
Determining Maximum Stack Usage in Preemptive Shared Stack Systems

Kaj Hänninen1,2, Jukka Mäki-Turja1, Markus Bohlin1,4, Jan Carlson1 and Mikael Nolin1,3

1Mälardalen Real-Time Research Centre (MRTC), Västerås, Sweden
2Arcticus Systems, Järfälla, Sweden

3CC Systems, Uppsala, Sweden
4Swedish Institute of Computer Science, Kista, Sweden

kaj.hanninen@mdh.se

Abstract

This paper presents a novel method to determine the
maximum stack memory used in preemptive, shared stack,
real-time systems. We provide a general and exact problem
formulation applicable for any preemptive system model
based on dynamic (run-time) properties.

We also show how to safely approximate the exact stack
usage by using static (compile time) information about the
system model and the underlying run-time system on a rel-
evant and commercially available system model: A hybrid,
statically and dynamically, scheduled system.

Comprehensive evaluations show that our technique sig-
nificantly reduces the amount of stack memory needed com-
pared to existing analysis techniques. For typical task sets
a decrease in the order of 70% is typical.

1. Introduction

In conventional multitasking systems, each thread of ex-
ecution (task) has its own allocated execution stack. In sys-
tems with a large number of tasks a large number of stacks
are required. Hence the total amount of RAM needed for
the stacks can grow exceedingly large.

Stack sharing is a memory model in which several tasks
share one common run-time stack. It has been shown
that stack sharing can result in memory savings [9, 16]
compared to the conventional stack model. The shared
stack model is applicable to both non-preemptive as well
as preemptive systems, and it is especially suitable in re-
source constrained embedded real-time systems with lim-
ited amount of memory. Stack sharing is currently sup-
ported by many commercial real-time kernels, e.g. [20, 18,
3, 33].

The traditional method to calculate the memory require-
ments for a shared run-time stack in preemptive systems is
to sum the maximum stack usage of tasks in each preemp-

tion level and possibly consider additional overheads such
as memory used by interrupts and context switches. A ma-
jor drawback with the traditional calculation method is that
it often results in over allocation of stack memory by pre-
suming that all tasks with maximum stack usage in each
priority level can preempt each other in a nested fashion
during run-time. However, there may, in many cases, be no
actual possibility for these tasks to preempt each other (e.g.
due to explicit or implicit separation in time). Moreover, the
possible preemptions may not be able to occur in a nested
fashion.

Taking advantage of the fact that many real-time sys-
tem exhibit a predictable temporal behavior, it is possible
to identify feasible preemption scenarios, i.e., which pre-
emptions can in fact occur, and whether they can occur in
a nested fashion or not. Therefore, a more accurate stack
analysis can be made. One example of a system that lends
itself to such analysis is a hybrid, statically and dynami-
cally, scheduled system. Such a system consists of an off-
line scheduler producing the static schedule and a fixed pri-
ority scheduler (FPS) that dispatches tasks at run-time. The
commercial operating system, Rubus OS by Arcticus Sys-
tems AB [3], supports such a system model. The Rubus
OS is mainly used in resource-constrained embedded real-
time systems. For instance, in the vehicular industry, Volvo
Construction Equipment (VCE) [34], BAE Systems Häg-
glunds [15], and Haldex Traction Systems [13] all use the
Rubus OS in their vehicles or components.

In this paper, we present the general problem of ana-
lyzing a shared system stack for resource constrained pre-
emptive real-time systems. We provide a general and ex-
act problem formulation applicable for preemptive systems
based on dynamic run-time properties. We also present an
approximate stack analysis method to derive a safe upper
bound on stack usage in static offset based, fixed priority
and preemptive systems that use a shared stack. We evaluate
and show that the proposed method gives significantly lower
upper bounds on stack memory requirements than existing
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stack dimensioning methods for fixed priority systems.
Paper outline. Section 2 describes related work and sets

the context for the contributions of this paper. In sections 3,
4, and 5 we present the exact formulation of determining
the maximum stack usage and our safe approximation of the
stack usage for our target system model. Section 6 presents
an evaluation of our approximative analysis method, and
Section 7 concludes the paper.

