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Abstract

The component-based strategy aims at managing complexity, shortening time-to-market, and reducing maintenance requirements by
building systems with existing components. The full potential of this strategy has not yet been demonstrated for embedded software,
mainly because of specific requirements in the domain, e.g., those related to timing, dependability, and resource consumption.

We present SaveCCT – a component technology intended for vehicular systems, show the applicability of SaveCCT in the engineering
process, and demonstrate its suitability for vehicular systems in an industrial case-study. Our experiments indicate that SaveCCT pro-
vides appropriate expressiveness, resource efficiency, analysis and verification support for component-based development of vehicular
software.
� 2006 Elsevier Inc. All rights reserved.
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1. Introduction

Component-Based Software Engineering (CBSE) is a
relatively new software engineering approach which has
already been successful in many software development
projects. It has, however, been used mainly in the domains
of desktop and e-business applications, less frequently for
embedded applications.

In this article we address the problem of defining a com-
ponent technology suitable for the development of embed-
ded vehicular control-system software. The underlying
assumption is that an important reason for the limited
success of CBSE in the embedded systems domain is the
inability of commercially available component technolo-
gies to provide solutions that meet typical embedded
application requirements, such as resource-efficiency, pre-
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dictability, and safety. We believe that these requirements
should be considered early in the software development
process and then at all stages in the process, since they
are demands that cannot be satisfied by consideration at
only one phase in the software life-cycle. To satisfy domain
requirements, the proposed component technology enables
the easy usage of analysis and verification methods during
the entire software development process, through auto-
mated connectivity to test and analysis tools. Constructing
formal models for analysis tools manually can be a time-
consuming and demanding task, which often cannot be
afforded as a repeated activity. Our work has been guided
by the continuous evaluation of its suitability in an indus-
trial case-study.

The research presented in this article has been carried
out within the SAVE project,1 which has as its long-term
goal the establishment of an engineering discipline for the
1 http://www.mrtc.mdh.se/save/.
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Fig. 1. Overview of the electronic system architecture in Volvo XC90.
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systematic development of component-based software for
safety-critical embedded systems. The focus of SAVE is
on a single application area (vehicular systems), but its
results are expected to be applicable in a wider area. The
component technology presented here is one of the core
parts of the project.

The reuse of components has not been as generally suc-
cessful in the software engineering field, as it has been in
others, e.g., mechanical engineers have reused well defined
components, such as nuts and bolts, for many decades.
Historically, attempts to reuse software have resulted in
problems due to architectural mismatches between compo-
nents (Garlan et al., 1995). CBSE tries to overcome these
and other obstacles hindering reuse, through processes,
technologies, and tools supporting and enhancing a
component-based design strategy for software (Crnkovic
and Larsson, 2002). One of the central concepts in CBSE
theory is the component technology. A component technol-
ogy provides support for the composition of component-
based software. It often contains various development
tools for simplifying the engineering process, and provides
necessary run-time support for the components. A compo-
nent technology can be seen as a realisation of a component

model. The component model specifies the common rules
that all developers must follow, e.g., basic requirements
for the classification of elements as components, and cer-
tain patterns for assembling components. Component tech-
nologies for embedded systems should support general
embedded domain characteristics, e.g., as described by
Wolf (2002): applications should use resources efficiently;
it should be possible to model different aspects of the appli-
cations; the technology should support analysis early in the
design process; and provide possibilities for the verification
of functional and extra-functional specifications.

This article is organised as follows. The remainder of
this section gives an introduction to vehicular systems,
and surveys related work. Section 2 describes the different
parts of our component technology SaveCCT. In Section
3 we describe the underlying component model SaveCCM.
Section 4 describes the analysis techniques currently inte-
grated with SaveCCT. Section 5 presents a case-study in
which SaveCCT has been used. Finally, Section 6 con-
cludes the article.

1.1. Vehicular systems

Our work is focused on embedded control software for
vehicle systems, e.g., passenger cars, trucks, and heavy
vehicles. We focus on power train and chassis systems,
which we refer to as vehicular systems. These systems are
highly critical for the vehicles functionality, controlling,
for example, engine, brakes, and steering. Other classes
of electronic systems in modern vehicles include cabin sys-
tems, and infotainment systems (Sangiovanni-Vincentelli,
2000).

The physical architecture of the electronic system in
vehicles is a complex distributed computer system. The
computer nodes are designated Electronic Control Units
(ECUs), and are often developed by different vendors
and use different hardware. As an example, Fig. 1 (from
Fröberg, 2004) shows the approximate location of the 40
ECUs in a Volvo XC90. The location is primarily deter-
mined by the location of the controlled object in order to
minimize the length of wiring to sensors and actuators.

