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Abstract. COMDES-II is a component-based software framewnt&rided for

Model Integrated Computing (MIC) of embedded consg$tems with hard
real-time constraints. We present a transformatiamproach to formally

verifying both timing and functional behavior of C@MS-Il systems using
UPPAAL. The proposed approach adopts timed automatdPPAAL as the

semantic units to which the behavioral semanticS©@MDES-II are anchored,
such that a COMDES-II system can be equivalentlysfiamed into the timed
automata models in UPPAAL, and verified with pregseservation of system
operational semantics. In the paper a concreteusisan of semantic
transformation from COMDES-II to UPPAAL is given, dama turntable case
study is developed to show how to apply the preskapproach in practice.
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1. Introduction

Recently emerging concepts and techniques, sucmael-integrated computing
(MIC) andcomponent-based desig@BD) are considered as appropriate methods for
efficient development of reliable embedded softwayrstems [1]. On one hand, MIC
advocates a domain-specific model-driven approawh tfie embedded software
development, by equipping developers with a domspiecific modeling language
(DSML) that captures the modeling concepts, coimggaand assumptions of the
application domains. On the other hand, CBD candgarded as one of the most
suitable design paradigms for MIC, due to the aimrsible benefits brought by
reusability of components and higher-level of adagion. Moreover, from a software
engineering point of view, CBD is also an effectivay to bridge the gap between
conceptual system design models and concrete systplamentations [2], provided
that an automatic code generation technique isloeed.

Semantic units
(Formalisms with well-defined
semantics and tool-supported
validation and verification
capability, etc. timed automata
in UPPAAL)

Validation and verification
of application behaviors

Formalization with
mathematical notations
(Timed multitasking, finite
state machines, data-flow
MoCs ete.)

Speciffcation

Domain applications
(Real-time Control systems)

Fig. 1. Semantic anchoring process of CODMES-II

COMDES-II is a component-based software framewodopiing MIC as a
methodological basis for the development of distield control systems with hard
real-time constraints. In order to achieve thisectye, COMDES-II provides various
kinds of component models to address the criticahain-specific issues, such as
system concurrency, real-time operation, sequenti@havior with continuous
computation etc. using saeparation-of-concerng@pproach [3]. A meta-modeling
process formally defines the syntax and static s¢icsof the framework component
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models [1], however, specification and verificatiof the composed component
behaviors still remain a challenging problem.

Semantic anchoring [1,4] is a promising approactiansformational specification
and verification of system behavioral semanticstddying on semantic units (such as
finite state machines, timed automata etc.) withil-defined operational semantics
and tool support. Briefly, the elements and theiationships in a DSML can be
equivalently transformed onto the counterparts rinegecutable semantic unit with
well-defined behavior, which can subsequently bdidated and verified — by
preserving the original system operational semantitising the supportive toolsets.
This transformation process from the original DSkélLthe corresponding semantic
unit is referred to as semantic anchoring, as shiov#ig. 1.

We choose timed automata in UPPAAL as the semamtitt and this paper
presents the concrete process of developing suttansformational approach to
specify and verify the behavior of COMDES-II systemia semantic anchoring. The
structure of paper follows a logical sequence: iBec2 and 3 provide an overview
about COMDES-II component models and timed autormatdPPAAL respectively,
which would give a general perspective on the séim@aps between two kinds of
systems. Section 4 subsequently describes in sléfail the behavioral semantic gaps
are bridged. Section 5 presents a turntable casly sts an example to demonstrate
the application of the proposed approach. Findflg,concluding section summarizes
the features of our work and their implications.



2. Modelingin COMDESH |

As a component-based design framework intendedhforeal-time control systems,

COMDES-II takes into account both the architectuadl behavioral characteristics
of the targeted domain during a system developmertess.
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Fig. 2. Hierarchical architecture model of a COMDES-II syst
COMDES-II employs a hierarchical model to specifystems architecture as

illustrated in Fig. 2: at the system level a cohtqgplication is conceived as a network
of communicatingactors (active components), which interact transparewith each
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other by exchanging labeled messages (signal&®wiolg an asynchronous producer-
consumer protocol.

At the actor level, an actor is specified as aveafe artifact containing multiple
I/O driversand a singlector task(execution thread). The I/O drivers are respossibl
for sensing or actuating signals from/to networlpbysical units, while the actor task
processes the acquired signals to fulfill the respiifunctionality which is specified
by a composition of differerfunction block instancedzunction block instances are
instantiations of reusable and reconfigurable fiamctblock types which can be
categorized into four function blodénds (meta-types): basic compositemodalas
well as state machingunction blocks. A detailed description of the CEDS-II
systems architecture and function block modelsuisod the scope of this paper and
we refer the interested readers to [3].

As to the systems behavior modeling, a separatiaroiocerns approach is
extensively applied. In COMDES-II, concurrency atimde are separated from the
functionality, in the sense that scheduling and-tieze issues are specified with
respect to actors, while the functional behavior lsa represented by the composition
of different kinds of function block instances cainted within the actor tasks.

execution trigger execution trigger
at time t period T release time t + T

output at
B deadline D t+D

releases

_<:Ih Sl Task ll—L'E>—— M

task execution

- v
1 & K . /

A\
input task end of task  output input
signals preemption  execution signals signals

Fig. 3. Split-phase execution of actors under timed nadking

Scheduling of actors follows faxed-priority timed multitaskingTM) strategy [5],
in which actors can be activated by either a périad an aperiodic event, and
execute preemptively according to the assignedipes with non-blockingread-do-
write semantics. The core element of TM in COMDES-II astime-triggered
scheduler which controls 1/O activities and exemutstatus of actors over discrete-
time, such that the timestamps of actor behavierrepresented as the multiples of a
basic timing unit (i.e. the period of schedulerzion).



