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Abstract 
Component-based software engineering denotes the practice of building soft-
ware from pre-existing smaller products, in particular when this is done using 
standardized software component models. The main expected benefits of this 
practice over traditional software engineering approaches are increased pro-
ductivity and timeliness of development projects. While the use of software 
component models has become common for desktop and server-side software, 
this is not the case in the domain of embedded real-time systems, presumably 
due to the special requirements such systems have to meet with respect to 
predictable timing and limited use of resources. Much research exists that 
aims to define new component models for this domain, typically focusing on 
source code components, static system configuration, and relatively narrow 
application domains.  

This dissertation explores the alternative approach of using components based 
on binary code, allowing dynamic configuration, and targeting a broader do-
main. A study of a general purpose component model shows that the model is 
compatible with real-time requirements, although putting some restrictions on 
its use may be necessary to ensure predictability. A case study demonstrates 
how the model has been beneficially used in an industrial control system. The 
dissertation furthermore proposes an approach for extending the component 
model with run-time services for embedded real-time systems. It presents a 
prototype tool for supporting such services, along with two empirical studies 
to evaluate the approach and the tool as well as the component model itself. 
One study shows that both the component model and the services provided 
by the tool result in very modest and predictable run-time overheads. The 
other study, evaluating the effects on productivity and quality of using the 
approach in a software development project, did not produce quantitative 
evidence, but concludes that the approach is promising and identifies possible 
adjustments to it and opportunities for further studies. 

 





vii 

Acknowledgements 
I would like to thank my supervisor Ivica Crnkovic for all his help and sup-
port during my work with this dissertation. The first half of this work was 
conducted within the project Standard Technologies in Industrial Applications, 
run jointly by Mälardalen University’s Department of Computer Engineering 
and ABB Automation Products. It was funded by the company and the Swed-
ish Knowledge Foundation. I was at that time employed part-time by ABB and 
I am grateful to Ivica and Erik Gyllenswärd (formerly of ABB) for hiring me 
and giving me the opportunity to pursue my research interests. I greatly ap-
preciate the helpful cooperation of former colleagues at ABB in Malmö and 
Västerås, and I would particularly like to thank Staffan Andersson for his 
valuable input. 

The second half of the research was conducted within the Industrial Software 
Engineering project at Mälardalen University’s Department of Computer Sci-
ence and Electronics, funded by ABB Sweden and the Swedish Knowledge 
Foundation. I am grateful to the many students that have contributed to the 
research. A prototype software tool was initially developed by participants of 
the course on Software Engineering in 2005 and evaluated by the help of par-
ticipants of the same course in 2006. The tool was developed further and 
evaluated by several students as part of their Master thesis projects. I want to 
thank everybody at the department for making it such a pleasant and inspir-
ing place to work. Special thanks to my current and former colleagues in the 
Industrial Software Engineering group. Thanks also to my assistant supervi-
sors Per Runeson and Björn Lisper for their help and to Per for fruitful collabo-
ration on several papers. 

Finally, I wish to thank my family and friends who have been there for me 
over these years and ask their forgiveness for the times I have been “too busy” 
to be there for them. Most of all, I am grateful beyond words to Elise for her 
invaluable help and support and for the brightness she brings to my life. 

 

Frank Lüders 
Västerås, November 2006 





ix 

List of Included Papers 
• F. Lüders, K.-K. Lau, and S.-M. Ho, “Specification of Software Compo-

nents.” In I. Crnkovic and M. Larsson (editors), Building Reliable Compo-
nent-Based Software Systems. Artech House Books, 2000. 

• F. Lüders, “Adopting a Software Component Model in Real-Time Sys-
tems Development.” In Proceedings of the 28th Annual IEEE/NASA Soft-
ware Engineering Workshop, 2004. 

• F. Lüders, I. Crnkovic, and P. Runeson, “Adopting a Component-Based 
Software Architecture for an Industrial Control System – A Case Study.” 
In C. Atkinson, C. Bunse, H. Gross, and C. Peper (editors), Component-
Based Software Development for Embedded Systems: An Overview of Current 
Research Trends. Springer, 2005. 

• F. Lüders, D. Flemström, A. Wall, and I. Crnkovic, “A Prototype Tool 
for Software Component Services in Embedded Real-Time Systems.” In 
Proceedings of the 9th International Symposium on Component-Based Software 
Engineering, 2006. 

• F. Lüders, S. Ahmad, F. Khizer, and G. Singh-Dhillon, “Use of Software 
Component Models and Services in Embedded Real-Time Systems.” In 
Proceedings of the 40th Hawaii International Conference on System Sciences, 
2007. 

• F. Lüders, I. Crnkovic, and P. Runeson, “Evaluation of a Tool for Sup-
porting Software Component Services in Embedded Real-Time Sys-
tems.” In Proceedings of the 6th Conference on Software Engineering Research 
and Practice in Sweden, 2006. 

  





xi 

List of Other Papers 
• I. Crnkovic, M. Larsson, and F. Lüders, “State of the Practice: Compo-

nent-based Software Engineering Course.” In Proceedings of the 3rd Inter-
national Workshop on Component-Based Software Engineering, 2000. 

• I. Crnkovic, M. Larsson, and F. Lüders, “The Different Aspects of Com-
ponent Based Software Engineering.” In Proceedings of the Microprocessor 
Systems, Process Control and Information Systems Conference, 2000. 

• I. Crnkovic, M. Larsson, and F. Lüders, “Software Process Measure-
ments using Software Configuration Management.” In Proceedings of the 
11th European Software Control and Metrics Conference, 2000. 

• I. Crnkovic, M. Larsson, and F. Lüders, “Implementation of a Software 
Engineering Course for Computer Science Students.” In Proceedings of 
the 7th Asia-Pacific Software Engineering Conference, 2000. 

• F. Lüders and I. Crnkovic, “Experiences with Component-Based Soft-
ware Development in Industrial Control.” In Proceedings of the 1st Swedish 
Conference on Software Engineering Research and Practice, 2001. 

• F. Lüders, I. Crnkovic, and A. Sjögren, “A Component-Based Software 
Architecture for Industrial Control.” In Proceedings of the 3rd Working 
IEEE/IFIP Conference on Software Architecture, 2002. 

• F. Lüders, I. Crnkovic, and A. Sjögren, “Case Study: Componentization 
of an Industrial Control System.” In Proceedings of the 26th Annual Com-
puter Software and Application Conference, 2002. 

• F. Lüders, Use of Component-Based Software Architectures in Industrial Con-
trol Systems. Technology Licentiate Thesis, Mälardalen University, 2003. 

• F. Lüders, D. Flemström, and A. Wall, “Software Component Services 
for Embedded Real-Time Systems.” In Proceedings of the 5th Conference on 
Software Engineering Research and Practice in Sweden, 2005. 

• F. Lüders, D. Flemström, and A. Wall, “Software Component Services 
for Embedded Real-Time Systems.” In Proceedings of the 5th Working 
IEEE/IFIP Conference on Software Architecture, 2005. 





1 

Chapter 1  
 
Introduction 

 

 

 

Component-based software engineering denotes the disciplined practice of build-
ing software from pre-existing smaller products, generally called software com-
ponents, in particular when this is done using standard or de-facto standard 
component models [1, 2]. A component model generally defines a concept of 
components and rules for their design-time composition and/or run-time in-
teraction, and is usually accompanied by one or more component technolo-
gies, implementing support for composition and/or interoperation. The main 
expected benefits of component-based software engineering are increased 
productivity and timeliness of software development projects.  

The use of software component models has become increasingly popular dur-
ing the last decade, in particular in the development of software for desktop 
applications and distributed information systems. Popular component models 
include JavaBeans [3] and ActiveX [4] for desktop applications and Enterprise 
Java Beans (EJB) [5] and COM+ [6] for distributed information systems. In addi-
tion to basic standards for naming, interfacing, binding, and other concepts 
related to composition and interoperation, these models also define standard-
ized sets of run-time services oriented towards the application domains they 
target. This concept is termed software component services [2]. 

The remainder of this chapter first addresses the use of software components 
and component models in embedded real-time systems in Section 1.1 and pre-
sents an evolutionary approach to this challenge in Section 1.2. Next, a number 
of research questions are formulated in Section 1.3, followed by a discussion of 
the research methods used to address these questions in Section 1.4. Finally, 
Section 1.5 discusses the research contributions of this dissertation and pre-
sents an outline of the rest of the dissertation, including the published papers 
and their individual contributions. Particular care is taken to distinguish my 
own contributions to each paper from those of the coauthors. 
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1.1 Software Components in Embedded Real-Time Systems 
Unlike for desktop applications and distributed information systems, there has 
been no widespread use of software component models in the domain of em-
bedded real-time systems. It is generally assumed that this is due to the special 
requirements such systems have to meet, in particular with respect to timing 
predictability and limited use of resources such as memory and CPU time. 
Much research has therefore been directed towards defining new component 
models for real-time and embedded systems, typically focusing on relatively 
small and statically configured systems. Most of the published research pro-
poses models based on source code components. Typically, these models tar-
get relatively narrow application domains. Examples of such models include 
the Koala component model for consumer electronics [7], PECOS for industrial 
field devices [8], and SaveCCM for vehicle control systems [9].  

The focus on statically configured systems of source code components is moti-
vated by efficiency as well as by the possibility of ensuring predictable be-
havior through source code analysis and white-box testing. A potential liabil-
ity of using source code components is that application developers rely on 
component properties that may be inferred from the source code but are not 
guaranteed by component specifications. Thus, a system may break if a com-
ponent is updated with a new version that does not have the same inferred 
properties, although the component specifications are compatible. Other pos-
sible problems related to source code components are exposure of intellectual 
property and complication of deployment as such components must be com-
piled and linked with the rest of the system. The restriction to static configu-
ration is increasingly at odds with requirements for flexibility, adaptiveness, 
etc. The development of component models for relatively narrow application 
domains is motivated by the desire to optimize systems for attributes consid-
ered particularly important for those domains. Typically, such narrow models, 
as well as supporting tools and run-time infrastructures, have to be developed 
by the application developing organizations themselves.  

1.2 An Evolutionary Approach 
An alternative approach is to strive for a component model for embedded real-
time systems based on binary components and targeting a broader domain of 
applications, similarly to the domain targeted by a typical real-time operating 
system. Support for such a model could suitably be provided by platform 
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vendors, as is the norm for component models used for desktop applications 
and information systems. Although any model based on binary components is 
likely to incur some overhead, efficient use of resources should be a primary 
concern in the design of such a model for embedded real-time systems. When 
it comes to ensuring predictable behavior, the vision of this approach is that 
analysis of systems should be based on specifications (i.e. models) of the in-
cluded components rather than relying on access to source code. Realizing this 
vision requires methods for ensuring that components comply with specifica-
tions as well as for predicting the properties of a system based on properties of 
its constituent components [10]. Further investigation of such methods is out-
side the scope of this dissertation, however. 

The possibility explored in this dissertation is to use a mainstream component 
model as the starting point for developing a component model for embedded 
real-time system. Benefits of adopting an existing component model include 
that it may be possible to use existing development environments, existing 
components can be re-used or adapted for the real-time domain, and integra-
tion with application from other domains becomes significantly simpler.  As a 
concrete example of a component model, Microsoft's Component Object Model 
(COM) [11] has been selected. Some reasons that COM is an attractive starting 
point are that the model is relatively simple, commercial COM implementa-
tions are already available for a few real-time operating systems, and the 
model is well-known and accepted in industry. While COM is increasingly 
being replaced by the newer .NET technologies [12] in the desktop and infor-
mation systems domains, .NET is not easily adapted to the domain of embed-
ded real-time systems. In particular, the loss of predictability resulting from 
automatic memory management (i.e. garbage collection) is a serious barrier.  

The assumption that COM is a suitable starting point for the effort outlined 
above was strengthened by positive results from the earlier phases of the work 
presented in this dissertation. A study of COM and its extension Distributed 
COM (DCOM) [13] has shown that these models are not inherently incompati-
ble with real-time requirements, although some restrictions on how the mod-
els are used may be necessary to ensure predictability, and an industrial case 
study has demonstrated that the key concepts of COM can be beneficially used 
in the development of an embedded real-time system.  The latter study fur-
thermore demonstrates the possibility of adopting COM for parts of a system 
without requiring the rest of the system to be changed, thus allowing a grad-
ual adoption of the model.  
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Putting restrictions on the use of the component model to improve predict-
ability is not enough to make it an attractive option for industrial-scale appli-
cations. In addition, there must be efficient support for creating software (i.e. 
building new components and applications) and reusing software (i.e. reusing 
components across applications). The approach suggested is a combination of 
restrictions and extensions of the existing component model to adopt it to the 
target domain. The goal is to lay the groundwork for a software component 
model for embedded real-time systems, using the basic concepts of COM as 
the starting point and extending this basic model with standardized services of 
general use for this application domain, much like COM+ extends COM with 
services for distributed information systems. This is termed an evolutionary 
approach, partly because it is based on adaptation of an existing model and 
partly because it is intended to support a gradual evolution of existing mono-
lithic systems into component-based systems.  In contrast, approaches pro-
posing new domain-specific component models may be termed revolutionary. 
Furthermore, such models often require all the software in a system to be in 
the form of compliant components, thereby hindering an evolutionary adop-
tion of the model in existing systems. 

1.3 Research Questions 
The overall question addressed by this dissertation is whether a software 
component model can be beneficially used in the development of software for 
embedded real-time systems; more specifically, whether a model based on bi-
nary components can be beneficially used and whether an extension of such a 
model with support for run-time services of general use for the application 
domain can bring additional benefits. By “beneficially” is meant that using the 
model results in savings in software development effort while not having un-
acceptable effects on important quality attributes of the developed software. 
The most obvious of these quality attributes is the software’s ability to exhibit 
the predictable timing and use of resources required for embedded real-time 
systems.  

This overall question can be decomposed into more detailed questions. The 
first to be addressed in this dissertation is formulated as follows: 

Research Question 1 
What are the advantages and liabilities of using a software component model based on 
binary components in the development of embedded real-time systems? 
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More specifically, the use of COM and DCOM is investigated in Chapter 4 of 
this dissertation. In addition to the question of whether it is possible to use 
these models for systems with real-time requirements at all, the question of 
how they should be used to ensure real-time predictability is addressed. This 
leads to the following two sub-questions: 

Research Question 1-1 
Is it possible to use COM/DCOM in the development of software for systems with 
real-time constraints? 

Research Question 1-2 
What restrictions (if any) should be placed on the use of COM/DCOM in software for 
systems with real-time constraints to ensure predictability? 

The next question addresses the use of COM in a concrete system where a part 
of the system’s software architecture is redesigned to allow functionality to be 
implemented in independently developed components: 

Research Question 2 
What are the effects of adopting a component-based software architecture for an em-
bedded real-time system?  

This question has been addressed by an industrial case study, described in 
Chapter 5. Based on the challenges of the studied project, the following two 
sub-questions were formulated: 

Research Question 2-1 
What are the effects on the effort required to make extension to the system? 

Research Question 2-2 
What are the effects on the real-time predictability of the system? 

Since the aim of the project was to make it easier to make extensions to the sys-
tem and adopting the new software architecture required a development effort 
in itself, it is interesting to compare this effort to the reduction in efforts re-
quired for extensions to determine if, and after how many extensions, the ef-
fort invested in adopting the new architecture is regained. 

Another question is related to the extension of a basic component model with 
automatically generated support for run-time services of general use for em-
bedded real-time systems: 
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Research Question 3 
What are the effects of using automatically generated support for software component 
services in the development of an embedded real-time system? 

This question is addressed by two empirical studies using a prototype tool for 
proxy-based software component services, introduced in Chapter 6. The first 
of these studies, described in Chapter 7, addresses the following sub-question: 

Research Question 3-1 
What are the effects on the software’s size, resource usage, and predictability? 

The second study, described in Chapter 8 of this dissertation, addresses the 
following two sub-questions: 

Research Question 3-2 
What are the effects on the quality of the produced software? 

Research Question 3-3 
What are the effects on the software development effort? 

1.4 Research Methods
This dissertation, like most software engineering research, belongs to the do-
main of empirical research. As such, it differs from much computer science re-
search, which is mathematical or logical in nature and strive to present formal 
proofs. In their treatment of software metrics, Fenton and Pfleeger [14] discuss 
empirical investigation in software engineering. Although they focus on in-
vestigations in software developing organizations as a tool for making scien-
tific and objective assessments or decisions, the applicability to research is also 
stated. Formal experiments, case studies, and surveys are identified as three dif-
ferent ways of conducting empirical investigations.  

Formal experiments are used to investigate causal relationships in controlled 
settings. An example might be the effect of two different programming lan-
guages on productivity. An experiment would vary the language and measure 
the productivity in the development of two equivalent pieces of software. It 
would furthermore be necessary to control that other parameters, such as pro-
grammer skill and motivation, that may affect the productivity is kept con-
stant. In addition, formal experiments are, by definition, replicable. Due to 
these requirements on control and replicability, experimentation is most suita-
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bly performed with fairly limited activities. In fact, most formal experiments 
reported in the software engineering literature have been performed in aca-
demic settings with students as subjects. Thus, the validity of their results to 
industrial scale software development is often questioned, although some such 
experiments are accompanied by arguments for wider validity [15, 16]. 

In settings such as industrial projects, where the researcher does not have the 
level of control required for formal experiments, case studies or surveys can be 
used. A survey is retrospective in nature and samples the results of activities 
after they are completed. This is often performed on a large set of information, 
for instance obtained from a set of projects from one or more organizations. A 
case study is usually not retrospective, and the researcher will decide in ad-
vance what to study and plan how to capture the necessary data. A typical 
software engineering case study follows a development project, using direct 
observation as an important source of data. The projects selected for such 
studies are often those that are believed to be typical for an organization or an 
application area. Thus, there is a difference in scale between the different tech-
niques where formal experiments can be viewed as research in the small, case 
studies as research in the typical, and surveys as research in the large. Based on 
the description by Fenton and Pfleeger [14], Table 1-1 summarizes some of the 
aspects in which the three forms of empirical investigation differ. 

Table 1-1 Differences between three empirical investigation techniques 

Aspect Experiments Case studies Surveys 

Level of control High Low Low 

Replicable? Yes No No 

Retrospective? No Usually not Yes 

Scale Small Typical Large 

The goal of the research described in this dissertation has been to use empiri-
cal methods to answer the research questions presented in the previous sec-
tion. Research Question 1 has been addressed by studying the specifications of 
the component models in question. Although this is not an empirical investi-
gation in itself, the results of the study have been instrumental when planning 
the subsequent empirical studies.  
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Research Question 2 has been addressed by a case study conducted in an in-
dustrial setting. This technique is discussed in more detail by Robson [17], 
who provide the following definition: 

Case study is a strategy for doing research which involves an empirical investi-
gation of a particular contemporary phenomenon within its real life context us-
ing multiple sources of evidence. 

Thus, rather than a single method, a case study represents a strategy that can 
include several methods, such as observation and interviews. In this particular 
study, the investigated phenomenon was the use of a component-based soft-
ware architecture and the context an industrial development project. This is a 
typical example in that the phenomenon is not easily separated from the con-
text. The sources of evidence have included direct observation through project 
participation, interviews with project members, documentation, and software 
artifacts. Clearly, this kind of strategy cannot be expected to lead to a defini-
tive answer to the research question supported by anything like a formal 
proof. Instead, an overall analysis of the collected data can be expected to pro-
vide evidence in support of one or more possible answers to the question.  

More specifically, the employed strategy can be called a participatory case 
study, since I have been an active member of the project under investigation. 
This is similar to what Robson calls action research [17]. An advantage of such a 
participatory study is that the researcher has opportunities to make observa-
tions that yield information that might be hard to obtain in other ways. There 
is also a risk, however, that the researcher may loose the required distance and 
objectivity. A possible way to mitigate this risk is to analyze and report the 
study in cooperation with other researchers that can contribute with an out-
sider’s view. This approach was taken in the preparation of this dissertation.  

Research Question 3 has been addressed by two different empirical studies, 
which may also be viewed as case studies. The first of these consisted of im-
plementing an application both with and without using the approaches under 
investigation. The study is similar to an experiment in some ways, as the ap-
plication development is repeated while varying some parameter and the only 
source of evidence is measurement of static and dynamic aspects of the devel-
oped applications. The study could have been turned into a formal experiment 
by implementing a sufficiently high number of different real-time applica-
tions, which could then have been viewed as a sample of all possible applica-
tions within the domain. Since this would have required more effort than was 
possible, a case study strategy was adopted by selecting an application be-
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lieved to be typical for the domain. Thus, the study provides a direct answer to 
the research question for the particular application and, more importantly, 
provides evidence to support a hypothesis for the application domain.  

In the second study addressing this research question, four teams of students 
were given the same development task. Two of the teams were instructed to 
use the approach under investigation. Thus, this study is an example of a mul-
tiple-case study, which Yin argues is preferable to the classical single-case 
study [18]. The reason that this study cannot be viewed as a formal experiment 
is that the number of teams (two using the approach and two not using the ap-
proach) is too small to rule out that any observed differences between the 
teams are caused by spurious effects, i.e. other factors than whether the ap-
proach is used or not. Thus, a more elaborate analysis of the teams’ perform-
ance rather than merely observation of dependent variables is employed to 
investigate the causal relationships between the use of the approach and the 
project outcomes. The sources of evidence were documentation (including re-
ported working hours), software artifacts, and observation of and communi-
cation with project members. 

The phenomenon investigated in the studies described in the preceding two 
paragraphs is the use of proxy-based software component services in embed-
ded real-time systems. The studies are viewed as case studies, although it may 
be argued that neither of the two studies the phenomenon in its real-life con-
text. In both cases, software is developed by students (as part of a term project 
and Master thesis project, respectively), which may be considered a form of 
laboratory environment. Different strategies for varying parameters were used 
in the studies. In the first study, the same group of students developed an ap-
plication both with and without using the approach while, in the second 
study, half of the teams were instructed to use the approach and the other half 
were not. In more realistic contexts, such as industrial projects, repeating the 
development effort is usually prohibited for cost reasons. Thus, the studies 
may also be viewed as hybrids between case studies and quasi-experiments, 
i.e. a design similar to experiments where the researcher lacks the proper con-
trol over parameters [19].  

Another commonality of the two studies addressing the last research question 
is that they involved the use a prototype software tool that has been developed 
in the course of the research described in this dissertation. The term construc-
tive research is sometimes used to describe research that involves building an 
artifact to solve a domain problem [20]. While such an artifact is not a scientific 
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result in itself, knowledge obtained by using the artifact may be.  In this work, 
the constructive research strategy has been employed by first implementing 
the prototype tool and then conducting two empirical studies where the tool is 
used by students. The domain problem in this case is to make software com-
ponents an attractive alternative in the development of embedded real-time 
systems. 

1.5 Contributions and Organization of the Dissertation 
The research described in this dissertation uses empirical methods to investi-
gate the use of a particular type of software component model in the devel-
opment of embedded real-time systems. Thus, its primary contribution is in-
creased knowledge of the advantages and liabilities of using this type of com-
ponent model in this application domain. Most other research on component-
based development for embedded real-time system focuses on rather different 
component models, as described in the introduction. In addition, the collection 
of empirical evidence on the effects of using component-based development is 
a contribution in itself. While it is generally assumed that the component-
based paradigm leads to benefits related to both productivity and quality 
there is a shortage of empirical evidence for this. In addition to these epistemic 
contributions, there are more practical contributions, in the form of a proposed 
approach to software component services for embedded real-time systems and 
a prototype tool that demonstrates how automatic code generation can sup-
port such services. 

The dissertation is a collection of published papers, with some additional in-
troductory and concluding chapters. Chapter 2 describes the state of the art 
within component-based software engineering in addition to selected topics 
within software architecture and embedded real-time systems. The treatment 
of software architecture covers definitions of software architecture, architec-
tural design/styles, analysis/evaluation of software architectures, and archi-
tectural description/documentation. Within component-based software engi-
neering, definitions of software components, software component models/ 
technologies, component-based software engineering practices, and software 
component services are described. The section on embedded real-time systems 
covers definitions of embedded real-time systems, industrial control systems, 
and software components in embedded real-time systems. The description of 
industrial control systems provides useful background information for the 
case study presented in Chapter 5 and the example applications used in Chap-
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ters 6–8, while the discussion of software components in embedded real-time 
system is the dissertation’s main treatment of related work, along with the in-
cluded papers’ more specific discussions of related work.  

Chapter 3, coauthored with Kung-Kiu Lau  and Shui-Ming Ho, was originally 
published in the book Building Reliable Component-Based Software Systems 
(Artech House Books, 2000). The chapter discusses the state of the practice and 
research of software component specification. Thus, it is an extension of the 
dissertation’s coverage of the state of the art. In addition, it contains a contri-
bution in the form of UML metamodels of the concepts involved in software 
component specification.  The bulk of the paper is the description of three lev-
els of software component specification, which are denoted syntactic, semantic 
and extra-functional specification. This includes a description of interface and 
component specifications in COM, some knowledge of which is assumed in 
subsequent chapters. Most of this work, including the UML metamodeling, is 
my individual contribution. The co-authors contributed mainly to the intro-
duction and summary of the paper and to the description of realization speci-
fications at the end of Section 3.3. This version of the paper contains some cor-
rections to the original version, which are described in Section 3.6. 

Chapter 4 was originally published in Proceedings of the 28th Annual NASA/ 
IEEE Software Engineering Workshop (IEEE Computer Society Press, 2004). The 
paper presents a motivation for applying component-based software engineer-
ing to real-time systems and discusses the consequences of adopting a soft-
ware component model in the development of such systems. Specifically, the 
consequences of adopting Microsoft’s COM, DCOM, and .NET models are 
analyzed. The most important aspects of these models are discussed in an in-
cremental fashion. The analysis considers both real-time systems in general 
and the industrial control system described in more detail in Chapter 5, where 
some aspects the COM model have been adopted. The study concludes that 
COM and DCOM are not inherently incompatible with real-time require-
ments, but suggests restrictions on the use of the models to improve predict-
ability. The paper is my individual contribution. 

Chapter 5, coauthored with Ivica Crnkovic and Per Runeson, was originally 
published in the book Component-Based Software Development for Embedded Sys-
tems: An Overview of Current Research Trends (Springer, 2005). It describes an 
industrial case study demonstrating that a component-based software archi-
tecture can be beneficially used in the development of an embedded real-time 
system. The investigated case is an example of an evolutionary compo-
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nentization of an existing system. The description of the project, the system, 
and its architectural changes is my contribution. The analysis of the experi-
ences was initiated by me and refined in collaboration with the coauthors, who 
provided the desired outsider’s view.  

Chapter 6, coauthored with Daniel Flemström, Anders Wall, and Ivica Crn-
kovic, was originally published in Proceedings of the 9th International Symposium 
on Component-Based Software Engineering (Springer, 2006). The paper suggests a 
proxy-based approach for software component services in embedded real-time 
systems and describes a prototype tool for COM and Windows CE along with 
an empirical evaluation of it by a control system example, implemented on the 
Windows CE emulator. The empirical studies described in the following two 
chapters build on this work. The underlying principle of proxy-based services 
for embedded real-time systems was originally my idea and was refined 
through discussions with Daniel Flemström. The prototype was initially de-
veloped by students under his and my supervision and subsequently ex-
tended by me. The other coauthors helped with critical reviews and contrib-
uted to the description of related work. 

Chapter 7, coauthored with Shoaib Ahmad, Faisal Khizer, and Gurjodh Singh-
Dhillon, has been accepted for publication in Proceedings of the 40th Hawaii In-
ternational Conference on System Sciences (IEEE Computer Society Press, 2007). 
The paper describes empirical evaluations of the run-time effects of using 
COM and proxy-based software component services on Windows CE. This is 
based on measurements using applications that have been developed using 
these models as well as reference applications implementing the same func-
tionality without using the models. These measurements show that the over-
heads associated with both COM and proxy-based services are modest and 
quite predictable. The conception, planning, and design of the study are my 
individual contribution. The coauthors contributed by doing some of the soft-
ware implementation, performing the measurements, and documenting the 
results. This was conducted as part of their Master thesis project, which I su-
pervised. 

Chapter 8, coauthored with Ivica Crnkovic and Per Runeson, was published in 
Proceedings of the 6th Conference on Software Engineering Research and Practice in 
Sweden (Umeå University, 2006). The paper describes an empirical study of the 
development-time effects of using proxy-based software component services. 
This was achieved by giving four teams of students the same development 
task and instructing two of the teams to use the prototype tool introduced in 
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Chapter 6. While the study did not show any significant relationships between 
the use of the tool and the performance of the teams, it was helpful in identify-
ing possible modifications to the tool that would have improved the quality of 
the developed software. Several opportunities for further investigation were 
also identified. This paper is mainly my individual contribution. The coau-
thors helped by taking part in discussions during the study and contributed to 
the discussion of the research design and methodology in Section 8.3. 

Chapter 9 concludes the dissertation by summarizing the results and conclu-
sions of the included papers. These are furthermore augmented by more re-
cent results, obtained through input from the company where the industrial 
case study was conducted, additional analysis of data collected in the empiri-
cal studies with student participation, and some supplementary tests with the 
prototype tool. Based on this information, answers to the research questions 
are formulated and the validity of these answers discussed. Finally, different 
opportunities for future work are discussed, with particular focus on further 
empirical studies to test and possibly strengthen the conclusions of those al-
ready conducted or to address remaining questions. In addition, other re-
search challenges related to the use of software component models and ser-
vices are identified, including its possible impact on specification and compo-
sitional reasoning, and the possibilities of commercializing the research results 
are briefly discussed. 
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Chapter 2  
 
State of the Art and Related Work 
 

 

 

2.1 Software Architecture 
The structure and organization of software systems have been discussed, to a 
certain degree, since the late 1960s. Well-known examples from the early lit-
erature on this topic include influential papers by Dijkstra [1] and Parnas [2]. 
The last decade, however, has seen an unprecedented interest in this area, both 
within the research community and among software practitioners. In one of 
the first papers in the recent wave of software architecture literature [3], Perry 
and Wolf claim that software design, while receiving much attention in the 
1970s, was largely overlooked during the 1980s. The authors use the term soft-
ware architecture instead of design to evoke notions of a professional discipline 
and to make analogies with other fields, such as building and computer archi-
tecture. 

2.1.1 Definitions of Software Architecture 
The term software architecture denotes both a discipline – that of software ar-
chitects – and a type of artifact – the architecture of a software system. The re-
cent interest in the field has resulted in an abundance of definitions of soft-
ware architecture in the latter sense of the term. This section presents and dis-
cusses some of the most influential of these definitions. 

The above-mentioned paper by Perry and Wolf presents the following model: 

Software Architecture = {Elements, Form, Rationale}. 

The elements of an architecture can be processing elements, data elements, or 
connecting elements (which may themselves be processing elements or data 
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elements or both). The form specifies constraints on elements and their inter-
action with each other. The rationale provides motivations on the choice of 
elements and the form. Although nobody seems to question the value of 
documenting the rationale for a software architecture, more recent definitions 
tend to view rationale as not being part of the architecture itself. 

In the first book on the topic [4], Shaw and Garlan define the software architec-
ture of a system as:  

a collection of computational components – or simply components – together 
with a description of the interactions among these components – the connectors. 

This definition is inspired by the way practitioners tend to represent software 
architectures informally in the form of box and line diagrams. For such dia-
grams to be useful for others than their creators, it is important that the mean-
ings of both the boxes (components) and the lines (connectors) are described. 

The terminology of Shaw and Garlan’s definition has become widely adopted 
within the field. It has also been somewhat criticized, however, for instance in 
a book by staff members from the Software Engineering Institute (SEI) [5]. The 
authors argue that the term connector is unfortunate since it indicates a run-
time mechanism, while software architecture also covers structures that are 
not observable at run-time. In the second edition of the book, the term compo-
nent is also avoided since it has become so closely associated with the topic of 
component-based software engineering, where components are usually 
viewed as run-time entities. The latest edition of the SEI book uses the fol-
lowing working definition: 

The software architecture of a program or computing system is the structure or 
structures of the system, which comprise software elements, the externally visi-
ble properties of those elements, and the relationships among them. 

This definition has some interesting aspects. The notion that a system may 
have multiple structures is closely related to the concept of architectural views, 
which is now widely accepted in the research community. Views are further 
discussed in this chapter in connection with architecture description and 
documentation. The definition furthermore states that an architecture includes 
the externally visible properties of components, implying that other compo-
nent properties are not part of the architecture.  

Finally, a recommended practice for architectural documentation from the In-
stitute of Electrical and Electronics Engineers (IEEE) [6] defines architecture as: 
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the fundamental organization of a system embodied in its components, their re-
lationships to each other, and to the environment, and the principles guiding its 
design and evolution. 

The main novelty of this definition is its mention of the system’s environment. 
This is also an example of a process-oriented definition that includes design 
and evolution principles. As is the case with rationale, the majority of the lit-
erature seems to consider such principles to be important but distinct from the 
architecture itself. 

2.1.2 Architectural Design 
It was described earlier how Perry and Wolf selected to use the term software 
architecture instead of the more traditional term software design. The question 
still arises, however, as to the precise relationship between architecture and 
design. A common view is expressed in [7]: 

Architecture is design, but not all design is architecture. 

In other words, a system’s software architecture comprises some, but not all, 
the decisions made in the design of the system. The definitions presented in 
the previous section do, to varying degrees, specify which types of design de-
cisions an architecture should include. It can generally be said that software 
architecture is concerned with high-level design decisions that are made at an 
early stage of the design process. The term architectural design is often used for 
the design activities of this early stage. In this thesis, the term architectural deci-
sion will furthermore be used to denote design decisions made during this 
stage, and a software architecture will at times be viewed as a set of architec-
tural decisions. 

Shaw and Garlan characterize architectural design as being concerned with 
structural issues, such as: 

global control structures; the protocols for communication, synchronization, 
and data access; the assignment of functionality to design elements; the compo-
sition of design elements; physical distribution; scaling and performance; di-
mensions of evolution; and selection among design alternatives. 