Vehicular system manufacturers are interested in the
CBSE approach because it facilitates the reuse of software
components. In addition to the obvious advantage of the
reuse it enables, CBSE also increases the maintainability
of the software. Component based software is by definition
modularised and any changes required can be isolated to a
limited set of components. The maintenance requirements
of CBS systems are thereby less than those for systems
based on monolithic software. Another important benefit
of using CBS in preference to other approaches is its
suitability for use in product-line architectures, common
to essentially all high volume products (e.g., vehicles).
Product-line architectures are used to rapidly and cost-
effectively provide new products in a product family. The
software is organised in a base-line variant, and new
products are obtained by additions to and/or replacements
of the components in the base-line. However, vehicular
software has certain demands that must be considered
when choosing development techniques and technologies,
including:

• Analysis – Developers of vehicular software must,
during early stages in the development, perform analyses
of extra-functional properties, e.g., memory consump-
tion and processor utilisation. Furthermore, the
software is critical for the vehicle behaviour, which
means that predictability is very important to allow
analysis of, e.g., safety invariants, real-time attributes,
and reliability attributes.

• Verification – Developers must verify that applications
meet their functional and extra-functional specification.
To date, the main method is by extensive testing,



M. Åkerholm et al. / The Journal of Systems and Software 80 (2007) 655–667 657
complemented with formal methods. A component tech-
nology can improve testability by, e.g., well-defined and
understandable run-time mechanisms, support for simu-
lation to increase observability, and possibilities for
mixed hardware-software tests.

• Resource efficiency – Because vehicles are produced in
large volumes, the manufacturing cost is an important
aspect. Consequently, the software platform, develop-
ment technologies, and system architecture must be cho-
sen to serve the particular needs of resources efficient
systems.

1.2. Related work

In this section we relate our work to recent CBSE
research from academia and industry.

Our strongest influence is the Rubus Component
Technology (Lundbäck et al., 2004), which originated in
our previous work with Basement (Hansson et al., 1997).
The Rubus Component Technology is commercially avail-
able and is successfully used in the vehicle industry. The
applications are statically scheduled, and components can
be associated with timing properties such as release time
and worst-case execution time. The limitations to Rubus
are that the static scheduling approach only supports peri-
odic activation and that timing aspects are the only extra-
functional properties considered.

From Koala (van Ommering et al., 2000), SaveCCT has
adopted the idea of using switches as the main method to
achieve run-time flexibility, run-time mode changes, and
design-time configuration. Koala is a component technol-
ogy for consumer electronics originally designed by Philips,
and then further developed in the projects Robocop2 and
Space4U3 with Philips and Eindhoven Technical Univer-
sity as the main actors. These projects focus on areas such
as analysis, fault prevention, power management, and
terminal management; but compared with SaveCCT they
are primarily intended for less safety-critical applications,
such as consumer electronics.

An ongoing project with similar goals is in progress at
the Software Engineering Institute. This project, designated
Predictable Assembly from Certifiable Components
(PACC),4 has taken a different approach from that used
in the SaveCCT project. The project focuses on how a
component technology can be used and adapted to achieve
predictable assemblies. Their concept of Prediction
Enabled Component Technologies (PECT) (Wallnau, 2003)
involves the integration of component technologies and
analysis techniques. Rather than being a concrete technol-
ogy (as SaveCCT), PECT is the means of restricting the
usage of a given component technology in such a way that
2 http://www.extra.research.philips.com/euprojects/robocop/.
3 http://www.extra.research.philips.com/euprojects/space4u/.
4 http://www.sei.cmu.edu/pacc/.
it is possible to reason about desired user-specified run-time
properties, with respect to available analysis techniques.

PECOS (Nierstrass et al., 2002) is one of the component
technologies targeting the automation industry. It emerged
from a joint ABB and academic project focusing on
developing a component technology specifically for field-
devices, i.e., small reactive embedded systems. PECOS is
similar to SaveCCT in the sense that it considers extra-
functional properties very thoroughly in order to enable
analysis, although focusing on other properties and using
different techniques.

The IEC61131-3 standard (IEC, 1992) defines a graphi-
cal language that can be used for the composition of
components. The language uses the same pipes-and-filters
interaction model between components as SaveCCT, but
the analysis of extra-functional properties is not given
priority in the standard, e.g., the semantics of the different
elements is not formally defined. However, the extra-func-
tional consistency and prediction for component-based
control systems project (Schmidt, 2003), develops and
implements a model for prediction and consistency-
checking of extra-functional properties relevant to distrib-
uted real-time control-systems. The main focus of the pro-
ject is on enabling prediction in conjunction with the
IEC61131-3 standard, which seems to be a promising
CBSE approach for embedded systems since the standard
is mature and well known. The project is being executed
in parallel with our project, but no results in a real context
have been made public to date.

There are also component technologies targeting distrib-
uted embedded systems using an implementation of the
Real-Time Common Object Request Broker Architecture
(RT CORBA) as execution platform, e.g., The Ace ORB
(TAO) (Schmidt et al., 1998). RT CORBA defines a
middleware architecture dealing with transparency of
application-location in distributed real-time systems. The
CORBA Component Model (CCM) (OMG, 2002) defines
features and services related to components. As a represen-
tative for these types of technologies we choose to relate to
the Boeing Bold Stroke technology implementing a compo-
nent model with avionics domain-specific deviations from
the CCM standard called PRISM (Roll, 2003). PRISM
components interact through a client-server pattern, which
is different from the pipes-and-filters model chosen to sup-
port control related functionality in SaveCCT. Despite this
major difference, which might be derived from the intended
usage of the components, the same type of extra-functional
properties seems to be in focus, e.g., static configuration
when possible, model checking, and timing analysis.

