possible for the study. The following databases were searched for
information: ACM6, IEEE7, ScienceDirect8, and Scopus9. Moreover, we used the following search string:
(łMBSEž OR łModel-based systems engineeringž OR łModel based systems engineeringž) AND (łValidationž

OR łVeriicationž OR łV&Vž OR łEvaluationž) AND (łBehaviorž OR łBehaviourž).

4.3 Inclusion process with inclusion and exclusion criteria

Starting from a set of initial papers collected via the search strings across the chosen databases, we selected
additional papers through an iterative process until a inal set of papers was identiied. The process was guided
by well-deined inclusion criteria (IC) and exclusion criteria (EC), summarised as:

IC1: The paper regards the problem of model-based early V&V of system behaviour
IC2: The paper presents one or more concrete solutions for early V&V
EC1: Not in English
EC2: Not Peer-reviewed
EC3: Scope outside of model-based systems engineering
EC4: Not available in full text
EC5: Short papers, tutorials, WiPs, research agendas, papers shorter than 5 pages
EC6: Paper overlaps with a more complete paper (e.g., a conference publication extended by a journal article).

IC1 and IC2 are the main criteria we consider for a paper to be included in the review, and each included paper
meets both criteria. If any of the EC are met, regardless of the IC, a publication is automatically not qualiied for
the review process. EC1, EC2, and EC4 remove papers not meeting the basic criteria. EC3 removes papers that
do not discuss the topic of early validation in the MBSE context, such as papers discussing non-model-based
approaches or parallel domains such as software engineering (also referred to as MBSE). With EC5, we aim to
remove any work that does not present a complete research or application paper. Furthermore, with EC6 we
aim to avoid bias by including the same general source with minor editions, and in the case of overlap, the more
mature paper is included.

Figure 2 provides an overview of how the number of papers changed over the process of applying the IC/EC to
arrive at the inal set of 149 papers. The original search was conducted the 15th of March 2022, and the additional
search was conducted the 31st of March 2023.
The steps taken in the search process and shown in Figure 2 were performed in a review management tool

called Covidence10. First, the database search was performed, resulting in 495 papers, which became 431 after
duplicate removal. Then, the IC and EC were applied to the title and abstract of each paper, resulting in 179 papers
to be included for the full text review. We note a drastic decrease of the papers at this stage and ascribe much of
that to catching papers not focused on system behaviour; in fact, the łMBSEž search-term caught many unrelated
papers. In the full text review each paper was read again with the IC and EC in mind, and inally 69 papers were
chosen as the set of primary papers. Subsequently, as planned at the search string deinition time, an exhaustive
snowballing process took place following the guidelines in [91]. The snowballing process took 8 rounds until
no new papers were found, resulting in 206 newly identiied papers for the review process and eventually 152
included papers in total. Again, we note a large increase in the papers after the snowballing process, in part due

6The ACM databse can be found at: https://www.acm.org/
7The IEEE database can be found at: https://www.ieee.org/
8The ScienceDirect database can be found at: https://www.sciencedirect.com/
9The Scopus database can be found at: https://www.scopus.com
10The Covidence tool is available at: https://www.covidence.org/
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Fig. 2. The process for paper identification and corresponding number of papers at each step

to its exhaustive nature, but partly due the initial search string missing some key papers because of the adoption
of slightly diferent terminology. Authors would refer to the notion of early in a process diferently, for example,
łearly stagež, łearly phasež, simply łearlyž, and more commonly for our snowballing, not explicitly in the title
itself. It is also worth noting that the snowballing phase followed the same screening procedure adopted for the
initial set of papers (for the sake of readability we omit the cycles due to the snowballing in the picture).
The inal round of review concerned removal of overlapping papers (e.g, a conference paper and a journal

paper with same introduction and background sections) and a inal check for the IC and EC, resulting in papers
that were inally considered for data extraction. As visible in the igure, given the extent of this work we decided
to perform a search update at this stage to catch any new papers published during the review and writing process.
Such an update resulted in new entries to be considered, the numbers of which are detailed correspondingly in
the igure (starting from łAdditional database searchž). Due to the aforementioned removal of overlapping papers
the total number of publications was reduced from (152+4) to 149.

When applying the IC and EC, two reviewers were assigned to each paper, and in case of disagreement a third
reviewer would make a inal decision. In the snowballing phase, a single reviewer identiied the potential papers,
while the selection process followed the procedure mentioned before. With a inal set of 149 papers, the extracted
data was analysed vertically and horizontally for presentation in this article.

4.4 Data collection and analysis

Once a set of studies has been identiied, the relevant data has been extracted as shown in Table 1. By going into
more details, Question 1 targets general publication details. Questions 2 and 3 aim to answer RQ1 by extracting
the authors’ deinition of early V&V and speciied motivations, respectively. Questions 4, 5, and 6 target RQ2 by
extracting the languages and formalisms used for description and analysis of behaviour. It is worth to notice that
we diferentiate language and formalism based on an existing classiication11. RQ3 is answered by Questions 7, 8,
and 9 which target the techniques, results of interest, and tools utilised in the process of analysis. To answer
RQ4, Questions 10 and 11 extract more information about the domain of application considered in the paper;
moreover, Question 12 targets how the solution was validated based on the classiication by Shaw [79]. As part

11Multi paradigm modelling classiication of languages and formalisms: https://zenodo.org/record/2538711#.Y0etVExBxaR
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Table 1. Data collection table

No Description Expected input Focus

1 Publication details Title, Venue, authors, year -
2 How do the authors deine early V&V Phase and deinition RQ1
3 Motivation for performing early V&V Background and goal for solution RQ1
4 Behaviour description Languages and formalisms RQ2
5 Behaviour analysis Languages and formalisms RQ2
6 If 4 and 5 difer, how is that managed Manually, semi-automatic or automatic RQ2
7 How is V&V performed Technique or approach for early V&V RQ3
8 What result of V&V is of interest Results from analysis RQ3
9 What tool(s) are used for V&V List of tools for analysis RQ3
10 What is the modelled domain From examples in paper RQ4
11 Is the V&V solution domain speciic Yes, no, partly RQ4
12 How is the method validated Examples, empirical measurements RQ4
13 Limitations observed for early V&V Authors’ reported limitations RQ5

of RQ4 we also extract whether the study evaluates the solution in an industrial context or not based on the
case study description (or lack thereof) in the paper. Finally RQ5 is answered by Question 13, which extracts the
limitations of the presented solutions as explicitly discussed in each paper.
Similarly to the previous steps, the Covidence tool was used to perform the data extraction. In particular,

Covidence allows for automatic identiication of conlicts in data extraction. This feature was utilised on a set
of pilot studies to verify whether two researchers would extract the same data and hence elicit possible issues
with the extraction form. After performing the data extraction on 10 (random) pilot papers and comparing the
results for inconsistencies, only minor issues were identiied, which led to a minor reinement of the guidelines
for the data extraction to better match the expected outcome. Subsequently, one researcher took charge of the
data extraction for all the papers. Nonetheless, after the completion of the extraction task another researcher
performed a round of random checks on the extracted data. This round included half of the extracted papers and
no major inconsistencies were discovered.
Based on the data collected according to Table 1 we performed vertical and horizontal analyses, the results

of which are reported in Section 6. Vertical analysis refers to the deeper discussion of each particular RQ and
corresponding data extraction. Horizontal analysis instead focuses on cross-data patterns and correlations. In this
respect, it is important to notice that additional coding has been adopted on certain categories to perform the
horizontal analysis (see Section 7). Examples of such coding could be whether papers used SysML or not, the type
of licensing for tools, and categories for limitations. The coding has been especially helpful for the categories
where input varied greatly. In those cases, almost all entries would appear once or twice at most, thus making
the extracted information spread across a large set of data. For the interested reader, we refer to the publicly
available review replication package, which includes the review protocol, the set of collected papers, the ones
selected for the extraction, the complete set of extracted data, and the adopted coding for speciic subsets12.

5 THREATS TO VALIDITY

The review presented in this article has been performed according to well-established research guidelines.
Moreover, a research protocol with correlated data is located in a publicly available replication package. Still,

12The replication package is openly available at: https://github.com/BeeCub3/Replicate-package
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we acknowledge that a study of this magnitude and scope might contain some threats to the overall validity.
Therefore, in the following we discuss the potential threats by adopting the terms by Wohlin et al. [92] together
with the corresponding countermeasures we have considered.

5.1 Data reproduceability

For the sake of readability and conciseness, we summarise the results and highlight selected peculiar outcomes.
A complete list of the included papers and the corresponding data extraction, along with other technical details
related to the systematic review process, can be found in a publicly available repository both for replication and
to use this data source for other kinds of analyses and investigations. The replication package consists of the
search strings used, in addition to a table that places unique publications on the rows and the extracted data in
the columns. Some columns have been created explicitly for horizontal analysis, presented later in the paper,
detailing for example whether a publication uses SysML or what type of tool licenses exist for the tools used in
the publications. Furthermore, we have shared the tables and graphs used for the various analysis.

5.2 External validity

The threats of external validity primarily relate to the retrieval of the papers to be analysed. In fact, the selected
papers are the source of all the analyses and signiicantly impact the extracted results and their quality. We
utilised the search string in several databases to identify potential studies for our analysis. We performed the
search with a relatively reined search string to reduce the initial set of papers. In order to mitigate the risks of
missing relevant papers, e.g. due to a missing explicit reference to MBSE or V&V, an exhaustive snowballing
(forward and backward) procedure was performed until no new papers were identiied. The snowballing was
performed in eight rounds, which allowed us to capture the papers missed by the initial search string and to
accurately retrieve the relevant papers for analysis. Additionally, we re-iterated the search process at a later stage
of this research work to catch any papers released during the time of data analysis and of writing.

5.3 Internal validity

Internal validity refers to any threats primarily arising from the bias of the reviewers involved in the study. To
mitigate the bias of individual researchers, we required a majority consensus of the reviewers for all the selection
steps until the data extraction. In other words, two researchers performed the selection in parallel and in case of
decision conlicts a third researcher took the inal decision. Moreover, before performing the data extraction,
several pilot extractions were performed to evaluate and harmonise how diferent reviewers would interpret the
extraction forms. The pilot extractions did not reveal any signiicant conlicts, which gave us conidence that an
individual reviewer could perform the extraction. Nonetheless, at the end of the data extraction a sanity check
was performed on a signiicant subset of random papers to verify the similarity of the results.

To reduce the bias even further, the researchers were not tasked with evaluating any of the papers’ claims.
Instead, the extraction consisted of reporting the claims by the authors of the papers. As such, any interpretation
of the data was left for after the extraction. For the entire process we utilised the Covidence tool for maintaining
consistency among reviews as the tool highlights potential miss-matches of extraction. After extraction was
complete we exported all data from the tool and performed the horizontal analysis and vertical analysis directly
on the data.

5.4 Construct validity

Construct validity mainly relates to the risk of deriving an incorrect conclusion from the relations between
treatment and outcome. For this article, this would mean that the way we searched and selected the papers and
the approach adopted for the extraction could have afected the results we obtained. We used several literature
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sources for the search string to mitigate this risk, 4 to be exact. Moreover, we performed exhaustive snowballing
to mitigate the threats of poorly formulated search strings or missing papers due to exclusion from databases. The
snowballing was done according to the best practices recommended in literature and was performed exhaustively,
i.e. until no new papers were found.

5.5 Conclusion validity

Threats to conclusion validity refer to any risk of misinterpreting the results of the indings. To mitigate these
risks, we have followed well-established systematic literature review approaches [51, 92]. Moreover, we did not
adopt any preliminary interpretation of papers’ contents, and we applied automated analysis tools to collect data
and elicit relevant cross-relations.

Admittedly, there could be still some risk for bias due to our close experience with the CE domain, and hence
a potentially limited/incomplete interpretation of the extracted results. Nonetheless, our experiences in other
industrial domains point out very similar MBSE adoptions scenarios and issues, making us conident about the
broader validity of our reasoning. Additionally, we provide a publicly accessible replication package with all the
details about how the study was performed and the corresponding extracted data.

6 FINDINGS

In this section, we present the indings of the data extraction while targeting the research questions formulated
in Section 4. We refer to the online replication package to see the precise extraction of data from publications.
An appendix is attached in Appendix A for more explicitly mapping the papers to the RQ categories, which are
presented and summarised in the following section.

6.1 Publication details

In this section we present the overarching publication details. First, we map the trend of publications over the
years, as illustrated in Figure 3.
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Fig. 3. The distribution of the analysed papers as clustered by year and type of publication.