The SEI book presents guidelines for making architectural decisions that help 
to ensure a system’s quality properties. Decisions that target particular prop-
erties are called architectural tactics. For example, fault-tolerance is an avail-
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ability tactic and information hiding is a modifiability tactic. A set of related 
tactics is called an architectural strategy. Bosch [8] suggests a method of archi-
tectural design where an initial architecture is designed based on the system’s 
functional requirements. The architecture is then evaluated against the extra-
functional requirements for the systems and transformed if necessary. This 
process of evaluation and transformation is applied iteratively until the archi-
tecture is believed to meet all functional and extra-functional requirements. 
Evaluation of software architectures is discussed later in this chapter. An ap-
proach developed by Siemens Corporate Research [9] focuses on identifying 
factors that influence architectural issues, which are classified into technical, 
organizational, and product factors. Based on analyses of these factors, strate-
gies are determined to resolve the issues. The early design of a system’s archi-
tecture is also a central concept in the Rational Unified Process (RUP) [10]. In 
this influential process model, a stable architecture is the main milestone of the 
elaboration phase, which precedes the labor-intensive construction phase. 

In all engineering disciplines, successful solutions to past problems are often 
used as models when new problems are to be solved. This is also true for 
software architecture, where architects have primarily drawn on their own ex-
periences or that of their development organization. The research community 
has realized the benefit of having a collection of well-documented prototype 
solutions. The term architectural style was introduced in Perry and Wolf’s pa-
per to denote such a prototype solution.  

This term is also used by Shaw and Garlan in their book. Drawing on their 
definition of software architecture, they present the following definition: 

An architectural style defines a vocabulary of component and connector types, 
and a set of constraints on how they may be combined. There may also exist one 
ore more semantic models that specifies how to determine a system’s overall 
properties from the properties of its parts. 

The use of the word vocabulary emphasizes that styles are intended for com-
municating software architecture solutions. The book also identifies a number 
of commonly occurring styles. Some of these are briefly discussed below. 

• Pipes and filters. The components in this style are called filters and each 
have a set of inputs and a set of outputs. The outputs of a filter can be at-
tached to inputs of other filters via simple connectors called pipes. Typi-
cally, the filters transform streams of input data to streams of output 
data in an incremental fashion. An important constraint is that filters 
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should be independent in the sense that they do not share state and each 
filter is unaware of the identities of the other filters it is connected to. 

• Object-oriented systems. In this style, the components are objects that en-
capsulate abstract data types and their associated operations. An object 
can be “connected” to other objects by holding references to them and 
invoke their operations. Typically, the sets of components and con-
nectors are dynamic, since objects can create and delete other objects 
and object references can be passed as parameters to operations. Al-
though this style is sometimes considered relatively recent, it is rooted 
in object-oriented programming, which was first developed by Dahl and 
Nygaard in the 1960s [11]. 

• Event-based systems. The components in this style have interfaces that 
provide both operations and events. A component’s operations may be 
invoked directly by other components as in object-oriented systems. In 
addition, a component may register an interest in an event that another 
component provides by associating one of its own operations with it. 
When the second component subsequently announces the event, the 
registered operation is invoked, along with any operations that other 
components have registered. Thus, there are two distinct types of con-
nectors in this style. 

• Layered systems. The components in this style are called layers and are 
commonly thought of as being stacked on top of each other. Each layer 
provides services to the layer above it and is a client of the layer below 
it. The connectors are defined by the protocols used between the layers. 
A variation of the style is systems where a layer may use the services 
provided by all lower layers. 

• Repositories. In this style there are two distinct types of components: a 
central data store that represents the state of the system and a set of in-
dependent components that operate on the data store. An interesting 
sub-style is systems where computation is entirely controlled by the 
state of the data store and the independent components react to changes 
to this state in an opportunistic fashion. 

A valuable property of these and other common styles is that the conse-
quences of using them as the basis for a system’s software architecture are 
fairly well understood. The pipes and filters style, for instance, results in sys-
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tems of highly independent components, where filters can suitably be devel-
oped and tested separately and possibly reused in different configurations. A 
possible disadvantage is that all filters have to comply with the data format 
required by the pipes, which may not be optimally suited for their computa-
tion and result in loss of performance and increased internal complexity. An 
advantage of object-oriented systems is that algorithms and data representa-
tion are encapsulated and can be maintained locally. On the other hand, sys-
tem wide modifications, such as adding new objects, can be difficult since ob-
jects need to know the identity of other objects in order to invoke their opera-
tions. Event-based systems represent a possible solution to this problem, al-
though the components are not as independent as in the pipes and filters style.  

A common occurrence in practice is systems that incorporate several archi-
tectural styles. For instance, a system may have components and connectors 
that match the types defined by several styles. An example is a layered event-
based system where each layer provides both operations and events to the 
layer(s) above it. Another way to combine styles is to mix different compo-
nents and connectors in the same system, which is sometimes called heteroge-
neous architectures. For instance, a part of a system could be organized as a 
repository where one or more of the independent components exchange data 
with another part of the system that consists of pipes and filters. Hierarchical 
heterogeneity occurs when a component in a system of one style is internally 
organized using another style. A typical example is a layer, internally struc-
tured using the object-oriented style, which may even be reflected in the 
layer’s services. 

An influential direction within the software engineering community in the last 
decade is the widespread interest in object-oriented design patterns [12]. Since 
architecture is commonly viewed as a special case of design, it is not surpris-
ing that the patterns paradigm has also been applied to architectural design. 
The most comprehensive work in this area has been performed by staff at the 
German company Siemens, who call their approach pattern-oriented software 
architecture [13]. Like the original work on design patterns, this effort focuses 
on cataloging known solutions to known problems in given contexts. This ap-
proach is similar to that of identifying and documenting architectural styles, 
and there is now a widespread view that patterns and styles are synonymous. 
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2.1.3 Architectural Analysis and Evaluation 
As previously noted, software architecture is concerned with early design de-
cisions. Clearly, it is important to be able to reason about the effects these deci-
sions will have on the properties of the finished system. The research commu-
nity has developed a number of architecture analysis and evaluation tech-
niques. 

One of the most popular techniques is the architecture trade-off analysis method 
(ATAM) [14] developed by the Software Engineering Institute. The aim of this 
method is to balance the different quality goals of a system under develop-
ment, which is very often conflicting. For instance, an architectural decision 
that results in a very maintainable system may result in sub-optimal perform-
ance. ATAM is typical in that it is based on the use of scenarios to analyze how 
well candidate architectures meet a system’s quality goals. Depending on 
what qualities are being analyzed, scenarios may be operational or related to 
the system’s development or evolution, while the evaluation of their effect 
may be based on quantitative or qualitative analysis. 

ATAM provides a way of determining technical measures of a system’s qual-
ity goals resulting from a proposed architecture, and thus (viewing the archi-
tecture as a set of architectural decisions) from proposed architectural deci-
sions. Software development organizations, however, usually need to consider 
the costs incurred with these decisions and to balance this with the benefits 
gained. This need is addressed by an extension of ATAM called the cost benefit 
analysis method (CBAM) [4]. The purpose of CBAM is to calculate the return on 
investment (ROI) for each proposed architectural strategy. The inputs to this 
calculation are estimated costs of architectural strategies and measures of the 
corresponding benefits derived from the ATAM. For a specific architectural 
strategy, the benefit Bi is defined as: 

( )∑ ×=
j jjii WbB ,  

where bi,j is the benefit of strategy i in scenario j and Wj is a weight assigned to 
scenario j, reflecting its relative importance. Each bi,j is the estimated effect of 
strategy i on the quality goal analyzed in scenario j. If Uexpected is the measure 
of the quality goal obtained from ATAM in scenario j when strategy i is in-
cluded in the architecture and Ucurrent is the measure when the strategy is ex-
cluded, then bi,j = Uexpected − Ucurrent. The measures of the quality goals are num-
bers between 0 and 100, corresponding to the worst-case and best-case situa-
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tions respectively. For an architectural strategy with cost Ci and benefit Bi, the 
ROI value is calculated as: 

i

i
i C

BR =  

Techniques for cost estimation have been widely studied and reported, for in-
stance by Boehm and others [15]. 

Another analysis method is the architecture-level modifiability analysis method 
(ALMA) [16] by Bengtsson and others. As the name indicates, this method fo-
cuses particularly on analyzing the modifiability of a system based on a pro-
posed architecture for the system. Like ATAM, ALMA is scenario-based. The 
only scenarios considered are change scenarios, and the output of running a 
scenario consists of measures of the impact of the change on the system and 
the effort required to implement the change. Depending on the purpose of the 
analysis this can be described qualitatively or quantitatively. Yet another de-
velopment is reported by Svahnberg [17]. This work extends the state of the 
art in architecture evaluation with a quantitative method for selecting between 
candidate architectures. The first step of the method is to define a set of quality 
goals as the base for the selection and assign numerical values to these goals 
that determine their relative importance. The next step is to evaluate each of 
the candidate architectures with respect to each quality goal, which results in a 
matrix of numerical scores. These scores need not be meaningful absolute 
measures of each architecture’s ability to meet the quality goals, as long as 
they serve to relate the abilities of the architectures to each other. By weighing 
the scores with the importance of each quality goals, the best architecture can 
finally be determined. 

Analysis of software architectures is not only useful for selecting between 
candidate architectures. Land [18] presents various strategies for in-house in-
tegration of software systems – i.e. integration of two software systems owned 
by the same organization. One of these strategies is to develop a new system 
by merging the existing systems, which may be done rapidly or evolutionary. 
A technique for analyzing the systems’ software architectures with respect to 
their similarity is suggested as a primary tool for deciding whether merging is 
a feasible strategy. The analysis is combined with business and other consid-
erations to determine if rapid or evolutionary merging is more suitable. Sev-
eral empirical studies are presented, demonstrating that failing to take this 
analysis into account is likely to result in unsuccessful merging efforts. 
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2.1.4 Architectural Description and Documentation 
In practice, software architectures are usually described using informal box 
and line diagrams accompanied by descriptive prose. The research community 
has pointed out that such descriptions are often ambiguous and there is exten-
sive work on architectural description and documentation in the literature. 

One research direction is the development of architecture description languages 
(ADLs). A bafflingly high number of such languages have been published, dif-
fering in such aspects as use of graphics or text, formality of semantics, em-
phasis on certain domains or styles, available analyses and tool support etc. In 
[4], Shaw and Garlan discusses the requirements for ADLs and reviews three 
early languages and their associated tools. A recent and extensive survey is 
that of Medvidovic and Taylor [19]. Despite the great volume of work on 
ADLs there are few testimonies of industrial adoption in the literature. The 
use of the Koala language at Philips [20] is perhaps the only reported example. 
This language is fairly implementation-oriented and can be seen as something 
on the borderline between an ADL and a graphical programming language. 
Koala is furthermore the name of a related software component model, which 
is discussed in Section 2.2.2 of this dissertation. 

A language that has been widely adopted is the Unified Modeling Language 
(UML) [21]. Although UML has become the standard notation for document-
ing software design, its suitability for describing software architecture has 
been questioned. The problem is that UML has its roots in object-oriented 
methods and is mainly intended for modeling a system as a set of interrelated 
classes, a concept usually considered to be at a lower level of granularity than 
software architecture. Still, it has been demonstrated how the language can be 
used for architectural documentation. One example is the aforementioned ap-
proach of Siemens Corporate Research [9]. Their architecture descriptions are 
written using special architecture-level modeling elements, which have been 
defined using UML’s extensibility mechanisms. Although it would be possible 
for other organization to re-use these architecture-level modeling elements, it 
is not likely to occur on a large scale until such elements are standardized and 
supported by major tool vendors.  

Fortunately, such standardization has now taken place in UML 2.0 [22]. This 
new standard defines the following architectural concepts, which are also cen-
tral in most ADLs: 
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• Component. A component is a modular unit with well-defined interfaces 
that is replaceable within its environment. The external view of a com-
ponent is a set of provided and required interfaces, which may be ex-
posed via ports (see below). A component may also have an internal 
view in the form of a realization, which is a set of instances of classes or 
smaller components that collaborate to implement the services exposed 
by the component’s provided interfaces while relying on the services of 
its required interfaces. The concept can be used to specify both logical 
and physical components. 

• Port. A port is a named and typed interaction point of a component. A 
provided port is typed by a provided interface, a required port by a re-
quired interface, and a complex port by an arbitrary set of provided and 
required interfaces. Complex ports enable the localization of complex in-
teraction patterns where calls may occur in both directions. Unlike inter-
faces, a port may be associated with a behavior, specifying the externally 
observable behavior of the component when interacting through the 
port. This allows the specification of semantic contracts, similar to those 
described in Paper A. A component may have multiple ports typed by 
the same interface, and is able to distinguish between calls received 
through different ports. 

• Connector. A connector is a link that may be of kind delegation or assem-
bly. A delegation connector either links a provided port of a component 
to a part of the component’s realization, signifying that requests re-
ceived through the port is forwarded to the part, or it links a realization 
part to a required port, signifying that request sent through the port 
originates in the part. Several connections may exist between a single 
port and different realization parts. An assembly connector links a re-
quired interface or port of a component to a matching provided inter-
face or port of another component. 

Figure 2-1 is a UML 2.0 diagram that illustrates these modeling elements. The 
diagram shows a component with one port, typed by one required and one 
provided interface. The component also has a realization, consisting of two 
component instances. Delegation connectors link the outer component’s port 
to a provided port of one of these instances and a required port of the other 
instance to the outer port. The two instances furthermore have ports linked by 
an assembly connector. The diagram does not show port names. 
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Figure 2-1 Architectural modeling elements in UML 2.0  

The production of professional software architecture documentation has been 
studied at the Software Engineering Institute [7]. This work focuses more on 
the organization of architecture documents than on particular notations. The 
central organizing unit for such documents is that of a view, which is defined 
as follows: 

A view is a representation of a set of system elements and the relationships as-
sociated with them. 

Thus, a view represents a subset of the information contained in an architec-
ture. The use of views is motivated by the fact that software architectures are 
complex entities that cannot be adequately described in a simple one-dimen-
sional fashion. 
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One of the most influential publications on architectural views is Kruchten’s 
paper on the 4+1 view model [23]. His approach, which has been adopted as a 
central part of the Rational Unified Process, defines the following views: 

• The logical view primarily supports behavioral requirements: the services 
the system should provide to its end users. 

• The process view addresses concurrency and distribution, system integ-
rity, and fault tolerance. 

• The development view focuses on the organization of the software mod-
ules in the software development environment. 

• The physical view maps the various elements identified in the logical, 
process, and development views onto the processing nodes. 

• The use case view contains a small subset of important use cases, in-
tended to show that the elements of the other four vies work together 
seamlessly. 

 The last view is called the +1 view since it is redundant with, and serves to 
validate, the other views. Another model that has received considerable atten-
tion is sometimes called the Siemens 4 view architecture model and is a central 
part of Siemens Corporate Research’s approach [9], mentioned above. It de-
fines the following views: 

• The conceptual view describes the system in terms of its major design ele-
ments and the relationships among them. 

• The module interconnection view describes functional decomposition and 
layering. 

• The execution view describes the dynamic structure of a system. 

• The code view describes how the source code, binaries, and libraries are 
organized in the development environment. 

The conceptual view has no direct counterpart in the 4+1 view model, while 
the module interconnection view corresponds roughly to the logical view, the 
execution view to the process and physical views, and the code view to the 
development view. 
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The IEEE’s recommended practice for architectural description of software-
intensive systems (IEEE Std. 1471-2000) [6] focuses on the contents and in-
tended use of architectural description documents. To this end, it defines a 
conceptual framework, which is illustrated in the UML class diagram in Figure 
2-2. Thus, according to the standard, a system has an architecture, which is 
described by an architectural description. Furthermore, the system has a num-
ber of stakeholders, which each has a number of concerns, and the architec-
tural description shall explicitly identify these stakeholders and their concerns. 
The architectural description must furthermore provide a rationale for the ar-
chitecture and shall be organized into views.  

 

Figure 2-2 The IEEE Std. 1471-2000 conceptual framework for architectural descrip-
tion of software-intensive systems 

Each view must conform to what is called a viewpoint. A viewpoint is a gen-
eral (i.e. system independent) template of a view, and is intended to address a 
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certain subset of stakeholders and concerns. A view is a system specific in-
stance of a viewpoint. The viewpoint specifies the format for describing the 
view, including languages and notations used as well as any analysis tech-
nique that may be applied. The architectural description shall state which 
viewpoints are used and present the specification of these or refer to other 
documents where specifications may be found. The standard emphasizes the 
potential for reuse of viewpoints, and therefore states that a viewpoint may be 
a library viewpoint. The architectural description is required to include at least 
one view and (a reference to) a corresponding viewpoint, but there are no pre-
defined compulsory views. Consequently, the standard does not prescribe the 
use of any particular language or notation. 

2.2 Component-Based Software Engineering 
The field of component-based software engineering (CBSE) is concerned with the 
development of software by assembling pre-existing smaller pieces, which are 
termed software components. Within the field of software architecture there is a 
widely accepted terminology where the constituent parts of a system’s archi-
tecture are also called components. This sometimes creates confusion since the 
architecture and CBSE communities have adopted the term component inde-
pendently. A widespread view in CBSE is that a software component denotes 
a physical part (product), while in architecture a component can be any struc-
tural entity (file/class, process/thread, module/layer, etc.) and even purely 
conceptual (e.g. an abstraction invented by a designer). At the risk of adding to 
the confusion, this dissertation uses the term component-based software architec-
ture, in particular in Chapter 5, to mean a software architecture designed to 
support CBSE. 

2.2.1 Definitions of Software Components  
The key concept of CBSE is that of software components – e.g. those pieces of 
software that may be assembled into larger components or final products. 
Clearly, how the concept of software components is defined has ramifications 
for the practices of CBSE. This section reviews and discusses some of the dif-
ferent definitions found in the literature. 

One of the most influential definitions of software components is that of 
Szypersky [24]: 
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A software component is a unit of composition with contractually specified in-
terfaces and explicit context dependencies only. A software component can be 
deployed independently and is subject to composition by third parties. 

The first part of the definition is technical, and states that software compo-
nents should be “black-boxes” to be composed without modification (obvi-
ously, the definition means that interfaces and context dependencies are the 
only visible parts of a component). Szypersky asserts that source code modules 
do not qualify as software components since they make it possible for the 
composer to rely on implementation details, thus violating the principle of 
black-box composition. The second part of the definition is more market-ori-
ented, effectively stating that it should be possible to market software compo-
nents as independent products and that buyers should be able to use them as 
parts in their own products. Naturally, independent deployment also has 
technical implications, namely that it must be possible to deploy (e.g. upgrade) 
a single component without any modification, recompilation, or similar of the 
rest of the systems of which the component is a part. 

In what is sometimes called The CBSE Handbook [25] Heineman and Councill 
present the following definition: 

A software component is a software element that conforms to a component 
model and can be independently deployed and composed without modification 
according to a composition standard. 

According to this definition, all components must conform to a component 
model, which the authors define as specifying interaction and composition 
standards. This requirement is quite reasonable, since it is hard to see how 
CBSE could work without some standards for interaction and composition. It 
is worth noting that the definition does not require that the component model 
is defined by a standards body or platform supplier, or that a commercial plat-
form implementation is used. It is furthermore concluded that the two defini-
tions principally agree, since the requirement that components can be modi-
fied without modification can only be satisfied if interfaces and context de-
pendencies are well defined and that compliance with a standard naturally 
supports composition by third parties. 

A definition of software components that must be expected also to receive 
widespread attention is that of UML 2.0, which has already been discussed in 
connection with architectural description in this dissertation. From the discus-
sion of the previous section, the following definition can be extracted: 
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A component is a modular unit with well-defined required and provided inter-
faces that is replaceable within its environment. The concept can be used to 
model both logical and physical components. 

In the context of CBSE, a software component corresponds to what UML 2.0 
calls physical components. Although some will object to the use of the word 
physical to describe software components, this is the term used by the UML 
2.0 specification to denote deliverables such as COM+, EJB, or CCM compo-
nents. The definition is somewhat broader than the previous two, as “replace-
able within its environment” is a weaker requirement than “subject to inde-
pendent deployment and composition by third parties”. The term physical 
component is intended to cover such entities as executables and dynamic link 
libraries, which do not comply with a component model. The definition is in-
teresting primarily as it helps to establish required and provided interfaces as 
part of the standard terminology of software components. 

This terminology is also used by Crnkovic and Larsson [26], who define a soft-
ware component as consisting of at least the following elements: 

• A set of interfaces provided to, or required from the environment. These 
interfaces are particularly for interaction with other components, rather 
than with a component infrastructure or traditional software entities.  

• An executable code, which can be coupled to the code of other components 
via interfaces. 

This definition emphasizes that a component’s interfaces are intended to sup-
port interaction with other components. Consequently, these components 
must agree on some format for interfaces and patterns of interaction, which is 
another way of saying that they must conform to a component model. The 
definition explicitly states that a component contains executable code. This is 
not an important difference with the other definitions, however, since these 
also presume that components contain executable code and focus on proper-
ties distinguishing software components from other executable formats. Based 
on the above definitions, which represent some of the most prominent literary 
sources on CBSE, it is concluded that there is significant consensus that a soft-
ware component encapsulates executable code while complying with a com-
ponent model that supports composition and interoperation. 
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2.2.2 Software Component Models and Technologies 
As already mentioned, a software component model specifies standards for com-
position of and interaction between software components. Among the things 
that such a standard may specify are data interchange formats, interaction pat-
terns, and run-time services. While incompatible data formats may be a barrier 
for interoperation between independently developed pieces of software, a 
more serious problem is that of incompatible assumptions about the overall 
architecture of the system that these pieces will be parts of. This problem of 
architectural mismatch was identified and characterized by Garlan and others 
[27]. Software component models may be viewed as a way to avoid ar-
chitectural mismatch by standardizing certain architectural choices. To facili-
tate the use of software component models, dedicated software tools and in-
frastructures are often implemented. These may include run-time environ-
ments for component execution and interaction as well as tools for component 
development, composition, and deployment. This dissertation uses the term 
software component technology to denote a set of dedicated software products 
supporting the use of a specific software component model. Heineman and 
Councill use the term component model implementation to denote the run-time 
parts of a software component technology. 

One of the most widely used component models is Microsoft’s Component Ob-
ject Model (COM) [28]. Microsoft first used this model internally, in its Windows 
operating systems [29] as well as in applications available on that platform, 
before releasing the COM specification. Thus, in this case, a component tech-
nology already existed when the component model was published. Today, 
there are numerous vendors of COM components and COM-based applica-
tions for the Windows platform. Technologies are also available on several 
other platforms, but COM has never gained widespread popularity outside 
the world of Windows. Although the model is primarily associated with desk-
top applications, COM implementations are also available for a few real-time 
operating systems, such as Windows CE [30] and VxWorks [31]. 

On the Windows platform, a COM component is an executable or dynamic link 
library (DLL) that implements a set of COM classes that each implements a set 
of COM interfaces. Classes may also have optional or required outgoing inter-
faces, i.e. interfaces to be used by the classes and implemented by other com-
ponents. Both classes and interfaces are identified by globally unique identifiers 
(GUIDs), which are 128-bit numbers that can be generated by an algorithm 
that virtually ensures their uniqueness. The GUIDs of any classes imple-
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mented by the components installed on a system are stored in the Windows 
registry along with references to the implementing components. The COM li-
brary is a part of the Windows run-time system and provides an API that an 
application or component, called a COM client, can use to create COM objects 
by supplying the GUIDs of the desired class and interface. COM does not 
specify how classes should be implemented. Instead, components are required 
to provide a factory interface that the COM library uses to instruct components 
to instantiate their own classes.  

What COM does specify is the binary format of interfaces. A client interacts 
with a COM object through a pointer to an interface node, which includes a 
pointer to a table of function pointers. Since the interface standard is binary, 
COM is oblivious to the programming languages use to implement compo-
nents and clients. Once the COM library has created an object, it returns a 
pointer to one of the object’s interfaces to the client. The client can use an op-
eration of this interface to request pointers to any other interfaces the object 
supports. This technique is called interface navigation. In addition, the COM 
specification includes a set of predefined interfaces for such purposes as script-
ing, error handling, and connection-oriented composition. Distributed COM 
(DCOM) [32] is an extension of COM that supports distributing applications 
across physical machine boundaries. The basic interoperability mechanisms of 
COM and DCOM are discussed more deeply in Chapter 4 of this dissertation. 

A special type of COM components is ActiveX controls [33]. These components 
implement and use predefined interfaces, which are designed to allow inter-
action with both (visual) composition tools and run-time environments, called 
containers. A typical application is in graphical user interface (GUI) controls, 
including controls automatically downloaded from web servers and executed 
in a web browser. Typically, such controls make use of outgoing interfaces to 
notify their containing application or web browser of events. A similar com-
ponent model is Sun’s JavaBeans [34]. These components are built from Java 
classes that implement predefined interfaces and use special event objects for 
notification. JavaBeans share many of the characteristics of ActiveX controls, 
the main difference being that they must be written in the Java programming 
language [35] and executed on a Java virtual machine (JVM) [36]. Many web 
browsers include a JVM and, as with ActiveX controls, enhancement of web 
pages is a common use of JavaBeans. Sun provides a solution that makes it 
possible to use JavaBeans in ActiveX containers. Component technologies re-
lated to ActiveX controls and JavaBeans include tools for packaging and de-
ployment of components with associated resources and type information. 
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COM+ [37] is an extension of COM incorporating support for services, such as 
transactional processing, message queuing, and security management that are 
commonly used in distributed information systems. These services are not in-
voked programmatically from inside the components. Instead, declarative at-
tributes can be associated with components and applications, specifying which 
services can or must be provided and at which level. This information is stored 
in a special-purpose repository called the COM+ catalog rather than in the 
Windows registry. The COM+ run-time system uses this information to inter-
cept component interactions and insert system calls as required. This allows 
existing COM components to be transparently augmented with, for instance, 
transactional processing and used as part of COM+ applications. 

More recent versions of Windows include Microsoft’s .NET technology [38], 
which is perhaps best known as a platform for implementing web services [39] 
but also defines a new software component model. In this model, components 
are called assemblies (a potential source of confusion as this term is sometimes 
used in CBSE literature to denote a collection of components). A .NET assem-
bly contains a manifest in addition to a collection of types, i.e. classes and inter-
faces, and/or resources.  Strictly speaking, an assembly is only a software 
component as defined in the previous section if it contains at least one class. 
The manifest contains the assembly’s metadata, including its name, version, 
contents, dependencies, and so on. Thus, information about classes is stored in 
the component itself rather than in the Windows registry. Other differences 
from COM are that a .NET assembly can be distributed across several files and 
that a hierarchical naming scheme is used, where an assembly is associated 
with a GUID and the names of its types need only be unique within the as-
sembly. 

A more important difference between .NET and COM is that the former’s run-
time system, called the .NET Framework, offers much more functionality than 
the COM library, relieving .NET components from much of the “housekeep-
ing” tasks of COM components while greatly enhancing the support for such 
things as versioning, security, and memory management. (This housekeeping 
is typically not a burden for developers of COM components, however, as it is 
handled by code automatically generated by development tools.) Unlike in 
COM, the classes of a .NET assembly are not implemented as native executa-
ble code, but as Microsoft Intermediate Language (MSIL) code to be executed by 
the .NET Framework, usually via just-in-time (JIT) compilation. The introduc-
tion of .NET does not mean that COM has been removed, and Microsoft offers 
a solution for interoperation between .NET and COM components. The ser-
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vices of COM+ are also available in the .NET Framework, under the name of 
Enterprise Services. The .NET Compact Framework [40] is a down-scalable version 
of the framework for resource constrained embedded systems. This version is 
not particularly suited for real-time applications, however, as it uses the same 
automatic memory management (garbage collection) as the standard version, 
resulting in a loss of predictable timing. 

Another model providing services similar to those of COM+ is Sun’s Enterprise 
JavaBeans (EJB) [41], which is based on Java but not on the aforementioned 
JavaBeans model. The required service levels for a set of EJB components are 
expressed declaratively in a file called a deployment descriptor. After deploy-
ment, each of the objects implemented by the components, generally called 
beans, live inside an EJB container, which also contains objects generated from 
the deployment descriptor. Clients invoke a bean’s operations via these gener-
ated objects, which ensure the correct service levels. Unlike JavaBeans, beans 
in EJB do not communicate through events. There are two principal types of 
beans. Entity beans are used to encapsulate access to database records. An en-
tity bean may implement its own persistence management or let the container 
manage persistence as specified by the deployment descriptor. Session beans, 
which may be stateful or stateless, represent interaction sessions with clients. 
Message-driven beans can be seen as a special kind of stateless session beans 
that represent asynchronous interaction session. A session bean may control 
transactions or leave that to the container. EJB requires the Java 2 Enterprise 
Edition (J2EE) platform [42]. 

A third model that is similar to COM+ and EJB is the CORBA Component Model 
(CCM) [43]. CCM is standardized by the Object Management Group (OMG) 
and require that clients and components communicate using an object request 
broker (ORB) as defined by version 3.0 of the OMG’s Common ORB Architecture 
(CORBA) [44]. A CCM component is a package, which contains an XML de-
scription and possibly binaries for multiple platforms. A CCM application is 
an assembly of CCM and possibly EJB components, whose configuration is 
described in an XML document. A CCM component belongs to one of four 
possible categories. Service components correspond to stateless session beans in 
EJB, and maintain no state. Session components correspond to stateful beans and 
maintain state for the duration of a transaction. Entity components, as entity 
beans, encapsulate database access. Process components maintain persistent 
state throughout the lifetime of a process. Similarly to in EJB, the instances of a 
CCM component resides within a CCM container, and transaction control as 
well as persistence may be container managed or self managed. Clients inter-
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act with CCM components through attributes and ports. A port is a facet, a re-
ceptacle, an event sources, or an event sink. Facets and receptacles are provided 
and required interfaces, respectively. Event sources and sinks are connected 
via event channels. CCM also specify two predefined interfaces that are clearly 
inspired by COM. All component instances provide the equivalence interface for 
interface navigation and all components implement the home interface for in-
stance creation. 

 

Figure 2-3 A Koala configuration 

The Koala component model [20] is specifically intended for embedded soft-
ware in consumer products. In particular, it is being used by Philips in prod-
ucts such as televisions and VCRs. A Koala component has a set of provided 
and required interfaces, and interacts with its environment through these in-
terfaces only. A Koala configuration specifies a collection of component in-
stances, the parts list, and a set of connections between these instances, the net 
list. In the simplest case, a connection links a required interface of one compo-
nent instance to a matching provided interface of another component instance. 
Glue code may be associated with connections to provide more complex inter-
actions. Configurations may themselves be used as components in a hierarchi-
cal fashion. Koala provides notations for specifying interfaces and components 
and a graphical language for defining configurations. Figure 2-3 shows such a 
configuration defining a component consisting of three sub-components. Basic 
Koala components, i.e. those that are not configurations, are sets of C source 
code files. As such they do not satisfy the definitions of software components 
discussed above. However, the motivation for using source code is efficiency, 
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not exposition of implementation details, and the Koala configuration lan-
guage encourages black-box composition. The Koala compiler optimizes con-
figurations by inserting into the code of the components static references to 
connected components wherever possible. Still, puritans may prefer to view 
Koala as a technology for modular, graphical programming rather than a 
component model. For instance, it does not support independent component 
deployment as discussed in the previous. 

The component models discussed above are all based on a notion of software 
components that encapsulate executable code and expose services through in-
terfaces. Thus, they are compatible with the definitions of the previous section. 
With the exception of Koala, however, they all allow components to interact 
with their environment without explicitly declaring required interfaces. For 
instance, COM components can use the services of the Win32 API and Java-
Beans those of the standard Java class libraries. Similarly, in all models except 
Koala, the services exposed through a component’s interfaces can be accessed 
by components that do not declare required interfaces and even by software 
that are not components. Regarding the standardization of architectural 
choices, all the models stipulate an object-oriented style. Other architectural 
aspects are address to a varying degree. All models specify a standard for allo-
cating and releasing the resources used by components: in COM and Koala, 
this is the responsibility of the components themselves while, in the other 
models, it is handled more automatically. Koala furthermore defines a stan-
dard for concurrent execution, while the other models leave it to the compo-
nents to use the mechanisms of the underlying platforms for this purpose. 
Models like COM+ and EJB define standard solutions for such things as trans-
action handling and persistent data management, which can be viewed as ar-
chitectural decisions, but give component developers the choice to implement 
their own solutions instead. 

All the models described above are supported by component technologies, 
including run-time infrastructures providing varying degrees of functionality. 
One of the smaller and simpler run-time infrastructures is that of COM. As 
discusses above, one consequence of this is that COM components are re-
quired to perform more “housekeeping” than when a richer run-time system 
is provided, as for .NET components. Developers of COM component are typi-
cally not required to write more housekeeping code, however, as this is most 
often provided by development environments in automatically generated 
code. This illustrates how one part of a component technology – development 
tools – can serve as a substitute for another – run-time infrastructure. The ex-
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ample of development tools to support COM components is interesting for 
another reason. While the run-time parts of a component technology can be 
viewed as the most central parts in some senses, e.g. they are typically the only 
part explicitly required by the component model specification, other parts are 
often essential as well. The widespread use of COM would be very unlikely 
without the comprehensive support for the model provided by tools like Mi-
crosoft Visual Studio [45]. Other development-time technologies include graphi-
cal GUI builders for ActiveX and JavaBeans, highly automated development 
environments for EJB, and the graphical Koala editor. Examples of deploy-
ment-time component technologies include those that support downloading 
and installing ActiveX controls and JavaBeans used on web pages. 

As noted by e.g. Wallnau and others [46], software component models are 
closely related to the concept of architectural styles. Thus, as discussed in the 
previous section, one may expect the choice of a component model to affect a 
system’s properties in a predictable way. The component models discussed 
above each defines one or more types of components as well as different ways 
in which such components may be connected. Not surprisingly, the object-ori-
ented systems style is evident in all these models. This style corresponds di-
rectly to the way that EJB systems and most COM-based systems are organ-
ized. ActiveX, JavaBeans, and CCM correspond to an object-oriented, event-
based systems style, which may also be used with COM/COM+. Recall that 
the primary assumed benefit of the object-oriented systems style is encapsula-
tion of implementation details, while the event-based systems style is assumed 
to result in increased extensibility. Koala differs from the other discussed 
models in that components are explicitly disallowed to contain references to 
other components. In a way, this resembles the pipe and filters style, and 
might be expected to promote reusability.  