2. The SaveComp Component Technology

The SaveComp Component Technology (SaveCCT) is
described here by discussing separately in the following
sub-sections: manual design, automated activities, and
execution. In Fig. 2, which provides an overview of Save-
CCT, the entry point for a developer is the design tool,

http://www.extra.research.philips.com/euprojects/robocop/
http://www.extra.research.philips.com/euprojects/space4u/
http://www.sei.cmu.edu/pacc/
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Fig. 2. Overview of the SaveComp Component Technology.
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with which the application is created. During a develop-
ment, a developer can utilise a number of available analysis
tools with automated connections to the design tool. Anal-
ysis should be complemented by testing, which is possible
at early stages in the project by replacing hardware,
run-time platforms, and missing parts of the system with
simulated equivalents. To simulate a system, the developer
performs the same automated synthesis steps as when
generating code for the real target system, only the last
compilation steps being different.

2.1. Manual design

When designing, developers use a component-based
strategy, supported by a set of tools for design and
analysis. When CBSE is used, developers distinguish com-

ponent development from system development. Component
development is the process of creating components that
can be used and reused in many applications. System devel-
opment with components is the assembly of components to
form an aggregate for a particular application. Component
development and system development are independent
activities that can, e.g., be parallel or performed by differ-
ent companies.

The development begins with the identification of
component requirements. These can be components imme-
diately available; the remainder must be developed in par-
allel or purchased from third parties. Then, the SaveCCT
design tool provides support for the graphical assembly
of applications from existing components (i.e., system
development). The tool allows designers to specify the
component interconnection logic, and express high level
constraints on the resulting application. Components are
assembled in accordance with the rules of the SaveComp
Component Model (SaveCCM) (see Section 3), which are
enforced by the design tool. The component model defines
different component types that are supported by SaveCCT,
possible interaction schemes between components, and
clarifies how different resources are bound to components.
The component model has been designed so that common
functionality in vehicular systems can be expressed. Specific
examples of key functionality include feedback control,
system mode changes, and static configuration for variabil-
ity within product-line architectures.

As shown in Fig. 2, SaveCCT incorporates a number of
analysis tools, which can be used for verifying specific
attributes of the application, e.g., those related to
timeliness and safety. To incorporate an analysis tool
efficiently, as much as possible of the translation from
the model created with the design tool to the model
required by the analysis tool should be automated. To
date we have incorporated LTSA (Magee and Kramer,
1999), and TIMES (Amnell et al., 2003), described in
Section 4.
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2.2. Automated activities

Automated activities produce necessary code for the
run-time system (i.e., glue-code), and different specialised
models of the application for analysis tools, e.g., finite state
processes, and timed-automata models.

The synthesis activity generates all low level code (i.e.,
hardware and operating system interaction), so that
components are free from dependency on the underlying
platform. The code generation step statically resolves
resource usage and timing, thereby resolving as much as
possible during compile-time instead of depending on
costly run-time algorithms. Synthesis consists of three steps
(task allocation, attribute assignment, and code genera-
tion), described in more detail by Åkerholm et al. (2005).

The model generation activity is an automated activity
which can be run separately from synthesis. Model genera-
tion is a translation from the model created by the design
tool to the models (or other form of input) required by
the desired analysis tools. The model created by the design
tool can be adjusted to include attributes that are required
to accomplish the transition, i.e., the component model is
extensible in the sense that optional quality attributes of
design elements can be specified. However, it might be
the case that the input required by a desired analysis tool
cannot be created only from information in the model
created by the design tool, e.g., safety analysis often
requires a model of the environment which is not addressed
by the design tool.

2.3. Execution

To achieve efficient and predictable run-time behaviour,
and reliable support for pre-runtime analysis, SaveCCT
assumes a real-time operating system (RTOS) as the under-
lying platform. The current implementation uses RTXC
from Quadros,5 which is a standard fixed-priority pre-emp-
tive multitasking RTOS. The supported target hardware in
the current version is CrossFire MX from CC Systems6,
which is an electronic control unit intended for control sys-
tems running in demanding environments. Tasking7 is inte-
grated as the target compiler for the CrossFire MX.

To facilitate testing and debugging we incorporate
CCSimTech (Möller et al., 2005a), a simulation framework
which offers simulated software equivalents as replace-
ments for much common hardware in embedded systems,
e.g., IO (digital and analog), network technologies and
memories. This enables testing and debugging of distrib-
uted embedded control systems in a PC environment with-
out access to target hardware. It enables easy unit-testing
by developers in their standard PCs and provides test auto-
mation possibilities. Testing can begin even before the
intended target hardware is available. CCSimTech also
5 http://www.quadros.com.
6 http://www.cc-systems.com.
7 http://www.tasking.com.
provides support for mixed hardware-software tests in
which some of the nodes in the distributed system are
simulated and others are real target nodes. Most parts of
an embedded application can be more efficiently tested in
a PC environment, since the observability is higher than
in the target system and efficient development tools for
PC platforms can be utilised. However, certain verification,
e.g., timing related and acceptance tests, must be performed
on the target hardware, in the intended environment.

