You are required to read and agree to the below before accessing a full-text version of an article in the IDE article repository.

The full-text document you are about to access is subject to national and international copyright laws. In most cases (but not necessarily all) the consequence is that personal use is allowed given that the copyright owner is duly acknowledged and respected. All other use (typically) require an explicit permission (often in writing) by the copyright owner.

For the reports in this repository we specifically note that

  • the use of articles under IEEE copyright is governed by the IEEE copyright policy (available at http://www.ieee.org/web/publications/rights/copyrightpolicy.html)

  • the use of articles under ACM copyright is governed by the ACM copyright policy (available at http://www.acm.org/pubs/copyright_policy/)

  • technical reports and other articles issued by M‰lardalen University is free for personal use. For other use, the explicit consent of the authors is required

  • in other cases, please contact the copyright owner for detailed information

By accepting I agree to acknowledge and respect the rights of the copyright owner of the document I am about to access.

If you are in doubt, feel free to contact webmaster@ide.mdh.se

Virtual evaluation of industrial human-robot cooperation: An automotive case study

Authors:


Publication Type:

Conference/Workshop Paper

Venue:

Digital Human Modeling Symposium 2014


Abstract

The manufacturing industries in the developed countries face challenges in terms of increased competition that puts demands on productivity, and a demographic change leading to an older population. One way of managing these challenges is through closer cooperation between human operators and robots. The robots can perform heavy, repetitive and hazardous tasks in a workstation, while the human operator does the more complex and flexible operations.Most industrial human-robot interaction research focuses on the safety aspects, often performed and presented in the form of physical demonstrators, while little research is made on virtual simulations. Several simulation and visualisation tools for robot evaluation exist, as well as tools for digital human modelling. However, few tools can be found that virtually combines human and robot.The aim of this paper is to contribute to narrowing that gap by presenting a method for virtual evaluation and optimisation of industrial human-robot cooperation. The new software demonstrator developed for this is based on the DHM tool IMMA. The presented method was implemented in a truck industry case comparing three assembly scenarios; fully manual, fully robotised or human-robot cooperation assembly. The method considers three dimensions which are compared and optimised for the human and robot; reach, operation time and biomechanical load.The software demonstrator presents a virtual simulation of industrial human-robot cooperation. The result from this simulation can be used to find the optimal ergonomic manufacturing system based on biomechanical loads as well as finding the system with shortest operation time. The specific industrial case verifies the statement that a human-robot collaborative assembly system gives a less physically demanding workstation compared to a manual system, and thus is better adapted to an elderly workforce. This is achieved at the same time as the operation time decreases and productivity increases, which is necessary to meet the global competition. There are though safety issues to be solved and safety standards to be changed before these benefits can be applied in practise in industry. However, the software can be used to analyse different kind of human-robot interactions that are less cooperative and can be implemented within current regulations.

Bibtex

@inproceedings{Ore3641,
author = {Fredrik Ore and Lars Hanson and Magnus Wiktorsson},
title = {Virtual evaluation of industrial human-robot cooperation: An automotive case study},
month = {June},
year = {2014},
booktitle = {Digital Human Modeling Symposium 2014},
url = {http://www.ipr.mdu.se/publications/3641-}
}