Figure 3 indicates a rise in the interest for the topics discussed by this review over the years. Moreover, even if
no condition for inclusion was set on the earliest year, the earliest publications can be found in 2000 and few
publications are found before 2008. Since then, the general trend shows an increase in the number of publications,
hinting a growing interest in the topic. Such a trend also matches quite well the birth and maturation of MDE
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techniques, which are a key enabler for early V&V [78]. In the igure we also distinguish the selected papers by
the publication types and notice a large majority of either conference or journal publications. Such prevalence
might indicate a certain degree of complexity and/or maturity for the proposed solutions that are diicult to
enclose in workshop publications.
Figure 4 presents a word cloud of the publication keywords, where each keyword is included regardless of

the number of occurrences, and no keyword clustering has been performed. Ignoring the references to MBSE or
modelling in general in Figure 4, the most common keywords in the publications are SysML (n=30), Simulation
(n=20), Veriication (n=16), UML (n=10), Model checking (n=10), Requirements (n=9), and Model transformations
(n=9). We note a clear bias for SysML and related concepts, as well as for simulation and related tools, languages,
and techniques. We also highlight a lack of mentioning for the word łdesignž or similar concepts. Apart from
the more represented topics in the keywords, many are represented only once or twice, often related to speciic
techniques or domain-speciic concepts.

6.2 RQ1 - How is early validation and verification motivated and defined in the literature for MBSE?

This section summarises the data extracted to answer RQ1, speciically questions 2 and 3 in Table 1.

6.2.1 How does the community define early V&V?. Although all the analysed papers regard the concept of V&V
at an early stage of development, few papers explicitly state what that means in their context. Instead, most of
the papers implicitly infer that the targeted V&V takes place at some point of system design or requirements
elicitation, often referring to the INCOSE deinition that states that veriication and validation begin in the
conceptual design phase [88]. Out of the papers explicitly describing the phase or context of early V&V, a majority
refers to the design phase and, as previously stated, often refers to the INCOSE deinition of the łConceptual
design phasež. Apart from the design phase, some papers argue that early V&V targets the łrequirements phasež,
and some authors report that their solution targets both the requirements and design phases. Figure 5 visualises
the target phase of the solutions among the papers.
In more detail, 107 of the 149 publications (71.8%) report that the proposed solution applies for the design

phase, while 29 (19.5%) report that the solution exists in the requirements phase. 13 (8.7%) of the papers report
that their solution covers both requirements and design and tend to be large in scope. As an example, Lemazurier
et al. [P28] use requirement boiler-plates as a starting point to leverage ive unique domain-speciic languages
and several views to generate a functional architecture. Boufaron et al. [P44] instead deine an iterative process
of system reinement that spans several stages of development. In both cases there is a large emphasis on the
process, and the solutions play a supporting technical role.
From the extracted data we can see that authors consider system requirements and system design as both

targets for early system behaviour V&V. While few authors explicitly deine early V&V, it is clear that the majority
of them considers the topic of early validation to regard system design rather than system requirements. Moreover,
the problem of łwill a particular design meet the requirementsž prevails over łwill a particular set of requirements
capture the system of interest adequatelyž. Eventually, when papers deal with both requirements and design phases
they use the available information to perform cross-checks, notably for better understanding the system and
reason about constraints [P4, P48, P149]; to raise the quality of models and reduce łbad smellsž [P15, P28, P53, P95];
to improve traceability and understand artefact dependencies [P28]; to validate non-functional requirements
[P44, P60, P96]; to reason about trade-ofs or to reduce the design space [P51, P63].

6.2.2 What are the main motivating reasons for doing early V&V?. To understand the motivations for doing early
V&V, we extracted from each paper the reason(s) the authors use to motivate their activities. The exact extractions
are found in the replication package, while Figure 6 summarises the indings. In particular, it displays all the
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Fig. 4. Word cloud of the keywords in the included papers of the review.

motivations mentioned at least twice in the papers, while those mentioned only once are valued as łOtherž in the
igure.
The reasons listed in Figure 6 can partially overlap and many papers report multiple reasons for performing

V&V activities. The most common motivation for performing early V&V is to ensure a desired level of quality
for the design before proceeding with the implementation. This is followed by reducing risks with late law
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Fig. 6. The reported motivating reasons for authors to perform early V&V of system behaviour using model-based practices.

detection, reducing time to market, reducing risk for incomplete requirements, and exploring system behaviour
before implementation. In this respect, the predominant motivations seem to directly target the reduction of
risks associated with introducing errors or creating incomplete speciications in the early phases, which should
lead to a more streamlined process. This is also conirmed by the fact that reducing time to market is an often
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quoted motivation for the activities performed by authors. Other potential risks to be prevented are those caused
by sub-optimal (or even wrong) design decisions that could impact critical quality attributes of the system. In
this respect, several of the more frequently mentioned reasons are related to performances and dependability
(safety in particular).

A set of papers does not clearly motivate the reasons for employing their solutions targeting early V&V; we
note that many of these papers describe more theoretical works without any real target case study, which is
perhaps why there is a lack of motivation for the activities. For example, Kahani and Cordy discuss bounded
veriication for state machines in a train system controller [P40]. However, they do not discuss their solution
motivation at length as they deem the concepts already well established. Similarly, Liu et al. [P138] discuss
Assume-Guarantee Reasoning in the context of scheduled components and present a general theory instead
without a concrete motivation. In other words, these research works deal with techniques that might support
early V&V solutions but do not explicitly mention concrete usage scenarios.

RQ1 discussion: To summarise, while there is some spread in the extracted motivating reasons, there seems
to be a consensus about V&V in the earlier phases of development as being key to minimising development
costs and reducing risks with laws later in the development life-cycle. Although the main category of early
V&V motivation can be formulated as łanticipating V&V before implementationž and is perhaps what is to be
expected, it does not even map to half the papers13. Apart from the more expected results, commonly reported
motivations include łreducing risks associated with faulty design or requirementsž, łperforming trade-of studiesž,
and łimproving communication and integration between system aspectsž. Most of the reported motivations for
V&V are well in line with SE state of the art and practices [88], in which MBSE is seen as means of going earlier
with the involved activities while maintaining the necessary rigour. Additionally, the authors mostly regard
their solutions as situated in the design phase, considering the requirements phase to a smaller extent. Moreover,
phases past design are not represented to any signiicant extent in the paper solutions. The extracted data indicate
that MBSE is reaching maturity for using methods of analysis in system design with signiicant beneits and it
may also signify that the requirements phase has a lower need for added capabilities to current methods. On the
other hand, the lower amount of papers targeting the requirements phase could also highlight that solutions
need to be more mature, something relected in the lower representation of industrial cases in the selected papers
targeting the requirements phase. We also observe that few papers seem to target both the requirements and
design phases, probably due to the issues related to connecting diferent artefacts (and corresponding tools), often
reported as a weak point for MBSE [41].

Perhaps, more interesting is what is not reported by the authors to any signiicant extent, notably aspects such
as re-use (of the V&V artefacts for other phases of the development process as well as for other projects) and
improved traceability between development stages. This is surprising, since the mentioned aspects are often
argued to be strong points for MBSE adoption [41]. In the same fashion, there is little discussion on the broader
integration of the V&V activities in the SE landscape, which is argued as a beneit of MBSE. Notably, there are few
mentions of the digital thread [80], which can be enabled with model-based methods. In conjunction with this,
few papers discuss cross-domain integration, which also is something to be expected when leveraging abstraction.
In essence the solutions seem to overall lack a holistic motivation, that is how early V&V supports parallel and
down-stream activities.

Actionable Insights RQ1

13Here we remark that to the reduce the risk of introducing bias by means of subjective interpretations we only extracted the explicit
information as written by the authors.
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From the analysis performed we believe the following action point to be valuable for the community in
the context of RQ1:

• Motivations for V&V stakeholders seem to be somewhat unclear or implicit. Seemingly, there is no
clear view of the expected value in performing early V&V.

• Processes typically span several development stages, seen through the divide between requirements
and design; yet, there is little discussion on holistic approaches or possible beneits expected by
models to bridge stages.

• Artefacts should be used by several domains and users during development, yet there is little
discussion on the interoperability or re-use of V&V artefacts.

• There is a broad range of deinitions (and many papers make no attempt) for early V&V. Subsequently
the expected stakeholders tend to diverge in the papers, and there is a vague understanding about
how early V&V slots into the overall SE processes and how it can guide development efectively.

6.3 RQ2 - What are the means of describing system behaviour at an early stage of development?

This section summarises the data extracted to answer RQ2, namely questions 4, 5, and 6 in Table 1.

6.3.1 How is system behaviour represented in early V&V?. Figure 7 shows the languages utilised in the solutions
to describe system behaviour. The category łOtherž refers to entries only represented once in the extraction
which are not created speciically for the solution, which instead is represented by žCustom languagež. When we
consider the implementation of the solutions, we diferentiate between tools, languages, and formalisms (where
possible) based on existing classiications as presented in Section 4.

The data in Figure 7 is based on the reported languages/formalisms from the analysed papers. Here, it is worth
noting that the input varied a lot in detail. Notably, some papers state łSysMLž without specifying or showing
what sub-set is utilised. Similarly, diferent types of diagrams or means of representing behaviour are shared
among the various languages, such as state-based formalisms. Moreover, the selected papers reported languages
or formalisms in an inconsistent way. These issues do not allow us to perform meaningful clustering of the results
and therefore we limit the reporting of the extraction results to the languages, which all analysed papers mention.

While there is a large spread of languages to represent system behaviour in the early phases of development,
it is clear that SysML is by far the most common language, and much of the language is utilised, especially
the behavioural diagrams and block diagrams. Figure 8 illustrates the sub-sets of SysML utilised in the papers
adopting SysML as part of the proposed solution. We note that the distribution of diagram types is found in a
similar way for UML and other UML proiles.

When considering the sub-parts of SysML utilised in the selected papers, activity diagrams and state machine
diagrams are the most popular means of using SysML for describing system behaviour, particularly it is utilised in
many papers aiming for automated translations. For example, Staskal et al. [P140] map SysML activity diagrams
to the symbolic model checker nuXmv, and Mahani et al. [P36] similarly map SysML state machine diagrams
to the NuSMV model checker. Many solutions use more than one diagram of the language to describe the
behaviour and often it is not entirely clear what is used and what is not by simply reading the paper. Nonetheless,
of the four diagrams classiied as behavioural diagrams in the SysML standard, activity and state machine
diagrams are preferred over use case diagrams and sequence diagrams. Besides, one paper argues that the solution
utilises the entire SysML speciication [P114], and four others that all of the behavioural diagrams are utilised
[P12, P46, P91, P122].
SysML, as a general-purpose language, aims to be a solution for all types of systems. Further, it is evident

that UML and languages related to UML, such as MARTE, are among the most commonly used languages and
formalisms apart from SysML (which indeed has been typically implemented as a UML proile until the recent
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Fig. 7. Reported language used for describing the system behaviour.

version SysML v2). This might indicate that general-purpose languages such as SysML and UML are suitable for
describing early systems speciications in general and behaviour in particular. Nonetheless, a large number of
papers utilise a means of description that is only observed once in the selected papers, indicating a large variety
of domains and possibly the need for domain-speciic support. For example, Supremica is used by Markovski
[P26], which extends inite automata to handle large complex industrial systems, KARMA used by Ding et al.
[P78] to unify formalisms across several MBSE models and simulations, or SWRL used by Chen et al. [P95] in
combination by OWL to leverage ontology reasoning for veriication.
A few papers propose custom languages or formalisms in their solutions. Miao et al. [P1] present a Python-

like custom informal language for their system descriptions. Lemazurier et al. [P28] utilise a domain-speciic
language for nuclear power plants, along with several other domain-speciic languages, to manage their system
descriptions. Similarly, Deng et al. [P48] utilise a custom language and environment for mechanical product
design, and Stachtiari et al. [P60] use their custom language for describing satellites. Singh and Muller [P80] use
a tool-based approach to describe their system of interest based on needs observed in their industrial context of
manufacturing systems. Bernaerts et al. [P126] use a speciic type of model for describing safety-related aspects
in the automotive domain. Miyazawa et al. [P99] use their custom state machine formalism for describing robotic
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systems. Zhang et al. [P141] propose an integrated intelligent modelling and simulation language to cope with
the combination of domain speciic models in System of Systems.

6.3.2 What language or formalism is utilised for behaviour analysis? To present the results from this data extraction
we diferentiate between the reported languages and the reported formalisms. Analogously to the behaviour
description, authors rarely report in a precise way how a language is implemented or what parts are employed
for what purpose. Further, some papers report on the particular formalisms employed while others do not. In
particular, Figure 9 shows the reported languages and their frequency for analysing behaviour, where łOtherž
groups the entries reported only once that are not custom made for a particular solution; Figure 10 depicts the
reported formalisms for analysing the behaviour.
Figure 9 and 10 clearly show that languages and formalisms used for analysis are typically case-dependent,

since a large majority of the entries is represented only once or twice in the papers. In this respect, many reported
languages and formalisms serve narrow/domain-speciic purposes that are not easily portable to a more general
case. Examples include languages such as Event-B [P24], OWL [P104], LabVIEW [P97], or Sabotage [P137]. In
addition, despite the widespread use of SysML and UML-based languages for the system description, there is no
evidence about potential łstandardž analysis approaches for early V&V of speciic properties.