3. The SaveComp Component Model

The SaveComp Component Model (SaveCCM) forma-
lises the SaveCCT component concept, and defines how
components can be combined to create systems (Hansson
et al., 2004). For use in the vehicular systems domain, the
component model should support the development of
resource-efficient systems and thus the run-time framework
governing, e.g., component communication, must be
lightweight. Another requirement is that system behaviour
should be predictable, both functionally and with respect
to timeliness and resource usage.

SaveCCM is based on a textual XML syntax, and a
somewhat modified subset of UML2 component diagrams
is used as a graphical notation. The semantics is formally
defined by a two-step transformation, first from the full
language to a similar but simpler language called Save-
CCM Core, and then into timed automata with tasks. In
this article, we use the graphical notation only, and present
the semantics informally. The reader is referred to Carlson
et al. (2005) for details of the formal semantics. The graph-
ical notation is presented in Fig. 3.

In SaveCCM, systems are built from interconnected ele-
ments with well-defined interfaces consisting of input- and
output ports. The three element categories; components,
switches and assemblies, are described in more detail
below. The model is based on the control flow
(pipes-and-filters) paradigm, and an important feature is
the distinction between data transfer and control flow.
The former is captured by connections between data ports

where data of a given type can be written and read, and the
latter by trigger ports that control the activation of compo-
nents. A port can also have both triggering and data
functionality.

This separation of data and control flow results in a
flexible model that supports both periodic and event-driven
activities, since on a system level, execution can be initiated
by either clocks or external events. It also allows compo-
nents to exchange data without handing over the control,
which simplifies the construction of, e.g., feedback loops
and communication between sub-systems running at differ-
ent frequencies.

Another aspect of explicit control flow is that the result-
ing design is sufficiently analysable with respect to tempo-
ral behaviour to allow analysis of schedulability, response
time, etc., factors which are crucial to the correctness of
real-time systems.

http://www.quadros.com
http://www.cc-systems.com
http://www.tasking.com
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3.1. Components

Components are the main architectural element in Save-
CCM. In addition to input and output ports, the interface
of a component contains a series of quality attributes, each
associated with a value and possibly a confidence measure.
These attributes could include, for example, (worst case)
execution time information for a number of target hard-
ware configurations, reliability estimates, safety models,
etc. The quality attributes are used for analysis, model
extraction and for synthesis.

The concrete functionality of a component is typically
provided by a single entry function implemented in C,
but the model also allows the use of more complex compo-
nents that consist of a number of possibly communicating
tasks. In both cases, no intercomponent dependencies are
permitted, except those explicitly captured by the ports.

A component is initially inactive. It remains in this state
until all input trigger ports have been activated, at which
point it switches to the executing state. In a first phase of
its execution, a component reads all its input data ports.
It then performs the associated computations on the basis
of this input only and possibly an internal state. When
the computation phase is over, i.e., when the function has
been executed or, in the case of a more complex compo-
nent, when all tasks have finished, the output is written
to the output data ports. Finally, the input trigger ports
are reset and all outgoing trigger ports are activated, after
which the component returns to the idle state.

This strict ‘‘read-execute-write’’ semantics ensures that
once a component is triggered, the execution is functionally
independent of any concurrent activity. In particular, a
component produces the same output with preemptive
and non-preemptive scheduling, i.e., whether or not a task
may be interrupted by another task during its execution.
The ‘‘read-execute-write’’ semantics also facilitates analy-
sis, since component execution can be abstracted by a
single transfer function from input values and internal state
to output values.

3.2. Switches

The switch construct in SaveCCM is similar to that in
Koala (van Ommering et al., 2000). Switches provide the
means to change the component interconnection structure,
either statically for pre-runtime static configuration, or
dynamically, e.g., to implement modes and mode switches.
The switch specifies a number of connection patterns, i.e.,
partial mappings from input to output ports. Each connec-
tion pattern is guarded by a logical expression over the
data available at the input ports of the switch, defining
the condition under which that pattern is active.

If fixed values are supplied to ports used in connection
pattern guards, partial evaluation can determine that parts
of a switch will remain unchanged during runtime. Such
static parts are optimised into ordinary connections, and
components that are rendered unreachable as a conse-
quence are omitted in the final system.

It should be noted that switches are not triggered, as are
components. Instead, they respond directly to the arrival of
data or a trigger signal at an input port and immediately
relay it according to the currently active connection
patterns. Switches perform no computation other than
the evaluation of connection pattern guards.

3.3. Assemblies

Assemblies are encapsulated sub-systems. The internal
components and interconnections are hidden from the rest
of the system, and can be accessed only indirectly through
the ports of the assembly. Like switches, assemblies are not
triggered. Data and trigger signals arriving at a port are
immediately relayed to the outgoing connections.

Due to the restricted execution semantics of SaveCCM,
an assembly generally does not satisfy the requirements of
a component. Hence, an assembly should be viewed as a
means for naming a collection of components and hiding
its internal structure, rather than as a component composi-
tion mechanism. The SaveCCM semantics (Carlson et al.,
2005) also defines an encapsulation construct that does
exhibit component behaviour, enforced by additional data
buffers and a mechanism to monitor the internal compo-
nents to determine when to make output available at the
output ports and forward the triggering. This construct
does not occur in the examples in this article.

