You are required to read and agree to the below before accessing a full-text version of an article in the IDE article repository.

The full-text document you are about to access is subject to national and international copyright laws. In most cases (but not necessarily all) the consequence is that personal use is allowed given that the copyright owner is duly acknowledged and respected. All other use (typically) require an explicit permission (often in writing) by the copyright owner.

For the reports in this repository we specifically note that

  • the use of articles under IEEE copyright is governed by the IEEE copyright policy (available at http://www.ieee.org/web/publications/rights/copyrightpolicy.html)

  • the use of articles under ACM copyright is governed by the ACM copyright policy (available at http://www.acm.org/pubs/copyright_policy/)

  • technical reports and other articles issued by M‰lardalen University is free for personal use. For other use, the explicit consent of the authors is required

  • in other cases, please contact the copyright owner for detailed information

By accepting I agree to acknowledge and respect the rights of the copyright owner of the document I am about to access.

If you are in doubt, feel free to contact webmaster@ide.mdh.se

Automated EEG Artifact Handling with Application in Driver Monitoring

Authors:


Publication Type:

Journal article

Venue:

IEEE Journal of Biomedical and Health Informatics


Abstract

Automated analyses of electroencephalographic (EEG) signals acquired in naturalistic environments is becoming increasingly important in areas such as brain computer interfaces and behaviour science. However, the recorded EEG in such environments is often heavily contaminated by motion artifacts and eye movements. This poses new requirements on artifact handling. The objective of this paper is to present an automated EEG artifacts handling algorithm which will be used as a pre-processing step in a driver monitoring application. The algorithm, named ARTE (Automated aRTifacts handling in EEG), is based on wavelets, independent component analysis and hierarchical clustering. The algorithm is tested on a dataset obtained from a driver sleepiness study including 30 drivers and 540 30-minute 30-channel EEG recordings. The algorithm is evaluated by a clinical neurophysiologist, by quantitative criteria (signal quality index, mean square error, relative error and mean absolute error), and by demonstrating its usefulness as a preprocessing step in driver monitoring, here exemplified with driver sleepiness classification. All results are compared with a state of the art algorithm called FORCe. The quantitative and expert evaluation results show that the two algorithms are comparable and that both algorithms significantly reduce the impact of artifacts in recorded EEG signals. When artifact handling is used as a pre-processing step in driver sleepiness classification, the classification accuracy increased by 5% when using ARTE and by 2% when using FORCe. The advantage with ARTE is that it is data driven and does not rely on additional reference signals or manually defined thresholds, making it well suited for use in dynamic settings where unforeseen and rare artifacts are commonly encountered.

Bibtex

@article{Barua4945,
author = {Shaibal Barua and Mobyen Uddin Ahmed and Christer Ahlstr{\"o}m and Shahina Begum and Peter Funk},
title = {Automated EEG Artifact Handling with Application in Driver Monitoring },
volume = {22},
number = {5},
pages = {1350--1361},
month = {November},
year = {2017},
journal = {IEEE Journal of Biomedical and Health Informatics },
url = {http://www.ipr.mdu.se/publications/4945-}
}