Upon activation, input drivers of the activatedaactvill be invoked fead) in
logically zero time to acquire all input signalsialinare latched throughout the whole
actor execution. The activated actor task will pssc(lo) exactly once the input data
stepwise along the time axis, as long as it becaheegighest priority task among all
released/preempted tasks in the processor. Thegged data will then be buffered
into output drivers that can be atomically executedeneratewrite) output signals
when the corresponding actdeadlineexpires. If the deadline of an actor is not be
specified (i.e. deadline = 0), the actor outpuvehs will be immediately executed
when the actor task finishes its computation. Tp#it-phaseexecution pattern of
COMDES-II actors is illustrated as in Fig. 3.

The four kinds of function blocks (FBs) definedG®@MDES-II are pure functional
components implementing concrete computation ortrobralgorithms to specify
different kinds of system functional behavior. Sfieally, basic and composite FBs
are used to model the data-flow computation proegsguting in a single mode of
operation, while state machine FBs and modal FRsja@intly used to specify the
system reactive behavior (control-flow) combinedhwhulti-mode (modal) data-flow
computations. Among these two kinds of behavioasadlow computation is not of
our analysis interest, but rather, the system nembehavior is.

A COMDES-II state machine FB consists of a numbgmioary event/guard
inputs, anevent-drivenstate machine model, and exactly two outpstate and
state_updatedWhen a state machine FB is executed, the intedratate machine
parses the binary event/guard input signals, détesrthe current state and updates
two outputs:stateandstate_updatedHere,staterepresents the currently active state,
andstate_updatedvill be settrue if a state transition has happened, otherwiseribt
blocked, but set dalse

MFB

SMFB
el A
; S L
a0 ourput_sl
el e2
inputs
e —> al

Fig. 4. Interaction between a state machine FB and a nielal

The two output signals from a state machine FB kéllused by the corresponding
modal FBs to execute the control actions associattdthe specific state, as shown
in Fig. 4. A modal FB has a number of operation emdstates) and each mode
contains a function block diagram representing dbetrol action to be performed.
The selection of executing state is decided byctimeently activestateinformation
provided from the supervisory state machine FB, rehe the enabledness of
executing state is determined by #tate updatedalue, i.e. the control action should
only be performed when a state transition occurgesthe state machine model is
event-driven.
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In this computation model, a modal FB merely actsaacomponent containing
multi-mode (modal) data-flow execution actions, vé@es the system control logic
(reactive behavior) is actually specified by theresponding state machine FB. As a
result we will introduce state machine FBs in mdetails, and refer the interested
readers to [] for more information about the otkieds of function blocks.

An example of state machine FB callBMFB_1is illustrated as in Fig. 5. The
SMFB_1 contains three binargvent inputsel, e2 and e3 an event-driven state
machine model, and exactly two outpugfate and state_updatedThe internal state
machine includes a dummipitialState pointing to the actual initial statgl, two
statess1 ands2, three state transitions that are labeled by evemtl transition orders.
Transition events are manipulated as input signflSMFB_1acquired from input
drivers or preprocessing FBs, and transition or@deesnumbers starting from 1 to
indicate the importance of transitions (e.g. twagoing transitions fronsl). Based
on transition orders, the choice of transition ¢ofibed is deterministic when multiple
transition triggers associated with the currentestare true at the same time, as
required in safety-critical control systems.

1
el initialState istate
e2]] l

L2
e2 1
.state_updated
sl
83. ell] e3]
L | 1
s2
SMFB 1

Fig. 5. An example of state machine FB in COMDES-II

When the host actor is activated and tiSMFB_1lis executed, its internal state
machine parses binary input event signals, detesnaurrent state and updates two
outputs: state and state_updated The two output signals will be used by the
associated modal FBs to perform the correspondorgral actions, as introduced
above.
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3. Timed Automatain UPPAAL

The theory of timed automata has proven to be usfu specification and
verification of real-time systems. In this sectiwa briefly review the basic definition
needed in this paper. We refer the reader to [6&fmore thorough description for the
timed automata used in the UPPAAL tool [7].

Assume a finite set of real-valued variabestanding for clocks, and a finite set
of actionsAct LetB(C) denote the set of Boolean combination of clockstaints of
the formx ~ norx - y ~ n wherex, y0 C andn is a natural number.

Syntactically a timed automatahis a tuple<N, lo, E, I> where:N is a finite set of
locations,lg /7N is the initial locationE /7N x B(C) x Act x Z x N is the set of
edges, andl: N — B(C)assigns invariants to locations.

The semantics of a timed automaton is a timed itianssystem with states of the
form <l, u>, wherel /7N andu is a clock assignment assigning all clock<ito a
non-negative real-number. Transitions are definethb two rules:

- (discrete transitions) <I, usIf - <I, u>
if<l,g,a, r,>O0E,uddg,u=[r > 0Juand ud ("

~ (delay transitions) <I, u> (I - <I, ud d>
if u O I(l) and (uD d) O I(l) for a non-negative real number d

whereu O d denotes the clock assignment which maps each alackC to the
valueu(x)+d, and[r > O]Ju is the clock assignmentwith each clock i to be zero.

A network of automata is a finite set afitomata processesomposed in parallel
with a CCS-like parallel composition operator [8or a network with the timed
automata,, ..., A the intuitive meaning is similar to the CCS paatiomposition of
A, ..., A with all actions being restricted, that @ | ... | A) \ Act Thus an edge
labeled with actiona must synchronize with an edge labeled with anoacti
complementary t@, and edges with the silemtaction are internal, so they do not
synchronize. In UPPAAL '?' and ' !I" are used tar@epnt complementary actions, so
a? anda! are considered complementary and can synchrohtee silentt action is
represented in UPPAAL by no synchronization acfios., an edge with an empty
synchronization action).