Apart from the case dependent solutions, some general-purpose languages and formalisms are frequently used,
namely SysML, MATLAB/Simulink, Modelica, Petri nets, and various state-based formalisms. Moreover, it is
interesting to notice that there exists a group of solutions presented as implementation-agnostic with respect to
the particular type of formalism and language used for the analysis [P77, P94, P95, P125]. Friedl et al. [P77] argue
that their solution can be adapted to cover various case-dependent languages. Similarly, the solution from Castet
et al. [P94] involve ontologies and is presented as being adaptable in terms of languages, where an implementation
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Fig. 9. The language used for performing analysis in the solutions

example is given in the Modelica language. Chen et al. [P95] also utilise a method of automatically creating
speciic design ontologies and rules from requirements, and argue that the target implementation depends on the
context considered for the system under study. Damm et al. [P125] showcase a method for contract-based virtual
integration testing and consider it to be language and tool agnostic. Similarly, as for languages used for behaviour
description, there are a few custom languages and formalisms, of which two overlapping with custom languages
for describing behaviour [P1, P28]. Moreover, Kang et al. [P4] extend previous work to analyse EAST-ADL models,
and Brandstetter et al. [P59] use validation rules for automation process software requirements validation that is
not tooling dependent.

6.3.3 If the description and analysis language difer, how is the transformation performed? Although SysML is the
primary language used to represent system behaviour, it is seldom used for analysis. More in general, only in 24
cases out of all the papers is the language or formalism for representation and analysis are the same, where SysML
is used 13 times [P22, P31, P50, P51, P55, P58, P63, P70, P101, P104, P107, P114, P130, P147]. As a consequence, in
all the other cases a transformation (which can be composed of several sub-transformations) is required between
the diferent languages and formalisms, at least to translate concepts from the representation language towards
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Fig. 10. The reported formalisms used for analysis in the papers.

the analysis one. In more complex scenarios, such transformation would be used to extract and synthesise the
necessary information to perform the analysis due to early V&V.

We note that 94 of the papers (63.0%) utilise fully automated transformations, while 19 (12.7%) solutions utilise
semi-automated transformations, and 12 papers (8%) use some form of manual transformation. We note that rarely
do authors provide proof of transformation correctness in case of automated solutions, possibly highlighting a
gap in the works. Moreover, as previously mentioned, 24 (16.1%) use no transformation. The results from the
extraction indicate that if a transformation is performed, it is mostly done via automatic means; otherwise, either
no transformation or semi-automatic means are employed. Singh and Muller use Dynamic A3 Architectures as
an approach for validation leveraging tool support without the need for transformations [P80], particularly by
promoting view management and cross-communication between teams via integrated tool capabilities, early
validation is achieved by increased communication, collaboration, and integration between engineering teams.
Farooq models directly in Simulink and leverages the tool capabilities for simulation and veriication [P84]. Since
some of the proposed solutions utilise several languages and formalisms in both the description and analysis, semi-
automated transformations also include cases where some of the multiple translations are automatic while some
are not. For example, González et al. [P62] leverage co-simulation mechanisms in conjunction with SysML models
and only transforms a sub-set of the model information to MATLAB equations. Friedl et al. [P77] discuss the use
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of SysML architecture models in a process for model integration between system architects and model experts
and highlights a semi-automated guided approach for integration. Only few papers rely on a completely manual
approach for mapping diferent languages and formalisms [P1, P30, P44, P43, P48, P59, P65, P85, P120, P123, P127].
It is interesting to note that these solutions tend to be reported as not validated in an industrial context by the
publication authors [P30, P44, P43, P48, P65, P120, P123, P127] and targeting the requirements phase; vice versa,
the solutions deploying automated transformations are often validated in industry and do not target requirements.
RQ2 discussion:When describing a system’s behaviour, there is an apparent representation of SysML and

UML or other types of UML proiles, such as MARTE. The prominence of these languages is not surprising
and has been reported previously in other types of reviews [21, 60, 66]. Of the diferent types of behavioural
diagrams in SysML, activity diagrams and state machine diagrams are the most commonly used. On the other
hand both use case diagrams and sequence diagrams are used signiicantly less, seemingly not good candidates
for describing the systems at this stage to enable V&V. However, as opposed to the description being uniform in
the language, analysis mechanisms vary a lot. Indeed most papers utilise languages or formalisms only found
once or twice in the set of selected papers. The most often reported languages are SysML, Simulink, and Modelica.
Petri net diagrams (with various formalisms), UPPAAL, and other similar languages are also used often. The
mappings between the languages in the cases where the behaviour representation and analysis use diferent
means (which is mostly the case), show a clear tendency towards automated or semi-automated solutions. This is
consistent with the pragmatics of model-based development (and consequently of MBSE) [78], since handling
such discontinuities by hand would introduce accidental complexity to the solution, making its adoption diicult
and even not possible at all.
In a broader perspective, the wide adoption of SysML and UML-based languages for behaviour description

might conirm their status of de-facto standards for early systems’ modelling. In fact, keeping those languages
for early behaviour description eases the technology transfer for the developed analysis mechanisms by avoiding
learning new languages (and also adopting new tools). However, being SysML and UML-based languages general-
purpose, they often do not convey enough support for domain-speciic analysis, thus requiring information
extraction/translation towards semantic domains in which the analysis can be performed. Relying heavily on
such technologies introduces further complexity into the process, which might make industrial adoption a larger
challenge.
While we see some expected results from the analysis there is at the same time a lack of many important

topics. Relying on model-transformations to create analytical models creates a relevant dependency on these
transformations, but there is little discussion on the viability of transformations. Similarly, the notion of consis-
tency management across diferent languages in addition to interoperability and scalability is mostly missing.
Implementing MBSE in industrial contexts will often be reliant on large tool-chains, and relying on a set of model
transformations in a landscape of changing tools, standards, and users is a considerable risk. For languages not
using transformations many are implemented in advanced tooling like Simulink or integrated MBSE tool-kits
like Cameo Systems Modeller or MagicDraw, hinting at these solutions being more closely tied with industry
needs. Overall, the large range of analytical languages and notations proves powerful lexibility, but on the other
hand, introduces complexity in the process which is a considerable trade-of.

Actionable Insights for RQ2

From the analysis performed we believe the following action points to be valuable for the community in
the context of RQ2:

• There is little discussion on the transformation details, are they two-way, how often should they be
employed, consistency management, coupling, maintainability, etc.
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• Scalability of languages for analysis could be a weak point, top choices are implemented in industrial
tools while many academic choices are based on small scale examples.

• Few solutions present general approaches that can be implemented in more than one language
and/or formalism for description or analysis. Considering many commonly used languages like
SysML are semi-formal the reliance on speciic notations and languages (and per extension tools)
reduces generalisability.

6.4 RQ3 - What are the results of interest for authors performing early V&V, and what techniques

are employed for the required analysis?

This section summarises the data extracted to answer RQ3, speciically answering questions 7, 8, and 9 from
Table 1.

6.4.1 What methods and techniques are used for analysis? Figure 11 reports the V&V analysis methods and
their frequency as extracted from the papers. Similarly to what done previously, we do not display entries only
represented once in the papers and group them as łOtherž in the igure.
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The most frequently reported method is simulation, which for some papers is also referred to as model
execution, virtual testing, and co-simulation. The papers not utilising simulation employ many diferent means
of analysing models, often through static analysis methods. More common types of analysis are model checking,
and manual inspection/review. There exists some overlap between the reported techniques, partly due to some
solutions employing several means of analysing system behaviour or because of solutions being broad in the sense
that several aspects are analysed either in parallel or through diferent steps. As an example, Quadri et al. [P81]
discuss a framework with several interconnected components for V&V on SysML/MARTE models, including
simulation, compile time visualisation, and temporal property checks. Similarly, Liu et al. [P16] introduce a
methodology to leverage a sub-language of AADL for simulation, schedulability analysis, syntax analysis, lexical
analysis, and more.
Methods with less entries are usually devoted to domain-speciic analysis, and many of the reported entries

relate to techniques for reasoning about or analysing themodels directly without any need for execution. Examples
include: program analysis [P13], compositional veriication [P138], model reasoning [P116], and correctness by
construction [P60].

6.4.2 What results are of interest for the authors? This section illustrates the results collected due to the data
extraction related to question 8 in Table 1. To further understand early V&V from the authors’ perspective, we
map the results of interest in Figure 12. Again, we do not include entries only represented once, which are instead
classiied as łOtherž.
Similarly to previous results, there is a large spread of interest in the analysis feedback and outcomes. Even

more, the results for this question are inluenced by the lack of harmony and consistency in the terms used and
the presentation of data from the authors, which is likely due to the broad range of domains involved in the
selected papers. Execution traces refer to works using the traces of execution themselves for analysis, for example,
Delvi et al. [P74] plot execution traces to compare and evaluate energy consumption, while Kotronis et al. [P100]
visualise and compare traces for railway system coniguration performance. Safety features can include, for
example, guarantees of execution as in the case of Dragomir et al. [P148], or safety assessments from Fault Trees
or Failure Mode and Efect Analysis in the case of Krishnan et al. [P139], or more comprehensive V&V safety
analysis through a set of techniques as in the case of Bozzano et al. [P67]. Inconsistency can refer to inconsistency
between diferent system behavioural views, as in the case of Duhil et al. [P58], or between diferent tools and
notations belonging to traditionally separated teams as in the case of Gregory et al. [P117]. Intended functional
behaviour can refer to simulation to validate the execution of generated code like for Bocciarelli et al. [P10], or to
detect design and integration errors with model-checking as in the case of Braspenning et al. [P88]. Functional
requirements veriication, on the other hand, can refer to the explicit requirement satisfaction checks as with
Kang et al. [P4], or as in the case of Anwar et al. [P86] where SystemVerilog assertion code is generated for a
particular SoI based on the design requirements deined using OCL, which can be leveraged during the eventual
detailed system design for requirements veriication.
Domains such as power plants [P44], canal/waterway systems [P85], web applications [P132], and medical

systems [P140] have varied vocabularies compared to the more represented domains such as aerospace or
automotive.Nevertheless, it is possible to identify some clear trends, such as execution traces and intended
functional behaviour being of high interest. Similarly, results commonly obtained through static analysis, such as
liveness, inconsistency, deadlock-freeness, reachability, etc., are also reported often.
A few papers argue that their analysis approaches are adaptable to the application of interest for a speciic

context, and as such the results of interest might vary depending on the utilisation scenario. Notably, Anwar et
al. [P41] present a meta-model for modelling FPGA-related concepts and argue that their solution can be used
to generate test benches for various purposes. Votintseva et al. [P47] reason about multi-domain systems and
propose solutions for managing cross-domain analysis, suggesting that their approach depends on the chosen
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Fig. 12. The results of interest for the authors.

domains and applications. Kaslow et al. [P55] use various inspection forms to perform their analysis, which is
argued to be adapted for the stakeholder needs. González et al. [P62] propose a means of using co-simulation
for early V&V and argue that the results of interest depend on the evaluation context. Hecht and Chen [P130]
utilise various query-based operations on SysML models and argue that this analysis should be adapted for the
particular system of interest and corresponding models. Zhang et al. [P141] use their custom language X with a
prototype tooling that covers an extensive array of potential analysis, and as such, the results vary accordingly.

6.4.3 What are the tools used for analysis? This section discusses the outcomes of the data extraction related
to question 9 in Table 1. We present a categorisation of tools used in Figure 13 and refer to Appendix A for an
explicit mapping of tools to solutions.

Consistently with previous results on languages for system description and V&V analysis, the number of tools
used is extensive, andmost of the tools are found only once or twice among the analysed papers. Themore common
categories are integrated MBSE toolkits, graphical programming/simulation environments, model-checkers,
modelling frameworks, and simulation toolkits. The most commonly used individual tools are MATLAB/Simulink
with corresponding libraries and EMF based solutions. EMF is one of the leading free/open-source platforms for
modelling, which makes it an attractive tool/platform for academic investigations [82]. MATLAB/Simulink, in a
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similar fashion, is suitable for both academics and industry and has a rich history of applications in themodel-based
community [4]. Apart from these tools, many proprietary SysML editors are commonly used for their integrated
analysis capabilities, eliminating, at least partially, the need for diferent tools for describing and analysing
behaviour. In some cases, the tools are not presented [P12, P31, P37, P38, P43, P54, P66, P92, P98, P104], and other
times it is argued that the solution is not tool dependent [P47, P64, P76, P95, P101, P109, P125, P134]. Moreover,
some authors have proposed custom tools or environments for their analysis [P27, P48, P68, P82, P87, P141, P144].
RQ3 discussion: Simulation is by far the most commonly used means of analysis. This perhaps indicates

that for meaningful analysis at early stages, it is required to have advanced means of analysis, particularly for
dynamic behaviour. Apart from simulation, there is a broader spread of diferent methods that can be reduced to
model checking or automated reviews/inspections.