2. Related work

The notion of shared stack has been used in several pub-
lications to describe the ability to utilize either a common
run-time stack or a pool of run-time stacks. For example, in
[21], stack sharing is performed by having a pool of avail-
able stack areas. When a task starts executing, it fetches a
stack from the pool, and returns it at termination. In [22],
Middha et al. address stack sharing in the sense that the
stack of a task can grow into the stack area of another task.

In this paper, we use the notion of stack sharing when
several tasks use one common, statically allocated, run-time
stack. This type of stack sharing can be efficiently imple-
mented in systems where tasks have run-to-completion se-
mantics, and do not suspend themselves. This type of stack
sharing is supported by several commercial real-time oper-
ating systems, e.g. [18, 3, 33].

2.1. Stack analysis

In [4], Baker presents the Stack Resource Policy (SRP)
that permits stack sharing among processes in static and
in some dynamic priority preemptive systems. The basic
method to determine the maximum amount of stack usage
in SRP is to identify the maximum stack usage for tasks at
each priority level (or preemption level) and then to sum up
these maximums for each priority level. A safe upper bound
(SPL) on the total stack usage using information about pri-
ority levels can formally be expressed as:

SPL =
∑

l∈prio-levels

max
i∈tasks with prio l

(Si) (1)

where Si is the maximum stack usage of task i.
Gai et al. [11] present SRP with preemption thresholds

(SRPT). They present a procedure to minimize shared stack
usage, without jeopardizing schedulability, by use of non-
preemption groups for tasks using SRPT. They extend the
work of Saksena and Wang [28] by taking the stack us-
age of tasks into account when establishing non-preemption
groups.

In [9] Davis et al. address stack memory requirements
by using non-preemption groups to reduce the amount of
memory needed for a shared stack. They show that the num-
ber of preemption levels required for typical systems can be
relatively small, while maintaining schedulability.

Although non-preemption groups can reduce the amount
of RAM needed for a shared stack, the use of non-
preemption groups affects a system by restricting the oc-
currences of preemptions, which can have a negative affect
on schedulability. Also, the method we present in this pa-
per can further reduce the system stack by performing our
analysis after preemption groups have been assigned.

2.2. Preemption analysis

A large number of publications address preemption anal-
ysis for different reasons, see, e.g. [2, 7, 10, 17, 25, 26, 30].
For example, in [17] Lee et al. present a technique to bound
cache-related preemption delays in fixed-priority preemp-
tive systems. They account for task phasing and nested pre-
emption patterns among tasks to establish an upper bound
on the cache timing delay introduced by preemptions. Our
work relates to theirs in the sense that we also investigate
occurrences of nested preemption patterns. However, our
objectives differ in that Lee et al. are mainly interested in
timing delays caused by cache reloading and preemption
patterns whereas we address shared memory requirements
as an effect of nested preemption patterns.

In [10], Dobrin and Fohler present a method to reduce
the number of preemptions in fixed priority based systems.
They define three fundamental conditions that have to be
satisfied in order for a preemption to occur. The same con-
ditions form the basis of our upper bound method described
in Section 5.

3. Stack analysis of preemptive systems
The primary purpose of an execution stack is to store

local data which consists of variables and state registers,
parameters to subroutines and return addresses. Real-time
systems typically have a separate stack, statically allocated,
for each task. However, under certain conditions, tasks can
share stack to achieve a lower overall memory footprint of
the system.