Finally, we note that the flavor of timed automatsed in the UPPAAL tool is
extended with data variables with finite domainscluding Booleans and finite
domain Integers, as well as records and (multidsizeral) arrays of data variables,
action channels, and clocks. In UPPAAL it is alsosgible to declare functions
defined a C-like programming language that candzpiasntially composed with the
resetsr of the edges. The programming language allows Haanching with
if/fthen/elsestatementdor, while anddo/whileloops, and aeturn statement. We refer
the reader to the online help available on the URPAomepagé for more
information about this feature.

1 The UPPAAL home page is located at www.uppaal.com.
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4. Transformation from COMDES-I| to UPPAAL

The introduction in the previous two sections hewa thatprocessesand timed
automatain UPPAAL may act as the basic architectural eletsi¢o whichactorsand
state machine FBs&y COMDES-II can be anchored. However, the schiadybolicy

of actors and the operational semantics of statehina FBs differ from their
counterparts in UPPAAL in all aspects listed in [Bab, which requires an extensive
model transformation be performed at the meta-lewebridge the semantic gaps
between two languages. In this section we will shidvere these gaps are located and
how we bridge them.

Table 1. Behavioral differences between COMDES-II and UPPAAL

Behavioral aspects COMDESHI UPPAAL

Fixed-priority preemptive
scheduling of actors with Interleaving parallelism of

Concurrency non-blocking read-do; timed automata processes
write semantics
Execution of timed /O
Time activities over discreter Continuous real-time
time
Reactive behavior _State maphine _ FB as_Timed automata as
introduced in Section 2 introduced in Section 3

4.1 Transfor mation of Concurrency and Time

The preemptive timed multitasking (TM) schedulirgigy of actors in COMDES-II
is principally different from the interleaving p#ledism of UPPAAL processes as
defined in CCS. The key factor to overcome concuyedifferences between two
kinds of systems is to identify how to model thectdéte-time scheduler that controls
the actor execution status in UPPAAL. In order thiave this objective, the
following four modeling procedures should be acclished successively, and our
solutions will be presented step-by-step in thdgram subsections.

» Finding out a way to model actors and represert &xecution information

* Modeling actor interaction following an asynchrosolproducer-consumer
communication protocol

» Establishing a method to manage the non-blockimagl-do-write concurrency of
actors with preemption

» Modeling the discrete-time scheduler based on taeiqus three steps
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4.1.1 Modeling Actorsin UPPAAL

The actor model was briefly introduced in Sectiorir@m which we can see that the
read (input drivers),do (actor task) andvrite (output drivers) actions of a specific
actor will be performed in an ordered sequenceiwitiopn-successive timing phases
(see Fig. 3). Hence from a temporal point of vi@ws natural to separately model
these three kinds of actor behaviors using diffeseftware artifacts so that they can
be easily controlled by the time-triggered schedule

In UPPAAL, the actor tasks are specified by theesponding task control blocks
containing all the information needed for scheduyliasks execution. The task control
block is a data structure defined as following:

typedef struct{

int[0,4] status;

meta int period;

meta int executionTime;
meta int deadline;

meta int mode;

bool modeUpdated;

int timeSinceReleased;
int computationTimer;

}TTask;

Wherestatus is a bounded-value integer ([0, 4]) denoting theceition status of
a given task. A task could be IREADY (0), ACTIVE (1), COMPUTEI?2),
FINISHED (3) orERROR4) status which are determined and updated bgybtem
scheduler. For a better understanding, Fig. 6 qunedly illustrates the status
transition graph of a specific task over discrétget whose concrete meaning and
determination strategy will subsequently be exgmdinin Section 4.1.3. The three
integers period , executionTime and deadline  represent the execution
period, worst-case execution time and deadline ddpacific task. These three
parameters remain unchanged during system execuatsoa result they are declared
as themetaintegers whose values will be used in the taslcati@n and scheduling,
but will not be recorded in the verification stajgace. Another meta integerode
indicates the currently active control state of askt (e.g. product ready,
pre_processing, etc.), and the Boolean varialddeUpdated is used to denote if a
state transition happens or not in the correspantiiek state machine in the current
cycle of execution. These two variables control tieneration of task outputs
associated with the current state at the deadiiaestate transition has taken place.
The integertimeSinceReleased represents the discrete-time which has elapsed
since a specific task is released: upon releagbeofiven task, this variable is reset
(see Fig. 6), and will be incremented each timesttteeduler is executed. The integer
variable computationTimer is a timer used to record the time left for a task
computation. This variable will be set to the vatifexecutionTime  when a task
is released (see Fig. 6), and count down if thie iathe highest prioritACTIVE task
each time the scheduler is executed. The valukatftimer will be used to determine
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the task status as well as for schedulability asialyA detailed explanation is given in
Section 4.1.3.

The task control blockTask can be instantiated into an array of tasks toigpec
their execution and scheduling information, and #ney index (starting from 1)
corresponds to the priority of each task: the highdex, the higher priority.

task_is_released

timeSinceReleased.== deadline || deadline == 0

timeSinceReleased = 0,
comptuationTimer = executionTime
read_inputs

generate_outputs

comptuationTimer > 0 &&
timeSinceReleased <= deadline

comptuationTimer == 0 &&
timeSinceReleased <= deadline

COMPUTED

Fig. 6. Status transition graph of actor tasks

comptuationTimer > 0 &&
timeSinceReleased > deadline

task_transifion_finished

Actor input/output drivers will be implemented withtwo functions in UPPAAL:
taskinputDrivers(int taskID) and taskOutputDrivers(int taskID)
These two functions are application-dependent,vameh a specific taskis released
or its deadline expires, theyaékinputDrivers(i) andtaskOutputDri-
vers(i) ) will be invoked and executed atomically to exaathe information with
other tasks, as described in the next section.