The definition of architectural style presented in the previous section states 
that a style might include one or more semantic models that allow a system’s 
properties to be inferred from the properties of its parts. No such models are 
included in any of the component models discussed above, however, and this 
seems also to be the case for other models. This is being addressed by the 
Software Engineering Institute’s work on prediction enabled component technol-
ogy (PECT) [47]. A PECT is defined as consisting of a constructive model, which, 
like the component models discussed so far, supports the implementation of 
systems as assemblies of components, and a set of analytical models, which de-
fine techniques for predicting different properties of assemblies from the 
properties of their constituent components. 
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2.2.3 Software Component Services 
Software component services are a way to provide functionality in compo-
nent-based applications without components having to implement this func-
tionality or invoke operations that provide it. As described briefly in the pre-
vious section, component models like COM+, EJB, and CCM specify various 
such services of general use for distributed information systems. Software 
component services are a special case of what may be termed software ser-
vices. This dissertation deals in particular with services that are provided by a 
run-time system on the basis of declarative attributes as described below. 

The basic principle of software services and declarative attributes can be illus-
trated by the simple example of a console application on the Microsoft Win-
dows operating system. (This example was used by Don Box in a talk on 
COM+ at the 2000 Microsoft Tech-Ed Conference.) A console application is a 
program with character-based input and output. When such a program is exe-
cuted in any other way than entering its name on a command line – e.g. by 
double-clicking the program file in the Windows Explorer – a new console 
window is first created, and the program then executes while performing its 
input and output through that window. To create a new console window in 
Windows, a function of the Win32 API called AllocConsole is used [48]. How-
ever, when writing a console application, e.g. using Visual Studio, the pro-
grammer is not required to include a call to this function. Furthermore, the 
development environment does not automatically provide any code that calls 
AllocConsole and inspecting the executable file after building will reveal that 
the program does not call this function at all. Instead, the executable is marked 
with a flag (i.e. a declarative attribute) that informs the run-time system that it 
is a console application, and the system uses this information to create a new 
console window when needed. 

The console application example illustrates how declarative attributes can be 
used to augment software with functionality not implemented or invoked by 
the software itself. Naturally, this relies on a run-time infrastructure to inter-
pret the attributes and provide the requested services. This need may be filled 
by the operating systems, as in the example, or by some other software run-
ning on top of the operating system, e.g. middleware. An example of middle-
ware intended for embedded real-time systems is MEAD [49], which provides 
services for fault-tolerant real-time systems, such as application replication. 
Services are provided transparently by interception of messages between appli-
cations and the run-time system. This is achieved by dynamically linking ap-
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plications with an interceptor providing the same interface as the run-time 
system. Thus, applications can invoke operations without even being aware of 
the interceptor. The interceptor forwards invocations to the run-time system 
and performs any additional processing required to provide the desired ser-
vices. MEAD has been implemented on top of a CORBA implementation for 
real-time systems. 

In the case of software component services, the services in question are pro-
vided by a component model implementation and augment the functionality 
delivered by software components. Weinreich and Sametinger [50] define a 
component model implementation as providing a run-time environment and 
services. They furthermore distinguish between general services, which are in-
dependent of application domain, horizontal services, which targets multiple 
but not all domains, and vertical services, which are specialized for a particular 
domain. Typically, the vertical services are implemented on top of the hori-
zontal, which are in turn implemented on top of the general. Among the ex-
amples of general services that the authors mention are instantiation in object-
based models, location transparency in distributed models, and transaction 
handling in models for information systems. Thus, all the services mentioned 
in the previous discussion of component models are general. As examples of 
horizontal and vertical services, Weinreich and Sametinger mention com-
pound documents and the more specialized of the CORBA specification’s 
CORBAfacilities, respectively. 

A concrete example of software component services that rely on declarative 
attributes is COM+ services. As already noted, COM+ extends COM and 
DCOM with services of general use for distributed information systems, and 
these services are now also available for use with .NET components. Löwy [51] 
describes the services defined by version 1.0 of COM+. More services have 
been added in newer versions, but the simpler original version works well as 
an illustrative example. Unlike EJB and CMM, COM+ does not include any 
service for data persistence. Instead, COM-based applications can use ActiveX 
Data Objects (ADO) [52] and .NET applications the ADO .NET library [53] for 
accessing data bases. The list below summarizes Löwy’s description of the 
COM+ services. 

• Administration. Tools and services for configuring components and ap-
plications, such as the COM+ catalog. 
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• Just-in-time activation (JITA). Services for creating and discarding object 
instances. These play an essential role in supporting run-time services 
by interception, as described below. 

• Object pooling. Services that support sharing instances of frequently used 
and expensive resources between clients. This may often be used to im-
prove performance. 

• Transactions. Services for treating sequences of operations by distributed 
components as single atomic operations. This is a common requirement 
in commercial systems. 

• Synchronization. Services for controlling concurrent activities. 

• Security. Services that perform authentication and access control. 

• Queued components. Services for asynchronous and disconnected com-
munication between components. 

• Events. Services that provide publish-subscribe event notification. 

The administration services are mainly concerned with configuration of ser-
vices as declarative attributes, which may be specified on the application, 
component, interface, or operation level. The other services are run-time ser-
vices, which are mainly provided by interception of operation invocations. 
This is achieved by the use of proxy objects placed between components and 
clients. These are created along with other object instances by the JITA ser-
vices, which inspect the configurations in the COM+ catalog. COM+ uses the 
term lightweight proxies for the objects that implement services and the proc-
essing involved in providing a service is called performing a service switch. 
This terminology is probably intended to create an analogy with the proxy ob-
jects used in COM/DCOM to support invocation across process and machine 
boundaries, which involve performing context switches. COM+ proxies are 
lightweight in the sense that the overheads associated with service switches 
are only a fraction of those resulting from context switches. Another difference 
between COM+ and COM/DCOM proxies is that the former is generated at 
run-time. In the case where multiple services are required, e.g. both synchro-
nization and security, Löwy indicates that multiple proxies are created: 

The exact way the lightweight proxies mechanism is implemented is not docu-
mented or widely known. However, in this case, COM+ probably does not gen-
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erate just one lightweight proxy to do multiple service switches, but rather puts 
in place as many lightweight proxies as needed, one for every service switch. 

Figure 2-4 illustrates the use of two proxies to provide synchronization and 
security for an object’s operations. In this situation, an object C1 provides op-
erations to clients through an interface IC1. Due to the configuration in the 
COM+ catalog, the JITA services have created the two proxies and placed 
them between the object and its clients, as shown in the figure. Clients invoke 
the operations of the IC1 interface on the first proxy, which performs synchro-
nization between concurrent invocations and forwards invocations to the 
other proxy. This proxy, in turn, forwards invocations to the C1 object, while 
ensuring that security policies are met, e.g. by authenticating the identity of 
the calling clients and only forwarding invocations from authorized clients. 

 

Figure 2-4 Lightweight proxies to provide services in COM+ 

The use of proxies created at the time of object instantiation is a practical way 
of implementing interception. Since the operations of COM objects are in-
voked via interface pointers, which are based on simple function pointers, 
there is no straightforward way for the run-time system to intercept invoca-
tions made directly to a COM object. A proxy always implements the same set 
of interfaces as the object it encapsulates, thus preserving interface navigation. 
The fact that proxies are generated by the JITA services at run-time means that 
instantiation must take some additional time in COM+. An alternative ap-
proach that might result in less additional time would be to generate and store 
proxy object implementations at configuration time. 
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2.2.4 Component-Based Software Engineering Practices 
As already mentioned, CBSE denotes the practice of assembling software from 
existing components. Thus, in comparison to traditional software engineering, 
the activity of assembling replaces that of programming. In practice, however, 
some programming is usually needed to make a set of independently devel-
oped component work together. Furthermore, traditional development mod-
els, where design and implementation follows strictly from a preceding stage 
of requirements identification, is less suited for CBSE, where it is usually nec-
essary also to adjust requirements to match what available components can 
offer. For reference, Figure 2-5 is a simple UML activity diagram illustrating 
the traditional waterfall model of software development [54]. In more modern 
models, such as the Rational Unified Process [10], these activities are repeated 
iteratively. 

Requirements 
identification Design Implementation Verification 

& Validation
 

Figure 2-5 Waterfall model of software development 

Among the first to address the particular practices required for component-
based software in a systematic fashion were Brown and Wallnau [55], who de-
fine a reference model for such systems. As illustrated in Figure 2-6, the model 
focuses on the system as a set of components that progress through various 
states during development and evolution. Off-the-shelf components are pre-
existing components that may have been acquired externally or reused from 
previous projects within the development organization. They are character-
ized by having hidden interfaces, where interface is interpreted to include not 
only a functional description but also all other information that is needed to 
use a component. Qualification is the process of discovering the hidden parts 
of the interfaces. The qualified components are subsequently adapted to re-
move architectural mismatch – i.e. mismatched assumptions about the sys-
tem’s architecture [26]. Adaptation is usually accomplished by writing wrap-
pers. The adapted components are composed according to a selected architec-
tural style. As discussed in the previous section, selecting a component model 
in part determines this architectural style. Composition may include writing 
some additional code, which is often call glue code. The system finally enters a 
stage of evolution where component may be updated.  
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Figure 2-6 Reference model for composition of software components 

A central aspect of this model is the assumption that components initially have 
hidden interfaces, which is particularly important when using commercial 
components. This work has been extended by Wallnau and others [56], with 
an even more pronounced focus on commercial components. A central con-
cept of the work is that of an assembly – a set of interoperating components that 
may form part of a system. It is for instance argued that assemblies are more 
useful as units of evaluation and selection than individual components. 

In other component-based systems, as in that of the industrial case study pre-
sented in this dissertation, components are implemented to comply with pre-
specified interfaces. In these cases, the activities of requirements identification 
and design will be less different from traditional software engineering, since 
there is no evaluation, selection, qualification, or adaptation of existing com-
ponents. However, an essential goal of the design activity is to identify the 
components to be developed and allocate functionality to them. This can be 
seen as input for identifying requirements for each component, which can 
subsequently be independently developed and tested. This leads to a form of 
nested development process where similar activities are performed on both 
system and component levels. Based on the waterfall model in Figure 2-5, this 
can be depicted as in Figure 2-7. 
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Figure 2-7 Waterfall model adopted for component-based software development 

In addition to the practices of developing component-based system, the lit-
erature also discusses non-technical aspects of CBSE. For instance, Szyperski 
[24] points out that a component market of critical size is needed for the de-
velopment of commercial components to represent a viable business op-
portunity. Another example is Heineman and Councill’s book [25], which cov-
ers regulatory and legal issues, such as the applicability of commercial law to 
software components. 

2.3 Embedded Real-Time Systems 
Embedded real-time computing systems occur as part of many different prod-
ucts and systems, including cell phones, refrigerators, cars, airplanes, and in-
dustrial plants. A persistent trend in the development of such systems is the 
increasing amount of functionality implemented in software. For instance, as 
noted by Atkinson and others their book [57], the amount of software in cars 
has grown from about 100 kilobytes 15 years ago to a projected 1 gigabyte in 
the latest high-end models. In the foreword to the book, Gemund notes that 
the development of such software tend to be costly and cites estimated costs of 
US $15-30 per line of code in consumer products, $100 in defense applications, 
and $1000 in highly critical systems like space shuttles. Thus, a primary chal-
lenge related to embedded real-time systems is improved methods for cost ef-
ficient development of software for such systems. 
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2.3.1 Definitions of Embedded Real-Time Systems 
There are many definitions of real-time systems in the literature, most of 
which states that the correctness of such system depends not only on com-
puted outputs, but also on the times at which these outputs are delivered. It 
has been argued that the term “depending on time” is quite vague and may be 
used to argue that any computer system is a real-time system – e.g. any useful 
system must produce output in finite time. In one of the more influential 
books on real-time systems [58], Laplante attempts to formulate a more precise 
definition of real-time software systems by first defining the concept of re-
sponse time: 

The time between the presentation of a set of inputs to a software system and 
the appearance of all the associated outputs is called response time of the soft-
ware systems. 

Based on this, the following definition is given: 

A real-time system is a system that must satisfy explicit (bounded) response-time 
constraints or risk severe consequences, including failure. 

This is furthermore augmented with a definition of what it means for a system 
to fail: 

A failed system is a system that cannot satisfy one or more of the requirements 
stipulated in the formal systems specification. 

Thus, in order to avoid failure, the design of a real-time software system must 
ensure that the system can meet its response time requirements. A conse-
quence is that the software may only be run on top of a platform that allows 
such assertions to be made. Today, this is most often achieved by using a real-
time operating system (RTOS) based on pre-emptive priority-based scheduling [59]. 

Laplante furthermore notes that systems that must meet explicit response time 
constraints to avoid failure (as in his definition) are sometimes called hard real-
time systems. Conversely, systems where failing to meet response time con-
straint results in degraded performance, but not outright failure, are called soft 
real-time systems. Again, it can be argued that this is the case for all computer 
systems, as some bound on response times must be set for acceptable per-
formance. The term firm real-time systems is sometimes used to distinguish 
those systems with absolute response time constraints where some low prob-
ability of failing to meet constraints is acceptable.  
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The IEEE’s glossary of software engineering terminology (IEEE Std 610.12-
1990) [60] defines the term real-time as follows: 

Pertaining a system or mode of operation in which computation is performed 
during the actual time that an external process occurs, in order that the compu-
tation results can be used to control, monitor or respond in a timely manner to 
the external process. 

An interesting aspect of this definition is that it focuses on a system’s purpose 
of controlling or monitoring an external process. Thus, the meaning of the 
term “timely manner” depends on the external process and the system’s pur-
pose and need not be generally defined more precisely. A reasonable assump-
tion is that the term “external process” is not used with a human user (inter-
acting with the system through a keyboard, mouse, and monitor) in mind, but 
rather some equipment whose timing is determined by the laws of physics. 

This glossary also provides a definition of an embedded computer system: 

A computer system that is part of a larger system and performs some of the re-
quirements of that system; for example, a computer system used in an aircraft 
or rapid transit system. 

Thus, this definition states that an embedded system is part of a larger system 
and, apart from that, relies on a couple of examples to convey the meaning of 
the term. Li and Yao [61] note that no single comprehensive definition of the 
term exists, but still manage the following, which is somewhat more informa-
tive than that of the glossary: 

Embedded systems are computing systems with tightly coupled hardware and 
software integration, that are designed to perform a dedicated function. The 
word embedded reflects the fact that these systems are usually an integral part 
of a larger system, known as the embedding system. 

This definition includes the additional information that software is tightly 
coupled with hardware and that both are designed to perform a dedicated 
function. Laplante has a similar view of an embedded software system as be-
ing completely encapsulated by the hardware it controls. This is contrasted 
with an organic system, not highly dependant on the hardware on which it 
runs. A semi-detached system is a software system that displays characteristics 
of both embedded and organic systems. Since an embedded system is de-
signed to perform a dedicated function, an RTOS intended for such systems 
should support tailoring to different hardware configurations [62]. 
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2.3.2 Industrial Control Systems 
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Figure 2-8 Typical configuration of industrial information and control systems 

A specific application domain within the broader domain of embedded real-
time systems is industrial control systems, which are computer systems that con-
trol physical processes and equipment. More specifically, they are used in the 
control of industrial plants. In practically all cases, these are distributed sys-
tems in which control functions are performed by several nodes that commu-
nicate via different types of networks. Typically, these nodes also communi-
cate with other computer systems, such as different types of servers and work-
stations. The controllers and field devices are furthermore connected to physi-



48 Chapter 2 State of the Art and Related Work 

cal processes and equipment to be controlled. Figure 2-8 illustrates a typical 
configuration of interconnected information processing and control nodes in 
an industrial system. Industrial control systems is given particular attention in 
this dissertation, as the development of such a system is the topic of the indus-
trial cases study and the example systems used in the other empirical studies 
are also taken from this domain. 

This system comprises different types of computers and other devices that 
communicate over different networks. The client/server network is used for 
communication between servers and between servers and workplaces. In 
some cases, a computer may be used as both a server and a workplace. The 
network may be connected to a corporate intranet via a router and further to 
the Internet via a firewall. The control network connects servers and control-
lers. In small systems, the control and client/server networks may be com-
bined in one physical network. Different types of fieldbuses are used to inter-
connect field devices and to connect them to the rest of the system, either via 
controllers as the figure shows or directly to servers. In some cased, fieldbuses 
and the control network may share the same physical medium. 

It is customary to divide the functionality of this kind of systems into different 
levels, where the functions of each level depend on those of the lower levels. 

• The workplace level comprises different types of user interaction. A typi-
cal example is the software used by operators in control rooms to view 
and possibly alter the state of the controlled processes. This level also 
includes applications for such task as analysis of process data and con-
figuration of process equipment. Applications usually run on PCs or 
other types of workstations, which may be attached to the client/server 
network, an intranet, or the Internet. 

• A central function of the server level is to collect and store process data, 
which is used by different types of applications. These are typically cli-
ent-server applications where data presentation is implemented on the 
workplace level and the majority of computation and storage on the 
server level. In addition, data and commands, possibly originating in 
the Workplace level, may be sent to process equipment. The server level 
may also include functions, such as optimization, that determine long-
term control strategies. Servers that provide this functionality are con-
nected to the client/server network and possibly the control network. 
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• The main function of the control level is the execution of control software 
by dedicated controllers. Typically, these repeatedly read values from 
sensors and computes values to be written to actuators, thus implement-
ing sampled control loops, as discussed further at the end of this section. 
Control applications may be much more complex, however, for instance 
including sophisticated communication with other devices. Controllers 
are attached to the control network and possibly to fieldbuses. 

• The field level comprises functions performed by different types of field 
devices. The simplest of these are I/O modules, which perform transla-
tions between physical signals and controller data. There may also be 
more advanced devices, such as smart sensors and actuators, which may 
be connected to a controller or directly to a server. Field devices often 
communicate over fieldbuses. 

These levels are defined from the premise that the functions within each may 
require the presence of functions at lower levels but should be able to operate 
independently of higher-level functions. In addition, the functions within each 
level share characteristics that affect (among other things) the design of the 
software that implements them. One example is the different real-time and 
performance requirements. The control and field levels are dominated by hard 
and soft real-time deadlines, which often mandate the use of real-time operat-
ing systems. Often, the nodes on these levels are based on standards for pro-
grammable controllers, such as IEC 61131 [63], instead of relying on applica-
tions built directly on top of the operating system. To ensure availability, re-
dundant hardware architectures may be used, in which the actual control of 
the process is performed by a primary processor, with additional processors 
working in stand-by mode and able to take over in case the primary processor 
fails.  

Although the functions in the server layer may also be subject to response-
time requirements, they tend to be dominated by a desire to maximize average 
throughput. Thus, they are usually implemented on top of general-purpose 
operating systems, such as Windows or Unix, and other platform products, 
such as database management systems. This furthermore makes the use of 
component technologies, such as COM+ and EJB, a realistic possibility. Re-
dundancy may also be employed at this level, typically in the form of server 
groups. Unlike in the redundant architectures used at the lower levels, the 
servers in a group usually perform load balancing. Thus, if one server fails, the 
system will continue to operate with reduced performance. The user interface 
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functions of the workplace level are usually not subject to real-time require-
ments. They are often implemented using graphical design tools and possibly 
such technologies as ActiveX controls and JavaBeans. 

Another characterizing feature of the levels is the difference in product life cy-
cles. As a general rule, hardware and software components at lower levels are 
updated less often than at higher levels. According to experiences from ABB, 
applications have a life span of 3–5 years at the workplace level, 5–8 years at 
the server level, 8–15 years at the controller level, and 10–20 years at the field 
level. One result of this is that applications at one level are often required to 
work with legacy applications at lower levels, but less often at higher levels. 
For instance, new releases of client applications at the workplace level typi-
cally need to work with existing server software, while it is more common for 
new releases of server software also to require updated client applications. On 
the other hand, new server releases are usually required to support legacy 
hardware and software at the control and field levels. This difference in life 
cycles is in part motivated by the unidirectional dependence between the lev-
els, which means that updates at one level is likely to disturb functions at all 
higher levels. Thus, in general, upgrades at lower levels entail more wide-
spread disturbances and associated costs. Another factor that tends to make 
product updates more costly at, in particular, the control and field levels, is the 
possible need of disrupting the controlled process. 

As already mentioned, applications at the workplace and server levels are of-
ten organized as client-server applications, where the server level is responsi-
ble for any communication with controllers and field devices. To simplify the 
implementation of client applications that can work with equipment from dif-
ferent vendors, a COM-based standard called OLE for Process Control (OPC) 
[64] has been created. OPC defines a set of COM interfaces for supporting ba-
sic data access as well as such functionality as alarm and event handling, his-
toric data access, batch processing, etc. Many vendors of process equipment 
now provide OPC servers that implement (a subset of) these interfaces, which 
client applications can access using DCOM. The OPC standard is managed by 
an industry association called the OPC Foundation, which has over 400 mem-
ber organizations and lists more than 140 manufacturers of OPC-compliant 
products.  A standard that can be used for communication between servers 
and controllers is the Manufacturing Message Specification (MMS) [65], which 
specifies services suitable for such applications as data exchange and 
download of control software. There are also standards for communication 
between controllers, such as IEC 61131-5 [66]. As for the field level, a number 



 2.3   Embedded Real-Time Systems 51 

of fieldbuses have been standardized [67], some of which are particularly 
popular within certain industry sectors or geographical areas. A strong current 
trend is the increased popularity of fieldbuses based on standard network 
technologies, such as TCP/IP and Ethernet. 

A very common function in industrial control systems, especially in the con-
trol level, is sampled control loops [68], which are also found in many other 
control systems, e.g. in vehicles, household appliances, and medical equip-
ment. Control applications can be categorized into continuous, discrete, and hy-
brid control. In the first category, a controller samples continuous signals at 
regular intervals and computes streams of data to produce approximations of 
continuous output signals. An example application is the control of a valve to 
keep the flow of a fluid constant in the presence of varying supply pressure. In 
the second category, the controller reacts to discrete events and affects discrete 
actions. For instance, a controller could detect the level of fluid in a tank reach-
ing minimum or maximum levels, and turn the supply on or off accordingly. 
Hybrid control applications combine both the other two types of control. 

Continuous control applications can further be divided into closed-loop control 
and open-loop control. In the case where a single output of a physical process is 
being controlled using closed-loop control, the controller measures this out-
put, called the controlled variable, and compares it with the desired value, the 
reference. Based on the difference, an input signal to the process, called the ma-
nipulated variable, is produced to drive the output in the desired direction. In 
this way, the controller can make the process output track a variable reference, 
or keep it constant in the presence of external disturbances. Figure 2-9 illus-
trates the principle, which is also known as feedback control. For simplicity, sen-
sors and actuators are not shown, but taken to be part of the controller. 
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Manipulated
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Disturbance

 

Figure 2-9 Closed-loop control system 
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In some cases, it may be advantageous to use the principle of open-loop con-
trol, also called feed-forward control. As illustrated in Figure 2-10, the controller 
measures the disturbance and sets the manipulated variable so as to keep the 
process output equal to the reference. This requires that the process is well 
understood so that the combined effect of the measured disturbance and the 
computed input can be accurately predicted. In addition to pure closed-loop 
and open-loop applications, there are applications where both the disturbance 
and the process output are measured. Also, there are multi-variable control ap-
plications in which multiple process variables are measured and controlled. 
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Figure 2-10 Open-loop control system 

In the purest form of discrete control, the controller is only equipped with 
digital (i.e. binary) inputs and outputs, and the control software can be viewed 
as emulating digital electronic circuits. This has been utilized in graphical pro-
gramming tools. Figure 2-11 shows a simple example of such a program in 
which the output “Run” becomes true when the input “Start” becomes true, 
and then stays true until the input “Stop” becomes true. The block marked 
“≥1” is a logical or-gate and the block marked “&” is a logical and-gate with its 
lower input inverted. 

&Start

Stop

Run
≥1

 

Figure 2-11 Example logic for discrete control system 

In continuous control loops, the process is usually modeled as a system of dif-
ferential equations, with the inputs and outputs being functions of time. Often, 
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the controls software is also implemented so as to approximate a system of 
differential equations. In such systems it is essential that the frequency with 
which the controller reads input signals and updates output signals, the sam-
pling frequency, is sufficiently high to ensure faithful approximation of the con-
trol equations. This translates into a response time constraint on the computa-
tions the controller performs at each sample. In a programmable controller, the 
programmer should be able to set the sampling frequency, and this frequency 
should be guarantied with some accuracy. This leads to hard real-time re-
quirements for the controller product. In discrete and hybrid control, real-time 
requirements also occur to ensure the timing of actions in relation to events. 

A particularly common type of closed-loop control is called proportional-
integral-differential (PID) control. In this simple type of control, the manipu-
lated variable m is computed from the error variable e – i.e. the difference be-
tween the current and desired value – as in the formula below. 
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The code below shows how this can be approximated in software. The code is 
written in the Structured Text language, which is one of the programming lan-
guages defined in the IEC 61131-3 standard [69]. 

Error := Reference – Input; 
Sum := Sum + Error; 
Output = Kp*Error + Ki*Sum*T + Kd*(Error – Err_old)/T; 
Err_old := Error; 

Traditionally, controller products have been designed for either continuous or 
discrete control. Two important categories of programmable controller prod-
ucts have been distributed control systems (DCSs) for continuous control and 
programmable logic controllers (PLCs) for discrete control. In the past, PLCs usu-
ally only supported simple computations on digital data, and the costs for 
these were considerably lower than for DCSs, which were required to perform 
at least numerical computations. However, the dramatic reduction in the price 
of computing hardware has resulted in both more sophisticated PLCs and less 
expensive DCSs, trends that have lead to a convergence of these product cate-
gories into a single category of products often called programmable controllers. 
Such products still vary considerably in e.g. price and functionality, though.  
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2.3.3 Software Components in Embedded Real-Time Systems 
As already noted, software components and component models are not widely 
used in embedded real-time systems and the dominant research direction is 
the definition of new component models for this domain. Typical characteris-
tics of such models include source code components, static system configura-
tion, and relatively narrow application domains. An example is the Koala 
component model for consumer electronics software, which was briefly de-
scribed above. Other examples of such component models include PECOS [70] 
for field devices and SaveCCM [71] for vehicle control systems. Presumably, 
models are designed to exhibit such characteristics in order to ensure that sys-
tems can meet their requirements with respect to timing predictability, re-
source usage, and other important quality attributes in the domains targeted 
by the specific component models.  

Möller and others have attempted to capture the requirements for component 
models to be used for embedded real-time systems [72].  They base their work 
primarily on interviews with senior technical staff from different companies. 
The work is slanted towards safety-critical software for heavy vehicles. Based 
on the interviews, the authors formulate technical requirements and develop-
ment requirements. In addition, they present derived requirements, based on 
perceived implicit information from the interviews. The technical require-
ments are summarized in the list below. 

• Analyzable. As the participating companies strive for better analysis of 
system behaviors, it is desirable for a component model to support such 
analysis. Provided that each component is tested and deemed function-
ally correct, the main analysis issues are related to composition and ex-
tra-functional properties, including timing. 

• Testable and debuggable. Testing and debugging must be possible and 
supported by tools. It is desirable that components are tested in isolation 
before being integrated in the system. 

• Portable. Components and supporting infrastructure should be as plat-
form independent as possible, such that they can be ported to different 
operating systems and hardware with minimal effort. Ideally, compo-
nents should even be as independent as possible from the infrastructure. 

• Resource constrained. As the affected products are sensitive to computing 
hardware costs, the resource usage of components and infrastructure 
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should be minimized. Ideally, the use of components should not result 
in any run-time overhead. 

• Component modeling. The component model should be based on a stan-
dard modeling language, such as UML. Developing new modeling 
techniques is not considered economically feasible. 

• Computational model. Components should be passive, i.e. not contain 
their own threads of execution. A computational model where compo-
nents are allocated to threads during composition is desirable. 

Next, the authors present a set of requirements related to the development 
process, which are briefly described in the list below. 

• Introducible. To manage costs and risks, it should be possible to adopt 
the component model gradually 

• Reusable. It must be possible to reuse components in other systems than 
that for which they were originally developed. Ideally, it should even be 
possible to reuse components in systems based on different platforms. 

• Maintainable. Components should be easy to change and maintain with-
out breaking existing systems. Tool support is desirable, e.g. to support 
versioning. 

• Understandable. To minimize effort and increase quality, the component 
model and systems based on it should be easy to understand. The im-
plementation of error prone functions should desirably be supported by 
tools, e.g. utilizing automatic code generation. 

Based on the above requirements, which were explicitly expressed in the in-
terviews, the authors have synthesized two derived requirements, which are 
summarized below. 

• Source code components. To allow white-box testing, source code compo-
nents are preferable to binaries. The aim is not to modify components, 
so a glass-box approach may be sufficient, although it may desirable to 
perform compile-time optimization to reduce resource usage. 

• Static configuration. In the interest of analyzability, testability, limited re-
source usage, and understandability, compile-time configuration of sys-
tems is preferable to run-time configuration. 
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The derived requirements, along with the focus on the relatively narrow ap-
plication domain of safety-critical software for heavy vehicles, place this work 
within the main research direction identified above. As already noted, this dis-
sertation explores an alternative to this direction, by investigating the possi-
bilities of using a model based on binary components and using COM as the 
starting point. In the following, the technical and development requirements 
listed above are compared to the characteristics of binary components and 
COM. 

Analyzability is not a characteristic of COM components or binary executable 
software in general. To be able to analyze the behavior of systems built from 
COM components, suitable models describing the behavior of each component 
is required in addition to the components themselves. A component supplier 
might be responsible for providing such models and guaranteeing that the ex-
ecutable component complies with the models. Testing and debugging of 
COM components and component-based systems has strong tool support, 
most notably in Visual Studio. If component source code is available, debug-
ging of systems can be performed in a white box fashion. COM does not pre-
scribe a programming language for implementing components, and the port-
ability of components is largely dependent on how they are programmed. The 
COM run-time system is probably fairly simple to port to different platforms, 
due to its relative simplicity. As demonstrated in later chapters of this disserta-
tion, the use of COM results in some time and memory overheads but these 
are very modest, as is the size of the COM run-time system. COM defines its 
own language for defining interfaces, and translation between this language 
and UML is straightforward. UML is also suitable for specifying systems 
based on COM components. In fact, parts of UML are based on notations first 
used in connection with COM. A COM component is basically passive, as its 
methods must be invoked by a client for any code in the component to be exe-
cuted. There is, however, no rule that prevents a component’s methods from 
creating new threads, thereby making the component active.  

As demonstrated in the industrial case study in Chapter 5, COM is well suited 
for gradual adoption. This is, in fact, a major reason that the model is adopted 
as part of the evolutionary approach of this dissertation. COM supports reus-
ability through the separation of interfaces and implementation. There are no 
advanced facilities, such as parameterization, to enhance reusability further, 
however. But as COM gives component developers a high degree of freedom 
with respect to how components are implemented, it is quite possible to 
achieve increased reusability through recompilations, possibly using pro-
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gramming language mechanisms for e.g. parameterization. The maintainabil-
ity of a COM component depends largely on how it is programmed. COM de-
fines a standard policy of versioning, and observing this policy reduces the 
risk that a component change breaks existing systems. COM is sometimes con-
ceived as complicated by developers not familiar with the model. Its wide-
spread use in the desktop and information system domains, however, means 
that there are a high number of developers who understand the model well. 
COM has support for automatic handling of synchronization through apart-
ments and communication through DCOM. The approach proposed in this 
dissertation introduces more flexible support for synchronization as well as 
services to support other functions, such as timing and execution control. 

As the above discussion shows, the use of binary software components for 
embedded real-time systems is not seriously at odds with the requirements 
expressed by industrial participants in an interview study. Although the main 
research direction is still source code components and static configuration, 
some approaches based on binary components have recently been proposed. 
One of these is the Robocop component model [73], which is based on Koala 
and also targets the consumer electronics domain. The primary goal of this 
model is to combine the robustness and reliability of models like Koala with 
the flexibility of models like COM, especially with respect to run-time up-
grades. A Robocop component, which is also called a component package, con-
sists of a number of optional models, each of which may be human-oriented or 
machine-oriented. An example of a human-oriented model is documentation 
and examples of machine-oriented models include simulation models, inter-
face models, and executable models. A component’s executable model is also 
called an executable component and corresponds to a software component as 
defined in Section 2.2.1. In this way, Robocop distinguishes the units of trad-
ing – component packages – from the units of deployment – executable com-
ponents. Since this dissertation is concerned with software components in the 
latter sense, the following discusses Robocop executable components in some 
more detail. 

A Robocop executable component is similar to a COM component in many 
ways. It provides a set of services, each providing and possibly requiring a set 
of named interfaces. Such a service plays the same role as an object in COM and 
are subject to instantiation, while interfaces are identical to those of COM. Dif-
ferences are that the interfaces of a service are named – allowing one service to 
provide and require multiple copies of interfaces of the same type – and that a 
service can only invoke the services of other components and the run-time sys-
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tem through explicitly required interfaces. The named interfaces are similar to 
ports in UML 2.0 and the terms interface and port are used as synonyms in Ro-
bocop. Executable components can be specified in the Robocop Interface Defini-
tion Language (RIDL). Below is an example RIDL specification of a component 
similar to the COM component used in the example application in Chapters 6 
and 7. For brevity, the definition of the interfaces IActuator and ISensor are left 
out as well as most of the definition of IController. These interfaces should 
contain essentially the same operations as in those chapters. The ellipses 
within brackets are placeholders for the specification of GUIDs. 

interface IController {…} { 
   void set_DesiredValue(in double value); 
   void Start(); 
   … 
}; 
 
service SController {…} { 
   provides { 
      IController controller; 
   }; 
   requires { 
      IActuator actuator; 
      ISensor sensor; 
   }; 
}; 
 
service SPIDController {…} { 
   complies SController; 
   … 
}; 
 
component CPIDController {…} { 
   provides SPIDController 
}; 

The example illustrates how components are specified by referring to the ser-
vices they provide, which are in turn specified by referring to the interfaces 
they provide and require and assigning names to these. Unlike in COM, ser-
vices are not specified inside component specifications, and a service can be 
provided by several different components. In addition to the explicitly speci-
fied services, all components implement a special service termed the service 



 2.3   Embedded Real-Time Systems 59 

manager, and all service provide an interface derived from rcIService that can 
be used to retrieve pointers to a service’s provided interfaces and supply a ser-
vice with pointers for its required interfaces, called binding.  