The results of interest are typically tightly coupled with the domain, the adopted languages, the tools, and so
forth, hence showing a large variety of target properties. More explicit and shared set of results of interest can
be observed when model checking is adopted, namely freedom of deadlock, liveness, safety, and reachability.
In general, the embedded systems domain seems to have a clearer view of the process and scope of early V&V,
which is relected in the more compact set of tools, languages, and results compared to the other types of domains.
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Moreover, the embedded systems domain shows some maturity regarding early validation practices, with earlier
publications in the observed timeline for early V&V.
Another interesting aspect is that models describing the behaviour in a somewhat uniform way, often in

SysML, can lead to a wide array of analyses; this shows the powerful lexibility of the semi-formal nature of
general-purpose languages like SysML and UML proiles. Of course, such semi-formal descriptions often entail
the need of transformations to more structured representations for analysis, which increases the complexity and
reduces the freedom of modelling, as automatic transformations require structured formatting.

The tooling reported for analysis in the papers is the category with the most signiicant spread observed. Very
few tools are seen as good enough for the general audience of MBSE. Of the more frequent entries, Eclipse/EMF,
MATLAB/Simulink, Papyrus, OpenModelica, and UPPAAL are the more commonly reported tools. Some tools
that do not perform transformations between languages are also represented in the papers, like MagicDraw and
Cameo Systems Modeler. These latter two are tools used in solutions where early analysis is performed directly
on SysML diagrams thanks to functionalities embedded in the tooling. Moreover, as expected, these solutions are
often observed in industrial applications, where it can also happen that the tooling is customised on-demand to
perform speciic tasks.
While tooling is tightly connected with MBSE, it is surprising that so few solutions claim to be tool agnostic.

In fact, if tooling is central, MBSE likewise considers methods, methodology and languages. However many of
the solutions rely on tool-speciic analysis, regardless if the solution is extensive or not. Academic tools tend to
be more compact and openly accessible for the best impact, while industrial tooling should often integrate into
larger processes and there is a reluctance on openly available tooling as it rarely is scalable and maintainable for
large enterprises in addition to intellectual property (IP) protection concerns. Therefore, the fact that much of the
tooling is very case-speciic feeds into the known problems of interoperability and maintainability.

Actionable Insights RQ3

From the analysis performed we believe the following action points to be valuable for the community in
the context of RQ3:

• Tooling should carry much of the weight in terms of MBSE processes, many of the observed tools
are disjoint from the overall processes and need to be integrated eiciently while few solutions
emphasise interoperability.

• Few solutions discuss approaches that can be adapted or applied in more than one notation/tool,
further reinforcing the vendor lock-in.

• While simulation is the most common analysis method it is rarely discussed for what conditions
and boundaries its results can be considered valid or not. Moreover, how the analysis should be
integrated into decision-making concretely, apart from high-level observations, is left unspeciied.

• The target properties for the proposed early analysis aremanywith no evident pattern of classiication
or catalogue referenced in the literature.

6.5 RQ4 - Who are the users of early V&V?

This section summarises the data extracted to answer RQ4, more speciically questions 10, 11, and 12 from Table
1.

6.5.1 What is the reported domain? Figure 14 displays the domains identiied in the selected papers: there is
a multitude of domains observed in the papers, of which the most prominent are Aerospace and Avionics14.
Other domains with a signiicant presence are embedded systems, cyber-physical systems, safety critical systems,

14We distinguish these domains as they are apparently diferentiated in the observed papers.
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automotive, and railway. Finally, there is also a large category of domains only reported once in the papers, such
as nuclear power plants [P28], canal systems [P85], web applications [P132], and cloud computing [P134].
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Aerospace is somewhat expected to be one of the most commonly reported and investigated domain given
the complexity of the developed systems and the historical relevance of this ield. Indeed, there are prominent
promoters for MBSE, such as NASA, which produce quality research on the topic [42, 70]. Similarly, embedded
systems are quite mature regarding formal methods and model checking [54, 85], which are often reported in
the papers. Moreover, the automotive and railway industry have strong foundations on model-based practices
[7, 24], and standards such as AUTOSAR exist for automotive [32]. Cyber-physical and safety critical systems are
broader categories than previously mentioned ones, but we observe a strong presence regardless. In this case,
CPSs typically beneit from the uniied view models provide (e.g. for integration analysis purposes) while safety
critical systems require early analysis for providing the necessary evidence that systems will meet the imposed
requirements.

6.5.2 Is the solution domain specific? Of the analysed papers, 117 contain domain-speciic solutions (78.5%), 16
(10.7%) papers argue to be domain-independent, and 16 (10.5%) illustrate a domain-speciic solution but make
a case for it being extensible for more domains. Examples include Bocciarelli et al. [P10], which describe an
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approach based on the IEEE 1516-2010 - HLA standard and apply it concretely in the SoS domain, but argue for
wide applicability. Similarly, Stewart et al. [P17] describe a process for safety analysis in the aerospace domain
but argue that it can be extended for any safety critical domain such as automotive or nuclear power plants.
In the same way, Herzig et al. [P30] apply a SysML-based simulation analysis method on a telescope use case
but argue that the approach can be extended for other domains. The fact that such a large majority of papers
are domain-speciic and many diferent domains are reported is consistent with the broad range of solutions
proposed in the analysed papers.
Of the non-domain-speciic papers, only 3 are validated in an industrial setting [P1, P34, P105], indicating

that such solutions might not have the necessary maturity required for industry. The three papers discuss their
applications in at least two domains. For example, Cheng et al. [P34] discuss an approach for automatic analysis
of multi-view architectures and present both an automotive and micro-service cloud application.

6.5.3 How was the solution validated? This section answers question 13 from Table 1 by extracting whether the
solution was validated in an industrial setting or not, and what kind of validation is discussed in the selected
papers.

51 papers (34.2%) evaluate their results in an industrial setting, which showcases a strong industrial presence.
We re-emphasise here that the validation of the approach is extracted from the publication itself, hence we rely
on the deinition adopted by the authors.
114 (76.5%) of the analysed papers use some form of running example as deined by Shaw [79] for the

validation of the solution; in particular, here we group toy examples with slice of life examples. A sub-set of
contributions, 18 (12%), present empirical observations of the solutions [P3, P4, P5, P11, P14, P40, P49, P60,
P62, P66, P67, P80, P87, P103, P110, P134, P149]. For example, Mens et al. [P3] introduce a new method for
testing and validating state-charts, and part of their evaluation is a controlled user study to measure the tools’
efectiveness and usability. Andrade et al. [P5] introduce a method to map SysML activity diagrams to Petri
Nets for the evaluation of real-time systems with energy constraints and measure the obtained analysis results
with hardware measurements, which conirm the adequacy of analysis results. Anwar et al. [P11] introduce a
model-based method for design of FPGAs and measure the time taken for baseline methods compared to their
approach in man-hours. Eventually, 17 (11.4%) papers have no example or empirical observation for their solution
[P15, P25, P31, P32, P42, P53, P58, P59, P70, P98, P100, P104, P119, P124, P128]. For example, Lima et al. [P25]
describe a semantic for reasoning about SysML diagrams via reinement and support their approach through
abstract high-level disjoint diagrammatic examples; instead, Gauthier et al. [P119] explain a process to transform
SysML models to Modelica code without any example in the publication apart from the transformation rules.
The outcome about users of early validation is consistent with the other categories in the sense that there

is a large and signiicant spread. The outliers in this regard are aerospace (with a related domain referring to
avionics), embedded systems, CPS, safety-critical systems, railway, and automotive. Interestingly, solutions in
the embedded systems domain tend to be consistent in terms of solutions proposed by the analysed papers,
while the same cannot be said for the other domains. In fact, in most of the larger reported domains there is
no common/shared view of how early V&V is expected to be performed. For example, in aerospace there are
examples of requirement analysis [P7], simulation [P10], schedulability analysis [P16], model checking [P17],
inspection of diagrams [P55], and so on.
RQ4 discussion: As it might be expected, most of the solutions are domain-speciic, and only around 11%

claim to be applicable to any domain. As a matter of fact, since performing analysis early in the SE process
requires assumptions to be made or uncertainties to be managed, the solutions tend to be domain-speciic due to
more precise and reliable information to build-up the analysis on. Further, as many target languages or tools
are often coupled strongly to a domain, proiles and constraints need to be in place to enable SysML and similar
semi-formal (general-purpose) languages to be applied with enough rigour.
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Around 34% of the analysed papers describe research performed in an industrial setting, seemingly indicating
the industrial applicability of many solutions. Indeed MBSE is a paradigm with a solid industrial perspective,
which puts many requirements on the types of solutions. Related to this substantial industrial scope we note also
that most of the solutions are based on examples to various degrees, with less focus on empirical measurements.
Indeed, only few papers discuss empirical evidence to support the solutions that instead largely rely on arguing
for the perceived beneits. These observations are consistent with the previously reported weakness of MBSE
[41], that is the lack of empirical evidence. In this respect, we argue that empirical evidence could be hard to
produce for solutions of this nature, as the measurements are intricate to deine and might be challenging to
perform in industrial settings without a high risk of introducing bias and other validity threats. Nevertheless, this
is a reoccurring problem regarding model-based practices that hinders evidence-based discussions on a broader
scale [16].

Actionable Insights RQ4

From the analysis performed we believe the following action points to be valuable for the community in
the context of RQ4:

• SE at its core pursues customer satisfaction and correct delivery of systems, yet there are few attempts
to measure and compare solutions, and there is a general lack of baselines for V&V approaches.

• MBSE processes are large and map well to complex domains. However many of the examples included
in academic works seem to be too simplistic to be convincingly adopted in industrial contexts and
make no attempt to discuss these concerns.

• MBSE artefacts are often complex and domain-speciic. More uniied/standard approaches could be
very valuable, and a common-ground for diferent domains could improve training and enable easier
comparison of methods and solutions.

• There is seemingly no clear indication of whom the target user(s) is in the broader context of early
V&V, further indicating a lack of clear deinition and placement in MBSE processes.

6.6 RQ5 - What limitations do authors see, if any, with their implemented solutions?

This section summarises the data extracted to answer RQ5, namely question 13 in Table 1.
Not all authors identify limitations for their proposed approaches for early V&V. The results of those that do

identify limitations are presented in Figure 15. The largest identiied limitation is that the proposed solution
is not fully developed, often partially covering what is of interest for the authors. Concretely, the solution
by Zhu et al. [P2] does not consider the validity of SysML models that are used as input for their automated
approach, and Ghitri et al. [P118] cannot perform automation for all parts of their transformation from SysML to
UPPAAL. The second biggest limitation is related to the proposed analysis due to the simpliications introduced
by the adopted level of abstraction in the modelling activities. For example, Zhang et al. [P45] note that their
approach does not adequately cover more complex systems compared to their case study due to the simplicity
of the models. Brandstetter et al. [P59] conclude that their approach can only conirm whether the model of
requirements is valid and not if the actual system is. Another signiicant challenge is due to integrating languages
when there is a diference from description and analysis language or formalism [P26, P36, P47, P57, P62, P64,
P86, P109, P123, P130, P134]. For example, in the work by Mahani et al. [P36], automation is tricky between
SysML and NuSMV due to the diferences in representations. Other issues reported are: the lack of automation
[P15, P19, P22, P47, P65, P106, P116, P140]. For instace Staskal et al. [P140] argue that due to the semi-formal
method of modelling for SysML, it is diicult to achieve consistent automation. Limited expressiveness of the
behaviour description language is another common limitation [P30, P34, P70, P122, P128, P134, P135, P138, P148].
For example, Liu et al. [P138] discuss how AADL semantics makes it diicult to express timing and execution
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behaviour for analytical purposes, Schamai et al. [P90] discuss how ModelicaML cannot describe all kinds of
requirements used in their context for veriication.
RQ5 discussion:We note that many of the stated limitations are related directly or indirectly to the fact of

being early in the development process. Indeed, if the level of abstraction is high and/or the known system’s
details are little, the analysis should be expected to be limited or supericial. Still, there is a clear statement from
the authors that this is an observed liability of the solution, highlighting the diiculty of balancing idelity and
abstraction of models in the early stages. Similarly, we notice many issues relating to the tooling and learning
curve, which are commonly reported problems in software and systems modelling.
The extracted input for RQ5 is the lowest in terms of quantity. Indeed many papers did not discuss to any

considerable extent the limitations with the developed solutions and/or for early V&V in a broader perspective.
However, we highlight some patterns that emerge from those works that performed a speciic discussion related
to limitations. The most commonly reported limitation is that the solutions presented in the paper are not fully
developed. An incomplete solution is a limitation most likely common regardless of the review subject, as papers
often discuss partial solutions or work in progress towards speciic goals, so it is hard to say how relevant is the
connection between this pattern and the subject of this review. Nevertheless, this could be seen as a weakness for
MBSE, as there is a need for mature solutions to be adopted substantially from an industrial perspective.
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Eventually, more typical limitations related to model-based practices are also frequently discussed, namely
issues due to tooling, interoperability, learning curves, and scalability. Indeed, these limitations are not surprising
and testify the need for more maturity in the ield towards industrial applicability, as reported in the research
literature and mentioned earlier in this article.
In a broader perspective, MBSE and SE generally aim at the entirety of a system life-cycle. Many MBSE

methodologies, such as MagicGrid [65], provide a framework for activities and methods across the various
life-cycle stages. Interestingly, only few solutions discuss the potential limitations of interconnecting early V&V
activities and results with later stages. Notably, while some papers make a connection between phases, the
discussion and application of traceability between artefacts in each phase are limited. In the visions presented by
organisations such as INCOSE, it is often reiterated that future modelling should encompass all parts of a system
life-cycle. However, without more sophisticated traceability means between the models produced at various stages,
there is an inherent risk of introducing inconsistencies or additional eforts related to managing information
across artefacts. As a matter of fact, this is one of the identiied issues with document-centric development that
has often been used as an argument to move towards model-based practices [38].