4.1.2 Modeling Actor Interaction in UPPAAL

Communication between actors in COMDES-II follows asynchronous producer-
consumer protocol with signal-based non-blockinghaatics. Signals are labeled
messages containing process data, while in UPPAAhald-shaking interaction
mechanism is adopted to primarily synchronize tltons between automata
processes as defined in CCS parallelism, and reoisl@xchanged between processes.
A natural way for solving this problem is to mod@ODEMS-II communication
mechanism in UPPAAL through shared variables an@ d&ructures. Information
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between processes is exchanged by updating anohgefaoim these global resources,
where the data race problem is settled by followiregCOMDES-II semantics:

— When multiple tasks are released, or their deaslleire simultaneously, the
corresponding I/O functions will be invoked and exted sequentially according
to the order of task priorities.

- If the deadline of taskexpires at the same instant as taiskreleasedi(z j ), then

the output actiontaskOutputDrivers(i) of taski will be performed by
preceding the input actiomaskinputDrivers(j) of taskj, regardless the
order ofi andj. This rule guarantees that the taglan always use the latest data as
computed by task if the interaction{ - j) happens.

4.1.3 Modeling Actor Concurrency in UPPAAL

Unlike in UPPAAL where the time point of state ts#tions can be precisely captured
by real-time clocks, in TM model of computatioristhard to predict when the actor
state transitions will actually happen, but fortiete we do not need to know that
either. This is because the determinism of tempaehhvior of an actor is enabled by
the readwrite actions performed at precisely specified timeant, such that the
state transitions of an actatd) may logically happen at any instant confined tsy i
activation instant and deadline, without any sidiea to the interaction between
actors. Based on this semantics, we model the COBADEactor concurrency in
UPPAAL by adopting the following abstractions arsd@mptions.

release() taskOutputDrivers() release()
taskInputDrivers() taskInputDrivers()

COMPUTED
task state transition + finish()
READY ACTIVE FINISHED READY

preempted by higher
priority tasks

| .
| executionTime

run() run()

9

actual computation time of task

deadline

period

time

I
I
I
I
I
i
I
I
I
I
e e e
v v v

timeSinceReleased = 0 computationTimer =0 timeSinceReleased  timeSinceReleased = 0
computationTimer = executionTime = deadline computationTimer
= executionTime

Fig. 7. Actor concurrency over discrete-time in UPPAAL

An actor task may be conceptually READY ACTIVE, COMPUTEDand
FINISHED status if all tasks are schedulable, as illustrateFig. 7, otherwise the
actor task will be IrERRORStatus. In whiccREADYmeans that a task is ready for
activation. Statu&CTIVE denotes that a task has been released, but npleteoh its
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computation yet. In a system it is always the hsgpeiority ACTIVE task to be
running, i.e. the corresponding taskmputationTimer decrements with the
invocation period of the scheduler. When ttmmputationTimer of a specific
ACTIVE task reduces to zero before its deadline, the satus will be set as
COMPUTEDmMeaning that the computation effort has completed the actor state
transition may take place instantaneously, whictfoifowed by the FINISHED
status. Thé&=-INISHED status indicates that a particular task compuiadiod control
activities have already finished such that the outpignals are available for
generation, when the associated deadline expirédse tomputationTimer of an
ACTIVE task is greater than zero (the task has not feasts computation) when its
deadline comes, the task will be scheduled int&EfRRORstatus.

Manipulation of the task execution status can beomplished by invoking a
number of scheduling primitives implemented in URRAIncluding release()
run() , finish() , outputAction() andinputAction() . These primitives
mimic their counterparts in COMDES-II with the f@lling design philosophy:

- release(int taskID) takes an integelaskiD as its argument and will be
invoked when the activation condition of a specREADYtaski becomes true
(release(i) ). This primitive will set the released task statis\CTIVE, reset
the timeSinceReleased entry in the corresponding task control block and
initialize the computationTimer with the value ofexecutionTime (see
Fig. 7).

- run() is invoked in every cycle of scheduler executi®his primitive polls the
status of all tasks ordered by their prioritiesnfrtiigh to low. Once the highest
priority ACTIVE task is detected, itsomputationTimer is decremented by
the value of scheduler execution period. If toenputationTimer reduces to
be zero (i.e. the task completes its computatifor®f the task status will be set as
COMPUTEMeaning that the task state transition can now p&ce, and then the
primitive is exited.

- finish(int taskiD, int mode, bool modeUpdated) will be
invoked immediately when a specifBOMPUTERaski finishes its state transition
activity. The primitive records the current opevatistate as well as the state
updated information of taskinto the corresponding entries of the task control
block, through its three arguments, and then setabk status dsSINISHED (see
Fig. 7). In case that the deadline of a specifék jas not specified (i.e. deadline =
0), the task output driverdagkOutputDrivers(j) ) will be immediately
executed within thefinish() primitive to generate the output signals,
afterwards the status of tajsis set alREADY(see e.g. Fig. 6).