In this paper we consider systems where a subset of tasks
use a common, statically allocated, run-time stack. For this
to be possible, we assume that a task only uses the stack
between the start time of an instance and the finishing time
of that instance, i.e., no data remains on the stack from one
instance of a task to the next. Furthermore, we require non-
interleaving task execution [4, 9]. If υj begins executing
between the start and finish of υi, then υi is not allowed to
resume execution until υj has finished. In practice, this is
ensured by not allowing tasks to suspend themselves volun-
tarily, or to be suspended by blocking once they have started
their execution. In practice this means that OS-primitives
like sleep() and wait_for_event() cannot be used,
and that any blocking on shared resources must be handled
before execution start, e.g., with a semaphore protocol like
immediate inheritance protocol [6].
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We formally define the start and finishing time of a task
instance υi, as follows:

st i The absolute time when υi actually begins executing.

ft i The absolute time when υi terminates its execution.

At any given point in time, the worst case total stack usage
of the system equals the sum of the stack usage for each in-
dividual task instance. Thus, with si(t) denoting the actual
stack usage of υi at time t, the maximum stack usage of the
system can be expressed as follows:

max
t∈time instant

∑

υi∈task instances

si(t) (2)

This corresponds to the amount of memory that must be
statically allocated for the shared stack to ensure the ab-
sence of stack overflow errors. For some systems, e.g., non-
preemptive, statically scheduled systems with simple task
code, it might be possible to directly compute or estimate
si(t). In general, however, they are not directly computable
before the system is executed.

We note that the total stack usage depends on three basic
properties:

(i) the stack memory usage of each task instance

(ii) the possible preemptions that may occur between any
two instances

(iii) the ways in which preemptions can be nested

Determining the stack memory usage of a single task
instance requires knowledge of the possible control-flow
paths within the task code [14]. In [5] Brylow et al. present
a static checker for interrupt driven software. The checker
is able to calculate the stack size of assembler programs by
producing a control-flow graph annotated with information
about time, space, safety and liveness.

However, due to the difficulties in determining the exact
stack usage at every point in time for a given task instance,
shared-stack analysis methods often assume that whenever
a task is preempted, it is preempted when it uses its maxi-
mum stack depth. We make the same assumption, and use
Si to denote the maximum stack usage for task instance υi.
Thus, when υi and υj are instances of the same task, we
have Si = Sj . Bounds on maximum stack usage for a
given task can be derived by abstract interpretation using
tools such as AbsInt [1] and Bound-T [31].

In order to calculate the maximum stack usage of the
full system, we need to account for all possible preemption
patterns. Under the assumption of non-interleaving task ex-
ecution, a task instance, υi, is preempted by another task
instance, υj , if (and only if) the following holds:

st i < stj < ft i (3)

In particular, we are interested in chains of nested pre-
emptions. We define a preemption chain to be a set
{υ1, υ2, . . . , υk} of task instances such that

st1 < st2 < · · · < stk < ftk < ftk−1 < · · · < ft1 (4)

Under the assumption that the worst case stack usage of a
task occur when the task is preempted, the worst case stack
usage SWC for a shared stack preemptive system can be
expressed as follows:

SWC = max
PC∈preemption chains

∑

υi∈PC

Si (5)

This formulation, however, cannot be directly used for
analyzing and dimensioning the shared system stack since
it is based on the dynamic (only available at run-time) prop-
erties st i and ft i. To be able to statically analyze the sys-
tem, one has to relate the static (compile-time) properties to
these dynamic properties. This is done by establishing how
the system model, scheduling policy, and run-time mecha-
nism constrain the values of the actual start and finishing
times. The problem can be viewed as a scheduling problem
with the objective of maximizing the total stack usage of
the schedule, subject to system constraints on how tasks are
ordered in the schedule.

4. System model for hybrid scheduled systems

The system model we adopt is based on the commercial
operating system Rubus OS by Arcticus Systems AB [3],
which supports the execution of both time triggered and
event triggered tasks. The Rubus OS is mainly intended
for, and used in dependable resource-constrained embedded
real-time systems.