Actionable Insights RQ5

From the analysis performed we believe the following action points to be valuable for the community in
the context of RQ5:

• MBSE processes are continuous (and often iterative) methodologies for system reinement. The
limitations hint at the diiculty in managing model idelity and abstraction to correctly leverage
analysis results from considered artefacts.

• MBSE artefacts are expected to evolve, therefore the limitations related to integration, abstraction
management, and scalability have an important impact.

• Often the main stakeholders in MBSE are the engineers; since many of the limitations are due to the
diiculty to apply the methods for the corresponding scenario, it can be derived a general lack of
prioritisation for usability concerns.

• Frequently recurring limitations are due to analytical simpliications, which seems to contradict the
inherent essence of early V&V. This hints at a missing clear deinition of what early is, and what can
be expected from analysis at such a stage.

7 HORIZONTAL ANALYSIS

This section presents signiicant results coming from the horizontal analysis performed on the extracted papers.
All the data originates from the intersection of the extracted data based on the questions presented in Table 1
and discussed so far. Again here we underline that a portion of the collected data has been coded into diferent
categories so that more mappings across the papers could be elicited via automated means. In this respect, the
coding is available in the publicly available replication package, together with the original extraction results.

In the reminder of this section we present the more interesting outcomes of the two-way mappings across the
coded data. Moreover, we also present selected three-way mappings we have extracted and deemed interesting.

7.1 SysML and simulation

In this mapping, we have extracted the papers reported using SysML, not including UML, MARTE, or other
related languages. Then, we intersected this extraction with whether a solution employs simulation. The mapping
demonstrates that solutions that employ simulation tend to utilise SysML, and vice versa solutions not using
simulation do also tend to use SysML less frequently. In particular, in the case simulation is used, ca 60% of
solutions also utilise SysML, while if the solution does not, only ca 42% of these solutions use SysML.
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7.2 Tools and extra results

This section regards the mapping of the data presented in Figure 12 and Figure 13. In this case, we only report on
whether a solution uses more than one tool for analysis, and if the solution argues for results apart from V&V
(see this horizontal mapping in Figure 17). The outcomes show that when the authors are interested in a broader
feedback than just V&V results they are less likely to use more than one tool for analysis. On the contrary, when
authors are not interested in results apart from V&V, they are likely to use more tools for analysis. Perhaps this
could be attributed to the maturity of the proposed solutions: less mature approaches might include more soft
beneits for persuasion purposes while mature solutions would focus more on the performances measured in the
application scenarios.

7.3 License and development phase

This section discusses the intersection of the data related to the tool licensing and the development phase involved
in the solution, the results of which are shown in Figure 18. The tool licensing tends to be proprietary for the
design phase, while it is more likely to be free in the requirements phase. Moreover, solutions involving both
phases show an (approximately) even mix of open-source and free tools compared to proprietary licenses. The
reported mapping could be partly explained by the fact that the afected artefacts for requirements contra design
will vary much in complexity. Notably, requirements in their most basic form are well suited to tables and other
structured text forms. Therefore, it makes sense that the corresponding tooling is less extensive and hence licenses
might be an observable side efect.

7.4 Industry, license and SysML

In this section, we perform a horizontal mapping of the licensing category of a solution, whether it is investigated
in industry or not, and whether the solution uses SysML; the results of this mapping are presented in Figure
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19. While (as expected) academic solutions tend to favour free or open source tools and the industry favours
proprietary tools, we see two divergent categories in the three-way mapping. First, we note that if SysML is used
in academia, the tooling is more likely to be proprietary instead of free, while non-SysML solutions are most
likely free or open-source. Moreover, for industry, the non-SysML solutions are more likely to be free as opposed
to proprietary. In this case, we observe that regardless of where SysML is employed, the tools utilised are more
likely to be proprietary, while the license is more likely to be free or open-source if the solution does not use
SysML.

7.5 Other observations from horizontal analysis

In analysing the extracted data, we performed a horizontal mapping of most parameters that could be quantiied,
leaving out the more qualitative reporting. In this regard, we found some interesting patterns apart from the
more signiicant ones reported so far, and we briely mention these here:

• SysML is used more in design than for requirements. 13 of the 29 (44.8%) investigations performed in the
requirements phase use SysML, while 61 of the 106 (57.5%) solutions in the design phase use SysML. This
may be partly because solutions in the requirements phase can be done formally instead of relying on an
informal language like SysML, and consequently avoid the need of moving towards a more formal language
for the analysis;

• Simulation is more common in domain-speciic solutions, as 83 of the 117 (70.9%) domain-speciic solutions
utilise simulation, while only 7 of 16 (43.7%) solutions utilise simulation in non-domain-speciic solutions.
This can be partly attributed to the fact that domain knowledge can be implicitly (re-)used to enable
simulation in early stages, while the same details need to be provided for domain-independent solutions;
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• Domain-speciic solutions have more proprietary licenses, and 43 out of 117 (36.7%) domain-speciic
solutions use proprietary licenses, while 17 of the 32 (53.1%) partly or non-domain-speciic tools are free. In
this respect, domain-speciic solutions may need more advanced or specialised software, leading to fewer
available open-source or free solutions;

• 32 of the 51 (62.7%) solutions in industrial settings use SysML, and 49 of the 98 (50%) academic solutions
utilise SysML. Here we expected a more signiicant separation between industry and academia, especially
considering that most SysML tools are not free or open-source. However, the extracted data is relatively
similar for both industry and academia. This further strengthens the notion that SysML is a de facto
standard language for MBSE;

• Industrial settings tend to use more than one tool, as 34 of the 51 (66.6%) solutions use more than one tool
in industrial settings. Whereas, 52 of the 98 (53%) solutions in academic settings utilise more than one tool.
This tendency can be explained by the fact that industrial settings are more likely to need advanced or
specialised tools for their purposes, and seldom one tool can be used for all analysis purposes;

• Authors are more likely to ind limitations in academic settings, as 64 of 98 (65.3%) contributions in academic
settings discuss limitations in their solution. In comparison, 28 of 51 (54.9%) papers in industrial settings
describe limitations in their settings. This can be linked to academy and industry having diferent interests
in disseminating research results (e.g. discussing open challenges vs highlighting successful practices);

• Out of the 117 domain-speciic solutions, 71 (60.6%) use SysML. In contrast, of the 16 solutions that are
partly-domain speciic, 7 (43.7%) use SysML, and 3 of the 16 (18.7%) non-domain speciic solutions use
SysML. This is interesting because despite SysML being a general-purpose language its usage appears to
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decrease when the solutions tend to be more general-purpose. This contradiction could be explained by
the fact that most implementations utilising SysML require anyway some extension of the language or
transformation to another language or formalism for analytical purposes. Therefore, in domain-independent
cases it might be preferred to adopt a behaviour description language requiring less eforts to perform V&V
analysis.

Similarly to the previous Section we summarise this analysis with a set of actionable insights.

Actionable Insights Horizontal analysis

From the analysis performed we believe the following action points to be valuable for the community in
the context of the horizontal analysis:

• SysML as a language is more dependent on proprietary tooling and extensions with other mechanisms
for analysis compared to other languages, reducing the option for analysis without heavy investment
in surrounding technologies.

• The gap between academia and industry is noticeable in many categories, hinting at a greater
misalignment. Particularly, the tools, languages, and methods difer in terms of preferences.

• Few general purpose solutions utilise simulation, hinting at the need for domain-speciic information
for valid simulations. This, in conjunction with the overwhelming use of simulation as a V&V
method, could explain the lack of general approaches.
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8 DISCUSSION AND OUTLOOK

In this Section we discuss an outlook about future research directions related to early V&V in the context of
MBSE. The list of topics is not intended to be exhaustive, however we consider all the covered ones as critical for
the INCOSE 2035 vision to become reality.

8.1 Limitations of early V&V

This literature review shows a clear wish and need for moving activities relating to V&V earlier in development.We
observe a signiicant industrial presence in the papers with a nuanced and broad range of underlying motivations
and scope of the presented activities and solutions. Indeed the problem formulations for industry are based on
the precise foundation of traditional SE knowledge, that is, detecting problems early reduces costs that increase
exponentially as the product traverses the development steps [88]. Therefore the need and motivation for moving
activities earlier in the chain of development is a means of making the process more efective and increasing the
competitiveness of the respective company. A critical factor for industries adopting MBSE in a more efective
way is related with tooling. In fact, thanks to good tools it would become easier to integrate more advanced
worklows with powerful capabilities, as largely discussed in other reviews [60, 73, 74, 94]. Despite tooling being
central to the taxonomy of MBSE, to this day it remains a crucial inhibitor for a broader adoption of model-based
practices [11, 25]. Issues often associated with tools, such as interoperability and scalability [83], seem to limit the
application of academic solutions in the industrial landscape. These issues are relected also in the results obtained
in our review: analysis approaches tend to be domain-speciic and ad-hoc, which makes those diicult to transfer
to other application scenarios. Moreover, the limitations often refer to tool interoperability and usability issues.
In this respect, it would be interesting to pursue standard interchange mechanisms, as successfully done for FMI
[37, 39, 47], which supports interoperability via co-simulation. In the case of early V&V of system behaviour, the
interchange mechanisms could include e.g. the representation of requirements and corresponding analysis to
check for their consistency/completeness, or the description of use cases and related validation procedures.

Another relevant characteristic of early stages of development is a strong presence of uncertainty [57], and the
systems under analysis need to consider the uncertainty for possible results. In particular, there is an increase
in uncertainty due to the use of models at high levels of abstraction. Furthermore, complexity is added due to
the various types of uncertainty and interactions between diferent models with uncertainty when dealing with
heterogeneous models and systems [15]. Indeed, of the more commonly reported limitations of solutions, there
is a clear relation to high abstraction, resulting in simpliied analysis or limited expressiveness. These groups
of limitations could be related to the very notion of early V&V, which is also the primary motivation for most
solutions: simpliications and limited expressiveness are inherently there because of the development stage. In
this respect, it would be important to have a clearer understanding of what it means to perform early V&V and
what the results of these analytical methods can truly validate or verify in a system described in low idelity
models. The presence and management of uncertainty in MBSE are discussed in the literature for several contexts
[7, 63, 90]. As far as these authors know, no concrete metrics or approaches exist for the eicient management
of uncertainty in MBSE. Instead, other domains have had more progress in the classiication and deinition of
metrics for uncertainty. For example, Asmat et al. [6] review uncertainty in the context of CPS and classify several
metrics, Yan et al. [93] discuss uncertainty in the context of failure mode and efect analysis, and Hu et al. [43]
discuss error metrics for model uncertainty in models with variable idelity.
Apart from the technical limitations of solutions it emerges a remarkable emphasis on the complexity of

modelling processes, learning curves, and user unfriendliness at large. There is seemingly a lack of easily accessible
and fruitful means of learning the model-based approaches discussed in the reviewed literature. A study by
Kahani et al. analysed the most commonly reported problems with EMF and found a large and growing portion
of issues due to the lack of documentation and tutorials for the usage of EMF-based solutions [50]. Moreover, a
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state-of-the-art review of MBSE notes that one of the main weaknesses of adopting MBSE is the lack of knowledge
of what MBSE is and readily available training resources [45]. As a matter of fact, many industry related solutions
rely on proprietary tools that are customised for the company taken into account. Simulation is, for example,
seen as a signiicant beneit of utilising model-based methods, and the most commonly used method for early
V&V in the review. Nevertheless, it is seldom directly applicable for freely available tools, such as EMF [82]
or Papyrus [34] and there are apparent issues with tooling interoperability hampering the use of languages
such as SysML for simulation [66]. In this regard, the tooling-related aspects of model-based methods are a vital
challenge for promoting and potentially adopting MBSE. To this end, there is a clear need to reshape the means
and environments for beginners to learn and adopt the principles related to model-based practices. A potential
path forward to address this challenge could be the alignment of education to match better industry needs [11],
and education is currently considered poor when mapped to industrial MBSE needs [25].

8.2 Early V&V in the broader context of MBSE

The analysed papers demonstrate a wide array of solutions and means of performing the desired V&V. The
observed variety is expected as a heterogeneous landscape exists among the papers regarding domain, application,
and analysis’ results of interest. However, considering the heterogeneous problem and solution space, the authors
note a distinct lack of connection and discussion with related paradigms. For example, the usage of AI is presented
in position and vision papers as part of the future in model-based practices and is expected to tackle many
challenges [12, 14, 64]. However, there is an apparent lack of representation in the reviewed papers regarding
such paradigms, which is unexpected considering how MBSE is positioned to move forward. More practically, AI,
for example, could tackle the challenges related to uncertainty in early development [71], and applications like
recommender systems that are seeing success in model-driven engineering, could assist novices with adoption [3].
There are plenty of examples of applications of AI in software-centric domains [13]. AI is foreseen to augment
the already in-place technologies related to modelling, and the two paradigms are expected to have beneicial
interplay. More evaluations of AI as part of the modelling and analysis activities would be an interesting research
avenue for the MBSE community.