— outputAction() is a primitive used to detect the deadline instdreach task
and perform the associated output actions. Thisipivie is invoked in each cycle
of scheduler execution and compares tiheeSinceReleased of each task
with its deadline  parameter if it is greater than zero (i.e. thé tdsadline is
specified). Once thdimeSinceReleased of a given taski equals to its
deadline , the taskcomputationTimer will be checked to see whether the
computation time violates the deadline or not. cdse that task is schedulable (i.e.
computationTimer is zero) and task h&aNISHED its control activities, the
task output driverstgskOutputDrivers(i) ) will be executed to generate the
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output signals, followed by a change of task stébuse READY If a task is non-
schedulable, the task status will be sEEBROR

— inputAction() principally takes care of the releasing and inactions for
periodic tasks (i.eperiod > 0). This primitive will be invoked by the time-
triggered scheduler to checktimeSinceReleased of a given periodic task
is equal to itperiod or not. If the activation instant has not beerched, the
timeSinceReleased value will be incremented. Otherwise two conditon
should be considered: 1) If the deadline of task is zero, its
computationTimer will be firstly checked to determine the schediligbof
taski, which is trueiff the task computation has completed before theatitin
instant. In case that tadkis schedulable, it will be released by invoking th
release(i) primitive and its input signals sampled via thee@xion of
taskinputDrivers(i) ; otherwise the task status will be setE/®ROR?2) If
the deadline of task is greater than zero, it will directly be released input
signals acquired via the associated primitives.

4.1.4 M odeling Discrete-Time Scheduler in UPPAAL

The approach to modeling COMDES-II actor concuryeas C-like programs in
UPPAAL largely eases the design effort of disctate scheduler, which is modeled
as a timed automaton as shown below:

ltask_state_transition && s == SCHEDULER_PERIOD
OIRActions(), s = 0 s <= SCHEDULER_PERIOD
task_run

Fig. 8. Discrete-time scheduler automaton in UPPAAL

The scheduler contains only one location calisesk_run , and one edge guarded
by Itask_state transition && s == SCHEDULER_PERIOD . In the edge
guard,s is a clock variable that evolves autonomouslyeial time, and the value ef
is confined by SCHEDULER_PERIODas an invariant condition specified in
task_run location. SCHEDULER_PERIODs an integer constant denoting the
execution period of scheduler, which is calculaésdthegreatest common divisor
(GCD) of the non-zerperiod , executionTime  anddeadline of all tasks. A
global Boolean variabldask state_transition is used to guarantee the
system behavioral determinism if the schedulerestadnsition and a task state
transition are both fired simultaneously: when AGTIVE task completes its
computation and is then in t@OMPUTEBtatus, théask state_transition
will be set astrue to indicate that at the moment a task state tiansshould
happen in the system. If in the meanwsiles equal tcSCHEDULER_PERIODthen
the scheduler behavior will be preceded by the ftske transition via guarding

condition task state_ transition . When theCOMPUTEDRask finishes its
state transition, thefinish() primitive will be invoked to reset the
task_state transition variable instantaneously such that the disabled

scheduler state transition is enabled. In this @gq, non-deterministic concurrent
state transitions are equivalently converted irgtedministic sequential steps which
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execute logically ireerotime, resulting in considerably reduced state spac only
one deterministic state transition pattern is gmesiluring verification.

Two actions will be performed when the executioniquk of scheduler has come
and no task state transition in the system happel®Actions() ands=0 .In
which OIRActions() is a function simply encapsulating thetputAction() ,
intputAction() andrun() primitives to fulfill the corresponding scheduling
functionality in a sequential order. Arsd= 0 resets the value of real-time clock so
that it is ready to count the time for next cyckesoheduler execution. As to the
task_run location, it means that when scheduler functidpasi not executed, the
tasks are allowed to be running to perform compurtiaand control activities.

4.2 Transfor mation of Functionality

In COMDES-II the functional behavior of a systemdisscribed as a composition of
different kinds of function blocks (FBs) which airgrinsically independent of the
scheduling and timing issues specified at the deteel, hence system functionality
can be directly transformed via FBs, regardlegh@factor concurrency and time.
We model the COMDES-II basic, composite and modgd &s functions handling
integer variables or data structures in the transtol UPPAAL models. In particular,
the basic and/or composite FBs preprocessing tlemtiguard signals for a state
machine FB can be implemented as UPPAAL functioasd invoked in

tasklnputDrivers(int taskID) primitive when the host actor is activated.
The modal FBs may be treated in a similar way bull e executed in
taskOutputDrivers(int taskID) primitive when the host actor deadline

expires. To this end, thetateandstate_updatednformation as required by a modal
FB can be obtained from thmode andmode_updated entries of the task control
block instance indexed kigskiD

On the other hand, system reactive behavior spécbiiy the state machine FBs
can be transformed into equivalent timed automatdJPPAAL without timing
annotationssince time is not involved in the transformatafrfunctionality.

lel && e2 && task[1].status == COMPUTED 1 lel && le2 && task[1].status == COMPUTED
finish(1, 1, true) @ finish(1, 1, false)
el && task[1].status == COMPUTED e3 && task[1].status == COMPUTED
finish(1, 2, true) finish(1, 1, true)

“ le3 && task[1].status == COMPUTED

s2 finish(1, 2, false)
Fig. 9. UPPAAL automaton equivalent to SMFB_1

An UPPAAL automaton with the equivalent semantms$SMFB_1illustrated in
Fig. 5 is established as in Fig. 9, based on tiseragstions and design philosophy
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described in previous sections. The model alscatamtwo locationslands2 and a
number of transition edges tagged with transitioargs and update actions.

A transition guard basically consists of two padee is the application-specific
event, e.gelin the transition frons1to s2 The other one is a condition expression
justifying if the status of host actor taskGB® MPUTEDr not, as explained in Section
4.1.3. The condition expressidask[1].status == COMPUTED is labeled in
all transitions, in whictiask][] is an array of instances of the task control bleeid
1 indicates the task priority.