The system model is a hybrid, static and dynamic, sched-
uled system where a subset of the tasks are dispatched by a
static cyclic scheduler (time triggered tasks). The rest of
the tasks are dispatched by events in the system (event trig-
gered tasks). The static schedule is constructed off-line and
a fixed priority scheduler (FPS) dispatches tasks at run-time.
The event-triggered tasks can be categorized in two differ-
ent classes: (i) event-triggered interrupts which have higher
priority than the time-triggered tasks, and (ii) background
scheduled event-triggered tasks which have lower priority
than the time-triggered tasks.

The time triggered tasks share a common system stack.
It is the objective of this paper to analyze, and ultimately
dimension this shared system stack efficiently. The time-
triggered subsystem is used to host safety critical appli-
cations. Hence, to isolate it from any erroneous event-
triggered tasks, it uses its own stack.
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4.1. Formal system model

The system model used in this paper can be seen as an
offset based model with static offsets [12, 23, 24, 32], de-
fined as follows: The system, Γ, consists of a set of k trans-
actions Γ1, . . . , Γk. Each transaction Γi is activated by a pe-
riodic sequence of events with period Ti. For non-periodic,
events Ti denotes the minimum inter-arrival time between
two consecutive events. The activating events are mutually
independent, i.e., phasing between them is arbitrary.

A transaction, Γi, contains |Γi| tasks, and each task may
not be activated (released for execution) until a time, offset,
elapses after the arrival of the activating event.

We use τij to denote a task. The first subscript denotes
which transaction the task belongs to, and the second sub-
script denotes the number of the task within the transac-
tion. A task, τij , is defined by a worst case execution time
(Cij), an offset (Oij), a deadline (Dij), maximum jitter
(Jij), maximum blocking from lower priority tasks (Bij),
and a priority (Pij ). Furthermore, Sij is used to denote the
maximum stack usage of τij . The system model is formally
expressed as:

Γ :={〈Γ1, T1〉, . . . , 〈Γk, Tk〉}
Γi :={τi1, . . . , τi|Γi|}
τij :=〈Cij , Oij , Dij , Jij , Bij , Pij , Sij〉

We assume that the system is schedulable and that the
worst case response-time for each task, (Rij), has been cal-
culated [24].

Due to the non-interleaving criterion for stack sharing,
we require that tasks exhibit run-to-completion semantics
when activated, i.e., they cannot suspend themselves. An
invocation of a task can be viewed as a function call from
the operating system, and the invocation terminates when
the function call returns. When tasks share the same prior-
ity, they are served on a first-come first-served basis.

We assume that if access to shared resources is not han-
dled by the static scheduler by time separation, a resource
sharing protocol where blocking is done before start of exe-
cution is employed (such as the stack resource protocol [4]
or the immediate inheritance protocol [6]).

Relating back to Rubus OS, one can view the system as
a transaction based system with one transaction, Γt, corre-
sponding to the static schedule (time-triggered tasks) and
any number of transactions corresponding to higher prior-
ity event triggered tasks (interrupts). For the even-triggered
transactions there are no restrictions placed on offset, dead-
line or jitter, i.e., they can each be either smaller or greater
than the period. Since Γt represents the static schedule,
which is cyclical with period Tt, offset, jitter and deadline
are less than the period, i.e., Otj , Dtj , Jtj ≤ Tt for the
time-triggered transaction. How a scheduler can generate
a feasible schedule with interfering interrupts is described
in [29, 23].

It is the objective of this paper to find a tight upper bound
on the shared system stack for the tasks in the time-triggered
transaction Γt. Task j belonging to Γt we will denote τtj .
The tasks in the transaction can be preempted by other tasks
in the transaction and by higher priority event triggered
tasks.

5. Stack analysis of hybrid scheduled systems

In this section, we describe a polynomial time method to
establish a safe upper bound on the shared stack usage for
the system model described in Section 4. The upper bound
is safe in the sense that the run-time stack can never exceed
the calculated upper bound.