MBSE, or SE in general, detail methods and processes for managing systems throughout their whole life-cycle.
When reviewing the papers, there is a missing discussion on propagating the artefacts developed at various
life-cycle stages and how the SE life-cycle relates to the early V&V activities. MBSE is aimed for the entire
SE life-cycle [88], so the apparent lack of focus on these aspects in the reviewed papers is surprising. There
are examples in the literature of models aimed for all parts of the SE life-cycle [28, 59], and discussions on
how to manage models across the MBSE life-cycle [29]. However, managing these models is not trivial, and
consistency management is challenging to manage for industrial systems [49]. Creating models for analysis at
early stages incorporates uncertainty and often high levels of abstraction. Without propagation of the uncertainty
or evolution/reinement of early models to the later stages of development, there is a signiicant chance that such
models are made and discarded, which is typically referred to as a weakness of document-based development and
might work against re-use [36]. Therefore, if the models created for early V&V are not used in a larger context,
the potential beneits of model-centric development are partially missed as the worklow would resemble the
traditional document-centric development. Notably, it would be diicult to manage the uncertainties introduced
in the early phases and how those would propagate to the rest of the process.
Possible solutions for more robust propagation of artefacts in the SE life-cycle can also be related to agile

MBSE [76] and DevOps [62]. These paradigms are seen as enablers for the digital thread [80] and are seeing
growing interests from industry. Incorporating and improving agility for the development process is well in line
with the INCOSE vision [64], and initiatives to merge the paradigms of model-based engineering and DevOps are
seeing some initial success [23, 44]. DevOps might be an enabler for connecting models at diferent stages of
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development and introducing increased automation in the worklows. The notion of DevOps is also heavily tied
to the way of working and company culture, ideally breaking down potential silos found during development
[26]. Another related aspect is using Digital Twins (DTs) [48]: utilising a DT is seen as a powerful enabler during
design and as a means of integrating analytics past the system implementation. Similar to the use of DevOps, DT
could bridge the gap between silos in development.

8.3 Empirical measurements and benchmarks in MBSE

In the data extraction for the selected papers we distinguish between empirical measurements and running
examples. In this respect we observe a lack of proper benchmarks and empirical evidence or evaluation of
proposed worklows, methods, and frameworks, even in the case of empirical measurements. In particular, there
is no benchmark or similar reference measure for the type of solutions under study, and typically the authors
employ ad-hoc or case-speciic metrics. Moreover, the measurements are usually limited to the quality attributes
of the proposed V&V solution, while attempts to measure the efectiveness of the solutions in the MBSE context
are missing. Critical reviews of the perceived value of MBSE ind that only around 10% of the beneits originating
from the adoption of MBSE is observed against any metric [16, 41], and the low portion of measured evaluations
is similarly relected in this review at around 11%.
The expected beneits of employing MBSE reported by seminal papers are minimising errors due to manual

steps [42], management of complexity [87], analysis and testing [24], and improvement of communication,
traceability, and consistency [89]. However, as previously mentioned, these beneits are primarily argued instead
of demonstrated via measurements or observations. As Henderson and Salado note [41], the beneits could very
well be valid but lack in rigorous proof. A risk noted by Campo et al. [16] with this lack of proof is that the
positive aspects might be overemphasised, especially since MBSE is positioned as the future of systems engineering.
In this regard, more solid empirical observations of MBSE adoption would greatly assist in breaking down and
quantifying the current challenges and beneits. However, measuring the beneits and challenges can be diicult,
particularly in industrial settings, since empirical measurements might not make it to potential dissemination
due to conidentiality concerns from the company. Moreover, it could be very diicult to limit bias issues, since
MBSE adoption would impact the development process as a whole. Nevertheless, the lack of proper metrics for
reporting on the use of MBSE limits the impact of the research as it is often limited to anecdotal examples or
observations, which are diicult to put in a broader context.
Eventually, Garousi et al. [33] performed a literature review on the challenges of industry and academia

collaboration and found that common challenges relate to a lack of applicability of academic solutions in
industrial contexts and diferent perceptions of valuable solutions. Additionally, Garousi et al. highlight that
the best practice for collaboration is to base research on real-world problems [33]. However, although many
challenges are identiied in industry [19, 24, 75], there is still a considerable gap in the research and practice. In
this regard, a possible solution might be to concretise industrial needs related to MBSE through more explicit
requirements on solutions developed by academics. Such type of concrete requirements can be found for other
domains such as Wireless Sensor Networks [68], Augmented Reality [72], and Internet of Things security [84].
Deining more rigorous requirements on solutions for MBSE from an industrial perspective could be a means of
closing some of the gaps currently observed and would also provide means to measure the developed solutions.
More recently, there has been attempts to work towards metrics for the wider area of Digital Engineering,
although it requires further investigation and eventual translation to MBSE [40].

8.4 Barriers for industrial adoption of Early V&V in MBSE

Leveraging the results from Section 6, 7, and the discussion proposed so far, we present a summary of challenges
in Figure 20. We have grouped the challenges into the areas of Model-Based, Systems Engineering, and Validation
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Fig. 20. Challenges for industry adoption of Early V&V for system behaviour in MBSE.

& Veriication. Particularly, these challenges relate to the industrial adoption of MBSE, and the current inhibitors
we see from the analysis in the observed papers. We have chosen the presented categories based on the data
extraction in conjunction with the motivation example presented in Section 2.1.

8.4.1 Model-Based. The main artefacts of MBSE, the models themselves, need to fulil certain criteria to be useful.
For example, the models must have adequate abstraction and address diferent stakeholder concerns depending
on the context while keeping enough rigour to facilitate analysis. Finding the correct balance between abstraction
and idelity is a re-occurring challenge in the papers and is often a pre-requisite for enabling mature early V&V
in the context of MBSE. Overcoming the gap of abstraction and idelity often results in model transformations
from one notation for description to one or more other notations for analysis, seen in the large heterogeneity
in RQ2 and RQ3. While these are valid techniques, the introduced complexity makes the MBSE adoption more
diicult for new practitioners. Particularly, the need to maintain and support model transformations in changing
environments regarding tools, languages, users, and the systems themselves introduces technical complexity
and usability concerns, seen in literature [60, 83] and reconirmed by RQ5. Little attention is as well paid to
the holistic nature of MBSE. Most solutions are situated in very narrow applications that do not consider the
surrounding development or overall system development, noticeable in the extraction from RQ1. In the same
fashion, solutions often follow a particular working process. Many solutions enforce a particular process on the
users, which can often clash with engineers and worklows already in place, again seen in RQ3 in the techniques
and tools. Indeed, the practitioners themselves are mostly ignored from the papers, and the overall usability of
solutions is not a priority. There is seemingly no clear view of how this can be addressed, perhaps due to the
wide application in area in many domains seen in RQ4. Additionally, model-based practices are largely heavily
tool-dependent, and many traditional issues such as interoperability, automation, and scalability are encountered
in the extraction which reconirms previous work in the ield [11, 25]. In addition to the explicit challenges (still)
existing, we also notice a distinct lack of discussions on academic tool integration with more signiicant tooling
landscapes, observable in RQ3. As expected the challenges overlap, but many of the academic solutions observed
sufer from a very narrow target with unique tools and languages when the industry is increasingly moving
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towards standards such as OSLC15 to promote more standardised data exchanges. Additionally, there seems to be
a gap between the industry practitioners and the academic researchers, and there is a risk that the tools developed
for academia are aiming to solve other problems compared to industry needs.

8.4.2 Systems Engineering. As discussed in Section 2.1, a large part of the industry utilising SE is undergoing
a transformation towards at least partial MBSE adoption. However, the legacy is often substantial and cannot
simply be discarded in favour of new methods or working methods, yet there is little discussion on how to
facilitate such integration in the RQ3 data extraction. Meaningful integration of legacy formats, such as oice
tools, drawings, and text, must be incorporated in solutions to be viable on a larger scale. Similarly, the audience
of SE is heterogeneous, and the discussed context of early is not strictly deined. A wide audience is expected to
leverage early V&V. For example, a common solution pattern in the RQ2 and RQ3 analysis is engineers leveraging
SysML to orchestrate simulations without the need for simulation knowledge. However, the solutions are often
designed with an expert audience in mind, which limits the wider applicability of solutions (particularly since
many engineers are complete novices regarding Model-Based methods). Furthermore, the extracted data hints
at a limited integration in worklows to promote the integration of models across development, seen through
the authors properties of interest and their usage in RQ3 and limitations in RQ5. Many solutions are limited in
extension to surrounding activities, e.g., a solution lacks up and downstream linkage. Similarly, there is little
discussion on how analysis models should be managed to facilitate re-use and eicient future decision-making,
noticeable in the intersection of RQ1 and RQ3. Without a means of classifying models or results for future use,
the value of approaches becomes heavily reduced. Similarly, traceability, and more recently, the digital thread,
are largely omitted from any discussions thus reducing their applicability. Indeed, there needs to be propagation
of results and their impact across the development to maximise the beneits of the analysis. As mentioned
previously in the section, a signiicant barrier to adoption is the diiculty of providing measurable beneits
of MBSE approaches. Often, the solutions’ value is argued based on anecdotal examples or rough estimates,
which hinders the rigorous evaluation of solutions, visible in the RQ4 extraction. In the same fashion, when
measurements are performed in some way, no proper benchmarks can be used to position papers in the wider
context. A more common view of benchmarks and metrics for SE at large would help reduce some issues related
to the measurement and evaluation of solutions.

8.4.3 Validation & Verification. A large gap in the solutions is the discussion of uncertainty and analysis validity,
also recognised among limitations in RQ5. In the early stages of development, uncertainty is present in all
models and requires considerable eforts to mitigate and reason about so that results can be correctly positioned
and used for decision-making. However, there is rarely any discussion on how uncertainty can be managed
in a solution and what implications the analysis abstraction introduces, which is one of the more prominent
limitations reported by authors in RQ5. The same is true for analysis validity. If re-use is of interest, there is a
need to catalogue when a method or model can be used for correct analysis, and how a user might be able to
determine on a case basis when the considered models are rich enough to yield valid analysis results. In addition,
the methods themselves are often complex and can introduce a burden on the user to incorporate efectively
the methods łas isž. Furthermore, the back-propagation of analytical results to the engineers, or descriptive
models, is generally missing from the solutions, and results are often simply presented in the analytical tools
presented in RQ3. In particular, how analytical results should afect decision-making, how the analytical results
should be translated back to the system design directly, and how these results can be leveraged in industrial
processes is rarely part of the methods of authors. For example, the notion of standards should be included in
articles which guide practitioners during development, and how the proposed solutions can support standard
processes or certiication activities, and is inline with the major extraction for RQ1. While research might not be

15The OSLC speciication is available at: https://open-services.net/
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expected to produce technology with industrial readiness, it still needs to consider the context, which is mostly
standard-based and standard-driven. The analysis methods are generally domain-speciic and cater to speciic
needs as per RQ4 extraction, and often implicit domain knowledge is a prerequisite for useful analytical results.
Nonetheless, the general lack of domain-agnostic and more general solutions inhibits the adoption of existing
solutions due to the diiculty of transferring those solutions to diferent domains as the implicit knowledge is
hidden or not valid across diferent domains. In the same fashion, many solutions utilise custom tools for the
implementation, limiting integration in SE processes. Particularly, relying on several speciic tools increases the
process complexity and can lead to increased vendor lock-in.

9 CONCLUSIONS

This article reports the results of a systematic literature review on early behaviour validation and veriication
in model-based systems engineering. From a set of 701 papers retrieved through searches and snowballing
activities we selected 149 relevant contributions, we extracted and coded the obtained data, and we performed
analyses whose results and indings are presented in the work. In this respect, we notice an increased interest
in performing early V&V and observe a broad range of domains in the analysed papers, with a corresponding
variety of methods, tools, and languages. Further, we note a strong industrial presence in the literature and
several industrial perspective trends that difer from the academic ones. To name a few of our indings, we note
that SysML is the most represented language in industry and academia for describing system behaviour. In
contrast, the language or formalism for analysis varies between most solutions. Additionally, several limitations
are identiied, indicating a lack of readiness for the solutions together with the concerns about managing analysis
with low-idelity models. Finally, a signiicant divide emerges between the academic and industrial implementation
of solutions; such a divide is especially observable for SysML, utilised across all contexts, but relying on diferent
tooling for the contexts.
We contextualise the review indings and discuss the current status of early validation of system behaviour

in the context of industrial MBSE adoption. The review is structured according to the needs of the industry
to promote the eventual adoption of early V&V and MBSE processes at large. The review provides actionable
insights for the ive presented research questions to promote further investigation into this area. Furthermore,
we distinguish three areas, Model-Based, Systems Engineering, and Validation & Veriication, and highlight a set
of corresponding barriers for each area, which we feel need to be addressed in order to promote and support
industrial adoption of early V&V techniques. As such, we hope the indings of this review can provide an adequate
state-of-the-art view and pave the way for future investigations for researchers and practitioners.
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A EXTRACTED TABLES

In this appendix the corresponding tables are presented for the graphs in Section 6, each table contain the
cross-referencing of the publications. We note that in many cases several categories are true for a publication at
the same time, for example several motivational reasons might apply for performing early V&V or several target
properties are of interest from analysis. The tables are ordered in the same order as igures from Section 6.