The example also illustrates the use of a “complies-with” relationship in the 
specification of the service called SPIDController. The meaning of the rela-
tionship is that SPIDController provides at least the same interfaces as 
SController and requires the same interfaces as SController. Thus, any 
code written to work with SController will also work with SPIDControl-
ler. This is an example of syntactic substitutability as described in Chapter 3. 
The ellipsis in the SPIDController specification is a placeholder for the re-
maining parts of the service specification. It should include the same provided 
and required interface as for SController and may include additional pro-
vided interfaces. It may not include any required interfaces that are not also 
required by SController. In general, an entity can be substituted for another 
also if it requires fewer interfaces. In Robocop, however, the complies-with 
relation requires the sets of required interfaces to be identical, since a service’s 
scIService interface contains one binding operation for each required interface. 
Thus, if a service required fewer interfaces than another service, the scIService 
interface of the former would provide fewer operations than that of the latter 
and substitution would not be possible. As the complies-with relation is ex-
plicitly specified, however, it would probably be quite easy to allow the com-
pliant service to have fewer required interfaces and provide an scIService in-
terface with null-operations for binding of the “lacking” interfaces. 

Robocop also specifies a component model implementation called the Robocop 
Runtime Environment (RRE), which is similar to the COM library in some ways.  
For example, a primary function of the RRE is to support instantiation of ser-
vices, through a mechanism similar to that of COM. Upon request of a service 
instance, the RRE looks up the component providing the service and its physi-
cal location in the RRE Registry. It then loads the component if necessary and 
retrieves its service manager, which creates the requested service instance. If 
the service is provided by multiple components, the RRE is free to choose 
which component to use for instantiation. If a registered service complies with 
the requested service, the RRE can instead provide an instance of the former. 
A primary goal of Robocop is to provide the possibilities for run-time compo-
nent upgrades lacking in Koala. This is achieved by the Robocop Download 
Framework. This framework consists of five roles, which may run on the target 
device or other nodes. The initiator role initiates and coordinates the download 
process in response to an external event. To verify the presence of all entities 
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involved in the process, it communicates with a locator.  The locator locates a 
repository containing the component to be downloaded, the target of the 
download, and a decider. The role of the decider is to determine whether it is 
possible to download the component to the target, which is done by matching 
profiles obtained from the repository and the target. If the decider confirms 
that the download can be performed, the initiator either informs the reposi-
tory, which pushes the component to the target, or the target, which pulls the 
component from the repository. In either case, the target completes the process 
by registering the component.  

Since its initial development, the Robocop model has been extended by the 
projects Space4U [74] and Trust4All [75]. While the former focuses on off-line 
prediction of run-time properties of Robocop system, based on scenarios and 
simulations, the latter introduces run-time mechanisms resembling the ap-
proach to software components services presented in this dissertation. The 
topic of the Trust4All project is fault management, which is achieved by inter-
ception of invocations of operations on Robocop interfaces, which also in-
cludes invocations of system operations by components. The interception is 
performed by software entities called middlemen, which are inserted when 
components are bound to each other or to the run-time systems. These mid-
dlemen, which correspond to proxy-objects in COM+ and the approach pre-
sented later in this thesis, are generated at bind-time (i.e. at run-time) by an 
extension of the RRE called the Middleman Generator (MG). The function of a 
Trust4All middleman is to first detect failures by comparing the invocations it 
intercepts with a behavior model for the component in question. If an invoca-
tion is not considered a failure, it is forwarded to the proper receiver. When a 
failure is detected, the middleman tries to diagnose the failure, i.e. determine 
the fault that caused it, by the application of symptom rules. Next, it attempts to 
identify the best action to repair the fault by applying a set of repair rules. 
When the best action has been found it is taken, which can be done in several 
different ways. For instance, the component can be informed about the sus-
pected fault and try to repair it itself. Alternatively, the middleman may retry 
failed invocations or restart the component in question. A key concept of 
Trust4All is that pre-specified symptom and repair rules cannot be expected to 
be optimal. Therefore, the run-time system monitors the success rates of diag-
nostics and repair actions, as well as measured costs of repair actions. The 
rules are then updated to maximize the expected success rate and minimize 
the expected costs for future diagnostics and repair actions.  
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The Robocop component model is similar to the approach proposed in this 
dissertation, since it uses binary components and is inspired by COM. Its con-
cept of services, however, should not be confused with the concept of software 
component services described in Chapter 6 of this dissertation. On the other 
hand, the extensions provided by the Trust4All project are similar to the latter 
concept, since they use interception of operation invocations to augment the 
functionality of software components. The main difference between Trust4All 
middlemen and the proxies of the approach proposed in this dissertation is 
that middlemen are generated at run-time while the proxies are generated and 
compiled off-line. Still, the fault management concept of Trust4All could very 
well have been implemented as a software component service in the latter ap-
proach. The fact that proxies are generated off-line would not prevent them 
from using a set of symptom and repair rules that could be dynamically up-
dated. 
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3.1 Introduction 
In its simplest form a software component contains some code (that can be exe-
cuted on certain platforms) and an interface that provides (the only) access to 
the component. The code represents the operations that the component will 
perform when invoked. The interface tells the component-user everything he 
needs to know in order to deploy the component. Components can of course 
be deployed in many different contexts. 

Ideally, components should be black boxes, to enable users to (re)use them 
without needing to know the details of their inner structure. In other words, 
the interface of a component should provide all the information needed by its 
users.  Moreover, this information should be the only information they need. 
Consequently, the interface of a component should be the only point of access 
to the component. It should therefore contain all the information that users 
need to know about the component's operations (that is, what its code enables it 
to do) and its context dependencies (that is, how and where the component can 
be deployed). The code, on the other hand, should be completely inaccessible 
(and invisible), if a component is to be used as a black box.  

The specification of a component is therefore the specification of its interface. 
This must consist of a precise definition of the component's operations and 
context dependencies and nothing else. Typically, the operations and context 
dependencies will contain the parameters of the component. 
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The specification of a component is useful to both component users and com-
ponent developers. For users, the specification provides a definition of its inter-
face, viz. its operations and context dependencies. Since it is only the interface 
that is visible to users, its specification must be precise and complete. For de-
velopers, the specification of a component also provides an abstract definition 
of its internal structure. Whilst this should be invisible to users, it is useful to 
developers (and maintainers), not least as documentation of the component. 

In this chapter, we discuss the specification of software components. We will 
identify all the features that should be present in an idealized component, in-
dicate how they should be specified, and show how they are specified using 
current component specification techniques.  

3.2 Current Component Specification Techniques 
The specifications of components used in practical software development to-
day are mostly limited to what we will call syntactic specifications. This form 
of specification includes the specifications used with technologies such as Mi-
crosoft’s Component Object Model (COM) [1], the Object Management 
Group’s Common Object Request Broker Architecture (CORBA) [2], and Sun’s 
JavaBeans [3]. The first two of these use different dialects of the Interface Defi-
nition Language (IDL) while the third uses the Java programming language to 
specify component interfaces. In this section, COM is mainly used to illustrate 
the concepts of syntactic specification of software components. 

First, we take a closer look at the relationships between components and inter-
faces. A component provides the implementation of a set of named interfaces, 
or types, each interface being a set of named operations. Each operation has 
zero or more input and output parameters and a syntactic specification associ-
ates a type with each of these. Many notations also permit a return value to be 
associated with each operation, but for simplicity we do not distinguish be-
tween return values and output parameters. In some specification techniques 
it is also possible to specify that a component requires some interfaces, which 
must be implemented by other components. The interfaces provided and re-
quired by a component are often called the incoming and outgoing interfaces 
of the component, respectively.  

Figure 3-1 is a UML class diagram [4] showing the concepts discussed above 
and the relationships between them. Note that instances of the classes shown 
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on the diagram will be entities such as components and interfaces, which can 
themselves be instantiated. The model is therefore a UML metamodel, which 
can be instantiated to produce other models. It is worth noting that this model 
allows an interface to be implemented by several different components, and an 
operation to be part of several different interfaces. This independence between 
interfaces and the components that implement them is an essential feature of 
most component specification techniques. The possibility of an operation be-
ing part of several interfaces is necessary to allow inheritance, or subtyping, 
between interfaces. The model also allows parameters to be simultaneously 
input and output parameters. 
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Figure 3-1  UML metamodel of the concepts used in syntactic specification of software 
components 
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The model presented above is intended to be a generic representation of the 
relationships between components, interfaces, and operations. In practice, 
these relationships vary between specification techniques. For example, one 
can distinguish between object-oriented specifications and what might be 
called procedural specifications. In this chapter we will only consider object-
oriented specifications that are used by current technologies.  This leads to no 
loss of generality, as procedural specification can be seen as a special case of 
object-oriented specification. There are subtle differences in the precise nature 
of the relationship between a component and its interfaces in different object-
oriented specification techniques. In COM, for example, a component imple-
ments a set of classes, each of which implements a set of interfaces. The state-
ment that a component implements a set of interfaces thus holds by associa-
tion. In more traditional object-oriented specification techniques, a component 
is itself a class that has exactly one interface. The statement that a component 
implements a set of interfaces still holds, because this interface can include, or 
be a subtype of, several other interfaces. 

 As an example of a syntactic specification, we now consider the specification 
of a COM component. Below is a slight simplification of what might be the 
contents of an IDL file. First, two interfaces are specified, including a total of 
three operations which provide the functionality of a simple spell checker. 
Both interfaces inherit from the standard COM interface IUnknown. (All COM 
interfaces except IUnknown must inherit directly or indirectly from IUnknown. 
See [1] for more information about the particulars of COM.) All operations re-
turn a value of type HRESULT, which is commonly used in COM to indicate 
success or failure. A component is then specified (called a library in COM 
specifications), this implementing one COM class, which in turn implements 
the two interfaces previously specified. This component has no outgoing inter-
faces. 

interface ISpellCheck : IUnknown 
{ 
   HRESULT check( 
      [in] BSTR *word, [out] boolean *correct); 
}; 
 
interface ICustomSpellCheck : IUnknown 
{ 
   HRESULT add([in] BSTR *word); 
   HRESULT remove([in] BSTR *word); 
}; 
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library SpellCheckerLib 
{ 
   coclass SpellChecker 
   { 
      [default] interface ISpellCheck; 
      interface ICustomSpellCheck; 
   }; 
}; 

Relating this specification to the model above, there is one instance of 
Component, which is associated with two instances of Interface. Taking a 
closer look at the first interface, it is associated with a single instance of 
Operation, which is itself associated with one instance of InParameter and 
two instances of OutParameter, representing the two named parameters and 
the return value.  

The information that can be obtained from a component specification such as 
the above is limited to what operations the component provides, and the 
number and types of their parameters. In particular, there is no information 
about the effect of invoking the operations, except for what might be guessed 
from names of operations and parameters. Thus, the primary uses of such 
specifications are type checking of client code and as a base for interoperability 
between independently developed components and applications. Different 
component technologies have different ways of ensuring such interoperability. 
For example, COM specifies the binary format of interfaces while CORBA de-
fines a mapping from IDL to a number of programming languages. 

An important aspect of interface specifications is how they relate to substitu-
tion and evolution of components. Evolution can be seen as a special case of 
substitution where a newer version of a component is substituted for an older 
version. Substituting a component Y for a component X is said to be safe if all 
systems that work with X will also work with Y. From a syntactic viewpoint, a 
component can safely be replaced if the new component implements at least 
the same interfaces as the older components, or, in traditional object-oriented 
terminology, if the interface of the new component is a subtype of the interface 
of the old component. For substitution to be safe however, there are also con-
straints on the way that the semantics of operations can be changed, as we 
shall see in the next section. 
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3.3 Specifying the Semantics of Components 
While syntactic specifications of components are the only form of specifica-
tions in widespread use, it is widely acknowledged that semantic information 
about a component’s operations is necessary to use the component effectively. 
Examples of such information are the combinations of parameter values an 
operation accepts, an operation’s possible error codes, and constraints on the 
order in which operations are invoked. In fact, current component technolo-
gies assume that the user of a component is able to make use of such semantic 
information. For instance, COM dictates that the error codes produced by an 
operation are immutable, i.e. changing these is equivalent to changing the in-
terface. These technologies do not, however, support the specification of such 
information. In the example with COM, there is no way to include information 
about an operation’s possible error codes in the specification. 

Several techniques for designing component-based systems that include se-
mantic specifications are provided in the literature. In this section, we shall 
examine the specification technique presented in [53], which uses UML and 
the Object Constraint Language (OCL) [54] to write component specifications. 
OCL is included in the UML specification. Another well-known method that 
uses the same notations is Catalysis [55]. The concepts used for specification of 
components in these techniques can be seen as an extension of the generic 
model of syntactic specification presented in the previous section. Thus, a 
component implements a set of interfaces that each consists of a set of opera-
tions. In addition, a set of pre-conditions and post-conditions is associated 
with each operation. Pre-conditions are assertion that the component assumes 
to be fulfilled before an operation is invoked. Post-conditions are assertions 
that the component guarantees will hold just after an operation has been in-
voked, provided the operation’s pre-conditions were true when it was in-
voked. In this form of specification, nothing is said about what happens if an 
operation is invoked while any of its pre-conditions are not fulfilled. Note that 
pre- and post-conditions is not a novel feature of component-based software 
development, and is used in a variety of software development techniques, 
such as the Vienna Development Method [56] and Design by Contract [57]. 

Naturally, an operation’s pre- and post-conditions will often depend on state 
maintained by the component. Therefore, the notion of an interface is ex-
tended to include a model of that part of a component’s state that may affect 
or be affected by the operations in the interface. Now, a pre-condition will in 
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general be a predicate over the operation’s input parameters and this state, 
while a post-condition is a predicate over both input and output parameters as 
well as the state just before the invocation and just after. Furthermore, a set of 
invariants may be associated with an interface. An invariant is a predicate over 
the interface’s state model that will always hold. Finally, the component speci-
fication may include a set of inter-interface conditions, which are predicates 
over the state models of all the component’s interfaces.  
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Figure 3-2  UML metamodel of the concepts used in semantic specification of software 
components 

The concepts introduced here and the relationships among them are shown on 
the UML class diagram in Figure 3-2. For the sake of readability, the classes 
Name, Type, and InOutParameter are not shown, since they have no direct 
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relationships with the newly introduced classes. Note that this model allows 
the same state to be associated with several interfaces. Often, the state models 
of different interfaces of a component will overlap rather than be exactly the 
same. This relationship cannot be expressed in the model since we cannot 
make any assumptions about the structure of state models. Note also how 
each post-condition is associated with both input and output parameters and 
only one instance of State. The states before and after an invocation are rep-
resented by two separate instances of this single instance of (the metaclass) 
State. 

In the model presented above, a partial model of the state of a component is 
associated with each interface, to allow the semantics of an interface’s opera-
tions to be specified. It is important to note that this is not intended to specify 
how state should be represented within the component. While state models in 
component specifications should above all be kept simple, the actual repre-
sentation used in the component’s implementation will usually be subject to 
efficiency considerations, depend on the programming language, and so on. It 
is also worth mentioning that the above model is valid for procedural as well 
as object-oriented specification techniques. 

check(in word : String, out correct : Boolean) : HRESULT

«interface type»
ISpellCheck String

1

words

*

add(in word : String) : HRESULT
remove(in word : String) : HRESULT

«interface type»
ICustomSpellCheck

1

words

*

String

 

Figure 3-3 Example interface specification diagram 

Before discussing the ramifications of this model any further, we now look at 
an example specification using the technique of [53]. Figure 3-3 is an example 
of an interface specification diagram. It shows the two interfaces introduced in 
the previous section as classes with the <<interface type>> stereotype. 
Thus, all the information in the syntactic interface specifications is included 
here. The state models of the interfaces are also shown. A state model gener-
ally takes the form of one or more classes having at least one composition re-
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lationship with the interface the state belongs to. The special stereotype <<in-
terface type>> is used instead of the standard <<interface>> since this 
would not allow the state models to be associated with the interfaces in this 
way. 

The interface specification diagram is only a part of the complete interface 
specifications. The pre- and post-conditions that specify the semantics of the 
operations as well as any invariants on the state model is specified separately 
in OCL. Below is a specification of the three operations of the two interfaces 
above. There are no invariants on the state models in this example.  

context ISpellCheck::check( 
   in word : String, out correct : Boolean) : HRESULT 
pre: 
   word <> ""  
post: 
   SUCCEEDED(result) implies 
      correct = words->includes(word) 
 
context ICustomSpellCheck::add( 
   in word : String) : HRESULT 
pre: 
   word <> "" 
post: 
   SUCCEEDED(result) implies 
      words = words@pre->including(word) 
 
context ICustomSpellCheck::remove( 
   in word : String) : HRESULT 
pre: 
   word <> "" 
post: 
   SUCCEEDED(result) implies  
      words = words@pre->exluding(word)  

The pre-condition of the first operation states that if it is invoked with an input 
parameter that is not the empty string, the post-condition will hold when the 
operation returns. The post-condition states that if the return value indicates 
that the invocation was successful then the value of the output parameter is 
true if word was a member of the set of words and false otherwise. The speci-
fications of the two last operations illustrate how post-conditions can refer to 
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the state before the invocation using the @pre suffix. This specification tech-
nique uses the convention that if a part of an interface’s state is not mentioned 
in a post-condition, then that part of the state is unchanged by the operation. 
Thus, words = words@pre is an implicit post-condition of the first opera-
tion. All the specifications refer to an output parameter called result, which 
represents the return value of the operations. The function SUCCEEDED is used 
in COM to check whether a return value of type HRESULT indicates success or 
failure.  

Similarly to interface specification diagrams, component specification dia-
grams are used to specify which interfaces components provide and require. 
Figure 3-4 is an example of such a diagram, specifying a component that pro-
vides the two interfaces specified above. The component is represented by a 
class with stereotype <<comp spec>> to emphasize that it represents a com-
ponent specification. UML also has a standard component concept, which is 
commonly used to represent a file that contains the implementation of a set of 
concrete classes. 

«comp spec»
SpellChecker

ISpellCheck
ICustomSpellCheck  

Figure 3-4 Example component specification diagram 

The component specification is completed by the specification of its inter-inter-
face constraints. The component in this example has one such constraint, 
specifying that the sets of words in the state models of the two interfaces must 
be the same. This constraint relates the operations of the separate interfaces to 
each other, such that invocations of add or remove affect subsequent invoca-
tions of check. The constraint is formulated in OCL below. 

context SpellChecker 
ISpellCheck::words = ICustomSpellCheck::words 

An important property of the model presented above is that state models and 
operation semantics are associated with interfaces rather than with a compo-
nent. This means that the semantics is part of the interface specification. Con-
sequently, a component cannot be said to implement an interface if it imple-
ments operations with the same signatures as the interface’s operations but 
with different semantics. It should be noted that the terminology varies in the 
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literature on this point, as interfaces are sometimes seen as purely syntactic 
entities. In such cases, specifications that also include semantics are often 
called contracts. UML, for instance, defines an interface to be a class with only 
abstract operations, which can have no state associated with it. 

While the main uses of syntactic specifications are type checking and ensuring 
interoperability, the utility of semantic specifications is potentially much lar-
ger. The most obvious use is perhaps tool support for component developers 
as well as developers of component-based application. For the benefit of com-
ponent developers, one can imagine an automatic testing tool that verifies that 
all operations produce the correct post-conditions when their pre-conditions 
are satisfied. For this to work, the tool must be able to obtain information 
about a component’s current state. A component could easily be equipped 
with special operations for this purpose, which would not need to be included 
in the final release. Similarly, for application developers, one can imagine a 
tool that generates assertions for checking that an operation’s pre-conditions 
are satisfied before the operation is invoked. These assertions could either 
query a component about its current state, if this is possible, or maintain a 
state model of their own. The last technique requires that other clients do not 
affect the state maintained by a component, however, since the state model 
must be kept synchronized with the actual state. Such assertions would typi-
cally not be included in a final release, either. 

With a notion of interface specification that includes semantics, the concept of 
substitution introduced in the previous section can now be extended to cover 
semantics. Clearly, if a component Y implements all the (semantically speci-
fied) interfaces implemented by another component X, then Y can be safely 
substituted for X. This condition is not necessary, however, for substitution to 
be safe. What is necessary is that a client that satisfies the pre-conditions speci-
fied for X will always satisfy the pre-conditions specified for Y, and that the 
client can rely on the post-conditions ensured by X also to be ensured by Y. 
This means that Y must implement operations with the same signatures as the 
operations of X, and with pre- and post-conditions that ensures the condition 
above. More specifically, if X implements an operation O, where pre(O) is the 
conjunction of its pre-conditions and post(O) the conjunction of its post-con-
ditions, Y must implement an operation O’ with the same signature such that 
pre(O’) implies pre(O) and post(O) implies post(O’). In other words, the inter-
faces implemented by Y can have weaker pre-conditions and stronger post-
conditions than the interfaces implemented by X. It follows from this that the 
state models used for specifying the interfaces of X and Y need not be identi-
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cal. This condition for semantically safe substitution of components is an ap-
plication of Liskov’s principle of substitution [58].  

Note that the above discussion is only valid for sequential systems. For multi-
threaded components or components that are invoked by concurrently active 
clients, the concept of safe substitution must be extended as discussed in [59]. 
Finally, it must be noted that a client may still malfunction after a component 
substitution, even if the components fulfill semantic specifications that satisfy 
the above condition. This can happen, for instance, if the designers of the client 
and the new component have made conflicting assumptions about the overall 
architecture of the system. The term “architectural mismatch” has been coined 
to describe such situations [44]. 

The component specification diagram in Figure 3-4 shows how we can indi-
cate which interfaces are offered by a component. In this example, we indi-
cated that the spell checker offered the interfaces ISpellCheck and 
ICustomSpellCheck and used the constraint 

ISpellCheck::words = ICustomSpellCheck::words 

to specify that the interfaces act upon the same information model. We could, 
however, extend such diagrams to indicate the interfaces on which a compo-
nent depends. This is illustrated in Figure 3-5. 

<<comp spec>>
SomeComponent

ISomeInterface

IAnotherInterface

IUsedInterface

<<comp spec>>
SomeComponent

ISomeInterface

IAnotherInterface

IUsedInterface  

Figure 3-5 Component specification showing an interface dependency 

We can also specify realization contracts using collaboration interaction dia-
grams. For example, in Figure 3-6 we state that whenever the operation op1 is 
called, a component supporting this operation must in invoke the operation 
op2 in some other component. Component specification diagrams and collabo-
ration interaction diagrams may therefore be used to define behavioral de-
pendencies. 
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1: op1

/IUsedInterface

1.1: op2

/ISomeInterface

1: op1

/IUsedInterface

1.1: op2

/ISomeInterface

 

Figure 3-6 Collaboration interaction diagram 

3.4 Specifying Extra-Functional Properties of Components 
The specification of extra-functional properties of software components has 
recently become a subject of interest, mainly within the software architecture 
community. In [60], it is argued that the specification of architectural compo-
nents is not properly addressed by conventional software doctrine. Architec-
tural components are components of greater complexity than algorithms and 
data structures. Software components, as defined above, generally belong to 
this class. Conventional software doctrine is the view that software specifica-
tions must be sufficient and complete (say everything a user needs to know and 
is permitted to rely on about how to use the software), static (written once and 
frozen), and homogeneous (written in a single notation). 

To use an architectural component successfully, information about more 
things than its functionality is required. This includes structural properties, 
governing how a component can be composed with other components; extra-
functional properties, such as performance, capacity, and environmental as-
sumptions; and family properties, specifying relations among similar or related 
components. It is not realistic to expect specifications to be complete with re-
spect to all such properties, due to the great effort that would require, even if 
the developer of a component were able to anticipate all aspects of the compo-
nent its users might care about. Often, this is even unrealistic in itself. Since we 
cannot expect software components to be delivered with specifications that are 
sufficient and complete, and since developers are likely to discover new kinds 
of dependencies as they attempt to use independently developed components 
together, specifications should be extensible. Specifications should also be het-
erogeneous, since the diversity of properties that might be of interest is unlikely 
to be suitably captured by a single notation. 
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The concept of credentials is proposed in [60] as a basis for specifications that 
satisfy the requirements outlined above. A credential is a triple <Attribute, 
Value, Credibility>, where Attribute is a description of a property of a compo-
nent, Value a measure of that property, and Credibility a description of how 
the measure has been obtained. A specification technique based on credentials 
must include a set of registered attributes, along with notations for specifying 
their value and credibility, and provisions for adding new attributes. A tech-
nique could specify some attributes as required and others as optional. The 
concept has been partially implemented in the architecture description lan-
guage UniCon [61], which allows an extendable list of <Attribute, Value> 
pairs to be associated with a component. The self-describing components of 
Microsoft’s new .NET platform [62] includes a concept of attributes in which a 
component developer can associate attribute values with a component and 
define new attributes by sub-classing an existing attribute class. Attributes are 
part of a component’s metadata, which can be programmatically inspected, 
and is therefore suitable for use with automated development tools. 

The concept of credentials has been incorporated in an approach to building 
systems from pre-existing components called Ensemble [63]. This approach 
focuses on the decisions that designers have to make, in particular when faced 
with a choice between competing technologies, competing products within a 
technology, or competing components within a product. In Ensemble, a set of 
credentials may be associated with a single technology, product, or compo-
nent, or with a group of such elements. In addition, a variation of credentials is 
introduced to handle measures of properties that are needed but have not yet 
been obtained. These are called postulates and can be describes as credentials 
where the credibility is replaced by a plan for obtaining the measure. The cre-
dential triple is thus extended with a flag isPostulate. 

Returning our focus to the specification of single components, we now extend 
the ideas of Ensemble to allow a set of credentials to be associated with a com-
ponent, an interface, or an operation. A UML metamodel with the concepts of 
syntactic specification augmented with credentials is shown in Figure 3-7. The 
class Name and the subclasses of Parameter have been omitted for brevity. 
Note that the concept of credentials is complementary to the specification of a 
component’s functionality and completely orthogonal to the concepts intro-
duced for semantic specifications. Since the specification of extra-functional 
properties of software components is still an open area of research, it would 
probably be premature to proclaim this as a generic model. 
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Figure 3-7 UML metamodel of concepts used to specify extra-functional properties of 
software components 

Since the extra-functional properties that may be included in a component 
specification can be of very different natures, it is not possible to formulate a 
general concept of safe substitution for components that includes changes of 
such properties. A set of extra-functional properties, which can all be ex-
pressed as cost specifications, is studied in [64] were it is shown that, depend-
ing on the chosen property, weakening, strengthening, or equivalence is re-
quired for substitution to be safe. 

3.5 Summary 
A component has two parts: an interface and some code. The interface is the 
only point of access to the component, and should ideally contain all the in-
formation that users need to know about the component's operations, i.e. what 
it does, and how and where the component can be deployed, i.e. its context 
dependencies. The code, on the other hand, should be completely inaccessible 
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(and invisible). The specification of a component therefore must consist of a 
precise definition of the component's operations and context dependencies. In 
current practice, component specification techniques specify components only 
syntactically. The use of UML and OCL to specify components represents a 
step towards semantic specifications. Specification of extra-functional proper-
ties of components is still an open area of research, and it is uncertain what 
impact it will have on the future of software component specification. 

3.6 Corrections to the Original Version 
This chapter contains some corrections to the originally published version of 
the paper. These are all related to the UML metamodels of component specifi-
cations. In Figure 3-1, the multiplicities of Component and Interface in 
their association with Name have been changed from “1” to “0..1”. In Figure 3-
2, the multiplicity of State in its association with OutParameter has been 
changed from “2” to “1” and the description of the figure in the text has been 
updated accordingly. Specifically, the text 

Note also how each post-condition is associated with both input and output pa-
rameters and only one instance of State. The states before and after an invoca-
tion are represented by two separate instances of this single instance of (the 
metaclass) State. 

on page 74 in this thesis replaces 

Note also how each post-condition is associated with both input and output pa-
rameters and two instances of the state model, representing the state before and 
after an invocation. 

of the original version. Finally, in Figure 3-7, the multiplicity of the three 
classes associated with Credential have been changed from “1” to “0..1”. 
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Chapter 4  
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Abstract 
Component-based software engineering (CBSE) and the use of (de-facto) standard 
component models have gained popularity in recent years, particularly in the de-
velopment of desktop and server-side software. This paper presents a motivation 
for applying CBSE to real-time systems and discusses the consequences of adopt-
ing a software component model in the development of such systems. Specifically, 
the consequences of adopting Microsoft’s COM, DCOM, and .NET models are 
analyzed. The most important aspects of these models are discussed in an incre-
mental fashion. The analysis considers both real-time systems in general, and a 
real-life industrial control system where some aspects the COM model have been 
adopted. It is concluded that adopting these models makes it possible to meet real-
time requirements, but that some overhead must be expected and that special pre-
cautions may have to be taken to prevent loss of real-time predictability. 

4.1 Introduction 
Component-based software engineering (CBSE) denotes the assembling of 
software products from pre-existing smaller products, generally called com-
ponents. In particular when this is done using standard or de-facto standard 
component models and supporting technologies [1]. A component model gen-
erally defines a concept of components and rules for their design-time compo-
sition and/or run-time interaction, and is usually accompanied by one or more 
component technologies, implementing support for composition and/or inter-
operation. 
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In recent years, the use of component models has gained popularity in the de-
velopment of desktop and server-side software. Two popular models in desk-
top applications are Sun’s JavaBeans [2] and Microsoft’s ActiveX controls [3], 
where the latter is built on top of the more basic Component Object Model 
(COM) [4]. Both of these are particularly suited for components to be used 
with visual composition tools. The best-known models in the server domain 
are Sun’s Enterprise JavaBeans (EJB) [5], Microsoft’s COM extension COM+ [6], 
and the Object Managements Group’s new CORBA Component Model (CCM) 
[6]. These models offer similar support for transactional processing and persis-
tent data management. 

This paper discusses the possibilities of using such component models in real-
time systems. In particular, the feasibility of using COM, the most basic of 
these models, and its distributed extension is analyzed and illustrated through 
a case study. Microsoft’s latest model .NET [8] is also briefly discussed. Section 
4.2 presents motivations for adopting a component model, both in real-time 
systems generally and in a real-world industrial control system. Section 4.3 
discusses the implications of adopting different aspects of a particular compo-
nent model. An overview of related work is given in Section 4.4. Finally, Sec-
tion 4.5 concludes the paper and outlines future work. 

4.2 Motivation 
The general motivation for component-based software engineering is the 
prospect of increased productivity and timeliness of software development 
projects. Indeed, this is as desirable for real-time and embedded software as 
for any other application. It could also be argued that some characteristics of 
CBSE make it particularly attractive for real-time systems. For instance, real-
time software often requires more extensive testing, so the use of pre-tested 
components may be particularly time saving in the development of such sys-
tem. Another example is that many embedded systems, such as mobile tele-
phones, could benefit from reuse of components across products and models. 
Conversely, there are also barriers to CBSE particular to real-time and embed-
ded systems. Most obviously, there may be a risk that component models and 
technologies may introduce unacceptable overhead or loss of predictability. 

An example of a real-time system where the use of a component model has 
been useful is the industrial control system by ABB called ControlIT 
(http://www.abb.com). This product is a modular controller consisting of a 
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central processing unit with two expansion buses. One bus is for I/O modules 
of different types and is used to connect the controller to physical signals. The 
other bus is for communication interfaces and allows the controller to com-
municate with other devices using different media and protocols. The control-
ler also has two built-in serial ports and redundant Ethernet ports. 

ABB’s development organization is globally distributed, and the interest in 
component models first arose from a wish to make it easier for different de-
velopment centers to add I/O and communication support to the system. It 
was decided to redesign the system’s architecture so that all code particular to 
a certain I/O module, communication interface, or protocol resides in a sepa-
rate component called a protocol handler. To achieve this, rules and formats 
for interaction between these protocol handlers and the rest of the system had 
to be decided on. In other words, a component model was needed. In the fol-
lowing analysis of adopting different aspects of a component model, the use-
fulness and liabilities of each particular aspect in connection with protocol 
handlers will be discussed. The use of a component model to support integra-
tion of protocol handlers in ABB’s control system is further described in [9], 
where it is demonstrated that the new architecture supports distributed devel-
opment and reduces the time required to implement I/O and communication 
support. 

4.3 Adopting Microsoft Models 
Among the most commonly used component models for desktop and server 
applications are Microsoft’s Component Object Model (COM) and its exten-
sion Distributed COM (DCOM) [10]. There is also great interest in the com-
pany’s new generation of technologies, commonly denoted .NET, which also 
defines a component model [8]. This section explores the possibilities of using 
these models in real-time systems. The most important aspects of these models 
will be discussed in an incremental fashion, assuming that it may be desirable 
in some situations also to adopt the models in such a fashion. 

4.3.1 COM Interfaces 
A key principle of COM and other component models is that interfaces are 
specified separately from both the components that implement them and those 
that use them. COM defines a dialect of the Interface Definition Language (IDL) 
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that is used to specify object-oriented interfaces. Interfaces are object-oriented 
in the sense that their operations are to be implemented by a class and passed 
a reference to a particular instance of that class when invoked. The code that 
uses a component does not refer directly to any objects, however. Instead, the 
operations of an interface supported by an object are invoked via what is 
known as an interface pointer. A concept known as interface navigation makes 
it possible for the user to obtain a pointer to every interface supported by the 
object. For a further description of this topic, see e.g. [10]. 

COM also defines a run-time format for interface pointers. What an interface 
pointer really references is an interface node, which in turn, contains a pointer 
to a table of function pointers, called a VTABLE. Typically, the node also con-
tains a pointer to an object’s instance data, although this is up to the imple-
mentation (of the supporting component technology). This use of VTABLEs is 
identical to the way that many C++ compilers implement virtual functions. 
Thus, the time and space overhead associated with accessing an object through 
an interface pointer is the same as that incurred with virtual C++ functions. 
This time overhead is very modest. The memory overhead should also be ac-
ceptable, perhaps except for the most resource constrained embedded systems. 
Figure 4-1 illustrates the typical format of interface nodes. 

interface pointer

interface node
instance data

VTABLE

method code

method code

method code

method code

 

Figure 4-1 Typical format of COM interface nodes 

For most real-time systems, a more serious concern than these modest over-
heads is that interface navigation introduces a possible source of run-time er-
rors. If the user of a component asks an object for a pointer to an interface that 
the object does not support, this will not be detected during compilation. It 
may be argued, in fact, that this is the principal difference between interface 
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navigation and interface inheritance in traditional object-oriented program-
ming. This can be seen as a necessary price to pay for the otherwise desirable 
reduced compile-time dependence between components. 