A safe upper-bound estimate of the exact problem can
be found by using offsets and maximum response times as
approximations of actual start and finishing times. Gen-
eralizing the preemption criteria identified by Dobrin and
Fohler [10], we form the binary relation τti ≺ τtj with the
interpretation that τti may be preempted by τtj . The rela-
tion holds whenever (1) τti can become ready before τtj , (2)
τti possibly finishes (i.e., has a response time) after the start
of τtj , and (3) τti has lower priority than τtj . The relation
can now formally be defined as:

τti ≺ τtj ≡ Oti < Otj +Jtj +Btj∧Otj < Rti∧Pti < Ptj

(6)

Lemma 1 The ≺ relation is a safe approximation of the
possible preemptions between tasks in Γt. That is, if τti can
under any run-time circumstance be preempted by τtj , then
τti ≺ τtj will hold.

Proof of Lemma 1 Suppose that τti is preempted by τtj .
We show that this implies (1) Oti < Otj + Jtj + Btj , (2)
Otj < Rti, and (3) Pti < Ptj .

(3) follows directly from the preemption. Now let t be the
time instant when τtj has finished blocking, which implies
t ≤ Otj +Jtj +Btj . Then a possibly empty interval [t, sttj ]
of execution with higher priority than τtj follows, in which
τti cannot execute because Pti < Ptj . Since τti must start
before τtj , we can conclude that stti < t, which together
with Oti ≤ stti and t ≤ Otj + Jtj + Btj gives us Oti <
Otj+Jtj+Btj and (1). From Equation 3 we have sttj < ftti
and this together with Otj ≤ sttj and ftti ≤ Rti leads to
Otj < Rti and (2), which completes the proof. �

The upper-bound problem can now be informally stated
as finding the maximum stack usage of all possible preemp-
tion chains in Γt. This equals finding the time instant in
the schedule which has a maximum stack usage, given the
approximation of actual start and finishing times with off-
sets and response times respectively, and assuming that at
all preemptions the preempted task uses its maximal stack.
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A sequence Q of tasks is a possible preemption chain
(PPC) if it holds that τti ≺ τtj for all τti, τtj in Q where
τti occurs before τtj in the sequence. The stack usage SUQ

of a PPC Q is the sum of the stack usage of the individual
tasks in the chain, i.e., SUQ =

∑
τti∈Q Sti.

A straightforward computation of a safe upper bound for
a set of tasks involves computing the stack usage for all
PPCs. However, for a set of n tasks there exist 2n − 1 dif-
ferent PPCs in the worst case, which yields an exponential
time complexity for an algorithm based on this idea. A more
efficient algorithm can be constructed by first finding sets of
tasks which all overlap in time without regarding priorities.
These sets can then be investigated, in turn, to find a PPC
with maximal stack usage.

We let the relation τti � τtj hold whenever the semi-
closed intervals [Oti, Rti) and [Otj , Rtj) intersect, or more
formally:

τti � τtj ≡ Oti < Rtj ∧ Otj < Rti (7)

The relation � is a relaxation of the ≺ relation. That is,
τti ≺ τtj → τti � τtj . To see this, suppose that τti ≺ τtj

which implies Oti < Otj+Jtj+Btj∧Otj < Rti, according
to Equation 6. Since Otj+Jtj+Btj ≤ Rtj follows from the
notion of response time, we have Oti < Rtj ∧ Otj < Rti,
which also is the definition of τti � τtj .

We can now define an overlap set Kr as a set of tasks
where:

∀τti, τtj ∈ Kr : τti � τtj

The stack usage SUKr of an overlap set Kr is defined
as the maximum stack usage SUQ of all PPCs Q where
Q ⊆ Kr:

SUKr = max
∀Q⊆Kr:PPC (Q)

(SUQ) (8)

Kr is maximal, if and only if, there exists no overlap set,
Ks, such that Kr ⊂ Ks.

Lemma 2 For any PPC Q, there exists a maximal overlap
set Kr such that Q ⊆ Kr.