In case that a transition edge is enabledfithigh() primitive is invoked as the
update action to perform some finishing activitiésr instance in the transition from
sl to s2 finish(1, 2, true) will register current state indeX) and state
updating information tue ) into the corresponding entries (sasnode and
modeUpdated ) of task control blockask[1] , and then change the task status to
be FINISHED. All the recorded information will be used to hapnerate correct
output signals at the task deadline instant.

The transition order can be determined by expyiddmplementing Boolean event
values in the transition guards, as exemplifiedtvey of three outgoing transitions
associated witls1 from sl to s2, el guards the transition, whilel && e2 in the
self-loop transition o§1 explicitly specifies that it can only be true aftd has firstly
been evaluated dalsg ande2is true. An additional self-loop transition £f guarded
by lel && 'e2 is used to overcome the blocking semantics of UfRIPAutomata:
assuming that the current locationsisand both event signalel ande?) arefalse
such that no actual state transitions can happerautomaton behavior would not be
blocked, but rather this transition will be fired notify the task control block that
actor state remains unchanged via the primifiméesh(1, 1, false) . The
techniques enabling ordered and non-blocking ttiamnsi are applied to all control
states in an automaton, as illustrated in Fig. 9.

Based on the model transformation principles dbedriin this section, the
semantics in concurrency, time and functionalityeass of a COMDES-II system can
now be safely anchored onto an UPPAAL model, amgh therified against desired
timing and functional requirements. In next Sectwosm will present a turntable case
study to show how we apply this transformationallgsis approach in practice.
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5. Turntable Case Study

The verification technique is illustrated by a cagady, which is based on the
turntable system — an example of a real-life mastufing system that is used for
(real-time) control research [9, 10].

The system consists of a turntable, drill, clamgd antester, as shown in Fig. 10.
The turntable transports products in four slotamfrthe input position (0) to the
drill/clamp (1), tester (2), and finally to the put position (3). Each slot can hold at
most one product, which enters the process inipadit and leaves in position 3. In
position 1 the product is locked by the clamp, et made by the drill, and clamp
unlocks the product. The drilling process is checkg the tester in position 2, which
tests the depth of the hole, since it is posshué the drilling went wrong.

TTopSensor,

Tester TPositionSensor,
TPositionDrive
Slot I

Turntable

TTPositionSensor

TTPositionDrive DTopSensor.
Drill 1 DPositionSensor,
r ‘\ DPositionDrive
CLockedSensor, I o 0- logc{ing
CUnlockedSensor, DDrillingDrive 1 — drilling

CActuator 2 — testing

Product 3 — unloading
Clamp

Fig. 10. The turntable system setup

In order to perform the operation of the systemumber of sensors and actuators are
used, as summarized in Table 2 and shown in Fig. 10

Table 2. Sensors and actuators of the system

Sensors

TTPositionSensor | indicates position (rotation) of the TurnTable
CLockedSensor shows if Clamp is locked
CUnlockedSensor | shows if Clamp is unlocked
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DTopSensor true if Drill is in top position

DPositionSensor | indicates position of the Drill

TTopSensor true if Tester is in top position

TPositionSensor indicates position of the Tester

Actuators

TTPositionDrive rotates TurnTable in counter-clockwise direction

CActuator lockes/unlocks product during drilling
DPositionDrive moves Drill up/down

DDrillingDrive makes actual hole

TPositionDrive moves Tester up/down

5.1 COMDES-I Design of Turntable System

For the purpose of the case study, the turntabltesy has been designed in
COMDES-II. The top-level system design is preseittgén actor diagram shown as
in Fig. 11.

TTPositicn Sensor
Taperosi TTRosition Diive
IgPgsiiap ‘.
TTSlotn -
: = : Turntable
| " TUrTAbleSUpeTSar TurntableContraller H
.
H |—I .
Input <Jtin I i r— -
. <|2Ta TupTabl iler D 5 -
B —<Janr Tl s <JaTu 2T H
. ——<lete 2 [—— | I "
. —<ls0u 3T[>=—= TablePosition -
- <]5TT ATT[>
= <7 ETT[> -
€8T .
. e M
= g Wslot3
TTslot1 -
3 L B e T T T P P TP TP P
ot
TTSlot?
Tester
FRsEEEssssssEssfsssssssssssssssEEEEEEn
TTslot] H TesterPosition H
TumTable . .
T H
T ngmpz—M’ Jime :
= ] o L=<lare ———————————|ZHa Te[>—'7
- Ol Position . ——+&Jatr 2TP[>—a
B : = TesterSupervisor i H
.
= g' 11T I ] "o TesterController |
o Treem 101 [p__ Driltiamp L. 1 " YassssssssssssssjEsfEyssssssssannnnannnyt
al—sZJa0r = < 10
CloskedSegeor 80y 2cA| ——CJ2Ha e =
CUnlocksdSinsar, S, CA:ialar —<janT ol . Tester
H [ <lanp " H
» DrillClampSupervisor H Thop Sengor TPositionD
. PP DrillController : TPostionson esonGive
Esssssssssssssssssssgaalsansnnnnannnnnnnalnps HoleDegth
. DTop S¢nsar DPositionDrjve:
DI’I”Clamp DFosition Senspr Drilingrive
HoleDepth

Fig. 11. System design illustrated by an actor diagram

The designed system consists of 6 actors groupedl smbsystemsTurntable
DrillClamp andTestersubsystems. Each subsystem is built up from argigoe and
a controller actor to delegate functionality ofubsystem with different dynamics to
appropriate body. Therefore, real-time operatiome performed by controllers
executed periodically, whereas overall tasks coatibn is achieved by supervisors
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that could be invoked for execution either by tighior external events. However, in
this particular design, all actors are executedopéarally, where controllers have

relatively small periods of the order of few milonds, whereas supervisors —
relatively big — around 100 ms. The period, worssec execution time (WCET) and
deadline of each actor are described as in TabtE8rding to priority orders.