Most real-time systems are based on multi-tasking and are often built on top 
of a real-time operating system (RTOS) using some kind of priority-based 
scheduling. Developers of components for real-time systems will generally 
need to make assumptions about how their components will be used in a 
multi-tasking environment. The safest option will be always to assume that an 
object can be concurrently used by several tasks, and guard all methods with 
the necessary synchronization. For reasons of efficiency, however, it may be 
more desirable to require the code that uses the component to provide any 
necessary synchronization. The exact circumstances under which such protec-
tion is necessary are thus an important part of the component’s documenta-
tion. 

The use of COM IDL to specify interfaces and VTABLEs to implement inter-
face pointers work well for protocol handlers. The concept of multiple inter-
faces per object with interface navigation is useful since different protocol 
handlers must provide different functionality. The object-oriented nature of 
COM interfaces where each interface pointer refers to a particular instance of a 
class also matches the needs of the ABB control system. Multiple instances of 
the same protocol handler are useful, e.g. when a controller is equipped with 
two identical communication interfaces, linking it to two separate networks of 
the same type. The latest version of the control system uses COM interfaces, 
but not the other parts of COM discussed below. 

4.3.2 Instantiation and Dynamic Linking 
The previous section stated that the code of a COM component is imple-
mented in classes, without discussing how instances are created. Also, nothing 
was said about how and when the code in different components is linked to-
gether. COM defines a policy for instantiation, which is intended to ensure 
that different components can be installed in a system at different times. When 
a component is installed, information about it must be registered somewhere 
in the system, linking the identity of its classes to the code that implement 
these. COM also requires a run-time library, called the COM library, to be in-
stalled on the system. When some code wants to use a component, it uses an 
operation provided by the COM library to ask for an instance of a class and an 
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initial interface pointer to it. If the code of the component is not already loaded 
into memory, the COM library uses the registered information to locate the 
code and load it before an instance is created. This process is illustrated in Fig-
ure 2. 

Client Component

COM Library Registry

1) Request object by
class and interface

2) Look up component

3) Load component if necessary
and request object

4) Return interface 
pointer

5) Invoke
operations

 

Figure 4-2 Instance creation and dynamic loading of code in COM 

Thus, creation of an instance involves searching the information about regis-
tered classes and possibly loading of code. This leads to a noticeable overhead 
when compared to instantiation in for instance C++. Furthermore, this over-
head will vary, depending on whether the code implementing a class has al-
ready been loaded or not. This variability can be eliminated, however, by de-
signing the software such that all components that may be used will be loaded 
at start-up. Note that removal of instances is subject to the same variability, 
since the COM standard states that code can be unloaded when the last in-
stance that rely on it is removed. 

A benefit that follows from COM’s way of creating instances is that the code 
that implements a component can be built independently of any code that uses 
the component. Since instantiation involves passing the identity of the desired 
class as a parameter to a system operation, it is a possible source of run-time 
errors, which is not present during instantiation in traditional object-oriented 
programming, since attempting to instantiate a class that does not exist will 
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result in a compilation error in this case. Again, this is a necessary price to be 
paid for decreased coupling. 

COM’s principle of instantiation is well suited for creating instances of proto-
col handlers, since no knowledge of the set of available protocol handlers 
should be built into the system. The overhead associated with looking up 
classes and dynamic loading of code is expected to be tolerable, especially 
since the software is designed such that protocol handlers need only be instan-
tiated and deleted during program download. Thus, the extra time taken by 
this way of instantiation will not interfere with the continuous operation of the 
system. An additional benefit of using this technique for instantiation is that 
protocol handlers can be deployed (and updated) independently of the rest of 
the system. Future versions of the control system may include a COM library 
and employ dynamic linking of components. It is possible that a commercial 
component technology, such as WindRiver’s implementation of COM for the 
VxWorks RTOS (http://www.windriver.com) will be used. 

4.3.3 Location Transparency with DCOM 
DCOM is an extension of COM, which allows component-based applications 
to be distributed across memory spaces or physical machines. This is realized 
using auxiliary objects known as proxies and stubs. When some code asks the 
COM library to create an instance of a class that is implemented in a compo-
nent in a different location, the instance is created in the remote location along 
with a stub. The code that asked for the instance is passed an interface pointer 
to a proxy object, created on its side. When an operation is invoked via this 
interface pointer, the proxy translates this to a remote procedure call (RPC) to 
the remote stub, which in turn invokes the corresponding operation on the 
real object. It may also be necessary to create a proxy-stub pair at other times 
than object instantiation. This happens when an interface pointer is passed as a 
parameter to an operation of an object in a remote location. This process is 
known as marshalling. Proxy and stub code is usually generated automatically 
from IDL specifications. Figure 3 illustrates the use of proxy and stub objects 

The ability to deal with memory spaces may not be of great consequence to 
real-time systems, since real-time operating systems do not traditionally use 
memory spaces. The ability to deal with such may, however, be useful in par-
allel processor architectures. DCOM may be useful in simplifying the imple-
mentation of distributed real-time systems. The transparency to the program-
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mer of accessing remote objects is not completely valid for real-time systems, 
however. Since the timing of object operations will differ between local and 
remote invocations, real-time software developers will still need to consider 
whether their code uses components in another location or not. It is also useful 
for developers of components to be aware of whether their components will be 
remotely accessed. For instance, one may consider exploiting the ability to de-
fine asynchronous interfaces for such components. An additional benefit of 
using DCOM in real-time systems is that it may simplify the implementation 
of communication between these systems and COM-based desktop applica-
tions, such as operator stations.  

Client

Component

Proxy

Stub

Operation invocation

Operation invocation

Remote procedure call

Machine border

 

Figure 4-3 Use of proxy and stub objects in DCOM 

In addition to the extra time overhead associated with remote invocation and 
marshalling, DCOM also requires more space than COM, to store the proxy 
and stub code as well as the RPC mechanism. The proxy and stub are gener-
ally quite small and executes relatively quickly, however, so the time and 
space overhead is mostly due to the RPC mechanism and underlying protocol 
stack. Therefore, using DCOM does not result in much of an overhead for dis-
tributed real-time systems, where RPC or some other communication mecha-
nism would be needed anyway.  
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A possible reason for using DCOM in ABB’s control system, is that protocol 
handlers could be located in the communication interfaces or I/O modules 
they support, rather than in the central processing unit. The usefulness of this 
is not obvious, however, especially when considering the required additional 
overhead. Thus, there are no current plans to adopt DCOM in the system. 

4.3.4 The Next Generation: .NET 
The name .NET is used by Microsoft to denote a comprehensive set of new 
technologies. This includes a new component model, intended to replace 
COM/DCOM. A notable development is that .NET moves the responsibility of 
providing certain functionality from the components to a more sophisticated 
run-time system. In particular, COM/DCOM requires components to provide 
a considerable amount of “house-keeping” functionality that is taken care of 
by the .NET run-time. Much of the flexibility that follows from having such 
implementations in each component is maintained under .NET, where the op-
eration of the run-time system with respect to individual components can be 
affected by setting declarative attributes.  

A potential advantage of this development is increased reliability, since it may 
be assumed that more effort may be invested in ensuring the quality of a run-
time system to be re-used in a large number of systems. Another attractive 
consequence of having more code in a common run-time is that the total size 
of the software may decrease. Obviously, this advantage grows with the num-
ber of components in the system. On the other hand, using a sophisticated 
run-time system, possibly without using much of its functionality, may lead to 
unnecessarily large software. This is a particular problem for resource con-
strained embedded systems. Fortunately, Microsoft has defined a special com-
pact version of .NET that limits this problem somewhat. What is assumed to 
be the greatest strength of .NET is the potential for increased development 
productivity. This relies both on the aforementioned run-time system with its 
associated libraries, and on advanced development tools. As usual, this gain is 
achieved at the expense of some run-time overhead. While it seams clear that 
this cost is acceptable for desktop software, the corresponding question for 
real-time systems is more open. 



94 Chapter 4 Adopting a Software Component Model in Real-Time Systems Development 

4.4 Related Work 
There are some work on software component models and real-time or embed-
ded systems in recent literature. This work is dominated by efforts to define 
component models particularly targeted at real-time embedded systems or 
even narrower application domains. Examples include Philip’s Koala compo-
nent model for consumer electronics [11], the component model for industrial 
field devices developed in the PECOS project [12], the commercial product 
ControllShell [13], which is based on visual composition and automatic code 
generation, and the more academic ACCORD approach [14] of aspect-oriented 
component-based development of real-time systems. Work on using “main-
stream” component models in real-time systems is less common. One example 
is [15], which also discusses COM. This work, however, focuses on extensions 
to COM rather than the consequences of using the existing model in real-time 
systems. 

4.5 Conclusion and Future Work 
This paper has discussed the idea of using a software component model in 
real-time systems. In particular, using Microsoft models, both from the per-
spective of real-time systems in general and from that of ABB’s control system. 
In general, it has been seen that each of the levels of adopting the models that 
have been discussed, introduces some degree of time and space overhead. In 
addition, new potential sources of run-time errors are introduced, correspond-
ing to compilation errors in traditional object-oriented programming. It is con-
cluded that COM/DCOM may be used for real-time systems, provided that 
any overhead is acceptable or can be compensated by hardware, and that the 
software designer takes care that the potential run-time errors are not allowed 
to materialize and result in a loss of predictability. 

The major conclusions to be drawn from the discussions in this paper are as 
follows. COM interfaces, which provide a way to separate the specification of 
interfaces from component implementation, carry with them a very modest 
time and memory overhead. Compared to interface inheritance in object-
oriented programming, COM interfaces introduce a potential source of run-
time errors. COM’s mechanism for instantiating objects and loading code at 
run-time has a considerable overhead when compared to instantiation in for 
example C++. This overhead is subject to a certain variability, which may be 
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avoided by careful application design. DCOM is an extension of COM that al-
lows applications to access COM objects across memory spaces and physical 
machine boundaries. The time and space overhead associated with this is 
dominated by the underlying communication mechanisms. The new .NET 
platform promises increased development productivity, but it remains to be 
seen to what extent it is suitable for real-time systems. 

The immediate future work planned as a continuation of this paper is to 
strengthen the analyses with empirical evidence by conducting experiments 
and collecting measurements. Preferably, this should be done on a real-time 
platform using a commercial or self-made COM implementation. In the longer 
perspective, an intriguing idea is to develop a COM-based component model 
particularly intended for real-time software. This idea is primarily inspired by 
how COM+ supports the implementation of functionality such as transactional 
processing, which is considered a major challenge in distributed information 
systems. Corresponding challenges for real-time systems include issues such 
as concurrency, synchronization, and timing. In addition to easing the imple-
mentation it would be desirable for such a model to support compositional 
reasoning, i.e. the deduction of a system’s properties from the known proper-
ties of its parts. A natural starting point for achieving this is the existing work 
on prediction enabled component technologies (PECT). 
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Abstract 
This chapter presents a case study from a global company developing a new gen-
eration of programmable controllers to replace several existing products. The sys-
tem needs to incorporate support for a large number of I/O systems, network 
types, and communication protocols. To leverage its global development resources 
and the competency of different development centers, the company decided to 
adopt a component-based software architecture that allows I/O and communica-
tion functions to be realized by independently developed components. The archi-
tecture incorporates a subset of a standard component model. The process of re-
designing the software architecture is presented, along with the experiences made 
during and after the project. An analysis of these experiences shows that the com-
ponent-based architecture effectively supports distributed development and that 
the effort required for implementing certain functionality has been substantially 
reduced while, at the same time, the system’s performance and other run-time 
quality attributes have been kept on a satisfactory level. 

5.1 Introduction 
Component-based software engineering (CBSE) denotes the disciplined prac-
tice of building software from pre-existing smaller products, generally called 
software components, in particular when this is done using standard or de-
facto standard component models [7, 16]. The popularity of such models has 
increased greatly in the last decade, particularly in the development of desk-
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top and server-side software, where the main expected benefits of CBSE are 
increased productivity and timeliness of software development projects. 

The last decade has also seen an unprecedented interest in the topic of soft-
ware architecture [2, 15] in the research community as well as among software 
practitioners. CBSE has notable implications on a system’s software architec-
ture, and an architecture that supports CBSE, e.g. by mandating the use of a 
component model, is often called a component-based software architecture. 

This chapter presents an industrial case study from the global company ABB, 
which is a major supplier of industrial automation systems, including pro-
grammable controllers. The company’s new family of controllers is intended 
to replace several existing products originally developed by different organ-
izational units around the world, many of which were previously separate 
companies, targeting different, though partly overlapping, markets and in-
dustries. As a consequence, the new controller products must incorporate 
support for a large number of I/O systems, network types, and communica-
tion protocols. To leverage its global development resources and the compe-
tency of different development centers, ABB decided to adopt a component-
based software architecture that allows I/O and communication functions to 
be realized by independently developed components. 

This chapter is organized as follows. The remainder of this section describes 
the questions addressed by the case study and motivates the choice of method. 
Section 5.2 presents the context of the case study, including a description of 
the programmable controller and its I/O and communication functions as well 
as the organizational and business context. The process of componentizing the 
system’s software architecture is presented in Section 5.3. Section 5.4 analyzes 
the results of the project and identifies some experiences of general interest. A 
brief overview of related work is provided in Section 5.5. Section 5.6 presents 
conclusions and some ideas for further work. 

5.1.1 Questions Addressed by the Case Study 
The general question addressed by the case study is what advantages and li-
abilities the use of a component-based software architecture entails for the de-
velopment of an industrial control system. Due to the challenges of the indus-
trial project studied, the potential benefit that a component-based architecture 
makes it easier to extend the functionality of the software has been singled out 
for investigation.  
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More specifically, the project allows the two following situations to be com-
pared: 

• The system has a monolithic software architecture and all functionality 
is implemented at a single development center. 

• The system has a component-based software architecture and pre-speci-
fied functional extensions can be made by different development cen-
ters. 

By pre-specified functional extensions we mean extensions in the form of 
components adhering to interfaces already specified as part of the architecture. 
This fact is presumed to be significant, while the fact that the functionality in 
question happens to be related to I/O and communication is not. 

In addition to the question of whether the component-based architecture re-
duces the effort required to make such functional extension, the study also ad-
dresses the questions of whether any such reduction is sufficient to justify the 
effort invested in redesigning the architecture and after how many extensions 
the saved effort surpasses the invested effort. Since the system in question is 
subject to hard real-time require¬ments, the potential effect of the architecture 
on the possibility of satisfying such requirements is also studied. Finally, the 
architecture’s possible effect on performance is analyzed. 

5.1.2 Case Study Method 
The research methodology used is a flexible design study, conducted as a par-
ticipant observation case study [14]. The overall goal of the study is to observe 
the process of componentization, and evaluate the gains of a component-based 
architecture. It is not possible to demarcate such a complex study object in a 
fixed design study. Neither is there an option to isolate and thereby study al-
ternative options. Instead we address the problem using a case study ap-
proach, where one study object is observed in detail and conclusions are 
drawn from this case.  

In order to enable best possible access to the information on the events in the 
case, the observations are performed by an active participant. The main re-
searcher is also an active practitioner during the study. As a complement, in-
terviews are conducted after the case study to collect data on costs and gains 
of the component approach, thus conducting data triangulation. 
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Participatory research always includes a threat with respect to researcher bias. 
In order to increase the validity of the observations, a researcher was intro-
duced late in the research process as a “critical friend”.  The long researcher 
involvement in this case study reduces on the other hand the threat with re-
spect to respondent bias.  

Case studies are by definition weak with respect to generalization, in particu-
lar when only a single case is observed. However, to enable learning across 
organizational contexts, we present the context of the case study in some de-
tail. Hence, the reader may find similarities and differences compared to their 
environment, and thus judge the transferability of the research. 

5.2 Context of the Case Study 
Following a series of mergers and acquisitions, ABB became the supplier of 
several independently developed programmable controllers for the process 
and manufacturing industries. The company subsequently decided to continue 
development of only a single family of controllers for these and related indus-
tries, and to base all individual controller products on a common software 
platform. 

To be able to replace all the different existing products used in different re-
gional areas and industry sectors, these controllers needed to incorporate sup-
port for a high number of communication protocols, network types, and I/O 
systems, including legacy systems from each of the previously existing con-
trollers as well as current and emerging industry standards.  

A major challenge in the development of the new controller platform was to 
leverage the software development resources at different development centers 
around the world and their expertise in different areas. In particular, it was 
desirable to enable different development centers to implement different types 
of I/O and communication support. Additional challenges were to make the 
new platform sufficiently general, flexible, and extendable to replace existing 
controllers, as well as to capture new markets. 

The solution chosen to meet these challenges was to base the new platform on 
one of the existing systems while adopting a component-based software ar-
chitecture with well-defined interfaces for interaction between the main part of 
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the software and I/O and communication components developed throughout 
the distributed organization. 

As the starting point of the common controller software platform, one of the 
existing product lines was selected. This system is based on the IEC 61131-3 
industry standard for programmable controllers [8]. The software has two 
main parts 1) the ABB Control Builder, which is a Windows application run-
ning on a standard PC, and 2) the system software of the ABB controller fam-
ily, running on top of a real-time operating system (RTOS) on special-purpose 
hardware. The latter is also available as a Windows application, and is then 
called the ABB Soft Controller.  

A representative member of the ABB controller family is the AC 800M modu-
lar controller. This controller has two built-in serial communication ports as 
well as redundant Ethernet ports. In addition, the controller has two expan-
sion busses. One of these is used to connect different types of input and output 
modules through which the controller can be attached to sensors and actua-
tors. The other expansion bus is used to connect communication interfaces for 
different types of networks and protocols. The picture in Figure 5-1 shows an 
AC 800M controller equipped with two communication interfaces (on the left) 
and one I/O module (on the right). 

 

Figure 5-1 An AC 800M programmable controller 
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The Control Builder is used to specify the hardware configuration of a control 
system, comprising one or more controllers, and to write the programs that 
will execute on the controllers. The configuration and the control programs 
together constitute a control project. When a control project is downloaded to 
the control system the system software of the controllers is responsible for in-
terpreting the configuration information and for scheduling and executing the 
control programs.  

Figure 5-2 shows the Control Builder with a control project opened. The pro-
ject consists of three structures, showing the libraries used by the control pro-
grams, the control programs themselves, and the hardware configuration, re-
spectively. The latter structure is expanded to show a configuration of a single 
AC 800M controller, equipped with an analogue input module (AI810), a digi-
tal output module (DO810), and a communication interface (CI851) for the 
PROFIBUS-DP protocol [10]. 

 

Figure 5-2 The ABB Control Builder 
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To be attractive in all parts of the world and a wide range of industry sectors, 
the common controller must incorporate support for a large number of I/O 
systems, communication interfaces, and communication protocols. During the 
normal operation of a controller, i.e. while the control programs are not being 
updated, there are two principal ways for it to communicate with its environ-
ment, denoted I/O (Input/Output) and variable communication, respectively. 

To use I/O, variables of the control programs are connected to channels of in-
put and output modules using the program editor of the Control Builder. For 
instance, a Boolean variable may be connected to a channel on a digital output 
module. When the program executes, the value of the variable is transferred to 
the output channel at the end of every execution cycle. Variables connected to 
input channels are set at the beginning of every execution cycle. Real-valued 
variables may be attached to analogue I/O modules. Figure 5-3 shows the 
program editor with a small program, declaring one input variable and one 
output variable. Notice that the I/O addresses specified for the two variables 
correspond to the position of the two I/O modules (AI810 and DO810, respec-
tively) in Figure 5-2. 

 

Figure 5-3 The program editor of the ABB Control Builder 

Variable communication is a form of client/server communication and is not 
synchronized with the cyclic program execution in the way that I/O is. A 
server supports one of several possible protocols and has a set of named vari-
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ables that may be read or written by clients that implement the same protocol. 
An ABB Controller can be made a server by connecting program variables to 
so-called access variables in a special section of the Control Builder (see Figure 
5-2). Servers may also be other devices, such as field-bus devices [10]. 

A controller can act as a variable communication client by using special rou-
tines for connecting to a server and reading and writing variables via the con-
nection. Such routines for a collection of protocols are available in the Com-
munication Library, which is delivered with the Control Builder. The commu-
nication between a client and a server can take place over different physical 
media, which, in the case of the AC 800M, are accessed either via external 
communication interfaces or the built-in Ethernet or serial ports. 

Control projects are usually downloaded to the controllers via a 
TCP/IP/Ethernet-based control network, which may optionally be redundant. 
A control project may also be downloaded to a single controller via a serial 
link. In both cases, downloading is based on the Manufacturing Message 
Specification (MMS) protocol [5], which also supports run time monitoring of 
hardware status and program execution. The system software of a controller, 
including the RTOS, can be updated from a PC via a serial link. Figure 5-4 
shows an example of a control system configuration. 

 

Figure 5-4 Example control system configuration 
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5.3 Componentization 

5.3.1 Reverse Engineering of the Existing Software Architecture 
The first step in the componentization of the architecture of the Control 
Builder and the controller system software was to get an overview of the ex-
isting architecture of the software, which was not explicitly described in any 
document. The software consists of a large number of source code modules, 
each of which is used to build the Control Builder or the controller system 
software or both, with an even larger number of interdependencies. An analy-
sis of the software modules with particular focus on I/O and communication 
functions yielded the course-grained architecture depicted in Figure 5-5. 

 

Figure 5-5 The original software architecture 

The boxes in the figure represent logical components of related functionality. 
Each box is implemented by a number of modules, and is not readily visible in 
the source code. Many modules are also used as part of other products, which 
are not discussed further here. This architecture is thus a product-line archi-
tecture [3], although the company has not yet adopted a systematic product 
line approach. On the controller side, which is the focus of this chapter, the 
architecture has two distinct layers [15]. The lower layer (the box at the bottom 
of the figure) provides an interface to the upper layer (the rest of the boxes), 
which allows the source code of the upper layer to be used on different hard-
ware platforms and operating systems. The complete set of interdependencies 
between modules within each layer was not captured by the analysis. 
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To illustrate how some modules are used to build both the Control Builder 
and the controller system software, we consider the handling of hardware con-
figurations. The hardware configuration is specified in the Controllers struc-
ture of the Control Builder. For each controller in the system, it is specified 
what additional hardware, such as I/O modules and communication inter-
faces, it is equipped with. Further configuration information can be supplied 
for each piece of hardware, leading to a hierarchic organization of information, 
called the hardware configuration tree. The code that builds this tree in the 
Control Builder is also used in the controller system software to build the 
same tree there when the project is downloaded. If the configuration is modi-
fied in the Control Builder and downloaded again, only a description of what 
has changed in the tree is sent to the controller. 

The main problem with this software architecture is related to the work re-
quired to add support for new I/O modules, communication interfaces, and 
protocols. For instance, adding support for a new I/O system possibly re-
quired source code updates in all the components except the User Interface 
and the Communication Server, while a new communication interface and 
protocol could require all components except I/O Access to be updated. 

As an example of what type of modifications may have been needed to the 
software, we consider the incorporation of a new type of I/O module. To be 
able to include a device (I/O module or communication device) in a configu-
ration, a hardware definition file for that type of device must be present on the 
computer running the Control Builder. For an I/O module, this file defines the 
number and types of input and output channels. The Control Builder uses this 
information to allow the module and its channels to be configured using a ge-
neric configuration editor. This explains why the user interface did not need to 
be updated to support a new I/O module. The hardware definition file also 
defines the memory layout of the module, so that the transmission of data be-
tween program variables and I/O channels can be implemented in a generic 
way.  

For most I/O modules, however, the system is required to perform certain 
tasks, for instance when the configuration is compiled in the Control Builder 
or during start-up and shutdown in the controller. In the architecture de-
scribed above, routines to handle such tasks had to be hard-coded for every 
type of I/O module supported. This required software developers with a 
thorough knowledge of the source code. The situation was similar when add-
ing support for communication interfaces and protocols. The limited number 
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of such developers therefore constituted a bottleneck in the effort to keep the 
system open to the many I/O and communication systems found in industry. 

5.3.2 Component-Based Software Architecture 
To make it much easier to add support for new types of I/O and communica-
tion, it was decided to split the logical components mentioned above into their 
generic and specific parts. The generic parts, commonly called the generic I/O 
and communication framework, contains code that is shared by all hardware 
and protocols implementing certain functionality. Routines that are specific to 
a particular type of hardware or protocol are implemented in separate compo-
nents, called protocol handlers, installed on the PC running the Control 
Builder and on the controllers. This component-based architecture is illus-
trated in Figure 5-6.  

 

Figure 5-5 Component-based software architecture 

Focusing again on the controller side, and comparing this architecture with the 
previous one, the protocol handlers can be seen as an additional half-layer be-
tween the framework and the bottom layer. To add support for a new I/O 
module, communication interface, or protocol in this architecture, it is only 
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necessary to add protocol handlers for the PC and the controller along with a 
hardware definition file and possibly a device driver. The format of hardware 
definition files is extended to include the identities of the protocol handlers as 
described below. 

Essential to the success of the approach, is that the dependencies between the 
framework and the protocol handlers are fairly limited and, even more im-
portantly, well specified. One common way of dealing with such dependen-
cies is to specify the interfaces provided and required by each component [9]. 
The new control system uses the Component Object Model (COM) [4] to spec-
ify these interfaces, since COM provides suitable formats both for writing in-
terface specification, using the COM Interface Description Language (IDL), 
and for run-time interoperability between components. 

For each of the generic components, two interfaces are specified: one that is 
provided by the framework and one that may be provided by protocol han-
dlers. In addition, interfaces are defined to give protocol handlers access to 
device drivers and system functions. The identities of protocol handlers are 
provided in the hardware definition files as the Globally Unique Identifiers 
(GUIDs) of the COM classes that implement them. 

COM allows several instances of the same protocol handler to be created. This 
is useful, for instance, when a controller is connected to two separate networks 
of the same type. Also, it is useful to have one object, implementing an inter-
face provided by the framework, for each protocol handler that requires the 
interface. 

An additional reason that COM has been chosen is that commercial COM im-
plementations are expected to be available on all operating systems that the 
software will be released on in the future. The Control Builder is only released 
on Windows, and it is expected that most future control products will be 
based on VxWorks, although some products are based on pSOS, for which a 
commercial COM implementation does not exist. In the first release of the 
component-based system the protocol handlers were implemented as C++ 
classes, which are linked statically with the framework. This works well be-
cause of the close correspondence between COM and C++, where every COM 
interface has an equivalent abstract C++ class.  

An important constraint on the design of the architecture is that hard real-time 
requirements, related to scheduling and execution of control programs, must 
not be affected by interaction with protocol handlers. Thus, all code in the 
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framework responsible for instantiation and execution of protocol handlers, 
always executes at a lower priority than code with hard deadlines. 

5.3.3 Interaction between Components 
When a control system is configured to use a particular device or protocol, the 
Control Builder uses the information in the hardware definition file to load the 
protocol handler on the PC and execute the protocol specific routines it im-
plements. During download, the identity of the protocol handler on the con-
troller is sent along with the other configuration information. The controller 
system software then tries to load this protocol handler. If this fails, the 
download is aborted and an error message is displayed by the Control Builder. 
This is very similar to what happens if one tries to download a configuration, 
which includes a device that is not physically present. If the protocol handler 
is available, an object is created and the required interface pointers obtained. 
Objects are then created in the framework and interface pointers to these 
passed to the protocol handler. 

After the connections between the framework and the protocol handler has 
been set up through the exchange of interface pointers, a method will usually 
be called on the protocol handler object that causes it to continue executing in 
a thread of its own. Since the interface pointers held by the protocol handler 
reference objects in the framework, which are not used by anyone else, all syn-
chronization between concurrently active protocol handlers can be done inside 
the framework. 

To make this more concrete, we now present a simplified description of the 
interaction between the framework and a protocol handler implementing the 
server side of a communication protocol on the controller. This relies manly on 
the two interfaces IGenServer and IPhServer. The former is provided by 
the framework and the latter by protocol handlers implementing server side 
functionality. Figure 5-7 is a UML structure diagram showing the relationships 
between interfaces and classes involved in the interaction between the frame-
work and such a protocol handler. The class CMyProtocol represents the 
protocol handler. The interface IGenDriver gives the protocol handler access 
to the device driver for a communication interface. 
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Figure 5-7 Interfaces for communication servers 

A simplified definition of the IPhServer interface is shown below. The first 
two operations are used to pass interface pointers to objects implemented by 
the framework to the protocol handler. The other two operations are used to 
start and stop the execution of the protocol handler in a separate thread.  

interface IPhServer : IUnknown 
{ 
   HRESULT SetServerCallback( 
      [in] IGenServer *pGenServer); 
   HRESULT SetServerDriver( 
      [in] IGenDriver *pGenDriver); 
   HRESULT ExecuteServer(); 
   HRESULT StopServer(); 
}; 

The UML sequence diagram in Figure 5-8 shows an example of what might 
happen when a configuration is downloaded to a controller, specifying that 
the controller should provide server-side functionality. The system software 
first invokes the COM operation CoCreateInstance to create a protocol 
handler object and obtain an IPhServer interface pointer. Next, an instance 
of CGenServer is created and a pointer to it passed to the protocol handler 
using SetServerCallback. Similarly, a pointer to a CGenDriver object is 
passed using SetDriverCallback. Finally, ExecuteServer is invoked, 
causing the protocol handler to start running in a new thread. 
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Figure 5-8 Call sequence to set up connections 

To see how the execution of the protocol handler proceeds, we first look at a 
simplified definition of IGenServer. The first two operations are used to in-
form the framework about incoming requests from clients to establish a con-
nection and to take down an existing connection. The last two operations are 
used to handle requests to read and write named variables, respectively. The 
index parameter is used with variables that hold structured data, such as re-
cords or arrays. All the methods have an output parameter that is used to re-
turn a status word. 

interface IGenServer : IUnknown 
{ 
   HRESULT Connect([out] short *stat); 
   HRESULT Disconnect([out] short *stat); 
   HRESULT ReadVariable( 
      [in] BSTR *name, [in] short index, 
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      [out] tVal *pVal, [out] short *status); 
   HRESULT WriteVariable( 
      [in] BSTR *name, [in] short index,  
      [in] tVal *pVal, [out] short *status); 
}; 

Running in a thread of its own, the protocol handler uses the IGenDriver 
interface pointer to poll the driver for incoming requests from clients. When a 
request is encountered the appropriate operation is invoked via the IGen-
Server interface pointer, and the result of the operation, specified by the 
status parameter, reported back to the driver and ultimately to the communi-
cation client via the network. As an example, Figure 5-9 shows how a read re-
quest is handled by calling ReadVariable. The definition of the IGen-
Driver interface is not included in this discussion for simplicity, so the names 
of the methods invoked on this interface are left unspecified in the diagram. 
Write and connection oriented requests are handled in a very similar manner 
to read requests. 

 

Figure 5-9 Call sequence to handle variable read 

The last scenario to be considered here, is the one where configuration infor-
mation is downloaded, specifying that a protocol handler that was used in the 
previous configuration should no longer be used. In this case, the connections 
between the objects in framework and the protocol handler must be taken 
down and the resources allocated to them released. Figure 5-10 shows how 
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this is accomplished by the framework first invoking StopServer and then 
Release on the IPhServer interface pointer. This causes the protocol handler 
to decrement its reference count, and to invoke Release on the interface 
pointers that have previously been passed to it. This in turn, causes the objects 
behind these interface pointers in the framework to release themselves, since 
their reference count reaches zero. Assuming that its reference count is also 
zero, the protocol handler object also releases itself. If the same communica-
tion interface, and thus the protocol handler object, had also been used for dif-
ferent purposes, the reference count would have remained greater than zero 
and the object not released. 

 

Figure 5-10 Call sequence to take down connections 

5.4 Experiences 
The definitive measure of the success of the project described in this chapter is 
how large the effort required to redesign the software architecture has been 
compared to the effort saved by the new way of adding I/O and communica-
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tion support. It is important to remember, however, that in addition to this 
cost balance, the business benefits gained by shortening the time to market 
must be taken into account. Also important, although harder to assess, are the 
long time advantages of the increased flexibility that the component-based 
software architecture is hoped to provide. 

At the time of writing, the parts of the generic I/O and communication 
framework needed to support communication protocols have been completed, 
requiring an estimated effort of 15–20 person-years. A number of protocols 
have been implemented using the new architecture. The total effort required to 
implement a protocol (including the protocol handler, a device driver, firm-
ware for the communication interface, and possibly IEC 61131-3 function 
blocks) is estimated to be 3–6 person-years. The reduction in effort compared 
to that required with the previous architecture is estimated to vary from one 
third to one half, i.e. 1–3 person-years per protocol. Assuming an average sav-
ing of 2 person-years per protocol handler, the savings surpass the investment 
after the implementation of 8–10 protocols. Table 5-1 summarizes these effort 
estimations, which were made by technical management at ABB and are pri-
marily based on reported working hours.   

System tests have shown that the adoption of the chosen subset of COM has 
resulted in acceptable system performance. The ability to meet hard real-time 
requirements has not been affected by the component-based architecture, since 
all such requirements are handled by threads that cannot be interrupted by the 
protocol handlers. 

Table 5-1 Summary of effort estimation for the two software architectures 

Software architecture: Original  Component-based  

Investment in framework: 0 12-15 person years 

Cost per protocol: 4-9 person years 3-6 person years 

Saving per protocol: 0 1-3 person years 

Return on investment: - 8-10 protocols 

An interesting experience from the project is that the componentization is be-
lieved to have resulted in a more modularized and better documented system. 
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Two characteristics generally believed to enhance quality. This experience 
concurs with the view of Szyperski [16] that adopting a component-based ap-
proach may be used to achieve modularization, and may therefore be effective 
even in the absence of externally developed components. The reduction in the 
effort required to implement communication protocols is partly due to the fact 
that the framework now provides some functionality that was previously pro-
vided by individual protocol implementations. This is also believed to have 
increased quality, since the risk of each protocol implementation introducing 
new errors in this functionality has been removed. 

Another interesting experience is that techniques that were originally devel-
oped to deal with dynamic hardware configurations have been successfully 
extended to cover dynamic configuration of software components. In the ABB 
control system, hardware definition files are used to specify what hardware 
components a controller may be equipped with and how the system software 
should interact with different types of components. In the redesigned system, 
the format of these files has been extended to specify which software compo-
nents may be used in the system. The true power of this commonality is that 
existing mechanisms for handling hardware configurations, such as manipu-
lating configuration trees in the Control Builder, downloading configuration 
information to a control system, and dealing with invalid configurations, can 
be reused largely as is. The idea that component-based software systems can 
benefit by learning from hardware design is also aired in [16]. 