3.4. Ports and connections

As mentioned above, we distinguish between input and
output ports, and between trigger ports and typed data
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ports. Component input ports, the output ports of the
whole system, and switch input ports that occur in some
connection pattern guard, are one-place buffers with
overwrite semantics. The remaining ports, i.e. component
output ports, assembly ports and switch ports that do
not occur in any guard, are just conceptual interaction
points through which data passes immediately.

There are two types of connections: immediate and
complex. Immediate connections represent loss-less, atomic
migration of data or trigger signals from one port to
another, as would typically be the case between compo-
nents located on the same physical node. For distributed
systems, and in particular during early design stages before
the deployment of components to nodes has been
determined, a more flexible connection concept is conve-
nient. This is provided by complex connections that repre-
sent data and control transfer over channels with possible
delay or information loss. The detailed characteristics of
a particular complex connection are explicitly modelled
by a timed automaton to capture, e.g., delay constraints,
buffer sizes, or the possibility of faults.

As an example, the automaton in Fig. 4 defines the
behaviour of a complex connection with a delay of at least
min_delay and at most max_delay time units. When data or
a trigger signal enters the connection, the automaton starts
in the initial (leftmost) state. The urgent marker u! ensures
that the first transition is made immediately, to reset the
clock x. The invariant on the second state and the guard
on the outgoing transition ensure that the desired delay is
achieved before the data or trigger signal is forwarded to
the destination by the assignment statement.

As in UML2, a connection from an assembly input port
to an input port of an internal element, or from an internal
output port to an assembly output port, is denoted by a
delegation arrow, but semantically they are the same as
ordinary connections from output to input ports.

4. Analysis

Much of the functionality in vehicular systems is safety-
critical, since erroneous or untimely results could poten-
tially result in death or serious injury. This stresses the need
for good techniques to verify critical runtime properties of
a designed system against functional and extra-functional
specifications. Examples of such important properties
include the absence of deadlock situations, temporal
requirements imposed by the system environment (e.g.,
response time and jitter constraints), and dependability
attributes regarding reliability, availability, and safety
(e.g., vulnerability to transient network failures). Ideally,
analysis should be highly automated and integrated with
the design tool, since manual translation of a design into
formats suiting external analysis tools is error-prone,
time-consuming, and must typically be revised every time
the design changes.

During component development, analysis can be used to
derive component quality attributes such as execution time,
resource usage, reliability measures, fault tolerance, etc.
When components are combined into applications, some
of these component attributes are needed as input to the
analysis on system level. For example, schedulability and
response time analysis require knowledge of component
execution times and resource usage as well as information
about how the components interact in a particular system.

The current SaveCCT environment incorporates two
analysis techniques, each presented in more detail below.
Since the formal semantics of SaveCCM is defined in terms
of timed automata, general tools for model-checking timed
automata (in our case, TIMES) are relatively straightforward
to integrate. The other incorporated analysis technique
(LTSA) is more specialised, focusing on control-loop
properties.

In addition to these, a number of analysis techniques
have been investigated within the SAVE project. Möller
et al. (2005b) suggest the use of context-dependent
property prediction to establish worst case execution time
(WCET) estimates for individual components. This
technique can give several execution time bounds for a
component, each associated with a certain usage context,
which, in some cases, would permit tighter analysis, e.g.,
for components that behave differently in different opera-
tional modes. Elmqvist et al. (2005) define a safety analysis
framework in which components are associated with safety

interfaces, which formally describes how faulty input (such
as omission of data) can propagate to the output. Reliabil-
ity, i.e., the probability of successfully performing a func-
tion for a specified period of time, has been investigated
in the SaveCCT context by Dimov et al. (2005).

4.1. LTSA

LTSA (Labelled Transition System Analyser) is a verifi-
cation tool for concurrent systems (Magee and Kramer,
1999). The tool is based on a process algebra notation
(FSP) in which the system model and its intended behav-
iour is specified. The analyses supported by LTSA are
reachability analysis, which performs an exhaustive search
of the state space to verify invariants that a system must
satisfy at all times, and progress analysis which ensures that
a specified action will always be performed, as required, at
some point in the future, regardless of the system state. In
addition, LTSA supports simulation to facilitate interactive
exploration of the system behaviour.

In connection with SaveCCT, LTSA has been used to
verify certain aspects of component interaction within a
system. The tool was originally incorporated in SaveCCT
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for analysis of control loops (see Tivoli et al., 2005), but
can also be used to analyse general systems. The analysis
is based on an FSP model of the system, which defines
the possible orders in which actions can be performed on
the different ports. Because of the architectural constraints
imposed by SaveCCM, the FSP model can be easily
derived automatically. For the same reason, it is possible
to analyse properties incrementally, thereby avoiding
state-space explosions that could otherwise occur in large
compositions.

4.2. The TIMES tool

The modelling language timed automata (Alur and Dill,
1994) is useful for modelling and analysis of real-time sys-
tems. A timed automaton is essentially a finite state autom-
aton to which real-valued clocks that can be tested and
reset are added. The formalism has shown to be suitable
for a wide range of real-time systems. Model-checking
tools such as UPPAAL (Larsen et al., 1997) and Kronos
(Yovine, 1997) have been used to analyse many industrial
scale systems (Bengtsson et al., 1996; David and Yi,
2000; Havelund et al., 1997; Lindahl et al., 2001).