Proof of Lemma 2 From the definitions of a PPC and the
≺ and � relations, we know that for all tasks τti ≺ τtj in
Q it also holds that τti � τtj , and thus Q is an overlap set.
Then, either Q is maximal, or it can become maximal by
extending it with additional tasks. In either case, the lemma
holds. �

In all, the algorithm for computing the upper bound SUB
on the maximum stack usage for a set of tasks Γt can be
summarized as follows:

1. Find the maximal overlap sets in Γt:
K = {K1, K2, . . . , Kk}.

2. For each of them, compute SUKr according to Equa-
tion 8.

3. The upper bound of the stack usage for Γt can now be
computed as follows:

SUB = max
∀Kr∈K

(SUKr ) (9)

Informally, we start by finding all sets of tasks that can
overlap in time based on their offsets and worst case re-
sponse times, which safely approximates their actual start
and finishing times. For each such set (Ki), we find all pos-
sible preemption chains (PPCs) by also taking task priori-
ties and maximal jitter and blocking time into account, and
compute the stack usage for each chain. The stack usage
of Ki is the maximum stack usage of all its PPCs, and the
maximum stack usage (SUB) of the system is then obtained
by taking the maximum stack usage of every Ki.

5.1. Correctness

In order to claim correctness of our approximate stack
analysis method, we have to show that it never underesti-
mates the actual stack usage that can occur during run-time.

Theorem 1 The value computed by the SUB algorithm is
a safe upper bound on the actual worst case stack usage for
tasks in Γt. Formally, SWC ≤ SUB .

Proof of Theorem 1 Let Ψ ⊆ Γt be the sequence of
tasks instances participating in the preemption situation
which cause the worst case stack usage, that is, SWC =∑

τti∈Ψ Sti. According to Lemma 1, we must have τti ≺ τtj

for tasks τti and τtj that occur in that order in Ψ, and thus Ψ
is a PPC with SUΨ = SWC . Then, Lemma 2 ensures that
there exists a maximal overlap set Kr such that Ψ ⊆ Kr,
and we have SUΨ ≤ SUKr . Thus, SWC ≤ SUKr ≤ SUB ,
which concludes the proof. �

5.2. Computational complexity

The relaxation of ≺ into interval intersection (Equation
7) allows us to efficiently compute an upper bound on the
stack usage (Equation 9) by applying a polynomial longest
path algorithm on the linearly-bounded number of maximal
overlap sets.

To first see that the set of maximal overlap sets K =
{K1, K2, . . . , Kk} contain at most n elements, i.e., k ≤ n,
consider the graph (Γt, E), where Γt is the set of ver-
tices and E = {τtiτtj | (τti � τtj) ∧ τti, τtj ∈ Γt}
is the set of edges. From Equation 7, we have that edges
τtiτtj ∈ E correspond to intersection of the semi-closed in-
tervals [Oti, Rti) and [Otj , Rtj), and therefore the graph is
an interval graph [19]. Because every interval graph is also
chordal [19], all maximal complete subgraphs in (Γt, E),
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which correspond to all maximal overlap sets, can be found
in linear time [27]. Furthermore, for chordal graphs there
exists at most n such sets, and thus we have at most n over-
lap sets [19].

The problem of finding the worst PPC within a single
overlap set Kr is significantly easier than for an arbitrary set
of tasks. Since it holds that τti � τtj for all tasks τti, τtj ∈
Kr, and therefore in particular that Oti < Rtj for all tasks
in Kr, we need only look for a maximum stack usage chain
Q where (1) Oti < Otj + Jtj + Btj , and (2) Pti < Ptj

for all tasks τti and τtj in that order in Q to find the worst
PPC. A directed graph consisting of tasks in Kr and arcs
corresponding to properties (1) and (2) is acyclic, and for
such graphs a longest-path type algorithm can be used to
find the worst PPC [8]. There exist longest-path algorithms
with a time complexity of O(n+m), where n is the number
of tasks and m is the number of possible preemptions, of
which there are at most n(n − 1)/2. Taking the maximum
of a maximal PPC in each set, Kr, of which there are at
most n, we will, therefore, find a maximum stack size PPC
in at most O(n3) time.