Another lesson of general value is that it seems that a component technology, 
such as COM, can very well be used on embedded platforms and even plat-
forms where run-time support for the technology is not available. Firstly, we 
have seen that the space and computation overhead that follows from using 
COM is not larger than what can be afforded in many embedded systems. In 
fact, used with some care, COM does not introduce much more overhead than 
do virtual methods in C++. Secondly, in systems where no such overhead can 
be allowed, or systems that run on platforms without support for COM, IDL 
can still be used to define interfaces between components, thus making a fu-
ture transition to COM straightforward. This takes advantage of the fact that 
the Microsoft IDL compiler generates C and C++ code corresponding to the 
interfaces defined in an IDL file as well as COM type libraries. Thus, the same 
interface definitions can be used with systems of separately linked COM com-
ponents and statically linked systems where each component is realized as a 
C++ class or C module. 
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Among the problems encountered with the componentization, the most no-
ticeable was the difficulty of splitting functionality between independent 
components, i.e. between the framework and the protocol handlers, and thus 
determining the interfaces between these components. In all probability, this 
was in large parts due to the lack of any prior experiences with similar efforts 
within the development organization. Initially, the task of specifying interfaces 
was given to the development center responsible for developing the frame-
work. This changed during the course of the project, however, and the inter-
faces ultimately used were in reality defined in an iterative way in cooperation 
between the organizational unit developing the framework and those devel-
oping protocol handlers. Other problems are of a non-technical nature. An ex-
ample is the potential problem of what business processes to use if protocol 
handlers are to be deployed as stand-alone products. So far, protocol handlers 
have only been deployed as parts of complete controller products, comprising 
both hardware and software. 

5.5 Related Work 
A well-published case study with focus on software architecture is that of the 
US Navy’s A-7E avionics system [13]. Among other things, this study demon-
strated the use of information hiding to enhance modifiability while preserv-
ing real-time performance. Although the architecture of the A-7E system is not 
component-based in the modern sense, an important step was taken in this 
direction by decomposing the software into loosely coupled modules with 
well-defined interfaces.  

A more recent study, describing the componentization of a system with the 
aim to make it easier to add new functionality, has been conducted in the tele-
communications domain [1].  In this case study, the monolithic architecture of 
Ericsson’s Billing Gateway Systems is redesigned into one based on distrib-
uted components, and a component-based prototype system implemented. In 
contrast to our case, the system does not have hard real-time requirements, 
although performance is a major concern. The study shows that componenti-
zation of the architecture can improve the maintainability of the system while 
still satisfying the performance requirements. 

There is a substantial body of work on component-based software for control 
systems and other embedded real-time systems, which, unlike this chapter, 
focuses on the development of new component models to address the specific 
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requirements that a system or application domain has with respect to per-
formance, resource utilization, reliability, etc. One of the best known examples 
is the Koala component model [12] for consumer electronics, which is inter-
nally developed and used by Philips. Two other examples with particular re-
lation to the work presented in this chapter are the PECOS component model 
[6], which was developed with the participation of ABB for use in industrial 
field-devices, and the DiPS+ component framework [11], which targets the de-
velopment of flexible protocol stacks in embedded devices. 

The primary advantage of such models over more general-purpose models is 
their effective support for optimization with respect to the most important as-
pects for the particular application domain. A typical disadvantage is the lack 
of efficient and inexpensive tools on the market. For instance, building pro-
prietary development tools in parallel with the actual product development 
may incur significant additional costs. 

5.6 Conclusions and Future Work 
The experiences described above show that the effort required to add support 
for communication protocols in the controller product has been considerably 
reduced since the adoption of the new architecture. Comparing the invested 
effort of 15–20 person-years with the saving of 1–3 person-years per protocol 
handler it is concluded that the effort required to design the component-based 
software architecture is justified by the reduction in the effort required to 
make pre-specified functional extensions to the software and that the savings 
surpass the investment after 8–10 such extensions. Based on current plans for 
protocol handlers to be implemented, it is expected that the savings exceed the 
investment within 3 years from the start of the project. 

In addition to these effort savings and the perceived quality improvements, 
the component-based architecture has resulted in the removal of the bottle-
neck at the single development centre and the possibility of developing the 
framework and several protocol handlers concurrently. This could potentially 
lead to business benefits such as reduced time to market. Concerning the 
overhead introduced by the component model, which is small in the current 
system but may be larger if and when more COM support is incorporated, we 
believe that the business climate in which industrial control systems are de-
veloped justifies a modest increase in hardware resource requirements in ex-
change for a noticeable reduction in development time. 
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The experiences with the use of a component-based software architecture in 
ABB’s control system could be further evaluated. For instance, as more proto-
col handlers are completed, the confidence in the estimated reduction of effort 
can be increased. Another opportunity is to study the effect on other system 
properties, such as performance or reliability. A challenge is that this would 
require that meaningful measures of such properties could be defined and that 
measures could be obtained from one or more versions of the system before 
the componentization. 

Since a number of protocol handlers have been implemented and even more 
are planned, there is probably a good opportunity to study the experiences of 
protocol implementers, which may shed additional light on the qualities of the 
adopted architecture and component model. One possibility would be to con-
duct a survey, which might include several development centers. Further op-
portunities to study the use of a software component model in a real-time sys-
tem might be offered by a future version of the controller that adopts more of 
COM and possibly uses a commercial COM implementation. 

An issue that may be addressed in the future development at ABB is inclusion 
of a COM-runtime system with support for dynamic linking between compo-
nents. Commercially available COM implementations will probably be used 
for systems based on Windows and VxWorks. Dynamic linking will simplify 
the process of developing and testing protocol handlers. A potentially sub-
stantial effect of dynamic linking is the possibility of adding and upgrading 
protocol handlers at runtime. This might allow costly production stops to be 
avoided while, for instance, a controller is updated with a new communication 
protocol. Another possible continuation of the work presented here, would be 
to extend the component approach beyond I/O and communication. An ar-
chitecture were general functionality can be easily integrated by adding inde-
pendently developed components, would be a great benefit to this type of sys-
tem, which is intended for a large range of control applications. 
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Abstract 
The use of software component models has become popular during the last decade, 
in particular in the development of software for desktop applications and distrib-
uted information systems. However, such models have not been widely used in the 
domain of embedded real-time systems. There is a considerable amount of research 
on component models for embedded real-time systems, or even narrower applica-
tion domains, which focuses on source code components and statically configured 
systems. This paper explores an alternative approach by laying the groundwork 
for a component model based on binary components and targeting the broader 
domain of embedded real-time systems. The work is inspired by component mod-
els for the desktop and information systems domains in the sense that a basic 
component model is extended with a set of services for the targeted application 
domain. A prototype tool for supporting these services is presented and its use il-
lustrated by a control application. 

6.1 Introduction 
The use of software component models has become increasingly popular dur-
ing the last decade, especially in the development of software for desktop ap-
plications and distributed information systems. Popular component models 
include JavaBeans [5] and ActiveX [4] for desktop applications and Enterprise 
JavaBeans (EJB) [11] and COM+ [15] for distributed information systems. In 
addition to basic standards for naming, interfacing, binding, etc., these models 
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also define standardized sets of run-time services oriented towards the appli-
cation domains they target. Unlike for these domains, there has been no wide-
spread use of software component models in the domain of real-time and em-
bedded systems, presumably due to the special requirements such systems 
have to meet with respect to timing predictability and limited use of resources. 
Much research has therefore been directed towards defining new component 
models for real-time and embedded systems. Typically, such models are based 
on static configurations of source code components and target relatively nar-
row application domains. Examples include the Koala component model for 
consumer electronics [22], PECOS for industrial field devices [6], and SaveCCM 
for vehicle control systems [7]. 

An alternative approach is to strive for a component model based on binary 
components and targeting a broader domain of applications, similar to the 
domain targeted by a typical real-time operating system. The approach pur-
sued in this paper is to provide a combination of restrictions and extensions of 
an existing component model to adapt it to our target domain. Adapting an 
existing component model has several advantages: It may be possible to use 
existing (integrated) development environments; existing components can be 
re-used or adapted for the real-time domain; integration with application from 
other domains becomes significantly simpler, and so on. 

Our previous work has demonstrated that the key concepts of the Component 
Object Model (COM) [3] can be beneficially used in the development of an em-
bedded real-time system [10]. A study of COM and its extension Distributed 
COM (DCOM) [17] shows that these models are not inherently incompatible 
with real-time requirements, although some restrictions on how the models 
are used may be necessary to ensure predictability [9]. Some reasons that 
COM is an attractive starting point are that the model is relatively simple, 
commercial COM implementations are already available for a few real-time 
operating systems, and COM is already well-known and accepted in industry. 
The goal of this paper is to lay the groundwork for a software component 
model for embedded real-time systems by using the basic concepts of COM as 
the starting point and extending the basic model with standardized services of 
general use for this application domain, much like COM+ extends COM with 
services for distributed information systems. 

The remainder of the paper is organized as follows. In Section 6.2 we clarify 
what we mean by software component services and identify some useful ser-
vices for embedded real-time systems. Section 6.3 is an overview of a proto-
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type tool we are developing to support such services, including an example 
control application to demonstrate the use of the tool. Related work is re-
viewed in Section 6.4 and conclusions and some ideas for further work are 
presented in Section 6.5. 

6.2 Component Services 
In this paper we define component services as solutions to common problems 
that can be added to components without modifying them and with little or no 
adaptation of application code. This is similar to the concept of component 
services in EJB and COM+, where examples of services include transaction 
control, data persistence, and security. Our focus is on services that address 
common challenges in embedded real-time systems, including logging, syn-
chronization, and timing control. Traditionally, such functions have to be hand 
coded and off line deduced using complex theories, which can be very time 
consuming and sometimes impossible in complex industrial systems. If third 
party components are used, it may also be impossible to implement functions 
by modifying the components. In the following subsections we describe some 
of the services we have identified in more depth and outline how they may be 
implemented. In general, we propose that services are implemented through 
the use of proxy objects, which are automatically generated from configuration 
files written in an XML based format. 

6.2.1 Logging 
A logging service allows the sequence of interactions between components to 
be traced. Our suggested solution for achieving this is to use a proxy object as 
illustrated in the UML class diagram in Figure 2-1. In the diagram, the object 
C2 implements an interface IC2 for which we wish to apply a logging service. 
A proxy object that also implements IC2 is placed between C2 and a client that 
uses the operations exposed through IC2. The operations implemented by the 
proxy forward all invocations to the corresponding operations in C2 in addi-
tion to writing information about parameter values, return codes, and invoca-
tion and return times to some logging medium. To add logging of all opera-
tion invocations through an interface, we simply add an entry in the configu-
ration file: 
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<application> 
 ... 
<component name="myProject.C2"> 
   <interface name="IC2"> 
      <service type ="Logging"/> 
   </interface> 
</component> 
 ... 
</application> 

No programming is required in the client C1 or the component C2. To add 
logging only for a particular operation, the entry is modified as follows: 

<interface name="IC2"> 
   <operation name="DoSomething"> 
      <service type ="Logging"/> 
   </operation> 
</interface> 

 

Figure 6-1 Implementing a logging service through a proxy object 

6.2.2 Execution Time Measurement 
This service allows operation invocations to be monitored and information 
about execution times accumulated. Different measurements, such as worst-
case, best-case, and average execution time may be collected. A possible use of 
the information is to dynamically adapt an on-line scheduling strategy. The 
suggested solution is to use a forwarding proxy that measures the time 
elapsed from each operation call till it returns and collects the desired timing 
information. As with the logging service, the time measurement service is 
specified in the configuration file:  
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<interface name="IC2"> 
   <service type="Timing"> 
      <measurement type="Mean" /> 
      <measurement type="Worst"/> 
   </service> 
</interface> 

Again, no programming is required. 

6.2.3 Synchronization 
A synchronization service allows components that are not inherently thread-
safe to be used in multi-threaded applications. The suggested solution is to use 
forwarding proxies that use the basic mechanisms of the underlying operating 
system to implement the desired synchronization policies. A synchronization 
policy may be applied to a single operation or to a group of operations, e.g. all 
operations of an interface or a component. Several different policies may be 
useful and will be described further in this section. Most synchronization poli-
cies rely on blocking and it may be useful to combine such policies with time-
outs to limit blocking time. If the blocking time for an operation call reaches 
the timeout limit, the proxy return an error without forwarding the call. A 
more advanced timeout policy is one where the proxy tries to determine if a 
call can be satisfied without violating the timeout limit a priori and, if not, re-
turns an error immediately. 

The simplest synchronization policy is mutual exclusion, which blocks all op-
eration calls except one. After the non-blocked call completes, the waiting calls 
are dispatched one by one according to the priority policy. This policy may be 
applied merely by adding an entry in the configuration file but, if timeouts are 
used, the client should be able to handle the additional error codes that may 
arise. Another class of synchronization policies is different reader/writer poli-
cies. These differs from the previously described policy in that any number of 
calls to read operations may execute concurrently, while each call to write op-
erations has exclusive execution. Thus, the operations subjected to a 
reader/writer policy must be classified as either writer or reader operations, 
depending on whether they may modify state or not. Concurrent read calls are 
scheduled according to their priorities.  

Using this policy requires that it be specified for each operation whether it is a 
read or write type of operation. This can be done in the component specifica-
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tion (e.g. a COM IDL file) or in the configuration file. If this is left unspecified 
for an operation, the proxy must assume it may write data. No programming 
is required, except possibly to handle error codes resulting from timeouts. For 
all synchronization policies, we may select if the priority of the dispatching 
thread should be the same as the calling thread, or explicitly specified in the 
configuration file. A specification of a reader/writer policy may look as fol-
lows: 

<interface name="IC2"> 
   <service type="Synchronization" policy="RWPolicy"/> 
   <operation name="DoSomething" type="Write"/> 
   <operation name="WriteData"   type="Write"/> 
   <operation name="ReadData"    type="Read" /> 
</interface> 

6.2.4 Execution Timeout 
This service can be used to ensure that a call to a component’s operation al-
ways terminate within a specified deadline, possibly signaling a failure if the 
operation could not be completed within that time. The solution is to use a 
proxy that uses a separate thread to forward each operation call and then wait 
until either that thread terminates or the deadline expires. In the latter case the 
proxy signals the failure by returns an error code. Also, it is possible to specify 
different options for what should be done with the thread of the forwarded 
call if the deadline expires. The simplest option is to forcefully terminate the 
thread, but this may not always be safe since it may leave the component in an 
undefined and possibly inconsistent state. Another option is to let the opera-
tion call run to completion and disregard its output. Obviously, using this ser-
vice requires that the client is able to handle timeouts. Again, the service is 
specified in the configuration file: 

<interface name="IC2"> 
   <service type="Timeout" deadline="10ms" 
            fail="Terminate"/> 
</interface> 



 6.3   Prototype Tool 127 

6.2.5 Vertical Services 
In addition to the type of services discussed above, which we believe are gen-
erally useful for embedded real-time systems, one can imagine many services 
aimed at more specific application domains, often called vertical services [8]. 
Among the services we have considered are cyclic execution, which are much 
used in process control loops [1], and support for redundancy mechanisms 
such as N-version components, which are useful in fault-tolerant systems [2]. 
The prototype tool presented in the next section includes an implementation of 
a cyclic execution service. 

6.3 Prototype Tool 

 

Figure 6-2 Generating a proxy object for a component service 

This section outlines a prototype tool we are developing that adds services to 
COM components on Microsoft Windows CE. The tool generates source code for 
proxy objects implementing services by intercepting method calls to the COM 
objects. The tool takes as inputs component specifications along with a specifi-
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cation of the desired services for each component. Component specifications 
may be in the form of Interface Definition Language (IDL) files or their binary 
equivalent Type Library (TLB) files. Desired services are either specified in a 
separate file using an XML-based format or in the tool´s graphical user inter-
face, described further below. Note that access to component source code is 
not required. Based on these inputs, the tool generates a complete set of files 
that can be used with Microsoft eMbedded Visual C++ (sic) to build a COM 
component implementing the proxy objects (i.e., the proxies are themselves 
COM objects). This process is depicted in Figure 6-2. 

6.3.1 Design Consideration 
The use of proxy objects for interception is heavily inspired by COM+. How-
ever, rather than to generate proxies at run-time, we suggest that these are 
generated and compiled on a host computer (typically a PC) and downloaded 
to the embedded system along with the application components. There, the 
proxy COM classes must be registered in the COM registry in such a way that 
proxy objects are placed between interacting application components. This 
process may occur when the software is initially downloaded to the system or 
as part of dynamic reconfiguration of a system that supports this. In the latter 
case, one can imagine updating or adding proxies without updating or adding 
any application components. The current version of the tool only generates 
proxy code and does not address the registration and run-time instantiation of 
components. This means that the client code must instantiate each proxy along 
with the affected COM object and set up the necessary connection between 
them. A desirable improvement would be to automate this task, either by gen-
erating code that performs setup for each proxy object or by extending the 
COM run-time environment with a general solution. 

We consider staying as close as possible to the original COM and COM+ con-
cepts an important design goal for the tool. Another goal is that the program-
mer or integrator should be able to choose desired services for each compo-
nent without having to change the implementation or doing any program-
ming. There are however cases, e.g. when adding invocation timeouts, where 
there is a need for adapting the code of the client component to fully benefit 
from the service. Specific to COM is that a component is realized by a set of 
COM classes that, in turn, each implements a number of interfaces. All inter-
faces have a method called QueryInterface that allows changing from one inter-
face to another on the same COM class. Since each proxy is implemented by a 
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COM class, which must satisfy the definition of QueryInterface, we must gen-
erate one proxy for each COM class to which we wish to add any services.  

6.3.2 Supported Services 

 

Figure 6-3 The graphical user interface of the prototype tool 

Figure 6-3 shows the graphical user interface of the tool. After a TLB or IDL 
file has been loaded all COM classes defined in the file are listed. Checking the 
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box to the left of a COM class causes a proxy for that class to be generated 
when the button at the bottom of the tool is pressed. Under each COM class, 
the interfaces implemented by the class is listed and, under each interface, the 
operations implemented by the interface. In addition, the available services are 
listed with their names set in brackets. Checking the box to the left of a service 
causes code to be generated that provides the service for the element under 
which the service is listed. In the current version of the tool, a service for cyclic 
execution may only be specified for the IPassiveController interface (see 
example below), while all other services may only be specified for individual 
operations. Checking the box to the left of an interface or operation is simply a 
quick way of checking all boxes further down in the hierarchy. 

If the cyclic execution service is checked, the proxy will implement an interface 
called IActiveController instead of IPassiveController (see example 
below). Checking the logging service results in a proxy that logs each invoca-
tion of the affected operation. The timing service causes the proxy to measure 
the execution time of the process and write it to the log at each invocation (if 
timing is checked but not logging, execution times will be measured but not 
saved). The synchronization service means that each invocation of the opera-
tion will be synchronized with all other invocations of all other operations on 
the proxy object for which the synchronization service is checked. The only 
synchronization policy currently supported is mutual exclusion. The timeout 
service has a numeric parameter. When this service is selected (by clicking the 
name rather than the box) as in Figure 6-3, an input field marked Milliseconds 
is visible near the bottom of the tool. Checking the service results in a proxy 
where invocations of the operation always terminate within the specified 
number of milliseconds. In the case that the object behind the proxy does not 
complete the execution of the operation within this time, the proxy forcefully 
terminates the execution and returns en error code. 

6.3.3 Example Application 
To illustrate the use of the tool we have implemented a component that encap-
sulates a digital Proportional-Integral-Differential (PID) controller []. For the 
purpose of comparison, we first implemented a component that does not rely 
on any services provided by the tool. Figure 6-4 shows the configuration of an 
application that uses this component. PIDController is a COM class that 
implements an interface IActiveController and relies on the two inter-
faces ISensor and IActuator to read and write data from/to the controlled 
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process. For the purpose of this example, these interfaces are implemented by 
the simple COM class DummyProcess that does nothing except returning a 
constant value to the controller. The interfaces are defined as follows: 

interface ISensor : IUnknown  {     
   [propget] HRESULT ActualValue( 
      [out, retval] double *pVal);  
}; 
 
interface IActuator : IUnknown  {  
   [propget] HRESULT DesiredValue( 
      [out, retval] double *pVal); 
   [propput] HRESULT DesiredValue( 
      [in] double newVal); 
}; 
 
interface IController : IActuator { 
   [propget] HRESULT SensorInterface( 
      [out, retval] ISensor **pVal); 
   [propput] HRESULT SensorInterface( 
      [in] ISensor *newVal); 
   [propget] HRESULT ActuatorInterface( 
      [out, retval] IActuator **pVal); 
   [propput] HRESULT ActuatorInterface( 
      [in] IActuator *newVal); 
   [propget] HRESULT CycleTime( 
      [out, retval] double *pVal); 
   [propput] HRESULT CycleTime( 
      [in] double newVal); 
   [propget] HRESULT Parameter( 
      short Index, [out, retval] double *pVal); 
   [propput] HRESULT Parameter( 
      short Index, [in] double newVal); 
}; 
 
interface IActiveController : IController { 
   [propget] HRESULT Priority( 
      [out, retval] short *pVal); 
   [propput] HRESULT Priority( 
      [in] short newVal); 
   HRESULT Start(); 
   HRESULT Stop(); 
}; 



132 Chapter 6 A Prototype Tool for Software Component Services in Embedded Real-Time 
Systems 

 

Figure 6-4 An application using a controller component without services 

IController is a generic interface for a single-variable controller with con-
figurable cycle time and an arbitrary number of control parameters. PIDCon-
troller uses three parameters for the proportional, integral, and differential 
gain. IActiveController extends this interface to allow control of the con-
troller’s execution in a separate thread. The reason for splitting the interface 
definitions like this is that we wish to reuse IController for a controller that 
uses our cyclic execution service rather than maintaining its own thread. Note 
that IController inherits the DesiredValue property from IActuator. 
This definition is chosen to allow the interface to be used for cascaded control 
loops where the output of one controller forms the input to another. 

The test application TestControl1.exe creates one instance of PIDController 
and one instance of DummyController. It then connects the two objects by 
setting the SensorInterface and ActuatorInterface properties of the 
PIDController object. After this it sets the cycle time and the control pa-
rameters before invoking the Start operation. This causes the PIDController 
object to create a new thread that executes a control loop. A simple timing 
mechanism is used to control the execution of the loop in accordance with the 
cycle time property. At each iteration the loop reads a value from the sensor 
interface, which it uses in conjunction with the desired value, the control pa-
rameters, and an internal state based on previous inputs to compute and write 
a new value to the actuator interface. To minimize jitter (input-output delay as 
well as sampling variability), this part of the loop uses internal copies of all 
variables, eliminating the need for any synchronization.  
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Next, the control loop updates its internal variables for subsequent iterations. 
Since the desired value and the control parameters may be changed by the ap-
plication while the controller is running, this part of the loop uses a mutual 
exclusion mechanism for synchronization. In addition to performing its con-
trol task the loop timestamps and writes the sensor and actuator data to a log. 
The control loop is illustrated by the following pseudo code: 

while (Run) { 
   WaitForTimer(); 
   ReadSensorInput(); 
   ComputeAndWriteActuatorOutput(); 
   WriteDataToLog(); 
   WaitForMutex(); 
   UpdateInternalState(); 
   ReleaseMutex(); 
} 

Note that, due to the simple timing mechanism, the control loop will halt 
unless all iterations complete within the cycle time. 

Next, we implemented a component intended to perform the same function, 
but relying on services provided by generated proxies. A test application us-
ing this component and generated proxies is shown if Figure 6-5. In this appli-
cation, PIDController is a COM class that implements the IPassiveCon-
troller interface. Note that, although this COM class has the same human 
readable name as in the application described above, it has a distinct identity 
to the COM run-time environment. To avoid confusion we use the notation 
Control2.PIDController when appropriate. IPassiveController ex-
tends IController as follows: 

interface IPassiveController : IController { 
   HRESULT UpdateOutput(); 
   HRESULT UpdateState(); 
}; 

These operations are used by the PIDController_Proxy object to imple-
ment a control loop that performs the same control task as in the previous ex-
ample.  
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Figure 6-5 An application using a controller component with services 

PIDController_Proxy was generated with the use of the tool by checking 
the cyclic execution service under the Control2.PIDController’s IPas-
siveController interface and the synchronization service under the Up-
dateState operation as well as the operations for accessing the desired value 
and the control parameters. The DummyProcess_Proxy provides the inter-
face pointers for the controller’s SensorInterface and ActuatorInter-
face properties. Behind this proxy is a DummyProcess object with the same 
functionality as in the previous example. DummyProcess_Proxy was gener-
ated by the tool with the logging service checked. As a result, all data read and 
written via the sensor and actuator interfaces are logged. The interfaces ISen-
sor_Proxy, IActuator_Proxy and IPIDController_Proxy are only 
used to set up the connections between proxies and other objects. They are de-
fined as follows: 
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interface ISensor_Proxy : IUnknown { 
   HRESULT Attach([in] ISensor *pTarget); 
}; 
 
interface IActuator_Proxy : IUnknown { 
   HRESULT Attach([in] IActuator *pTarget); 
}; 
 
interface IPIDController_Proxy : IUnknown { 
   HRESULT Attach([in] IPassiveController *pTarget); 
}; 

In order to evaluate to two test applications we built and executed them on the 
Windows CE 4.0 Emulator. Since the timing accuracy on the emulator is 10 
milliseconds, it was not possible to measure any timing differences between 
the two applications. In both cases the controller worked satisfactory for cycle 
times of 20 milliseconds or more (the measured input-output delay as well as 
sampling variability was zero – from which we can only conclude that the ac-
tual times are closer to zero than 10 milliseconds). For shorter cycle times, both 
controllers ultimately halted since the limited timer accuracy caused the con-
trol loop to fail to complete its execution before the start of the next cycle. Also, 
we were not able to see any systematic difference in memory usage for the two 
applications. Clearly, further evaluation of the effects of the services on timing 
and memory usage is desirable. 

To estimate the difference in programming effort and code size for the two 
applications we compared the amounts of source code and sizes of compiled 
files. These size metrics for the various components are presented in Table 6-1. 
The middle column shows the number of non-empty lines of source code. For 
the first three components, the number only include the source code of the 
C++ classes implementing the COM objects, i.e. the automatically generated 
code included in all COM components is not included. Taking these numbers 
as (admittedly primitive) measurements of programming effort, we see that 
using the tool to generate service proxies has resulted in a saving of 127 lines 
or 42 per cent. On the other hand, we see that the effort required for the client 
program is substantially greater in the case where the proxies are used. This is 
due to the need for the program to set up the connections between the proxies 
and the other objects. We conclude that the usefulness of our approach would 
greatly benefit from automation of this task.  
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Table 6-1 Size metrics for components 

Component Lines of source code File size in KB 

Control1.dll 300 56.5 

Control2.dll 173 53.5 

Control2_Proxy.dll 351 60.5 

TestControl1.exe 81 12.5 

TestControl2.exe 157 14 

As for the code size, there is only a small difference between the three COM 
components, leading to an overhead of roughly 100 per cent from using the 
proxies. This is largely due to the fact that the implemented COM objects are 
relatively small, leading to the obligatory house-keeping code of all COM 
components taking up a large percentage of the code size. For larger COM ob-
jects, the relative code sizes approaches the relative sizes of the source code. 
The small size of the COM objects is also the main reason that the component 
implementing the proxy objects is the largest of all the components. In addi-
tion, the generated code is designed to be robust in the sense that all the opera-
tions of the proxy objects verify that the interface pointers have been set before 
forwarding operation calls. An obvious trade-off would be to sacrifice this ro-
bustness for less overhead in execution time as well as space. From the file size 
of the two test programs we find that the code overhead for setting up the 
connections between the proxies and the other objects is a little more than 10 
per cent. This overhead, unlike the overhead on programming effort, cannot 
be eliminated by automating the setup task.  

6.4 Related Work 
The services discussed in this paper have already been adopted by some cur-
rent and emerging technologies. As a base for our discussions, we have se-
lected a few of the most common solutions for these. In addition, this section 
briefly reviews some existing research on binary components for real-time sys-
tems. 
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Microsoft’s component model COM [3] originally targets the desktop software 
domain. Thus, it has good support for specifying and maintaining functional 
aspects of components while disregarding temporal behavior and resource 
utilization. Often this can only be overcome with a substantial amount of 
component specific programming. There is no built in support to automati-
cally measure and record execution times for methods in components. This is 
typically done by third party applications that instrument the code in run-
time. These applications are typically not well suited for executing on embed-
ded resource constrained systems. The desktop version of COM, as well as the 
DCOM package available for Windows CE, has some support for synchroniz-
ing calls to components that are not inherently thread safe. This is achieved 
through the use of so-called apartments, which can be used to ensure that only 
one thread can execute code in the apartment at a time. Since this technique 
origins from the desktop version of COM, there is no built in support for time 
determinism and the resource overhead is larger than desired for many em-
bedded systems.  

COM+ [15] is Microsoft's extension of their own COM model with services for 
distributed information systems. These services provide functionality such as 
transaction handling and persistent data management, which is common for 
applications in this domain and which is often time consuming and error 
prone to implement for each component. Builders of COM+ application de-
clare which services are required for each component and the run-time system 
provides the services by intercepting calls between components. COM+ is a 
major source of inspiration for our work in two different ways. Firstly, we use 
the same criteria for selecting which services our component model should 
standardize, namely that they should provide non-trivial functionality that is 
commonly required in the application domain. Since our component model 
targets a different domain than COM+, the services we have selected are dif-
ferent from those of COM+ as well. Secondly, we are inspired by the technique 
of providing services by interception. This mechanism is also used in other 
technologies and is sometimes called interceptors rather than proxies, e.g. in the 
Common Object Request Broker Architecture (CORBA) [14] and the MEAD frame-
work for fault-tolerant real-time CORBA applications [13]. 

The approach presented in this paper is similar to the concept of aspects and 
weaving. In [21], a real-time component model called RTCOM is presented 
which have support for weaving of functionality into components as aspects 
while maintaining real-time policies, e.g. execution times. However, RTCOM 
is a proprietary source code component model. Moreover, functionality is 
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weaved in at the level of source code in RTCOM whereas in our approach, 
services are introduced at the system composition level. 

Another aspect-oriented approach is presented in [18], which describes a 
method using C# attributes to generate a proxy that handles component repli-
cation for fault tolerance. Our work is primarily targeting COM and C++, 
which does not support attributes as used in that paper. An obstacle to the use 
of C# for the type of systems we are interested in is the lack of real-time pre-
dictability in the underlying .NET Framework [16]. The possibility of adding 
real-time capabilities to the .NET framework are described in [23].  

A model for monitoring of components in order to gain more realistic WCET 
estimations is described in [20]. In this model the WCET is guessed at devel-
opment time and the component is then continuously monitored at runtime 
and measurements of execution times are accumulated. This technique is very 
similar to our execution time measurement service.  

Another effort to support binary software components for embedded real-time 
systems is the Robocop project [12], which builds on the aforementioned Koala 
model and primarily targets the consumer electronics domain. This work is 
similar to ours in that the component model defined as part of this project is 
largely based on the basic concepts of COM. Furthermore, the sequel of the 
project, called Space4U [19], also seems to use a mechanism similar to proxy 
objects, e.g. to support fault-tolerance. 

6.5 Conclusion and Future Work 
The aim of this work has been to lay the groundwork for component services 
for embedded real-time systems using COM as a base technology. A major 
benefit of this approach is that industrial programmers can leverage their 
knowledge of existing technologies. Also, extending COM with real-time ser-
vices probably requires less effort than inventing a new component technol-
ogy from the ground.  

The initial experiences with the prototype shows that it is possible to create a 
tool that more or less invisibly add real-time services to a standard component 
model. The example application demonstrates that the use of generated prox-
ies to implement services may substantially reduce the complexity of software 
components. Another conclusion to be drawn from the example is that our 
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approach would benefit from also automating the configuration of applica-
tions with proxies.  

We have been able to identify some component services which we believe are 
useful for embedded real-time systems. As part of our future work, we plan to 
evaluate the usefulness of the services as well as to extend the set of services. 
We hope to do this with the help of input from organizations developing 
products in such domains as industrial automation, telecommunication, and 
vehicle control systems. 

We realize that the proposed solutions imposes some time and memory over-
head, and we believe that this is an acceptable price for many embedded real-
time systems if using the model reduces the software development effort. It is, 
however, necessary that this overhead can be kept within known limits. So far, 
our prototype implementation has been tested with the Windows CE emula-
tor, where we have found no noticeable run-time overheads. In our future 
work, we plan to evaluate the solution experimentally on a system running 
Windows CE. Measurements will be made to determine the effect on timing 
predictability as well as time and memory overhead.  

We furthermore aim to empirically evaluate our approach with respect to its 
effect on development effort and such quality attributes as reliability and re-
usability. Our hypothesis concerning reliability is that it may improve as a re-
sult of reduced complexity of application components, provided of course that 
the generated proxies are reliable. We also believe reusability may be affected 
positively, as e.g. the use of synchronization services could make it easier to 
reuse components across applications that share some functionality but rely on 
different synchronization policies. The primary evaluating technique will be to 
conduct replicated student projects where software is developed both with 
and without the prototype tool. A possible complementary technique is indus-
trial case studies, which implies a lower level of control and replication but 
may allow more realistic development efforts to be investigated. 
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Abstract 
While the use of software component models has become popular in the develop-
ment of desktop applications and distributed information systems, such models 
have not been widely used in the domain of embedded real-time systems. Pre-
sumably, this is due to the requirements such systems have to meet with respect to 
predictable timing and limited use of resources. There is a considerable amount of 
research on component models for embedded real-time systems that focuses on 
source code components, statically configured systems, and relatively narrow ap-
plication domains. This paper explores the alternative approach of using a main-
stream component model based on binary components. The effects of using the 
model on timing and resource usage have been measured by implementing exam-
ple applications both with and without using the model. In addition, the use of a 
prototype tool for supporting software component services has been investigated 
in the same manner. 

7.1 Introduction 
The use of software component models has become popular in the develop-
ment of desktop applications and distributed information systems, where 
popular component models include JavaBeans [1] and ActiveX [2] for desktop 
applications and Enterprise JavaBeans (EJB) [3] and COM+ [4] for information 
systems. In addition to basic standards for naming, interfacing, binding, etc., 
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these models also define standardized sets of run-time services oriented to-
wards the application domains they target. This concept is generally termed 
software component services [5]. 