More recently, the timed automata model has been
extended with an explicit notion of tasks with parameters
such as priorities, computation times, deadlines, etc. The
model, designated timed automata with tasks (Fersman
et al., 2002), associates asynchronous tasks with the loca-
tions of a timed automaton, and assumes that the tasks
are executed using static or dynamic priorities by a preemp-
tive or non-preemptive scheduling policy. The model is
supported by the TIMES tool (Amnell et al., 2003), a tool
supporting real-time analysis. In particular, the tool can
check if a model is schedulable in the sense that all tasks
triggered by the timed automaton are guaranteed to meet
their deadlines using a given scheduling policy.

In earlier work (Carlson et al., 2005), we have described
the semantics of SaveCCM formally using timed automata
with tasks. A set of core components is identified and their
formal semantics is given. It is shown how components,
switches, assemblies, ports, and connections of SaveCCM
can be modelled using core components.

The SAVE2TIMES tool implements the formal semantics
of SaveCCM as a transformation to the model of timed
automata with tasks. The tool takes as input a SaveCCM
model described by an XML-file and outputs a system of
timed automata with tasks that can be analysed by the
TIMES tool. A set of properties that should normally be sat-
isfied by any SaveCCM model is also generated in the input
format of TIMES. We will discuss this further in Section 5.3
in which we show how the transformation tool is applied to
a concrete example system.

5. Case-study: an adaptive cruise controller

The Adaptive Cruise Controller has been a recurring
example throughout the development of SaveCCT. The
purpose of this running case-study has been to continu-
ously evaluate and improve the component model. Earlier
experiments in collaboration with industry (Åkerholm
et al., 2005) identified analysis and tool support as primary
targets for improvements, which in turn resulted in a for-
mulation of the SaveCCM semantics by means of timed
automata, to simplify the integration of efficient analysis
tools.

An Adaptive Cruise Controller (ACC) is a further devel-
opment of a standard Cruise Controller. In addition to the
conventional task of maintaining a constant speed, an
ACC provides extra functionality to help the driver keep
his distance forward to a preceding vehicle, by autono-
mously adapting the speed of his vehicle to the speed of
the vehicle in front.

To exercise the component model further, its complexity
has been increased with two non-standard functional
extensions. One extension is the possibility of adjusting
the maximum permissible speed to accord with speed limit
regulations. This feature would require that the ACC
system has access to the relevant speed-limit regulations,
provided, for example, by transmitters on the road signs
or road map information supplied by a Global Positioning
System (GPS). The second extension is emergency brake
assistance, helping the driver to brake in extreme situa-
tions, e.g., when the vehicle in front suddenly brakes or if
an obstacle appears on the road.

In the remainder of this section, we describe the develop-
ment of an ACC application using SaveCCT. The presen-
tation of the design is followed by two examples of how
the integrated analysis techniques can be used to evaluate
the appropriateness of the design. We also describe the
synthesis of an executable system from the design.

5.1. System design

The sources of input to the ACC application can be
divided into three categories: the Human Machine
Interface (HMI) (e.g., desired speed and on/off status of
the ACC system), the internal vehicular sensors (e.g., cur-
rent speed), and the external vehicular sensors (e.g., distance
to the vehicle in front). For the output, we distinguish
between two categories: the HMI outputs (providing the
driver with information about the system state), and the
vehicular actuators for controlling the speed of the vehicle.

The ACC system is designed as a SaveCCM assembly
(ACC Application in Fig. 5) built from four basic compo-
nents, one switch, and one sub-assembly. The design of
the sub-assembly (ACC Controller) is in turn shown in
Fig. 6. The roles of the individual elements in the design are

• The Speed Limit component calculates the desired
vehicle speed based on input from the driver and the
speed-limit regulations.

• The role of Object Recognition is to decide if there is a
car or another obstacle in front of the vehicle, and if this
is so, to calculate its speed relative to the vehicle. Based
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on these values, the component is also responsible for
deciding if the emergency brake assistance functionality
is needed or not.

• Mode Switch forwards the trigger signal to either the
ACC Controller assembly, the Brake Controller compo-
nent, or neither of them, depending on the current
system mode determined by ACC Enabled, Brake Pedal

Used and information from Object Recognition.
• The Brake Controller component controls the brake

output signal.
• The Logger HMI Outputs component is used to commu-

nicate the ACC status to the driver via the HMI, and to
log the internal ACC settings.

• The ACC Controller assembly manages the throttle
control of the vehicle, on the basis of the current speed,
the desired speed, and the distance to the vehicle in
front.

It is worth pointing out that the non-standard function-
ality of the ACC application (speed-limit awareness and
emergency brake assistance) is primarily located in two
separate components. The other components can be used
throughout the product-line, in product variants with only
standard ACC functionality.

The application has two different trigger frequencies:
10 Hz and 50 Hz. Logging and HMI output activities
execute at the lower rate, and control related functionality
at the higher rate.

The throttle control functionality of the ACC, located
within the ACC Controller assembly, is particularly impor-
tant to the overall system quality. Since these calculations
are very time critical, delivering the response (throttle
status) as quickly as possible is crucial. The assembly is
built from two cascaded controllers (see Fig. 6), repre-
sented by the sub-level assemblies Distance Controller and
Speed Controller.