A.1 Motivating reasons

Table 2 detail the author motivations for performing early V&V.

Table 2. Motivation for early V&V.

References Motivating reason for early V&V
[P1, P120] Improve quality of developed system before implementation
[P2, P6, P12, P34, P35, P43, P57,
P58, P59, P60, P67, P78, P121,
P123, P128, P149]

Decrease risk for incomplete, inconsistent or missing requirements
earlier

[P3, P4, P6, P9, P11, P13, P14,
P18, P19, P24, P30, P32, P33,
P39, P44, P45, P48, P54, P55, P59,
P61, P63, P68, P70, P78, P80, P84,
P85, P86, P88, P89, P91, P95, P98,
P99, P102, P104, P105, P106, P108,
P112, P113, P114, P119, P120,
P121, P124, P130, P131, P134,
P135, P137, P139, P140, P141,
P142, P148, P149]

V&V of design before implementation towards requirements

[P5, P39, P147] Identify potential areas for design optimization
[P5, P7, P17, P18, P19, P20, P42,
P51, P58, P60, P66, P70, P75, P83,
P88, P92, P95, P103, P106, P109,
P118, P119, P133, P134, P145]

Reduce risks of costs associated with late law detection

[P8, P10, P23, P31, P62, P65, P74,
P82, P117, P143, P148]

Explore and test system behaviour before implementation

[P10, P52, P100] System development decision making
[P15] Raising quality of models
[P16, P21, P22, P29, P40, P56,
P71, P90, P110, P115, P116, P127,
P138]

Not formulated clearly

[P23, P38, P45, P46, P70, P79, P81,
P83, P88, P89, P93, P111, P118,
P119, P126, P129, P132, P146]

Reduce time to market/increase eiciency

[P25, P133] To promote dependability
[P96, P105, P137, P142] Dependability analysis
[P26, P146] Validate intended behaviour as elaborate performance analysis is

infeasible
Continued on next page
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Table 2 ś continued from previous page
References Motivating reason for early V&V

[P27, P73] Understand component interactions
[P28, P91, P92] Requirements traceability
[P28] System architecture compliance with requirements
[P32] To enable step-wise reinement
[P33] Understanding the emergent behaviour
[P33, P69, P72, P104, P111, P123,
P147, P149]

Performance understanding

[P35, P57] Reduce uncertainty in requirements
[P36, P100] Identiication of hidden errors in speciication
[P37] Assist in hardware/software partitioning
[P41, P68, P143] Increase level of abstraction
[P47] Concept evaluation
[P49, P103, P109] Improve re-use
[P49] Improve scaleability
[P50] Improve requirements management
[P53] Product certiication
[P53] Product assurance
[P54] Discovering unwanted behaviour
[P64, P66, P72, P136] Analysis of architecture
[P67] Improve requirements quality
[P73, P74, P76, P91, P94, P100,
P102, P104]

Trade studies/impact of design

[P77, P80, P94, P97, P122, P126] Improve common understanding between diferent domains/roles
[P87] Increase understanding of system
[P92] Veriication of requirements before design
[P101] Provide practical feedback for users earlier
[P107, P139] Improving safety analysis coverage
[P125, P130, P136] Reduce integration issues
[P137, P139] Safety assessment
[P144] Veriication of security

A.2 Description language

Table 3 details the description languages in the extracted solutions.

Table 3. Description language for solutions.

References Description language
[P1, P30, P60] Informal/Natural language
[P1, P28, P48, P60, P80, P126, P99, P106, P3, P141] Custom language

Continued on next page
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Table 3 ś continued from previous page
References Description language

[P2, P5, P6, P7, P8, P10, P11, P12, P13, P14, P20, P22, P25, P27, P30,
P31, P33, P36, P41, P43, P44, P45, P46, P47, P49, P50, P51, P53, P54,
P55, P57, P58, P59, P61, P62, P63, P65, P70, P71, P72, P73, P74, P77,
P78, P79, P81, P82, P83, P85, P86, P87, P89, P91, P92, P93, P95, P98,
P100, P101, P102, P104, P107, P108, P109, P110, P111, P112, P113,
P114, P116, P117, P118, P119, P120, P122, P129, P130, P131, P134,
P139, P140, P143, P145, P147]

SysML

[P4, P32, P103, P136] EAST-ADL
[P5, P23, P24, P68, P81, P83, P115, P131, P144] MARTE
[P6, P15, P20, P29, P40, P56, P86, P109, P124, P128, P11, P86] OCL
[P9, P13, P14, P15, P23, P29, P34, P35, P41, P42, P52, P56, P57, P66,
P68, P76, P86, P99, P115, P123, P124, P127, P128, P132, P133, P121]

UML

[P16, P17, P18, P67, P69, P105, P138] AADL
[P19, P46, P84, P97, P108, P126, P137, P142, P146] Simulink/MATLAB
[P20] ALF
[P39] Amola
[P21] AltaRica 3.0
[P26] Supremica
[P27, P65] DoDAF
[P37] Cola
[P38] Language that supports petri net
[P39] IMA architecture
[P52] AUTOSAR
[P64] fUML
[P71] AcTRL
[P75] CONSENS
[P76, P90, P96, P122, P135] ModelicaML
[P78] KARMA
[P78] BPMN
[P78] GOPPRR-E
[P88] Chi
[P89] HLA
[P94, P125] Language agnostic
[P95, P104] OWL
[P95] SWRL
[P136] FAA
[P138] AGREE
[P144] Z
[P146] CAD
[P148] SDL
[P149] Lua
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A.3 Analysis language

Table 4 highlights the language used for model analysis.

Table 4. Analysis language in solutions.

References Language for analysis
[P1, P4, P28, P59, P80, P141, P143] Custom language
[P2, P8] fUML
[P3, P82, P139] Python
[P5, P6, P9, P38, P65, P71, P115, P120, P121, P123, P132, P134] Petri net diagram
[P7, P19, P33, P39, P45, P46, P61, P62, P73, P84, P91, P102, P108,
P109, P112, P113, P117, P126, P131, P79]

MATLAB/Simulink

[P8, P22, P27, P30, P31, P33, P46, P47, P50, P51, P55, P61, P63, P70,
P75, P79, P107, P114, P117, P129, P130, P58, P101, P104, P147]

SysML

[P10] DKF-based code
[P11, P14, P86, P41] SystemVerilog RTL code
[P12, P53] Not demonstrated/speciied
[P13, P105, P67, P36, P140] NuSMV
[P15] Alloy
[P16, P47, P68, P74, P76, P81, P85, P90, P93, P96, P97, P102, P119,
P122, P135]

Modelica

[P16, P17, P18] AADL based
[P16] Cheddar
[P17] AGREE
[P17, P138] Lustre
[P20] B language
[P21] AltaRica 3.0
[P23] e hardware veriication language
[P24] Event-B
[P25] COMPASS
[P27, P44, P69, P83, P85, P88, P116, P136, P118, P26, P142] UPPAAL
[P32, P37, P103] SystemC
[P34] Promela
[P35, P40, P109, P124, P128] OCL
[P42, P75, P40] UML
[P43, P66] Not clear
[P52] Ptolemy II
[P56, P98] Maude
[P57] RELAXIFx
[P104] OWL
[P60] BIP
[P62] C++
[P70] HatleyPirbhai Control Flow Dia-

gram
Continued on next page
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Table 4 ś continued from previous page
References Language for analysis

[P77, P94, P95, P125] Language/Implementation agnos-
tic

[P89, P100] Java
[P89] HLA
[P92] R programming language
[P97] LabVIEW
[P98] Recursive ECATNets
[P106] Prolog
[P137] FARM
[P137] Sabotage
[P138] Scade
[P138] SIGNAL
[P143] Ardupilot Software in the loop
[P144] ZMsec
[P145] ROS
[P146] C#
[P148] IF language
[P149] Lua

Table 5 details the formalisms employed for system analysis.

Table 5. Formalism used for analysis.

References Formalism for analysis
[P28] Modes and transitions
[P4, P14, P44, P83, P118, P88,
P142, P144]

Timed Automata

[P5, P6, P9, P38, P65, P71, P115,
P120, P121, P123, P132, P134]

Petri net variants

[P6, P14, P44, P60, P105, P67,
P105, P144]

CTL

[P12, P53] Not demonstrated/speciied
[P13, P29] Transition system
[P15, P132] CSP
[P26, P67, P105] Markov chains
[P35] Contract based
[P36, P138, P144, P81] Temporal logic formulas
[P41, P86] UVM
[P48, P110] Dependency graphs
[P48] Constraint graphs
[P49, P72, P146] CAD
[P1, P54, P58, P66, P67, P101,
P104, P148, P149]

State based

Continued on next page
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Table 5 ś continued from previous page
References Formalism for analysis

[P59, P129] Scenario based
[P59] Diferential equations
[P60] Structured requirements
[P64, P99] Process algebra
[P64] Backus-Naur form
[P67, P105, P140] LtL
[P68] TRIO
[P69, P115] TCTL
[P75] MSD speciications
[P75] Modal sequence diagrams
[P77, P94, P95, P125] Language/Implementation agnostic
[P78] Hybrid automata
[P80] Functional state sequence diagrams
[P87] Fault trees
[P87] FMEA artefacts
[P95] Ontology models
[P95] Rule based
[P98] Recursive ECATNets
[P99] UTP
[P100] DEVS
[P105] Stochastic logic
[P111] Directed graphs
[P111] STA-GT algorithm
[P127] Activity graphs
[P146] VR
[P147] Cumulative Distribution Functions

A.4 Method for analysis

Table 6 describes the reported overarching technique of the V&V.

Table 6. Method for V&V

References Method for V&V
[P1, P12, P43, P53, P54, P55, P75, P80, P101, P109, P114, P124, P127,
P130]

Review/Inspection of artefacts

[P106, P130] Query engine analysis
Continued on next page
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Table 6 ś continued from previous page
References Method for V&V

[P2, P3, P4, P7, P8, P10, P11, P12, P14, P15, P18, P19, P21, P23, P27,
P28, P30, P31, P32, P33, P36, P37, P38, P39, P41, P45, P46, P47, P49,
P51, P52, P57, P58, P60, P61, P62, P63, P65, P67, P68, P70, P72, P73,
P74, P75, P76, P77, P78, P79, P80, P81, P82, P83, P84, P85, P86, P88,
P89, P90, P91, P93, P95, P96, P97, P99, P100, P102, P103, P104, P107,
P108, P111, P112, P113, P117, P118, P119, P122, P123, P126, P131,
P135, P136, P5, P9, P94, P101, P134, P25, P44, P59, P137, P139, P141,
P143, P145, P146, P147, P149]

Simulation

[P4, P6, P13, P17, P18, P19, P25, P26, P34, P36, P44, P48, P60, P64,
P66, P67, P68, P69, P71, P83, P85, P88, P98, P99, P105, P110, P115,
P118, P134, P136, P5, P138, P140, P142, P144, P148]

Model checking

[P6] Incremental veriication
[P13] Program analysis
[P16] Schedulability analysis
[P16] Syntax analysis
[P16] Lexical analysis
[P17] K-induction
[P17, P39, P84, P137, P139] Fault-injection
[P17, P53] Probabilistic analysis/reliability

analysis
[P20, P99] Theorem proving
[P22] Requirements completeness anal-

ysis
[P24] Proof obligations with event-B
[P25, P32, P65, P99, P133, P139, P145] Reinement
[P29, P133] Counter example search
[P30, P51, P63] ESEM modeling
[P32, P42, P65, P67, P2] Consistency check/analysis
[P35, P56] OCL expression evaluation
[P35, P128] Prototype execution
[P37, P39] Timing and temporal analysis
[P40] Execution path exploration
[P44, P121, P132] Reachability analysis
[P45, P143] Trade-of analysis
[P50] Variability management
[P53, P87, P96] Fault tree analysis
[P60] Correctness by construction
[P66, P69, P85, P134] State space exploration
[P72] Computer aided engineering
[P76, P97, P146] Model in the loop
[P82] Rapid prototyping
[P87, P107] Failure mode and efect analysis
[P92] Graph theory

Continued on next page
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Table 6 ś continued from previous page
References Method for V&V

[P111] Detailed latency analysis tech-
nique

[P116] Model reasoning
[P125] Contract-based virtual integra-

tion testing
[P129] Value analysis
[P138] Compositional veriication
[P146] Virtual Reality

A.5 Results of interest

Table 7 details the target properties of analysis reported by the authors.