Software component models have not been widely used in the development of 
real-time and embedded systems. It is generally assumed that this is due to the 
special requirements such systems have to meet, in particular with respect to 
timing predictability and limited use of resources such as memory and CPU 
time. Much research has been directed towards defining new component 
models for real-time and embedded systems, typically focusing on relatively 
small and statically configured systems. Most of the published research pro-
poses models based on source code components and targeting relatively nar-
row application domains. Examples of such models include the Koala compo-
nent model for consumer electronics [6], PECOS for industrial field devices [7], 
and SaveCCM for vehicle control systems [8].  

An alternative approach is to strive for a component model for embedded real-
time systems based on binary components and targeting a broader domain of 
applications, similarly to the domain targeted by a typical real-time operating 
system. This paper explores the possibility of using a mainstream component 
model as the starting point for such a model. Specifically, the use of the Com-
ponent Object Model (COM) [9] with the real-time operating system Windows CE 
[10] is investigated. We have empirically evaluated the effect of using COM by 
implementing applications both with and without using the model. In addi-
tion, we have evaluated the effects of using a prototype tool for supporting 
software component services in embedded real-time systems. 

The rest of this paper is organized as follows. Section 7.2 provides background 
information on COM and the prototype tool. Section 7.3 presents an automatic 
control applications that we use as an example to evaluate the use of these 
technologies. In Section 7.4, we described the tests we have conducted and 
their results. These results are discussed in Section 7.5. Section 7.6 is an over-
view of some related work. Conclusions and ideas for future work are pre-
sented in Section 7.7. 
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7.2 Background 

7.2.1 The Component Object Model (COM) 
Microsoft’s Component Object Model (COM) [9] is one of the most commonly 
used software component models for desktop and server side applications. Al-
though the model is increasingly being replaced by the newer .NET technol-
ogy [11] in these domains, we believe COM is a more suitable starting point 
for a model aimed at embedded real-time systems because of its relative sim-
plicity. In particular, the use of automatic memory management (garbage col-
lection) in .NET is a serious barrier against ensuring predictable timing. 

A key principle of COM is that interfaces are specified separately from both 
the components that implement them and those that use them. COM defines a 
dialect of the Interface Definition Language (IDL) that is used to specify object-
oriented interfaces. Interfaces are object-oriented in the sense that their opera-
tions are to be implemented by a class and passed a reference to a particular 
instance of that class when invoked. The code that uses a component does not 
refer directly to any objects, however. Instead, the operations of an interface 
supported by an object are invoked via what is known as an interface pointer. 
A concept known as interface navigation makes it possible for the user to ob-
tain a pointer to every interface supported by the object.  

COM also defines a run-time format for interface pointers. What an interface 
pointer really references is an interface node, which in turn, contains a pointer 
to a table of function pointers, called a VTABLE. Typically, the node also con-
tains a pointer to an object’s instance data, although this is implementation 
specific. This use of VTABLEs is identical to the way that many C++ compilers 
implement virtual methods. Thus, the time and space overhead associated 
with accessing an object through an interface pointer is presumably the same 
as that incurred with C++ virtual methods. Figure 7-1 illustrates the typical 
format of interface nodes. 

For most real-time systems, a more serious concern than these modest over-
heads is that interface navigation introduces a possible source of run-time er-
rors. If the user of a component asks an object for a pointer to an interface that 
the object does not support, this will not be detected during compilation. It 
may be argued, in fact, that this is the principal difference between interface 
navigation and interface inheritance in traditional object-oriented program-
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ming. This can be seen as a necessary price to pay for the otherwise desirable 
reduced compile-time dependence between components. 

interface pointer

interface node
instance data

VTABLE

method code

method code

method code

method code

 

Figure 7-1 Typical format of COM interface nodes 

As already mentioned, a COM component is implemented in classes. The 
mechanism for creating instances of these classes is closely linked with how 
and when the code in different components is linked together. COM defines a 
policy for instantiation, which is intended to ensure that different components 
can be installed in a system at different times. When a component is installed, 
information about it must be registered somewhere in the system, linking the 
identity of its classes to the code that implement these. COM also requires a 
run-time library, called the COM library, to be installed on the system. When 
some code wants to use a component, it uses an operation provided by the 
COM library to ask for an instance of a class and an initial interface pointer to 
it. If the code of the component is not already loaded into memory, the COM 
library uses the registered information to locate the code and load it before an 
instance is created. This process is illustrated in Figure 7-2. 

Thus, creation of an instance involves searching the information about regis-
tered classes and possibly loading of code. This leads to a noticeable overhead 
when compared to instantiation in for instance C++. Furthermore, this over-
head will vary, depending on whether the code implementing a class has al-
ready been loaded or not. This variability can be eliminated, however, by de-
signing the software such that all components that may be used will be loaded 
at start-up. Note that removal of instances is subject to the same variability, 
since the COM standard states that code can be unloaded when the last in-
stance that rely on it is removed. 
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Figure 7-2 Instance creation and dynamic loading of code in COM 

A benefit that follows from COM’s way of creating instances is that the code 
that implements a component can be built independently of any code that uses 
the component. Since instantiation involves passing the identity of the desired 
class as a parameter to a system operation, it is a possible source of run-time 
errors, which is not present during instantiation in traditional object-oriented 
programming, since attempting to instantiate a class that does not exist will 
result in a compilation error in this case. Again, this is a necessary price to be 
paid for decreased coupling. 

7.2.2 Software Component Services for Embedded Real-Time Systems 
A prototype tool for supporting software component services in embedded 
real time systems is presented in [12]. The tool adds services to COM compo-
nents on Windows CE through the use of proxy object that intercept method 
calls. Figure 7-3 illustrates the use of a proxy object that provides a simple log-
ging service. The object C2 implements an interface IC2 for which we wish to 
apply a logging service. A proxy object that also implements IC2 is placed be-
tween C2 and a client that uses the operations exposed through IC2. The op-
erations implemented by the proxy forward all invocations to the correspond-
ing operations in C2 in addition to writing information about parameter val-
ues, return codes, and invocation and return times to some logging medium. 
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Figure 7-3 A logging service proxy 

The tool takes as inputs a component specification along with specifications of 
desired services and generates source code for a proxy object. Component 
specifications may be in the form of Interface Definition Language (IDL) files 
or their binary equivalent Type Library (TLB) files. Desired services are either 
specified in a separate file using an XML-based format or in the tool´s graphi-
cal user interface, described further below. Note that access to component 
source code is not required. Based on these inputs, the tool generates a com-
plete set of files that can be used with Microsoft eMbedded Visual C++ to build a 
COM component implementing the proxy objects (i.e., the proxies are them-
selves COM objects). This process is depicted in Figure 7-4. 

This use of proxy objects for interception is inspired by COM+. However, 
rather than to generate proxies at run-time, they are generated and compiled 
on a host computer and downloaded to the embedded system along with the 
application components. This process may occur when the software is initially 
downloaded to the system or as part of dynamic reconfiguration of a system 
that supports this. In the latter case, one can imagine updating or adding prox-
ies without updating or adding any application components. The current ver-
sion of the tool only generates proxy code and does not address the registra-
tion and run-time instantiation of components. This means that the client code 
must instantiate each proxy along with the affected COM object and set up the 
necessary connection between them. 
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Figure 7-4 Proxy object generation 

In addition to logging, the tool supports generating proxies that implement 
one or more of the following services: execution time measurement of method 
invocations; synchronization between concurrent invocations; execution time-
out on invocations; and cyclic execution of methods. 

Figure 7-5 shows the graphical user interface of the tool. After a TLB or IDL 
file has been loaded all COM classes defined in the file are listed. Checking the 
box to the left of a COM class causes a proxy for that class to be generated 
when the button at the bottom of the tool is pressed. Under each COM class, 
the interfaces implemented by the class is listed and, under each interface, the 
operations implemented by the interface. In addition, the available services are 
listed with their names set in brackets. Checking the box to the left of a service 
causes code to be generated that provides the service for the element under 
which the service is listed. In the current version of the tool, a service for cyclic 
execution may only be specified for the IPassiveController interface while all 
other services may only be specified for individual operations. The IPas-
siveController interface is described in connection with the example applica-
tion in the next section.  
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Figure 7-5 User interface of the prototype tool 

If the cyclic execution service is checked, the proxy will implement an interface 
called IActiveController instead of IPassiveController (see the ex-
ample in the next section). IActiveController includes operations for set-
ting the period and threading priority of the cyclic execution. Checking the 
logging service results in a proxy that logs each invocation of the affected op-
eration. The timing service causes the proxy to measure the execution time of 
the process and write it to the log at each invocation (if timing is checked but 
not logging, execution times will be measured but not saved). 
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The synchronization service means that each invocation of the operation will 
be synchronized with all other invocations of all other operations on the proxy 
object for which the synchronization service is checked. The only synchroniza-
tion policy currently supported is mutual exclusion. The timeout service has a 
numeric parameter. When this service is selected (by clicking the name rather 
than the box) as in Figure 7-5, an input field marked Milliseconds is visible 
near the bottom of the tool. Checking the service results in a proxy where in-
vocations of the operation always terminate within the specified number of 
milliseconds. In the case that the object behind the proxy does not complete 
the execution of the operation within this time, the proxy forcefully terminates 
the execution and returns en error code. 

7.3 Example Application 
To evaluate the effects of using both COM and the prototype tool, we used the 
example application presented in [12]. At the center of this application is a 
component that encapsulates a proportional-integral-differential (PID) controller 
[13]. Four different versions of the application were implemented. They are 
presented here in the order in which they were first developed. The four ver-
sions are summarized in Table 7-1 at the end of this section. 

 

Figure 7-6 Implementation with COM 

We first implemented a version using COM, shown in Figure 7-6, which we 
term Control2. PIDController is a COM class that implements an interface 
IActiveController and relies on the two interfaces ISensor and IAc-
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tuator to read and write data from/to the controlled process. For the pur-
pose of this example, these interfaces are implemented by the simple COM 
class DummyProcess that does nothing except returning a constant value to 
the controller. The interfaces are defined as follows: 

interface ISensor : IUnknown  
{ 
   [propget] HRESULT ActualValue( 
      [out, retval] double *pVal);  
}; 
 
interface IActuator : IUnknown  
{ 
   [propget] HRESULT DesiredValue( 
      [out, retval] double *pVal); 
   [propput] HRESULT DesiredValue( 
      [in] double newVal); 
}; 
 
interface IController : IActuator  
{ 
   [propget] HRESULT SensorInterface( 
      [out, retval] ISensor **pVal); 
   [propput] HRESULT SensorInterface( 
      [in] ISensor *newVal); 
   [propget] HRESULT ActuatorInterface( 
      [out, retval] IActuator **pVal); 
   [propput] HRESULT ActuatorInterface( 
      [in] IActuator *newVal); 
   [propget] HRESULT CycleTime( 
      [out, retval] double *pVal); 
   [propput] HRESULT CycleTime( 
      [in] double newVal); 
   [propget] HRESULT Parameter( 
      [in] short Index, [out, retval] double *pVal); 
   [propput] HRESULT Parameter( 
      [in] short Index, [in] double newVal); 
}; 
 
interface IActiveController : IController  
{ 
   [propget] HRESULT Priority( 
      [out, retval] short *pVal); 
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   [propput] HRESULT Priority( 
      [in] short newVal); 
   HRESULT Start(); 
   HRESULT Stop(); 
}; 

IController is a generic interface for a single-variable controller with con-
figurable cycle time and an arbitrary number of control parameters. PIDCon-
troller uses three parameters for the proportional, integral, and differential 
gain. IActiveController extends this interface to allow control of the con-
troller´s execution in a separate thread. (The reason for splitting the interface 
definitions like this was to reuse IController for a controller that uses the 
cyclic execution service rather than maintaining its own thread.) Note that 
IController inherits the DesiredValue property from IActuator. This 
definition was chosen to allow the interface to be used for cascaded control 
loops where the output of one controller forms the input to another. 

The test application TestControl2.exe creates one instance of PIDController 
and one instance of DummyController. It then connects the two objects by 
setting the SensorInterface and ActuatorInterface properties of the 
PIDController object. After this it sets the cycle time and the control pa-
rameters before invoking the Start operation. This causes the PIDControl-
ler object to create a new thread that executes a control loop. A simple timing 
mechanism is used to control the execution of the loop in accordance with the 
cycle time property. At each iteration the loop reads a value from the sensor 
interface, which it uses in conjunction with the desired value, the control pa-
rameters, and an internal state based on previous inputs to compute and write 
a new value to the actuator interface. To minimize jitter (input-output delay as 
well as sampling variability), this part of the loop uses internal copies of all 
variables, eliminating the need for any synchronization.  

Next, the control loop updates its internal variables for subsequent iterations. 
Since the desired value and the control parameters may be changed by the ap-
plication while the controller is running, this part of the loop uses a mutual 
exclusion mechanism for synchronization. In addition to performing its con-
trol task the loop timestamps and writes the sensor and actuator data to a log. 
The control loop is illustrated by the following pseudo code: 

while (Run)  
{ 
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   WaitForTimer(); 
   ReadSensorInput(); 
   ComputeAndWriteActuatorOutput(); 
   WriteDataToLog(); 
   WaitForMutex(); 
   UpdateInternalState(); 
   ReleaseMutex(); 
} 

Note that, due to the simple timing mechanism, the control loop will halt 
unless all iterations complete within the cycle time. 

 

Figure 7-7 Implementation with COM and generated proxies 

Next, we implemented a component intended to perform the same function, 
but relying on services provided by generated proxies. A test application us-
ing this component and proxies is shown in Figure 7-7. In this application, 
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termed Control3, PIDController is a COM class that implements the IPas-
siveController interface. Note that, although this COM class has the same 
human readable name as in the application described above, it has a distinct 
identity to the COM run-time environment. To avoid confusion we use the no-
tation Control3.PIDController when appropriate. IPassiveControl-
ler extends IController as follows: 

interface IPassiveController : IController 
{ 
   HRESULT UpdateOutput(); 
   HRESULT UpdateState(); 
}; 

These operations are used by the proxy_PIDController object to imple-
ment a control loop that performs the same control task as in the previous ex-
ample.  

The proxy_PIDController COM class was generated with the use of the 
tool by checking the cyclic execution service under the IPassiveControl-
ler interface of Control3.PIDController. The proxy_DummyProc-
ess COM class provides the interface pointers for the controller’s Sen-
sorInterface and ActuatorInterface properties. Behind this proxy is a 
DummyProcess object with the same functionality as in the Control2 ap-
plication. proxy_DummyProcess was generated by the tool with the logging 
service checked. As a result, all data read and written via the sensor and actua-
tor interfaces are logged. The interfaces IDummyProcess_Proxy and IPID-
Controller_Proxy are only used to set up the connections between proxies 
and other objects. They are defined as follows: 

interface IProxy_DummyProcess : IUnknown  
{ 
   HRESULT AttachISensor([in] IUnknown *pTarget); 
   HRESULT AttachIActuator([in] IUnknown *pTarget); 
}; 
 
interface IProxy_PIDController : IUnknown  
{ 
   HRESULT AttachIPassiveController( 
      [in] IUnknown *pTarget); 
}; 
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To be able to evaluate the overhead introduced by the use of COM and the 
generated proxies, we implemented two non-component-based versions of the 
application, each consisting of a single executable file. Figure 7-8 shows the 
internal structure of these programs, termed Control0 and Control1, as UML 
class diagrams.  

 

Figure 7-8 Non-component-based implementations 

The application termed Control1 was constructed by making very modest 
modifications to the source code of the Control2 application. The main modifi-
cation was that the calls to the COM library for creating instances of COM 
classes were replaced by simple instantiation of C++ classes. The C++ classes 
CPIDController and CDummyProcess are identical to those used internally 
to implement the COM classes of Control2. ISensor and IActuator are ab-
stract C++ classes that correspond directly to the COM interfaces of the same 
names. They are specified in C++ as follows: 

class ISensor : public IUnknown 
{ 
   virtual HRESULT get_ActualValue(double *pVal) = 0; 
}; 
 
class IActuator : public IUnknown 
{ 
   virtual HRESULT get_DesiredValue(double *pVal) = 0; 
   virtual HRESULT put_DesiredValue(double val) = 0; 
}; 

Control0 is a modified version of Control1, where the classes are modified 
such that virtual methods are not used. This means that calls to the methods 
are not performed using VTABLES of function pointers, and the address of the 
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methods are determined at compile-time rather than at run-time. The abstract 
classes are removed, since such classes rely entirely on virtual methods. Table 
7-1 summarizes the four different versions of the application. 

Table 7-1 Summary of application versions 

Name Description 

Control0 Using C++ without virtual methods 

Control1 Using C++ with virtual methods 

Control2 Using COM 

Control3 Using COM and proxy-based services 

7.4 Tests 

7.4.1 Test Setup 
 The example application described in the previous section was tested on a 
system running Window CE 5.00. The hardware used was a PC with a 2.8 
GHz Pentium 4 processor. The Windows CE run-time image was built using 
Microsoft Platform Builder 5.00 with the standard board support package for a 
Windows CE based PC (CEPC) and the standard setting provided by the “In-
dustrial Controller” platform template. This platform allowed time measure-
ments to be made with a resolution of one millisecond. Each of the four ver-
sions of the application was built with Microsoft eMbedded Visual C++ and 
tested on the target computer one at a time, resetting the target between each 
test. 

For each of the four versions of the example application, two different execu-
tion times were measured. The first was the time required for invocation of the 
get_ActualValue method of the DummyProcess COM objects or, in the 
case of Control0 and Control1, of the CDummyProcess C++ objects. Given the 
one millisecond resolution, we were required to modify the control loop of the 
programs by adding an inner loop that performed two million invocations of 
get_ActualValue instead of a single invocation to obtain usable time meas-
urements. For each of the versions, this measurement was made 170 times. 
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The second measurement made for each of the versions was the time required 
for initialization of the application. This initialization includes instantiation of 
the COM or C++ objects and setting up of the connections between them. This 
test was performed 20 times for each of the versions of the example applica-
tion. 

In addition to execution times, measurements of memory usage were also per-
formed. However, we were not able to see any difference between the four dif-
ferent versions of the test application on the test platform we used. Also, dif-
ferences between the size of source code and binary files were presented in 
[12] and are not repeated here. Thus, the following presentation and discus-
sion of the results focus on execution times. 

7.4.2 Results 

Comparing Measured Execution Times of All Programs During 
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Figure 7-9 Measured execution times 

Figure 7-9 shows measured execution times of making two million invocations 
of get_ActualValue for the four different version of the example applica-
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tion. The measurements for Control0 (without COM and not using virtual 
methods) are the lowest with an average of four milliseconds. These meas-
urements show no variation, but given that the resolution is one millisecond 
the uncertainty per measurement is 25%.  

Control1 (without COM but using virtual methods) and Contro2 (with COM) 
give similar results of approximately 19 milliseconds on average and 5% varia-
tion. This indicates that the overhead of using COM as well as of using virtual 
methods in C++ is approximately 15 milliseconds. Taking into account that 
two million invocations were made per measurement, this correspond to an 
invocation overhead of 7.5 nanoseconds for this particular processor.  

Control3 (with COM and all invocations passing through a proxy objects) 
gives approximately 27 milliseconds on average and 11% variation. This indi-
cates an additional overhead of approximately eight milliseconds compared to 
Control2, corresponding to four nanoseconds per invocation. Table 7-2 sum-
marizes the measurements depicted in Figure 7-9. 

Table 7-2 Summary of execution times 

Execution time (ms) 
Version 

Min. Max. Average 

Control0 4 4 4 

Control1 19 20 19.00588 

Control2 19 20 19.01176 

Control3 27 30 27.12353 

Figure 7-10 shows measured execution times of application initialization for 
Control0, Control1, and Control2. The measurements for Control0 (where the 
initialization consists of instantiating two C++ classes and passing a reference 
of one instance to the other) give an average of 0.4 milliseconds. For Control1 
(where the initialization is very similar) the average is 0.7 milliseconds and for 
Control2 (where initialization involves calling the COM library to instantiate 
the COM classes) one millisecond. Given that these values are so small com-
pared to the one millisecond resolution and that only 20 measurements were 
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collected in each case, they can only be viewed as crude estimations of the real 
execution time.  

Comparing Measured Execution Times for 
Initialization of Control0, Control1 & Control2
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Figure 7-10 Measured initialization times for Control0, Control1, and Control2 

Figure 7-11 shows measured execution times of application initialization for 
Control3. For this implementation (where the initialization comprises calling 
the COM library to instantiate four different COM classes in three different 
components and performing a comparatively complex setup task) the average 
is approximately 2940 milliseconds, which is of course notably higher than for 
the other implementations. The variation is also quite high with a difference of 
4686 milliseconds between the minimum and maximum. If we treat the maxi-
mum value as an outlier we get approximately 2730 milliseconds on average 
and 40% variation. The measured execution times of application initialization 
are summarized in Table 7-3. 
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Figure 7-11 Measured initialization times for Control3 

Table 7-3 Summary of initialization times 

Execution time (ms) 
Version 

Min. Max. Average 

Control0 0 1 0.4 

Control1 0 1 0.7 

Control2 1 1 1 

Control3 2264 6950 2940.85 

7.5 Discussion 
The measured execution times during control execution constitute quite strong 
evidence that the overheads of using both COM and the proxy-based services 
are modest and, even more importantly in many real-time systems, quite pre-
dictable. The overhead of using COM interfaces pointers are found to be es-
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sentially equal to that of using C++ virtual methods. It should be noted here, 
however, that using C++ classes allows mixing of virtual and statically bound 
methods. Typically, a carefully designed C++ class will use virtual methods 
only where variability is desired, leading to a lower average overhead than for 
an equivalent COM class where invocation through interface pointers is man-
datory. 

Comparing the use of proxy-based services with the use of COM without ser-
vices, the additional overhead is found to be quite modest. In some cases, 
however, the increased number of indirections might be expected to lead to an 
increase in the number of cache misses and thereby a higher penalty. Clearly, 
the tests presented in this paper, where a single operation has been invoked 
repeatedly in a loop, is much less likely to result in cache misses than more 
realistic usage scenarios. 

Based on the measured execution times during application initialization, it 
seams safe to conclude that the times required when C++ or COM is used are 
of the same order of magnitude, while the time required when proxy-based 
services are used are several orders of magnitude higher. Nonetheless, these 
measurements leave much to be desired. For Control0, Control1, and Control2, 
it would be desirable to perform additional measurements using loops that 
repeat the initializations to obtain higher values and hence increased accuracy. 
For Control3, additional measurements to reveal the most time consuming 
parts of the initialization phase would be very desirable. 

7.6 Related Work 
Although models based on source code component still seem to dominate, 
there are other efforts to support binary software components for embedded 
real-time systems. One example is the Robocop research project [14], which 
builds on the aforementioned Koala component model and primarily targets 
the consumer electronics domain. The component model defined as part of 
this project is largely based on the basic concepts of COM. Furthermore, the 
sequel of the project, called Space4U [15], also seems to use a mechanism simi-
lar to software component services, e.g. to support fault-tolerance. 

The approach to software component services discussed in this paper relies 
heavily on the technique of providing services by interception. This mecha-
nism is also used in other technologies and is sometimes called interceptors 
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rather than proxies, e.g. in the Common Object Request Broker Architecture 
(CORBA) [16] and the MEAD framework for fault-tolerant real-time CORBA 
applications [17]. The approach is furthermore similar to the concept of aspects 
and weaving. In [18], a real-time component model called RTCOM is pre-
sented which have support for weaving of functionality into components as 
aspects while maintaining real-time properties. An important difference with 
our approach is that, in RTCOM, functionality is weaved in at the level of 
source code. 

Another effort towards adapting a mainstream component model to the em-
bedded real-time systems domain is presented in [19]. This work aims to ex-
tend the Enterprise JavaBeans model with means for specifying timing proper-
ties of software components. As it focuses on specification and not run-time 
issues, it is complementary to our work rather than an alternative. The fact 
that it is based on EJB rather than COM is not of principal importance, but the 
lack of Java run-time environments for embedded real-time systems may 
mean that the approach is further from real-world application. 

In general, the concept of software component services can be seen as a special 
case of middleware. The use of middleware in embedded real-time systems is 
an active topic of research (and practice) not necessarily related to software 
components. Similar to our approach of adapting a mainstream component 
model, efforts have been made to adapt mainstream middleware to the do-
main of embedded real-time systems [20]. Specialized middleware frame-
works for this domain also exist, including OSA+ [21] that provides services 
for distributed systems and Kokyu [22] that provides flexible scheduling and 
dispatching services. 

7.7 Conclusion and Future Work 
The aim of the work presented in this paper has been to investigate the possi-
bility of using a mainstream software component model, as well as an exten-
sion of this model with run-time services, for developing embedded real-time 
systems. We believe that the results show that this is a promising approach, al-
though further investigation, in particular of the overheads related to object 
instantiation, should be undertaken. The overheads related to invoking opera-
tions through COM interfaces as well as through a forwarding proxy were 
found to be both modest and predictable. Thus, these overheads would 
probably be quite acceptable in many embedded real-time systems. In particu-
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lar, we can conclude that a system that can afford the invocation overhead of 
C++ virtual methods can also afford COM interfaces, since the cost is nearly 
identical. 

Since we view the use of a mainstream component model like COM as an al-
ternative to more specialized models, it would be interesting to conduct a 
comparative study of COM (and possibly other mainstream models) and at 
least one specialized model. A possible object of such a study is the aforemen-
tioned Koala component model, which is supported by freely available tools. 
Differences between models, e.g. in terms of time and memory overheads, 
should be investigated empirically by implementing example applications. 

In addition to the run-time effects on resource usage and predictability, the 
effects of using the approach on development effort and such quality attrib-
utes as reliability and reusability should be evaluated. In our future work, we 
aim to do this using different empirical techniques, including both controlled 
experiments and case studies with student participation. In addition, it would 
be desirable to perform industrial case studies, which implies a lower level of 
control and replication, but allows more realistic situations to be investigated. 
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Abstract 
The use of software component models has become popular in the development of 
desktop applications and distributed information systems. The most successful 
models incorporate support for run-time services of general use in their intended 
application domains. There has been no widespread use of such models in the de-
velopment of embedded real-time systems and much research is currently directed 
at defining new component models for this domain. We have explored the alterna-
tive approach of extending a mainstream component model with run-time services 
for embedded real-time systems. A prototype tool has been developed that gener-
ates code for a number of such services. To evaluate this tool, we have conducted a 
multiple-case study, where four teams of students were given the same develop-
ment task. Two teams were given the tool while the remaining two were not. This 
paper describes the design of the study and our initial analysis of the results. 

8.1 Introduction 
The use of software component models has become popular over the last dec-
ade, in particular in the development of desktop applications and distributed 
information systems. The most successful component models in these domains 
include JavaBeans [1] and ActiveX [2] for desktop applications and Enterprise 
JavaBeans (EJB) [3] and COM+ [4] for information systems. In addition to basic 
standards for naming, interfacing, binding, etc., these models also define stan-
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dardized sets of run-time services oriented towards the application domains 
they target. This concept is generally termed software component services [5]. 

Software component models have not been widely used in the development of 
real-time and embedded systems. It is generally assumed that this is due to the 
special requirements such systems have to meet, in particular with respect to 
timing predictability and limited use of resources. Much research has been di-
rected towards defining new component models for real-time and embedded 
systems, typically focusing on relatively small and statically configured sys-
tems. Most of the published research proposes models based on source code 
components and targeting relatively narrow application domains. Examples of 
such models include Koala for consumer electronics [6] and SaveCCM for ve-
hicle control systems [7].  

An alternative approach is to strive for a component model for embedded real-
time systems based on binary components and targeting a broader domain of 
applications, similarly to the domain targeted by a typical real-time operating 
system. In our previous work we have explored the possibility of using a 
mainstream component model as the starting point and extending it with 
software component services for embedded real-time systems [8]. Specifically, 
we have investigated the use of the Component Object Model (COM) [9] with the 
real-time operating system Windows CE [10] and developed a prototype tool 
that generates code for a number of services.  

To evaluate the usefulness of the prototype tool, we have conducted a multi-
ple-case study where four development projects were run in parallel. Two of 
these used the tool and two did not. Before describing the study, we briefly 
present the prototype tool and its rationale in Section 8.2. Section 8.3 describes 
the design of the case study, Section 8.4 discusses the process of data collection 
in more detail, and Section 8.5 presents our initial analysis of the results. Some 
related work is briefly reviewed in Section 8.6 while Section 8.7 presents con-
clusions and our plans for future work. 

8.2 Background 
Software component models like EJB and COM+ include support for various 
services that are generally useful in the domain of distributed information sys-
tems. Examples of such services include transaction control, data persistence, 
and security. Our focus here is on services that address common challenges in 
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embedded real-time systems, including logging, synchronization, and timing 
control. Although the sets of services are different, the principles used to pro-
vide the run-time services are similar in many respects. 

A prototype tool for supporting software component services in embedded 
real time systems was presented in [8]. The tool adds services to COM compo-
nents on Windows CE through the use of proxy objects that intercept method 
calls. Figure 8-1 illustrates the use of a proxy object that provides a simple log-
ging service. The object C2 implements an interface IC2 for which one wishes 
to apply a logging service. A proxy object that also implements IC2 is placed 
between C2 and a client that uses the operations exposed through IC2. The 
operations implemented by the proxy forward all invocations to the corre-
sponding operations in C2 in addition to writing information about each invo-
cation to some logging medium. 

 

Figure 8-1 A logging service proxy 

The tool takes as inputs a component specification along with specifications of 
desired services and generates source code for a proxy object. Component 
specifications may be in the form of Interface Definition Language (IDL) files 
or their binary equivalent Type Library (TLB) files. Desired services are either 
specified in a separate file using an XML-based format or in the tool’s graphi-



170 Chapter 8 Evaluation of a Tool for Supporting Software Component Services in 
Embedded Real-Time Systems 

cal user interface, described further below. Access to component source code is 
not required. Based on these inputs, the tool generates a complete set of files 
that can be used with Microsoft eMbedded Visual C++ to build a COM com-
ponent implementing the proxy objects (i.e., the proxies are themselves COM 
objects). This process is depicted in Figure 8-2. 

 

Figure 8-2 Proxy object generation 

This use of proxy objects for interception is inspired by COM+. However, 
rather than to generate proxies at run-time, they are generated and compiled 
on a host computer and downloaded to the embedded system along with the 
application components. This process may occur when the software is initially 
downloaded to the system or as part of dynamic reconfiguration of a system 
that supports this. In the latter case, one can imagine updating or adding prox-
ies without updating or adding any application components. The current ver-
sion of the tool only generates proxy code and does not address the registra-
tion and run-time instantiation of components. This means that the client code 
must instantiate each proxy along with the affected COM object and set up the 
necessary connection between them. 
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Figure 8-3 User interface of the prototype tool 

Figure 8-3 shows the graphical user interface of the tool. After a TLB or IDL 
file has been loaded all COM classes defined in the file are listed. Checking the 
box to the left of a COM class causes a proxy for that class to be generated 
when the button at the bottom of the tool is pressed. Under each COM class, 
the interfaces implemented by the class is listed and, under each interface, the 
operations implemented by the interface. In addition, the available services are 
listed with their names set in brackets. Checking the box to the left of a service 
causes code to be generated that provides the service for the element under 
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which the service is listed. In the current version of the tool, a service for cyclic 
execution may only be specified for the IPassiveController interface while all 
other services may only be specified for individual operations. The IPassive-
Controller interface is described further below.  

Checking the logging service results in a proxy that logs each invocation of the 
affected operations. The timing service causes the proxy to measure the execu-
tion time of the operation and write it to the log at each invocation (if timing is 
checked but not logging, execution times will be measured but not saved). The 
synchronization service means that each invocation of the operation will be 
synchronized with all other invocations of all other operations on the proxy 
object for which the synchronization service is checked. The only synchroniza-
tion policy currently supported is mutual exclusion. 

The timeout service has a numeric parameter. When this service is selected (by 
clicking the name rather than the box) as in Figure 8-3, an input field marked 
Milliseconds is visible near the bottom of the tool. Checking the service results 
in a proxy where invocations of the operation always terminate within the 
specified number of milliseconds. In the case that the object behind the proxy 
does not complete the execution of the operation within this time, the proxy 
forcefully terminates the execution and returns en error code. 

The cyclic execution service is particularly suited for components that imple-
ment process controllers [11]. If this service is checked, the proxy will imple-
ment an interface called IActiveController instead of IPassiveController. Both 
interfaces share a common set of operations for accessing control parameters, 
including the controller’s set point. IActiveController includes operations for 
setting the period and threading priority of the cyclic execution. IPassiveCon-
troller includes one operation for updating the controller’s output and one for 
updating the its internal state. The proxy invokes both these operations cycli-
cally and the latter is synchronized with the operations for accessing control 
parameters. 

8.3 Case Study Design 
In order to evaluate the tool support, we launched an empirical study. The 
study is conducted using a multiple-case study design [12]. We prefer consid-
ering it a case study rather than an experiment, since from an experimental 
point of view, it is a quasi-experimental “post-test non-equivalent groups de-
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sign” according to Robson’s terminology [13, pp. 133-146]. We observe four 
different project teams, solving the same problem with two different sets of 
working conditions – access to tool or not. We measure their results in quanti-
tative terms of time consumption, problem reporting and a qualitative analysis 
of their technical solutions. We can not distinguish quantitatively between the 
effects of the tool and the teams’ capabilities, but seen as a case study, we may 
find indications and opinions regarding the value and contribution of the tool. 

The study was conducted in the context of a project assignment for third year 
students in computer science that runs over 10 weeks with 50% workload –
corresponding to 7.5 standard European credit units. There were 30 students, 
who were divided into four project teams of seven or eight members. During 
the early phases of the projects, some students dropped of from the course, 
such that the team sizes varied from five to eight members. 

The assignment of the projects was to develop a component-based application 
to be run under Windows CE on a PC connected to two water tanks where the 
water level can be controlled by individual pumps. A requirement was that 
the software should include a component implementing a PID controller [11] 
able to control the pumps. The controller had to sample the current water level 
and update the pump voltage in a timely fashion. It should furthermore be 
possible to change the desired water level and control parameters during the 
operation of the controller in a thread-safe manner.  

The detailed requirements of each project were elicited by the project teams 
through negotiation with a course instructor acting as customer. Thus, the re-
quirements were not identical. Over the course of the projects, some changes 
in the requirements were introduced by the customer. This was in part based 
on each team’s achievements to avoid the task being too simple for some 
teams. In addition, two of the teams were given the additional requirement 
that they should use the prototype tool to implement multithreading, syn-
chronization, and logging of process data,  

The design used for the study is summarized as follows: 

1. The subjects were divided into four teams by the course instructors with 
the intention of making the teams as equal as possible. 