This design corresponds to the control module concept
introduced by Pernebo and Hansson (2002). A control
module consists of two sub-structures responsible for
forward and backward activities, respectively. The former
is responsible for calculating the output value, and the
backward structure updates the state of the module in
accordance with the feedback signals. The result is a
high-level, flexible building block for control loops. When



8 For more information about the UPPAAL tool, see the web site http://
www.uppaal.com.
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control modules are combined, for example in a cascade
control loop as in the ACC Controller, the result is a chain
of forward activities that produces the output, and a
second chain of state updates that is not performed until
the output have been sent to the actuators.

5.2. LTSA analysis

The LTSA tool described in Section 4.1 can be used to
check a number of implicit properties, such as the absence
of deadlocks and livelocks. These are general properties
that can be checked automatically without being explicitly
specified by the user. For the ACC design, LTSA can auto-
matically check that deadlocks do not occur and that every
action can be performed eventually.

In addition to such implicit properties, we give as exam-
ples two explicit properties that can be verified with LTSA.
The first property states that the ACC application is safe
when disabled, and the second property expresses that
the state update activity does not occur before the proper
inputs are available, which is required for a correct control
loop behaviour.

• Safe when Disabled: If the system input ACC Enabled is
false, or if the brake pedal is used, then ACC Controller
and Brake Assist must be disabled.

• Control Loop Update: The triggering of an Update State
component is always preceded by a full execution of the
corresponding Calculate Output component.

The Safe when Disabled property is specified in terms of
the actions that can be performed at the ports ACC
Enabled, break pedal used and the input trigger ports of
ACC Controller and Brake Assist. It is checked from the
derived FSP model of the system by extracting the subsys-
tem formed by Mode Switch, ACC Controller, Brake Assist

and the connections between them. The developer can
automatically derive an environment for the subsystem
concerned. In this case, the environment simply provides
the data expected at the input ports of Mode Switch the
remaining three input ports of ACC Controller. It also con-
sumes throttle and brake output data.

To verify Control Loop Update it is sufficient to extract
the FSP specification of ACC Controller, as this is a local
property, independent of the interaction with the other
components. We specify as valid behaviours of the system
all those in which the Update State component always
reads data from an input port only after that Calculate

Output has written to its output port.
The two properties were checked on a 1.83 GHz Mac-

Book Pro in 16 s using 121 Mb of memory.

5.3. Analysis using the TIMES tool

As described in Section 4.2, we use the SAVE2TIMES tool
to convert the ACC design into a model of timed automata
with tasks. The automata model is simulated and verified in
the TIMES tool. In addition to the model of the ACC gener-
ated, we have produced an abstract model of the environ-
ment that non-deterministically supplies the ACC model
with input. The environment model is composed in parallel
with the ACC model. In the resulting model, the Object

Recognition component will be able to switch mode at
any time.

The SAVE2TIMES tool produces two versions of the ACC
model – a version for simulation, and another for model-
checking. The simulation model incorporates the program
code of the components written in C. This results in a very
detailed model that is particularly useful for simulation,
since the values of all the variables can be determined dur-
ing simulations. We use an in-house version of TIMES that
supports tasks programmed in a subset of C (the same sub-
set is supported by version 3.6 of the UPPAAL model-
checker8).

For model-checking, the SAVE2TIMES tool produces a
more abstract model that preserves inter-component
behaviours such as timing of components, data-values of
ports, and triggers. This model is useful for model-checking
global properties of a SaveCCM model. In the ACC model,
the output port Brake of the Object Recognition component
must be retained since it controls the mode switch.

In addition to the two models, the SAVE2TIMES tool pro-
duces a list of properties that can be checked using TIMES.
All SaveCCM models should normally have these proper-
ties. We have checked three kinds of properties of the
ACC model and its environment

• Preservation of triggering: No trigger input port is acti-
vated while the corresponding component is executing.
Since input trigger ports are reset when a components
execution is completed, the system must have this prop-
erty to ensure that no triggering is lost. The order of trig-
gering within the ACC model is shown in Fig. 7.
Assuming that no triggers are lost, the order can be
interpreted as a precedence relation.

• End-to-End Constraint: The Throttle port will be
updated within 15 ms after the 50 Hz trigger port is acti-
vated. When in the ACC mode, the ACC controllers are
triggered and the output port Throttle is updated by the
Calculate Speed Output component. The Throttle port is
connected to an actuator controlling the throttle lever.
The constraint is of interest because a quick response
to input is required for control stability. Such a con-
straint is checked by annotating the model and introduc-
ing an extra clock, as described by Lindahl et al. (2001).

• Schedulability: The tasks are guaranteed to meet their
deadline. When checking schedulability for the ACC
we assume a fixed priority scheduling policy (which is
the case in RTXC, the real-time operating system cur-
rently supported by SaveCCT), and that the logger com-

http://www.uppaal.com
http://www.uppaal.com
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ponent has the lowest priority. The computation times
are shown in Fig. 7. Component code is modelled as
tasks, and response time is measured from the triggering
of the component. The system is schedulable if the
worst-case response time (WCRT) for each task is lower
than its deadline. When performing a schedulability
analysis, we can extract the actual WCRT of each task.
For example, the logger component has the WCRT of
59 ms.