Table 3. Execution information of actors

Actor priority Period WCET Deadline
TesterSupervisor 1 100 2 0
DrillClampSupervisor 2 100 2 0
TurntableSupervisor 3 100 2 0
TurntableController 4 10 1 10
DrillController 5 10 1 10
TesterController 6 10 1 10

Actors interact by exchanging physical signals vath environment via sensors
and actuators (see Table 2), as well as by exchgngiessages (communication
signals), which are presented in Table 4.

Table 4. Messages exchanged among actors

M essage namefield | Type Values Description
ready, loading, loaded,
drilling, drilled, testing,
TurnTable.state enum | testOK, testBad, Denotes states of the
! turntable
unloading, unloaded,
rotating, rotated
TurnTable.updated | bool | true/false Indicates an update of
turntable state
empty, loaded, drilled, Reports state of product in
TTSlot0.state enum testedOK, testedBad position 0
empty, loaded, drilled, Reports state of product in
TTSlotl state enum testedOK, testedBad position 1
empty, loaded, drilled, Reports state of product in
TTSlot2 state enum testedOK, testedBad position 2
empty, loaded, drilled, Reports state of product in
TTSlot3.state enum testedOK, testedBad position 3
Input.state enum | ready, loading, loaded Denptes phases of product
loading
ready, lock, startDrill,
DrillClamp.state enum | drilling, moveUp, Sﬁlﬂgtes phases of product
stopDrill, unlock, drilled 9
DrillClamp.updated | bool | true/false Isr:g;gates an update of Drill
Tester state enum ready, testing, testOK, Denptes phases of product
testBad, tested testing
Tester.updated bool | true/false Isrtlg:gates an update of Tester
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ready, markOK, markBad,

Denotes phases of product

1]

Output state enum unloading, unloaded unloading
TablePosition bool | true/false Becames 1 if turntable
.rotated completed 90turn
TablePosition . Position of turntable in next
. int 0-360 ;
.setpoint rotation (degree$
TablePosition . int 0-360 Currrent position of turntabl
.rotation (degrees)
DrillPosition.down bool | true/false True if Drill reaches bottom
DrillPosition.top bool | true/false True if Drill reaches top
TesterPosition.down | bool | true/false True if Tester is at bottom
TesterPosition.top bool | true/false True if Tester reaches top
TesterPosition.BAD | bool | true/false Indicates bad drilling
Setpoint for Drill and Tester
HoleDepth.setpoint | int 0-100 indicating drilling and

testing depth (mm)

Each actor accepts a set of messages, as well ggodsome of them to
communicate with other actors. For example, TaentableSupervisoactor informs
interested actors about slots status in variougipoes by sending TSlotXmessages
(whereX replaces 0-3).

The Turntable subsystem consists of two actorSurntableSupervisorand
TurntableController The former actor is responsible for supervisiithe latter one,
as well it coordinates operation of the whole gystavith other subsystems

supervisors.

Each actor has a task encapsulating a functionkbtbagram: in case of the
TurntableSupervisotthe task consists of set of comparators, stathima and modal
function blocks, see Fig. 12 and Fig. 13 for dstail
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Fig. 12. TurntableSupervisoactor

The particular design given here, presents a tltsiinplified version of the
TurntableSupervisowith a sequential behavior, however, the real @nmntation
will most likely involve a greater number of stateachines such that various
processes (loading, drilling, testing, unloading) be performed concurrently.

The TTSModalmodal function block (see Fig. 13) changes shatustin its modes
according to thestate signal received fronTTSStateMachindoaded sets slot 0 to
loaded drilled sets slot 1 to drilledestOKsets slot 2 to testedOkestBadsets slot 2
to testedBadynloadedsets slot 3 to emptyptated mode shifts the slot information:
fromOto 1, 1-2, 2—3, 3—0.
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The TurntableControlleractor task TTCTask comprises only a modal function
block — the TTCModal which is directed by the supervisory state maehofh the
TurntableSupervisgisee Fig. 14. TheTCModalhas two modegotating responsible
for rotation of the turntable, andtatedsetting next position to go.
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b 2se.

b sen

TTCModal *, gaion|

langle 1PWM
1 1 I
2setpoint 2rotated
rotating
3state i
3setpoint
. ]
4enabled: rotated 4rotation

Fig. 14. TurntableControlleractor
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Similarly to the Turntable subsystemDrillClamp subsystem consists of two
actors: DrillClampSupervisor and DrillController. The supervisor, besides
coordinating the subsystem operation, controls dedClamp, whereas the controller
manages drilling process: turning the Drill on/affoving it up/down.

The DCSModal function block of the supervisor generates sigoahtrolling
Clamp actuator, more preciselgck tightens the producstartDrill, drilled stops the
Clamp actuatoninlockreleases the product.