6. Evaluation

We evaluate the efficiency of our proposed method to
establish a safe upper bound on shared stack usage by ran-
domly generating realistic sized task sets. The size, load and
stack usage of the task sets are derived from a wheel-loader
application by Volvo Construction Equipment [34]. We use
three different methods to calculate the shared system stack
usage:

SPL The traditional method to dimension a shared system
stack by summing up the maximum stack usage in
each priority level.

SUB The safe upper bound on the shared stack usage pre-
sented in Section 5

SLB A lower bound on on the shared stack usage, for each
task set.

The lower bound is established using simple heuristics
that tries to maximize shared stack usage by generating only
feasible preemption scenarios for the task set, and thus, rep-
resents scenarios that definitely can occur. From all PPCs,
the heuristic selects a sample set of roughly 500 chains. For
each of them, the method tries to construct a feasible arrival
pattern for the ET tasks and actual execution time values
that cause an actual preemption between the tasks in the
chain. The quality of this heuristic method degrades as the
length of the chains or the total number of PPCs increases,
which can be seen in the figures.

By establishing a safe upper bound and a feasible lower
bound, we know that the actual worst case stack usage is
bounded by SUB and SLB. The reason for including SLB is

to give an indication on the maximum amount of improve-
ment there might be for SUB.

6.1. Simulation setup

In our simulator we generate random task sets as input to
the stack analysis application. The task generator takes the
following input parameters:

• Total number of TT (time triggered) tasks (default =
250)

• Total load of TT tasks (default = 60%)

• Minimum and maximum priorities of TT tasks (default
= 1 and 32)

• Minimum and maximum stack usage of TT tasks (de-
fault = 128 and 2048)

• Total number of ET (event triggered) tasks (default =
8)

• Total load of ET tasks (default = 20%)

• The shortest possible minimum inter-arrival time of an
ET task (default = 1.000)

The generated schedule for TT tasks is always 10.000 time
units. All ET tasks have higher priority than TT tasks. The
default values for the input parameters represent a base con-
figuration derived from a real application [34].

Using these parameters a task set with the following
characteristics is generated:

• Each TT offset (Oti) is randomly and uniformly dis-
tributed between 0 and 10.000.

• Worst case execution times for TT tasks, Cti, are ini-
tially randomly assigned between 1 and 1000 time
units. The execution times get adjusted by multiply-
ing all Cti by a fraction, so that the the TT load (as
defined by the input parameter) is obtained.

• TT priorities are assigned randomly between minimum
and maximum value with a uniform distribution.

6.2. Results

Each diagram shows three graphs corresponding to the
stack usage calculated by the three methods: SPL, SUB, and
SLB. Each point in the graphs represents the mean value of
100 generated task sets. We also measured the 95% con-
fidence interval for the mean values. These are not shown
because of their small size (less than 7% of the y-value for
each point). We also measured the CPU time to calculate an
upper bound on shared stack usage for each generated task
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Figure 1. Varying the number of priority levels
of TT tasks

set. Using the method described in Section 5, the calcula-
tions took less than 63ms per task set, on an Intel Pentium
4, 2.8GHz with 512MB of RAM.

In Fig. 1, we vary the maximum priority for TT tasks
between 1 and 300, keeping the minimum priority at 1. This
gives a distribution of possible priorities (priority levels),
from 1 to n, where n is indicated by the x-axis. We see, in
Fig. 2 which zooms in on Fig. 1, for maximum priorities up
to 10, that the difference in stack usage between SPL and
SUB is less noticeable with a low number of priority levels.
However, for larger numbers of priority levels the difference
is significant. SPL is not expected to flatten out before all
tasks actually have unique priorities, whereas our method
(SUB) flattens out significantly earlier. We conclude that
the maximum number of tasks in any preemption chain is
increasing very slowly (or not at all) when the number of
TT tasks increases above a certain value, since the system
load is constant.