In addition to these properties we can model-check user-
specified reachability, liveness, and leads-to properties. For
example we can check that the code for the Calculate Speed

Output component is reachable. A liveness property could
state that in all paths, Object Recognition will be executed
eventually. An example of a leads-to property is that the
execution of the Calculate Distance Output component will
eventually lead to the execution of Update Distance State.

The properties were checked using TIMES installed on a
1.7 GHz PC. Each property was successfully checked in
less than 25 s using less than 11 Mb of memory.

5.4. Synthesis

As described in Section 2.2, the automated activity
synthesis takes the textual representation of the ACC from
the design tool as input, and generates all low-level plat-
form dependent code. The synthesis produced four tasks:
one task including Speed Limit, Object Recognition, and
Mode Switch; one task including Logger HMI Outputs;
one task including Brake Controller; and one task including
the four components in the ACC Controller.

To verify the functionality and implementation of the
ACC application, we utilised the integrated simulation
technique CCSimTech. This enabled execution of the appli-
cation in a Windows environment, testing and debugging
being then performed with observability higher than when
using the target hardware. However, to be able to test the
whole ACC application it was necessary to develop an
environment model and a control panel. The control panel
was used to give stimuli (such as accelerator position, brake
pedal and ACC settings) to the running system. The envi-
ronment model was used to simulate the physical behav-
iour of the system, such as the braking behaviour. Using
this test platform, application bugs could be found and
eliminated at an early stage.
When moving to the CrossFire MX hardware, we used
the compiler with no optimisations. The whole target
system was about 115 kb of which approximately 10%
was required by the application and the rest by the operat-
ing system. The CPU utilisation in the different application
modes was 7%, 12% and 15%, respectively.

5.5. Evaluation

Although the interaction between the ACC and the rest
of the system is simplified in comparison with a real
vehicular system, we believe that the example is sufficiently
complex to illustrate key aspects of our approach. Design-
ing the ACC application according to component-based
principles was relatively straightforward, and SaveCCM
proved sufficiently expressive for this type of system. In
particular, the separation of triggering and data connec-
tions proved very suitable for control loops, since it was
easy to build loops with synchronized forward and back-
ward activities.

The close integration of analysis tools, exemplified by
LTSA and TIMES, enabled us to derive a number of
non-trivial properties automatically or with little manual
intervention. In particular, the high predictability ensured
by the SaveCCM semantics allowed analysis of properties
crucial to ensure correct real-time behaviour, such as
end-to-end response times. The integration of CCSimTech
also provided adequate support for testing.

The resulting system is sufficiently resource efficient. It
utilises only a small part of the available capacity of the
target hardware, which is approximately the utilisation
expected for this application in combination with
state-of-practice programming methods (i.e., C and C++).
The explicit triggering allows the synthesis mechanism to
minimize communication overhead by identifying static
triggering patterns. In the ACC example we note, e.g., that
the four components in the time-critical ACC Controller

are bundled up in a single task, with the result that the
communication between them is achieved by ordinary
function calls, without calls to OS functionality such as
semaphores or message queues.

6. Conclusions

We have presented SaveCCT, a component technology
supporting component-based development of vehicular
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systems. Typical application requirements within this
domain include resource-efficiency, predictability, and
safety. We believe that such cross-cutting concerns should
be considered early in the software process and taken into
consideration at all stages in the process. This is supported
in SaveCCT by enabling easy usage of analysis and verifi-
cation methods during the whole software development
phase, through automated connectivity to tools for analysis
and testing. We have illustrated the suitability of SaveCCT
through an example application developed in cooperation
with our industrial partners. The adaptive cruise controller
application has been a recurring example throughout the
development of SaveCCT, and has been used for evalua-
tion and guidance for improvements.

The expressiveness of the component model (SaveCCM)
seems to be sufficient for efficient application of compo-
nent-based principles in the domain of vehicular systems.
SaveCCM is based on a control-flow (pipes-and-filters)
interaction model, combined with additional support for
domain-specific key functionality, e.g., feedback control,
system mode changes, and static configuration. SaveCCM
is predictable enough to permit derivation of specialised
formal models, which enables the automated integration
of analysis tools. This is an important advantage in the
domain, due to the safety-critical nature of vehicular
systems.

Resource efficiency is of high importance in embedded
systems, and SaveCCT addresses this by an efficient synthe-
sis mechanism. The dynamic component binding of gen-
eral-purpose component technologies, which allows
changes to components and connections at run-time, has
been discarded in favour of a more rigid approach where
dynamicity is achieved by explicit switch elements. This
permits the synthesis mechanism to simplify component
communication at compile-time, so that resource efficient
run-time platforms can be utilised without additional
overhead.

Our future work includes evaluating the usefulness of
SaveCCT in a more extensive industrial case-study, and
investigating how compatible it is with embedded systems
outside the vehicular domain. We also want to extend the
number of integrated analysis tools to cover more widely
the various requirements in different phases of the develop-
ment process. Future research in other directions includes
integrating the technology with a real-time database mech-
anism for structured handling of shared data, and with
run-time monitoring support.
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