2. The team capabilities were assessed based on the earliest phases of the 
projects – requirements capture and user interface prototyping. We 
found that two teams were “strong” and two teams were “weak”.  
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3. All four teams were given (almost) the same task – implementation of 
the control system for a water tank. One strong and one weak team were 
given access to the tool, while the other two teams were not. 

4. Data was collected during the course of the project from time sheets and 
weekly project reports, and the project deliverables were assessed – a 
project description, project final report, design description and code. 

The case study teams are summarized in Table 8-1. 

Table 8-1 Case study design overview 

 Tool support No tool support 

Strong team Team 1 Team 2 

Weak team Team 3 Team 4 

Threats to the validity of a case study may be grouped into three categories; 
reactivity, respondent bias and researcher bias [13, p.172]. Reactivity means 
that the studied phenomenon behaves differently due to the fact that it is ob-
served. The studied context is clearly artificial and observed in a teaching con-
text, but all four teams are observed in the same way. Respondent bias means 
the risk that the respondents act based on expectations. The tool evaluation is a 
minor part of the study, and hence it is not clear to them what is expected. Fur-
ther, the triangulation using both quantitative and qualitative measurements 
reduces the bias. Researcher bias means the risk that the researchers only see 
the positive signs pro their proposed tool. This is addressed by involving a 
third author for peer debriefing and negative case analysis. Triangulation also 
reduces researcher bias. 

8.4 Data Collection 
Each of the four project teams were charged with delivering a number of 
documents during the course of the project. In addition, the status of each pro-
ject was presented orally at weekly meetings with a steering group, consisting 
of two course instructors for each project. Among the information collected 
was the number of working hours for each team member and activity. Table 8-
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2 summarizes the reported working hours per activity for each group in num-
ber of hours as well as in percent of the total. 

Table 8-2 Reported working hours 

Activity Team 1 Team 2 Team 3 Team 4 

Project mgt.     80h     6%     37h     3%     13h   12%     12h   17% 

Configuration mgt.     40h     3%     23h     2%     64h     6%     40h     6% 

Requirements mgt.   400h   28%   210h   20%     78h     7%     70h   10% 

Software design   280h   19%   160h   15%   131h   12%     80h   11% 

Software coding   480h   33%   345h   32%   290h   26%   220h   31% 

Software testing   160h   11%   160h   15%   115h   10%   131h   18% 

Other activities       0h     0%   130h   12%   300h   27%     60h     8% 

Total 1440h 100% 1065h 100% 1109h 100%   721h 100% 

Obviously, each team was also expected to deliver a number of software com-
ponents. At the end of the project, the executable software was demonstrated 
with the target equipment and all components – including source code – were 
delivered. Since the tool under evaluation is primarily intended to help with 
the implementation of cyclic execution and synchronization, we inspected the 
source code of all teams with respect to thread safety and timeliness. More 
specifically we studied the controller component and its relation to other com-
ponents to determine if the following criteria were met: 

• A timing mechanism is used to ensure that the control loop executes 
with the correct cycle time. 

• A synchronization mechanism is used to prevent set-points and control 
parameters from being written by the application while they are being 
read by the control loop. 

The properties of each team’s controller component are summarized in Table 
8-3 and described in more detail below. 
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Table 8-3 Control loop properties 

 Team 1 Team 2 Team 3 Team 4 

Timely Yes Yes Yes Yes 

Thread safe No No No No 

Team 1 had used the prototype tool and the cyclic execution service to gener-
ate a proxy that ensured correct timing of the control loop. Team 3 also used 
the tool to generate a proxy for the controller, but had failed to select the cyclic 
execution. Instead they had manually written code to execute the control loop 
in a separate thread, as had Teams 2 and 4, who did not use the tool at all. 
These three teams had all used appropriate timing mechanisms correctly. 

Although Team 1 had used the tool with the cyclic execution service, they had 
failed to ensure thread safe execution of the control loop. As described in Sec-
tion 8.2, the interface IPassiveController contains one operation for updating 
the controller output and one for updating its internal state, and only the latter 
is synchronized with other operations. Team 1’s component was not thread 
safe, because the first operation updates the output as well as the internal 
state, while the implementation of the latter operation was left empty.  

Of the remaining three teams, who had not used the cyclic execution service, 
Teams 2 and 3 had not used any synchronization mechanism at all in neither 
the control loop nor the operations for accessing the controller’s data. Team 4 
had used a mutual exclusion mechanism in the control loop but not in the 
other operations; the mechanism had been used in such a way that the control 
loops for the two water tanks were (quite unnecessarily) synchronized with 
each other. Consequently, none of these controller components are thread safe 
either.

8.5 Analysis 
Based on the collected data, described in the previous section, we have per-
formed a preliminary analysis to see whether there are any indications that the 
different conditions for the four project teams – i.e. use of tool or not – has re-
sulted in any significant differences in the projects’ results. The analysis is 
somewhat complicated by the fact that Team 3, who used the tool, failed to use 
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the cyclic execution service. Thus, with respect to implementation of the cyclic 
execution of the control loop, this team should be considered as not having 
used the tool, as indicated in Table 8-4. 

Table 8-4 Overview of teams with respect to cyclic execution of control loop 

 Tool support No tool support 

Strong team Team 1 Team 2 

Weak team  Teams 3 and 4 

The reported worked hours for the four teams, summarized in Table 1, reveals 
no correlation between the use of the tool and the number of worked hours for 
the different activities. This is true both for the absolute number of hours as 
well as the percentages of the worked hours spent on the different activities. In 
particular, there are no significant differences with respect to the relative 
amount of work required for software coding. This can probably be attributed, 
at least in part, to the fact that the amount of code generated by the tool consti-
tutes relatively small portions of the total amount of the code produced by the 
projects. Thus, a more detailed investigation of the working hours related to 
those parts of the software where the tool is most effective – i.e. the implemen-
tation of the control loop with multithreading and synchronization – would be 
desirable.  

The properties of the four teams’ controller components summarized in Table 
8-3 shows a success rate of zero when it comes to thread safe execution of the 
control loops. Before analyzing this further, it should be pointed out that the 
subjects did not have prior knowledge of neither real-time systems in general 
nor computer-based control systems in particular. Although the necessity of 
using some synchronization mechanism to ensure thread safety was pointed 
out by the instructors at the start of the project, it seams that this was not made 
sufficiently clear, as at least two of the teams completely neglected to address 
the issue. This is not an unexpected mistake from someone without experience 
in concurrent system development, in particular since the error only occasion-
ally results in failure and is likely to go undetected by testing. 

Of the two teams whose control loops included some synchronization mecha-
nism Team 1 had used the tool to generate the synchronization code.  The fact 
that the team had only implemented the operation intended to update the con-



178 Chapter 8 Evaluation of a Tool for Supporting Software Component Services in 
Embedded Real-Time Systems 

troller output prior to synchronization may be an indication that they too did 
not realize the need for synchronization, although an alternative scenario is 
that they were mistaken and believed that synchronization was provided. In 
any case, this observation shows that the way we have chosen to implement 
the tool to rely on two operations for updating the output and internal state 
respectively, is a potential source of error. This potential could easily be elimi-
nated at the cost of removing the ability to generate the controller output in a 
way that is guarantied not to be blocked by threads of lower priority. Another 
possible improvement may be to rename the operations from UpdateOutput 
and UpdateState to reflect that the former operation do not support thread 
safety. 

Team 4 seems to have attempted to ensure thread safe execution of the control 
loop by using a mutual exclusion mechanism. The attempt failed because 
other operations that may update the controller’s state did not use the same 
mechanism. A possible interpretation of this observation is that the team erro-
neously assumed that using the mechanism, called critical section in Windows 
CE, would prevent the thread executing the control loop from conflicting with 
any other threads in the system. 

8.6 Related Work 
The major source of inspiration for our approach and the prototype tool pre-
sented in this paper is COM+ [4], which is Microsoft's extension of their own 
COM model with services for distributed information systems. These services 
provide functionality such as transaction handling and persistent data man-
agement, which is common for applications in this domain and which is often 
time consuming and error prone to implement for each component. We use 
the same criteria for selecting which services our component model should 
standardize, namely that they should provide non-trivial functionality that is 
commonly required in the application domain. Since our component model 
targets a different domain than COM+, the services we have selected are dif-
ferent from those of COM+ as well.  

We are furthermore inspired by the technique of providing services by inter-
ception. This mechanism is also used in other technologies and is sometimes 
called interceptors rather than proxies, e.g. in the Common Object Request Broker 
Architecture (CORBA) [14] and the MEAD framework for fault-tolerant real-
time CORBA applications [15]. 



 8.7   Conclusion and Future Work 179 

The approach presented in this paper is similar to the concept of aspects and 
weaving. The real-time component model RTCOM [16] supports weaving of 
functionality into components as aspects while maintaining real-time policies, 
e.g. execution times. However, RTCOM is a proprietary source code compo-
nent model. Moreover, functionality is weaved in at the level of source code in 
RTCOM whereas in our approach, services are introduced at the system com-
position level. 

Another effort to support binary software components for embedded real-time 
systems is the Robocop project [17], which builds on the aforementioned Koala 
model and primarily targets the consumer electronics domain. This work is 
similar to ours in that the component model defined as part of this project is 
largely based on the basic concepts of COM. Furthermore, the sequel of the 
project, called Space4U [18], also seems to use a mechanism similar to proxy 
objects, e.g. to support fault-tolerance.  

8.7 Conclusion and Future Work 
This paper describes a multiple-case study we have launched to evaluate the 
usefulness of a prototype tool that supports the concept of software compo-
nent services in embedded real-time systems. The study is based on four par-
allel software development projects, where two of the project teams were 
given the tool. One of these only partly used the tool as intended, however, so 
in some important respects, three of the projects were conducted without tool 
support and only one with tool support. 

The projects are completed and have resulted in delivery of documentation 
and software from each of the four teams. This paper presents our first analy-
ses of some of this data – the reported number of working hours for different 
activities and the properties of the delivered software with respect to timeli-
ness and thread safety. We have not been able to draw any conclusion from 
the reported working hours, except that it is desirable to study the required 
development effort related to certain parts of the software in more detail. The 
analysis of software properties has shown that the students participating in 
the projects were not well prepared for implementing the required functional-
ity in a thread safe manner, neither with the support of the tool nor without it. 
However, we have identified possible changes to the tool that would probably 
make it easier to avoid such errors, even for developers without experience of 
multithreaded software. 
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In the immediate continuation of the work presented here we plan to expand 
upon our analysis of the differences between the four projects. In addition to 
the already identified task of analyzing the development effort in more detail, 
we expect to undertake a more comprehensive and systematic qualitative 
analysis of the delivered documentation and software. We also plan to launch 
further empirical studies to evaluate our approach for software component 
services and the prototype tool. For instance, it would be of great interest to 
investigate the use of the tool in connection with reuse of components across 
projects. One possibility is to conduct another study with students as partici-
pants, either as a multiple-case study again or as a controlled experiment. It 
would also be desirable to apply the prototype tool in an industrial case study, 
which would imply a lower level of replication and control but allow us to 
evaluate our approach in a more realistic setting. We plan to evaluate and ex-
tend the set of services supported by the tool. We hope to do this with the help 
of industrial partners in such domains as industrial automation, telecommuni-
cations, and vehicle control systems. 
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9.1 Summary of Results 
This dissertation investigates the use of a software component model based on 
binary components in the development of software for embedded real-time 
systems. Section 2.3.3 reviews a set of requirements for component models to 
be used in such systems and discusses how well a component model based on 
binary components, exemplified by COM, can satisfy these requirements. It is 
concluded that this model is well suited to most of the requirements, such as 
limited use of resources, support for standard modeling techniques, and ease 
of introduction. Other requirements can be satisfied by augmenting the model 
or putting restrictions on its use. For instance, analyzability can be supported 
by delivering models for this purpose along with the executable components. 
Similarly, white-box or testing and debugging are possible if components are 
built with debugging information and delivered with source code. Some re-
quirements, such as those for reusability and maintainability, are highly de-
pendant on the programming language and style used to implement compo-
nents. Thus, these are orthogonal to the model itself, which defines a binary 
standard and is independent of programming language. 

In addition to these requirements, an obvious requirement is that systems us-
ing the component model must exhibit predictable timing and be able to sat-
isfy real-time constraints. Chapter 4 discusses the effect of using COM and 
DCOM on this ability as well as on the use of computational resources. A 
study of documentation leads to the conclusion that the models are not inher-
ently incompatible with real-time requirements although their use introduces 
some additional sources of potential run-time errors and loss of predictability 
compared to traditional object-oriented programming. For instance, the dy-
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namic binding between components that occurs transparently during object 
instantiation means that there is a potential that the component implementing 
a requested object is not present, an error that would be detected at compile-
time in traditional object-oriented software. Also, the time required for instan-
tiation can be unpredictable since it depends on whether the component is al-
ready loaded or not. These sources of potential errors and unpredictability can 
be handled by putting restrictions on the use of the models. For instance, sys-
tem can be designed in such a way that all components are loaded during ini-
tialization. The study furthermore finds that the expected run-time overheads 
associated with the models are very modest. The run-time overheads of COM 
interfaces are the same as those typically incurred by using virtual methods in 
C++. The additional costs associated with using DCOM are dominated by the 
communication mechanisms themselves rather than the proxy and stub objects 
that provide location transparency. 

The industrial case study reported in Chapter 5 demonstrates that a compo-
nent-based software architecture, using the basic concepts of COM, can be 
beneficially used in the development of an industrial control system. More 
specifically, the study shows that the architecture effectively supports distrib-
uted development and leads to effort savings as well as quality gains related 
to making extensions to the software. After the study, technical management 
at ABB estimated that the investment in the framework was 15–20 person-
years and that the savings in effort for extending the system with one new 
communication protocol was 1–3 person-years. The investment in the frame-
work is dominated by the effort required for splitting the functionality into 
generic and protocol-specific parts rather than for adopting COM.  The quality 
gains are related to the fact that the use of externally developed components 
has necessitated a well thought-through modularization of the system and that 
the identification of generic functionality that can be implemented in the 
framework has led to a simplification of protocol implementations. The per-
formance of the system with the component-based architecture was found to 
be acceptable and the hard real-time requirements for scheduling of control 
programs were not affected, as it is not handled by the part of the system that 
was componentized. The additional time for instantiation of protocol handlers 
does not interfere with the normal execution of programs since all instances 
are created during program download. There are no potential run-time errors 
or timing unpredictability related to instantiation since static linking is used. 
An interesting aspect is that, while component-based software architectures 
are usually viewed as a way to support reuse of components across multiple 
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systems, this project demonstrates their usefulness in supporting integration 
of multiple components in a single system. 

Three years after the study, a total of 15 protocol handlers have been devel-
oped and the effort estimates are still considered to be valid. The majority of 
the developed protocol handlers support protocols that are implemented on 
external communication interfaces rather than in the protocol handlers them-
selves. These protocol handlers may still contain a considerable amount for 
functionality, e.g. for managing hardware redundancy, reporting status, and 
performing diagnostics. The remaining protocol handlers also implement the 
actual protocols and communication is performed using either “dumb” exter-
nal interfaces or the controller’s built-in serial or Ethernet ports. Most of the 
communication protocols that the control system supported already before the 
project have now been re-implemented as protocol handlers, which have been 
done in India. Thus, this effort has benefited from the architecture’s inherent 
support for distributed development. Due to the demonstrated usefulness of 
the component-based architecture for I/O and communication functions, ABB 
is now planning to adopt a similar approach for other types of functionality in 
the system. For instance, in the Control Builder, a framework to support the 
implementation of editors for different programming languages as independ-
ently developed components is being considered. 

The framework has also been developed further to meet new requirements. As 
the number of protocols has grown and the majority of protocol handlers are 
not used in most controllers, it is no longer desirable that all protocol handlers 
are statically linked with the rest of the system. To address this, the system has 
been extended with a possibility for dynamic download of protocol handlers. 
This solution has been developed in-house rather than using the COM imple-
mentation available with VxWorks to avoid the additional licensing costs. This 
dynamism brings with it the potential for run-time errors and unpredictable 
timing, but this can still only occur during program download. An advantage 
of not using an off-the-shelf COM implementation is that it has been possible 
to keep the ability to link some protocol handlers statically. This is used for 
those protocols that are not optional and, consequently, the potential problems 
related to dynamism do not apply to these. Other new requirements for the 
framework are related to the use of the controller in safety critical systems. Ef-
fort estimates for the new developments of the framework are not available at 
the time of writing.  
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The dissertation furthermore investigates the possibility of extending the 
component model with software component services of general use for em-
bedded real-time systems. Chapter 6 outlines a set of such services, including 
logging, synchronization, execution time measurement, invocation timeout, 
and cyclic execution. It presents an approach for supporting such services by 
the use of proxy objects, using automatic code generation based on declarative 
attributes, and a prototype tool that generates code for a number of services. 
Unlike in COM+ and the Trust4All project, described in Section 2.3.3, the code 
generation is performed off-line. This means that it does not use any computa-
tional resources of the target system and that the system does not need to store 
code for services that are not used. The prototype is evaluated by implement-
ing an example application using a general PID controller component. Two 
versions of the application is implemented, one where generated proxies are 
used for logging, synchronization, and cyclic execution, and one where this is 
handled by the controller component. The amount of source code in the in-
volved components is compared in the two versions, to provide an indication 
of the required development effort. The use of proxies substantially reduces 
the size of the controller component from 300 lines to 173 lines. On the other 
hand, for the executables that invoke the operations of the controller compo-
nents, the source code grows from 81 to 157 lines, since the latter executable 
must also instantiate the proxy objects and set up the connections between 
them and the other objects. It is concluded that automatic generation of code 
for this task would be a valuable extension of the work and it is outlined how 
this can be quite simply achieved. 

The prototype tool is evaluated further in the study reported in Chapter 7. The 
different versions of the example application of the previous chapter are tested 
on a PC running Windows CE and execution times are measured. In addition 
to the two component-based versions of the application, two non-component-
based versions are also implemented and tested. In both of these, COM com-
ponents are replaced by statically linked C++ classes. In one version, these 
classes are implemented with only virtual methods and, in the other, without 
any virtual methods. The use of virtual methods means that binding between 
objects occurs at run-time and operation invocation is performed via tables of 
function pointers. In the other version, binding is static and operations are in-
voked without indirection. Execution time measurements of an operation in-
voked repeatedly by the controller components show modest overheads re-
lated to the use of virtual methods, COM, and COM in combination with gen-
erated proxy objects. The average per invocation is approximately 7.5 nano-
seconds when either virtual methods or COM is used and an additional 4 
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nanoseconds with the generated proxies. These measurements were per-
formed 170 times and the variation was approximately 5% with virtual meth-
ods as well as COM and about 11% with proxies, meaning that timing is quite 
predictable.  

Execution times were also measured during initialization of the different ver-
sions of the example application, which consists of instantiating COM or C++ 
objects and setting up connections between them. The average measurements 
were 0.4 milliseconds for the C++ application without virtual methods, 0.7 
millisecond with virtual methods, one millisecond with COM, and nearly 
three seconds with COM and generated proxies. The study concludes that 
more measurements are desirable to investigate why the time required for ini-
tialization is so much larger in the last version of the application. The meas-
urements were done as a part of Master thesis project and, after the project 
was completed, an inspection of the code used for testing found that the long 
times were caused by a flaw in the tests. New measurements with the Win-
dows CE emulator after fixing this flaw showed that the time for initialization 
is of the same order of magnitude as for the other application versions. 

Chapter 8 reports on a multiple-case study where the use of the prototype tool 
in a software development project is evaluated with respect to development 
efforts and software quality. The study makes use of a term project in software 
engineering where four teams of students were given the same software de-
velopment task and only two of the teams were instructed to use the tool. 
Sources of evidence include reported working hours, implementations of con-
trol loops, and communication with project members. The reported working 
hours did not reveal any substantial difference between those teams that used 
the tool and those that did not. It is concluded that the part of the software for 
which the tool was used may be too limited for any saving in efforts to make a 
noticeable impact on the total and, therefore, that further studies are desirable. 
Concerning the implementation of control loops, it was found that only one 
team had made full use of the tool as intended. This team used the tool incor-
rectly to support cyclic execution and failed to produce a thread-safe system, 
as did the other three teams that hand-coded the cyclic execution. A possible 
modification of the tool was identified that would have prevented the incor-
rect use. Further studies should be performed with the modified tool and also 
giving the subjects clearer instructions for how to make full use of the tool. It 
was furthermore found that all teams successfully implemented the control 
loops in a timely fashion. Two teams achieved this by using the tool and the 
remaining two by hand-coding the timing control. 
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Based on an overall evaluation of the evidence, including discussions with 
project members, it is concluded that the approach underlying the prototype 
tool is promising with respect to both productivity and quality. For instance, 
the subjects that used the tool expressed that it was quite easy to understand 
and use. Making the tool even easier to use by adding automatic generation of 
code for instantiation and configuration of proxies and other objects was iden-
tified as a possible improvement already in Chapter 6. Given the study’s lack 
of quantitative evidence, its most important results are the lessons it provides 
for designing further studies. Possible modifications to the tool were identified 
that should be made before new studies are conducted. Other lessons are that 
a system where a larger part of the software can benefit from the tool should 
be investigated and clearer instructions for the use of the tool should be given. 
A controlled experiment with smaller teams and a more limited development 
task is identified as an attractive option. 

9.2 Research Questions Revisited 
A number of research questions are formulated in Section 1.3, each of which is 
further decomposed into sub-questions. The first question and its sub-
questions address the use of a software component model based on binary 
components in embedded real-time systems, in particular the use of COM and 
DCOM. These questions are quoted below for ease of reference. 

Research Question 1 
What are the advantages and liabilities of using a software component model based on 
binary components in the development of embedded real-time systems? 

Research Question 1-1 
Is it possible to use COM/DCOM in the development of software for systems with real-
time constraints? 

Research Question 1-2 
What restrictions (if any) should be placed on the use of COM/DCOM in software for 
systems with real-time constraints to ensure predictability? 

The following results are based on the study of COM and DCOM reported in 
Chapter 4: 

Research Result 1-1 
It is possible to use COM/DCOM in systems with real-time constraints. 
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Research Result 1-2 
Placing restrictions on the use of COM/DCOM may be necessary to ensure predict-
ability and satisfy real-time constraints. In particular, restrictions on when objects are 
instantiated and components are dynamically loaded may be necessary. 

In addition to these results, which are related to the ability to meet real-time 
constraints, the discussion in Section 2.3.3 concludes that software component 
models based on binary components, such as COM, are well suited to most of 
the other requirements typically found in the domain of embedded real-time 
systems. The experiences from the industrial case study, discussed in the pre-
vious section, suggests that it may be desirable for a model targeting this do-
main to also allow static linking of certain components that must always be 
present. This is not supported by COM. The empirical study reported in Chap-
ter 7 shows that the run-times overhead of using COM is very modest. In the 
particular system studied, the timing overhead per operation was found to be 
7.5 nanoseconds ±2.5% while the memory overhead was not noticeable with 
the performed measurements. The absolute values for the overheads will of 
course depend on the underlying hardware.  

The second question addresses the effects of adopting a component-based 
software architecture in the development of an embedded real-time system: 

Research Question 2 
What are the effects of adopting a component-based software architecture for an em-
bedded real-time system?  

Research Question 2-1 
What are the effects on the effort required to make extension to the system? 

Research Question 2-2 
What are the effects on the real-time predictability of the system? 

The following results are based on the case study described in Chapter 5: 

Research Result 2-1 
Adopting a component-based software architecture for an embedded real-time system 
may effectively support distributed development. 

Research Result 2-2 
Adopting a component-based software architecture for an embedded real-time system 
may reduce the effort required for making extensions to the system. 
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Research Result 2-3 
It is possible to adopt a component-based software architecture for an embedded real-
time system while maintaining real-time predictability. 

Formulations like “may reduce the effort” are chosen because it would surely 
be possible to adopt a software architecture that was component-based but did 
not have the same positive effects. While demonstrating the positive effects in 
a single project is sufficient proof that they may be achieved, the scientific 
value of the results depends on the probability that the same advantages will 
result from adopting a component-based software architecture for other sys-
tems as well. It is reasonable to assume that the results can be generalized to 
other types of systems than industrial control systems and other types of func-
tionality than I/O and communication. The major limitation of the results is 
that it only applies to extending a system with functions that have some com-
monality with other functions, such that these can be implemented by compo-
nents complying with the same interfaces and sharing some generic function-
ality that can be provided by a framework. The result that real-time predict-
ability can be maintained is furthermore only applicable to cases where those 
parts of the software that are subject to hard real-time constraints are not in-
cluded in the componentization. The study’s observed effort savings came as a 
result of redesigning the software architecture and implementing a framework 
for providing generic functionality. This required investing some effort in the 
first place, and the savings were found to surpass the investment after 8–10 
extensions. In general, a number of expected future extensions are required for 
this type of componentization to be cost-effective, but the exact number of 
such extension is of course difficult to determine a priori. Thus, the approach 
is most attractive when new extensions are expected to continue to be required 
for a long time. 

The third question addresses the extension of a basic component model with 
automatically generated support for run-time services of general use for em-
bedded real-time systems: 

Research Question 3 
What are the effects of using automatically generated support for software component 
services in the development of an embedded real-time system? 

Research Question 3-1 
What are the effects on the software’s size, resource usage, and predictability? 
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Research Question 3-2 
What are the effects on the quality of the produced software? 

Research Question 3-3 
What are the effects on the software development effort? 

The following result is based on the experiences with the prototype tool de-
scribed in Chapter 6: 

Research Result 3-1 
The use of off-line generated COM objects to support software component services in 
the development of an embedded real-time system can be expected to result in at most a 
doubling of the size of the software. 

Research Result 3-2 
The use of off-line generated COM objects to support software component services in 
the development of an embedded real-time system may reduce the effort required for 
software component implementation. 

The following result is based on the empirical study reported in Chapter 7: 

Research Result 3-3 
It is possible to use off-line generated COM objects to support software component 
services in the development of an embedded real-time system with predictable and only 
modest memory and timing overheads. 

The first of these three results is based on the assumption that functionality is 
provided by code in either proxy objects or in other objects while housekeep-
ing code will occur in all objects and components. Thus, the size of software 
that uses services will approach twice that of the equivalent software that does 
not use services as the size of code that provide application functionality ap-
proaches zero and is dominated by the housekeeping code. The second result 
is based on the fact that the use of proxy objects substantially reduced the 
amount of source code in components. Since it is taken from a single small ex-
ample application and not based on direct effort measurements, this result 
should be viewed as preliminary and tested further in additional studies as 
discussed further below. In the third result, the formulation “It is possible” is 
chosen because it is of course possible to implement services in such a way 
that overheads are neither predictable nor modest. The possibility of achieving 
predictable and modest overheads is proven by demonstrating it in one sys-
tem. Since it is based on execution time measurements related to object instan-
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tiation and operation invocation, which are the basic ways for components to 
interact, generalizing the result to other systems that are developed using the 
same techniques is straightforward. The timing overhead observed in the 
study was 11.5 nanoseconds ±5.5% per operation invocation, including the 7.5 
nanoseconds overhead of using COM. Again, the absolute value of overheads 
will depend on the hardware. 

It is reasonable to assume that the above results are applicable to other operat-
ing systems than Windows CE while generalizing to other component models 
than COM is not necessarily possible. For instance, overheads will only be 
modest in models with modest overheads on operation invocation and the 
overhead on software size might be modest in a model without housekeeping 
code in components. Also, the results cannot be generalized to other tech-
niques for automatically generating support for services than that of off-line 
generated code for proxy objects. For instance, run-time generation of proxy 
objects would incur more run-time overhead but no overhead on software 
size. Naturally, such run-time generation would require an extension of the 
run-time system that would counteract the effect of reduced software size. 

The effects on software quality and development effort are investigated by the 
study reported in Chapter 8. As the study produced no quantitative evidence 
and its main result is the identified possibilities for further studies, the follow-
ing hypotheses that may be the starting point of such studies are formulated: 

Research Hypothesis 3-3 
The use of automatically generated support for software component services in the de-
velopment of an embedded real-time system may improve the quality of the software.  

Research Hypothesis 3-4 
The use of automatically generated support for software component services in the de-
velopment of an embedded real-time system may reduce the effort required for software 
development. 

The first hypothesis is based on the fact that, although the only team that used 
automatically generated support for cyclic execution in the study did not 
achieve higher quality than the other teams, a possible modification of the tool 
was identified that would have resulted in higher quality in this case. The sec-
ond hypothesis is based on the fact that the tool was considered easy to use by 
those participating in the study and that a possible extension of the tool to 
make it even easier to use has been identified. 
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9.3 Future Work 
In this dissertation, the possibility of using a software component model based 
on binary components in the development of embedded real-time systems is 
investigated, first, by studying the documentation of COM and DCOM, which 
are some of the more popular models for non-real-time software. The use of a 
component-based component based software architecture in an industrial con-
trol system is furthermore investigated by a case-study. Since multiple-case 
studies are generally preferable to single-case studies, as discussed in Section 
1.4, it would be desirable to study more cases. One way to strengthen the gen-
erality of the results would be to study an embedded real-time system from 
another domain than industrial control. For the same reason, it would be de-
sirable to study a case where software components are directly involved in 
delivering functionality with hard real-time constraints. It has been noted that 
while .NET is increasingly being used instead of COM in the desktop and in-
formation system domains, it is not suitable for software with real-time con-
straints. An obvious research challenge is to make .NET usable for such sys-
tems through the use of predictable mechanisms for garbage collection etc. In 
the meantime, it would be useful to study the combined use of .NET and COM 
in systems that include software with real-time constraints as well as software 
without such constraints. Empirical studies could be designed to investigate 
whether .NET can be used to increase the productivity of the development of 
those parts of systems that are not subject to real-time constraints without 
jeopardizing the predictability of real-time parts. 

The dissertation furthermore presents an approach to software components 
services for embedded real-time systems and a prototype tool for supporting 
such services. An empirical evaluation of the tool shows that it results in pre-
dictable and only modest run-time overheads and at most a doubling of soft-
ware size. Further evaluation could be conducted to obtain more detailed in-
formation, in particular about the timing overheads related to object instantia-
tion and run-time memory overheads. Using a larger application in future 
evaluations would be useful to test the assumption that the proportional size 
overhead decreases with larger components. Several possible modifications to 
the tool are identified. For instance, it could be extended to also generate code 
for instantiation and configuration of proxy objects and other objects. A simple 
solution would be to let proxy objects instantiate the objects they act as proxies 
for, such that the client would only have to instantiate the same number of ob-
jects as when services are not used. The current version of the tool only sup-
ports generation of COM components that each provides a single COM class 
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implementing a proxy object. Allowing a single component to implement sev-
eral proxy objects would help to reduce the overhead on software size. An-
other possible modification that may reduce the size overhead is to use proxy 
objects that are more light-weight than COM objects. To strengthen the gener-
ality of the approach, it would be desirable to use it with other operating sys-
tems than Windows CE and other components models than COM. A possible 
candidate is the Robocop model discussed in Section 2.3.3. 

The use of the prototype tool in a development project is furthermore evalu-
ated with respect to its effects on software quality and productivity in a multi-
ple-case study. This evaluation did not produce quantitative evidence, and the 
need for further investigation has already been discussed. Prior to such inves-
tigation, it would be desirable to modify the tool. The probability of achieving 
higher quality could be improved by changing the tool to remove certain pos-
sibilities to use it incorrectly. Extending the tool with code generation to sim-
plify the development of client code as described above, could increase the po-
tential for reducing the software development effort. A lesson from the study 
already conducted is that it would be desirable to evaluate the tool in a project 
where a larger portion of the software can benefit from the automatic support 
for services. This is probably easier to achieve with a more limited develop-
ment task, which would also allow the use of a higher number of smaller de-
velopment teams. Thus, future studies could be designed as controlled ex-
periments.  

In addition to controlled studies, which can be conducted with students as 
subjects, it would be desirable also to evaluate the approach in industrial case 
studies. These two types of studies are complementary in the sense that the 
former allows a higher degree of control and replication while the latter pro-
vides a more realistic setting for evaluating the approach. A challenge related 
to testing the approach in an industrial setting is that the prototype tool, which 
is to a large part developed by students, cannot be expected to satisfy the qual-
ity requirements for use in industrial development projects. This is closely re-
lated to the challenge of technology transfer described at the end of this chap-
ter. Another way to evaluate the approach with respect to its ability to meet 
the needs of industry is to use a survey and/or interviews within organiza-
tions developing software for embedded real-time systems to asses the useful-
ness of the services identified. This could also help to identify additional use-
ful services for different application domains. 
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The approach to software component services presented in this dissertation 
intends to support the implementation of certain functionality in embedded 
real-time systems by standardizing a set of run-time services, much like soft-
ware component models intend to support run-time interoperability by defin-
ing standards for (primarily) components and run-time environments. In addi-
tion to the challenges of identifying and implementing such services, there are 
many research challenges related to the impact of the approach on different 
software development activities. For instance, there are challenges related to 
modeling, specification, and documentation of component-based systems 
where software component services are used. Another example is composi-
tional reasoning about such systems. Other research challenges include inves-
tigating the possible relationships between the approach and such quality at-
tributes as testability and maintainability. A comprehensive approach to re-
search on software component services should consider such challenges as 
well as implementation techniques and identification of services for different 
application domains. 

It was noted in Section 1.5 that this dissertation provides both epistemic con-
tributions, obtained through empirical investigations, and more practical con-
tributions, in the form of a proposed approach to software component services 
for embedded real-time system and a prototype tool. A possibility for future 
work based on these practical contributions is technology transfer, which 
would involve developing the prototype into a production quality tool. This 
would require considerable efforts, however, as the tool would essentially 
have to be developed from scratch using proper quality assurance methods. If 
the tool were to be used for safety-critical systems in such a way that a fault in 
the automatically generated code might result in danger, the tool would itself 
be safety-critical. As noted in Section 2.3, the development of software for such 
systems is much more costly than software development in general. These po-
tential costs strengthen the assertion made earlier that products to support 
software component services are most suitably provided by platform vendors, 
i.e. organizations that already supply such components as real-time operating 
systems and software development environments. This would provide more 
opportunities for using the products in a high number of projects and thereby 
regaining the costs invested in their development. 