In Fig. 3, we vary the maximum stack usage of each TT
task between 128 bytes and 4096 bytes. We do this by as-
signing an initial stack of 128 bytes for each TT task, i.e.
initially the stack size variation is zero. We then vary the
stack size between 128 and 512 bytes, 128 and 1024 bytes,
and so on. The diagram shows that SUB gives significantly
lower values on shared stack usage than the traditional SPL.
We also notice that an increase in stack variation scales up,
linearly, the differences between SPL and SUB. The linear-
ity is expected, since an increase in stack variation does not
affect occurrences of possible preemptions in the system,
i.e., possible nested preemptions are retained.

In Fig. 4 we vary the maximum number of TT tasks be-
tween 5 and 275. We see that the shared stack usage of
the traditional SPL is dramatically increasing in the begin-
ning. This is due to the fact that when the number of TT
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Figure 2. Varying the number of priority levels
of TT tasks (zoom of Fig. 1)
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Figure 3. Varying stack usage of TT tasks

tasks is lower than the maximum priority of TT tasks (32),
most TT tasks have unique priorities. SUB, on the other
hand, increases much slower than SPL because the maxi-
mum number of tasks involved in any preemption chain is
slowly increasing. SUB is expected to further approach SPL
since increasing the number of tasks will increase the like-
lihood of larger number of tasks involved in the preemption
chains.

In Fig. 5, we vary the total load of TT tasks between 10%
(0.1) and 70% (0.7). The figure shows that the shared stack
usage of SPL is constant, whereas, SUB is slowly increas-
ing. SPL is expected to be constant since it is only affected
by the number of priority levels and unaffected by the ac-
tual preemptions that can occur in a system. The increase of
SUB is due to increasing response-times of TT tasks when
the TT load increases, which will increase the likelihood of
larger number of tasks involved in nested preemptions.
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7. Conclusions and future work

This paper presents a novel method to determine the
maximum stack memory used in preemptive, shared stack,
real-time systems. We provide a general and exact problem
formulation applicable for any preemptive system model
based on dynamic (run-time) properties.

By approximating these run-time properties, together
with information about the underlying run-time system, we
present a method to safely approximate the maximum sys-
tem stack usage at compile time. We do this for a rele-
vant and commercially available system model: A hybrid,
statically and dynamically, scheduled system. Such a sys-
tem model provides lot of static information that we can
use to estimate the dynamic start- and finishing-times. Our
method finds the nested preemption pattern that results in
the maximum shared stack usage. We prove that our method
is a safe upper bound of the exact system stack usage and
show that our method has a polynomial time complexity.

In a comprehensive simulation study, we evaluated our
technique and compared it to the traditional method to esti-
mate stack usage. We find that our method significantly re-
duces the amount of stack memory needed. For realistically
sized task sets, a decrease in the order of 70% is typical.

In this paper, we focused on a system model for a given
commercial real-time operating system. In the future, we
plan to extend our approximation method to a more general
system model, to incorporate all the features of the general
model for tasks with offsets [12]. Such an extension would
make the presented analysis technique applicable to a wider
range of systems.

Our current method could also be extended to account
for other types of information that can further limit the
number of possible preemptions. We currently only ac-
count for separation in time (offsets and response-times)
between tasks. However, in many systems other types of
information, such as precedence and mutual-exclusion re-
lations may exists between tasks, thus limiting the possible
preemptions.

The method presented here could also be used in syn-
thesis and configuration tools that generate optimized sys-
tems from given application constraint. In this case, the
results from our analysis can be used to guide optimization
or heuristic techniques that try to map application function-
ality to run-time objects.
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