Table 7. Result of interest / target properties

References Result of interest
[P1, P32, P42, P82, P86, P109, P127, P15, P16, P46, P138, P140, P142,
P145, P147]

Model correct-
ness/validity/completeness

[P1, P9, P14, P24, P58, P69, P85, P98, P99, P110, P115, P116, P121,
P132, P134, P136]

Reachability

[P2, P12, P19, P25, P28, P35, P42, P53, P58, P60, P65, P66, P67, P68,
P80, P82, P117, P124, P126, P127, P128, P15, P140]

Inconsistencies/Contradictions

[P4, P5, P13, P24, P30, P39, P51, P69, P81, P85, P88, P111, P115, P131,
P136]

Time related properties

[P4, P6, P22, P31, P35, P37, P51, P54, P55, P61, P63, P71, P72, P77,
P78, P86, P114, P117, P135]

Functional requirements veriica-
tion

[P6, P13, P25, P26, P34, P58, P60, P65, P67, P69, P83, P88, P99, P105,
P115, P133]

Deadlock Freeness

[P6, P13, P14, P25, P26, P60, P65, P66, P69, P83, P85, P88, P98, P110,
P116, P123, P132, P134, P136]

Liveness

[P7, P17, P21, P26, P39, P53, P87, P91, P96, P101, P107, P137, P139] Reliability & failure probability
[P8, P11, P27, P38, P61, P62, P63, P64, P66, P74, P75, P76, P84, P90,
P95, P100, P102, P103, P111, P117, P122, P131, P135, P32, P93, P119,
P104, P137, P138, P141, P148]

Execution traces

[P8, P92, P50, P101, P105, P114, P125, P145] Viable system conigurations
[P9, P13, P14, P17, P24, P26, P60, P66, P67, P69, P77, P82, P83, P84,
P85, P87, P88, P98, P134, P20, P137, P139, P140, P142, P144, P148]

Safety properties

[P10, P2, P12, P23, P37, P43, P45, P46, P52, P60, P61, P70, P80, P84,
P89, P97, P136, P146, P149]

Intended functional behaviour

[P12, P28, P82] Traceability
[P13, P46, P49] Complexity & re-useability
[P16, P69, P116] Schedulability
[P16, P19, P24, P59, P73, P78, P79, P82, P97, P100, P102, P108, P112,
P113, P131]

Run-time behaviour

Continued on next page
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Table 7 ś continued from previous page
References Result of interest

[P17, P34, P36, P44, P81, P140, P144] Viable counter-examples
[P3, P18, P29, P36, P40, P20, P56, P83, P118, P125] Property constraint viola-

tions/satisfactions
[P5, P26, P30, P65, P73, P97, P120, P143, P147] Performance
[P27, P33, P129] Scenario validation
[P30, P45, P48, P51, P72, P73, P94, P143] Trade-of analysis
[P41, P47, P55, P62, P130, P141] Application dependant
[P57] Viability of requirements with un-

certainty
[P72, P76, P137] Process/strategy validation
[P99, P133] Determinism
[P107, P110] Failure paths/efects
[P123] Fairness
[P123, P132, P134] Boundness
[P124] Independence
[P132] Reversability
[P144] Security properties
[P146] V&V in realistic VR environment

A.6 Tool categories

Table 8 details the tools categories of the tools used in solutions reported by authors.

Table 8. Tool categories of analysis tools.

References Tools used for V&V
[P1, P20, P24, P40, P138] Theorem provers
[P2, P4, P7, P8, P25, P34, P36, P42, P53, P58, P61, P65, P72, P74, P77,
P84, P95, P117, P130, P147, P22, P23, P30, P49, P51, P55, P63, P70,
P73, P79, P85, P100, P112, P113, P27, P44, P45, P46, P50, P57, P102,
P80, P107, P114]

Integrated MBSE toolkit

[P6, P8, P10, P11, P14, P22, P25, P30, P33, P48, P51, P61, P63, P65,
P68, P71, P73, P82, P86, P89, P103, P111, P123, P126, P139, P145,
P147, P149]

Simulation toolkit

[P3, P4, P5, P13, P14, P17, P18, P21, P26, P29, P34, P36, P44, P60, P67,
P68, P69, P81, P83, P85, P88, P99, P100, P105, P110, P111, P115, P116,
P118, P121, P124, P132, P133, P142, P136, P138, P140, P141, P144]

Model-checker

[P7, P19, P32, P33, P39, P44, P45, P46, P52, P59, P62, P72, P73, P77,
P79, P84, P91, P97, P100, P102, P108, P112, P113, P117, P129, P131,
P137, P16, P68, P74, P76, P81, P85, P90, P93, P94, P96, P119, P122,
P135, P141, P145]

Graphical program-
ming/simulation environment

[P9, P10, P14, P16, P17, P18, P19, P23, P24, P28, P40, P41, P53, P56,
P59, P75, P76, P78, P79, P81, P86, P89, P96, P99, P103, P112, P113,
P118, P119, P120, P131, P134, P136, P148]

Modelling framework

Continued on next page
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Table 8 ś continued from previous page
References Tools used for V&V

[P12, P31, P37, P38, P43, P54, P66, P92, P98, P104] Tool not presented
[P14, P87, P97, P127] Integrated Design Environment
[P15] SAT solver
[P16] Scheduling simulator
[P16, P17, P18, P69, P123] Syntax checker
[P87] Probabilistic analysis engine
[P35, P60, P128] Code Generator
[P47, P64, P76, P95, P101, P109, P125, P134] Tool independent/agnostic
[P49, P72, P146] CAD tool
[P61, P117] Spreadsheet manipulator
[P95] Ontology editor
[P97, P143, P146] Hardware interface tool
[P106] Scenario Question Query Engine

A.7 Tools used for V&V

Table 9 details the tools used in solutions reported by authors.

Table 9. Tools employed for V&V.

References Tools used for V&V
[P1, P40] Z3 solver
[P2, P8, P36, P61, P72, P74, P77, P95, P117, P130, P147] Cameo systems modeler
[P8, P22, P30, P33, P51, P63, P73, P147] Cameo simulation toolkit
[P3] Sismic
[P4, P136] ViTAL
[P4] Papyrus UML
[P5] INA Tool
[P6, P65, P71] CPNTools
[P7] Rational Rhapsody
[P7, P19, P33, P39, P44, P45, P46, P62, P73, P77, P79, P84, P91, P97,
P102, P108, P112, P113, P117, P129, P131, P137]

MATLAB/Simulink

[P8, P84] IBM DOORS
[P8] ENOVIA
[P8] 3DEXPERIENCE
[P9, P10, P14, P24, P41, P56, P75, P86, P89, P103, P118, P119, P134,
P136]

Papyrus

[P9, P10, P14, P16, P17, P18, P23, P24, P28, P41, P53, P56, P86, P89,
P99, P103, P118, P119, P120, P131, P136]

Eclipse/EMF

[P10, P89] HLA RTI
[P11, P14, P86] QuestaSIM
[P12, P31, P37, P38, P43, P54, P66, P92, P98, P104] Tool not presented
[P13] ARTiSAN Real-time studio
[P14, P26, P44, P69, P83, P85, P88, P116, P118, P136, P142] UPPAAL

Continued on next page
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Table 9 ś continued from previous page
References Tools used for V&V

[P14] Xilinx Vivado
[P15] MiniSat+
[P16, P68, P74, P76, P81, P85, P90, P93, P94, P96, P119, P122, P135] OpenModelica/Generic Modelica

tool
[P16] Cheddar
[P16, P17, P18, P69] OSATE
[P17] JKind
[P18] ABV
[P19] Avionics systems test bench
[P19] RTDS
[P19, P148] TASTE
[P20] Atelier B
[P20] Kermeta
[P21] AltaRica checker
[P22, P23, P30, P49, P51, P55, P63, P73, P79, P85, P100, P112, P113] MagicDraw
[P24] Rodin
[P25, P65] Artisan studio
[P25] Symphony
[P26, P67] MRMC
[P27, P44, P45, P46, P50, P57, P102] Rational rhapsody
[P27, P48, P68, P82, P87, P141, P144] Custom tool/environment
[P27] STK
[P27] ModelLink
[P28, P40, P126] Xtext
[P28, P41, P53] Sirius
[P29, P124] USE
[P32] DynaSim
[P34, P80, P107, P114] Enterprise architect
[P34] Spin model checker
[P35] RM2PT
[P36, P67, P105] NuSMV
[P40, P81] Epsilon
[P42, P53, P58] Capella
[P44, P97] Dymola
[P47, P64, P76, P95, P101, P109, P125, P134] Tool independent/agnostic
[P49] Creo
[P49, P146] Solidworks
[P49] UG
[P49] Sketchup
[P49] AutoCAD
[P49] Unity3D
[P49] MySQL Workbench
[P51] OpenMBEE

Continued on next page
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Table 9 ś continued from previous page
References Tools used for V&V

[P51] OpenCAE
[P52] PREEvision
[P53] Obeo designer
[P59] AutoFocus3
[P59] CosMOS
[P60] BIP tools
[P60] RERD
[P60] DFinder
[P60, P140] nuXmv
[P61, P117] Excel
[P61] Satellite tool kit
[P65] Graphviz
[P65] BRITNeY suite
[P67, P105] COMPASS toolset
[P68, P81] Zot
[P69] ECPS veriier
[P70] Cameo enterprise architecture
[P72] Amesim
[P72] NX 3D
[P72] Star-CCM+
[P72] Tecnomatix
[P72] HEEDS MDO
[P73] Systems tool kit
[P73] ModelCenter
[P74] ScenarioTools
[P76] Topcased
[P76] UML AP tool
[P77] Siemens NX
[P78] MetaGraph
[P79, P112, P113] MOFLON
[P79, P112] TiE
[P79, P112] FUJABA tool-suit
[P82, P139] CARLA
[P87] JetBrains Meta Programming Sys-

tem
[P87] APIS IQ-RM
[P93] Jade
[P95] Protoge
[P96] OMEdit Tool
[P96] GeNIe
[P97] National instruments VeriStand
[P97] TILSuite
[P97] DIAdem

Continued on next page
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Table 9 ś continued from previous page
References Tools used for V&V

[P99] RoboTool
[P99, P133] FDR model checker
[P100, P141] DEVS simulation framework
[P103] SHARC
[P105] Markov Reward modelchecker
[P106] Scenario Question Query Engine
[P110, P111, P116] TTool
[P111] ProVerif
[P112] MapleSim
[P115] Romeo model checker
[P117] AGI systems tool kit
[P120] TineNET
[P121] CASE tool
[P123] Design/CPN
[P127] Rational rose
[P128] AutoPA3
[P132] Pipe
[P133] Astah modeling environment
[P137] Dynacar
[P137] Sabotage
[P138] BiefCASE
[P138] AGREE
[P143] Ardupilot software in the loop

simulator
[P145] Gazebo
[P145] Netlogo
[P146] Unity3D
[P146] Arduino tooling
[P149] IF-toolset

A.8 Limitations

Table 10 detail the reported limitations of early V&V of the authors.
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Table 10. Identified limitations for early V&V.

References Early V&V limitations
[P3, P6, P7, P8, P9, P10, P16, P17,
P18, P27, P28, P31, P39, P42, P43,
P46, P52, P53, P54, P55, P66, P72,
P73, P74, P75, P77, P78, P81, P82,
P83, P84, P85, P87, P89, P90, P91,
P93, P94, P96, P97, P98, P100,
P101, P102, P103, P104, P105,
P107, P111, P112, P114, P115,
P119, P121, P133, P137, P143,
P144, P147]

None speciied clearly

[P1] Efort of introducing V&V methods in current practices
[P2, P4, P5, P6, P11, P12, P13, P14,
P24, P29, P32, P33, P36, P40, P41,
P60, P65, P70, P71, P76, P92, P99,
P110, P118, P129, P131, P132]

Solution not fully developed

[P2] Bias in interpreting the results
[P4, P61] Resource usage not optimised
[P15, P19, P22, P47, P65, P106,
P116, P140]

Limited automation

[P19, P67, P88, P109, P139] Scalability issues
[P20, P22] Lack of traceability between languages
[P21] Lack of AI/ML
[P21, P30, P69] Learning curve for beginners
[P23] Not enough abstraction of models
[P23, P61, P109, P117, P139] High complexity on process
[P25, P76, P80] Lack of readability/understandability
[P30, P34, P70, P122, P128, P134,
P135, P138, P148]

Expressability of descriptive language

[P26, P36, P47, P57, P62, P64, P86,
P109, P123, P130, P134]

Integration issues between languages

[P35] Tight coupling with application domain
[P37, P45, P50, P51, P58, P59, P60,
P63, P68, P79, P92, P113, P120,
P125, P126, P127, P136, P138,
P146, P149]

Simpliications of analysis need to be taken into account

[P38, P44, P48, P95] Method is too user dependent
[P49, P56, P108, P124, P132, P141] Tools used
[P109] Re-use of V&V
[P142, P145] Management of abstraction
[P142] Separation of concerns
[P148] State-space explosion
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