—3

1TTSlotl state|

state| state| b2
1 updated

1DrillClamp
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2
1|
2TumTable qu—)
4

6

[3DrillPosition

: | unlocked]

4¢€LockedSensor

o

JQunlockedSensor

DCSModal

Fig. 15. DrillClampSupervisorctor
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The DrillController actor task DCTash comprises one modal function block — the
DCModal which is directed by the supervisory state maehiof the
DrillClampSupervisor see Fig. 17. TheDCModal has four modes:drilling
responsible for moving the Drill dowmoveUpmoves the Drill upstartDrill turns
on the Drill, and finallystopDrill turn off the Drill.
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5depth
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Fig. 17. DrillController actor
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Testersubsystem consists of two actoi®sterSupervisoand TesterControlley
and as previously, the supervisor takes care afubsystem cooperation with the rest
of the system and it directs the controller resgmesfor controlling the continuous

part the subsystem: the Tester drive.
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Fig. 19. TesterSupervisaactor task

The TesterControlleractor task TCTask comprises one modal function block —
the TCModal which is directed by the supervisory state mazhiof the
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TesterSupervispisee Figure 20. THECModalhas two modegestingresponsible for
moving the Drill down, antiestOK, testBadnoving the Drill up.
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Fig. 20. TesterControlleractor

The design is completed by presentingngfut and Outputenvironment processes
responsible for loading and unloading of productfam the turntable.

ready[slot0_empty]

l 'I

Fig. 21. Behavior oflnput environment process: product loading
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Fig. 22. Behavior ofOutputenvironment process: product unloading

Given the above design, the system should medolioaving properties:

. The system has to be schedulable, none of theidead missed (safety)

. The system cannot block, i.e. it does not contaadbbck (safety)

Every product is drilled (liveness)

Every product is tested (liveness)

Product is drilled and tested with the same holptlésafety)

Every product leaves the turntable eventually (lass)

. The turntable does not rotate if any process (lngddrilling, testing, unloading)
is in operation (safety)

No drilling, testing and unloading takes placehiéte is no product in the slot and
no loading is performed if there is a product ie ot (safety)

. The system should not perform redundant operaiigaiety)

Nogokrwpdr

o

©

In order to find answers to the formulated promsrta transformation to an
analysis model must be conducted — the UPPAAL madehg the path presented in
the previous sections of the paper.

5.2 Model Transformation of Turntable Case Study Design

As a real example for illustrating the practicaplgation of aforementioned model
transformation techniques, the establishment ofURPAAL analysis model for

Turntable case study in equivalence with its desigfgOMDES-II is presented in this
section, which primarily consists of three partgareling the separated design
concerns:

— Actor concurrency and timelinessstantiation of task control blocks to regulate
timed execution and scheduling behavior of the fabie system actors (see
Section 4.1.1).

— Actor interaction 1) definition and instantiation of a number of ssage data
structures in UPPAAL used to exchange informaticgtween actors, and 2)
implementation of COMDES-II modal function block®ntained in the host
Turntable actors as a set of UPPAAL functions, Wwhigll be invoked in the
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taskOutputDrivers(int taskID) primitive to update the message data
values (see Section 4.1.2).

— Actor functionality modeling COMDES-II state machine function blodksthe
corresponding Turntable actors as different timetbmata in UPPAAL, following
the transformation approaches described in Sedtidn

5.2.1 Instantiation of Task Control Blocks

In order to schedule the timed execution of primed actors, the task control block
defined in Section 4.1.1 is instantiated as bel@soeding to the actor execution
meta-data summarized in Table 3.

/I Defining task control block
typedef struct{

int[0,4] status;

meta int period;

meta int executionTime;

meta int deadline;

meta int mode;

bool modeUpdated;

int timeSinceReleased;

int computationTimer;
}TTask;

/************************************************** *kkk

Initializing application-specific tasks

* * *kkkkkkkkkkk * * * * * * * ***/

const int TASKS_NUM = 6;
typedef int[1, TASKS_NUM] t_num,;
TTask task[t_num] = {
Il TesterSupervisor
{READY, 100, 2, 0, 0, false, 0, 0},
/IDrillClampSupervisor
{READY, 100, 2, 0, 0, false, 0, 0},
/[TurntableSupervisor
{READY, 100, 2, 0, 0, false, 0, 0},
/[TurntableController
{READY, 10, 1, 10, 0, false, 0, 0},
[/[DrillController
{READY, 10, 1, 10, 0, false, 0, 0},
/[TesterController
{READY, 10, 1, 10, 0, false, 0, 0}
%

The task control blockis instantiated as an array in the length of aotonbers
with starting index 1 (e.g.const int TASKS_NUM = 6; typedef
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int[1, TASKS_NUM] t_num; ), and the array elements are ordered according to
actor priorities from low to high. In this case dyjuall the tasks are periodic tasks
specified by the corresponding non-zemeriod , executionTime and
deadline  information. Initially every task is in th&@EADY status, with zero
timeSinceReleased andcomputationTimer

The given task control block instances providedéetral information for discrete-
time scheduler (see Section 4.1.4) to control f@edlctivities and execution status of
actors. For example, tiieesterSupervisaactor (priority = 1) will be released in every
100 basic timing units, and upon releasing its egponding input signals can be
acquired vigasklnputDrivers(int taskID) primitive. During execution its
status is controlled by the discrete-time schedualecording to the scheduling
principles described in Section 4.1.3. When theespondingexecutionTime  (2)
has been consumed, a control state transitionérntithed automata specifying the
functional behavior of this actor may happen, antsequently the output signals will
be immediately generated viaskOutputDrivers(int taskiD) primitive
since itsdeadline is not specified (deadline = 0), otherwise thepatg will be
generated when the deadline expires (BegterContrlleractor whose deadline is 10).

5.2.2 Actor Interaction in UPPAAL

The asynchronous producer-consumer communicatioense for COMDES-II actors

is achieved in UPPAAL by a number of globally deethmessage data structures and
the related functions responsible for updating mgsslata values. The message data
structures are defined in consistency with the rimfition provided from Table 4,
while the functions dedicated to updating messagetent status emulate the
functionality of those modal function blocks comiad within the system actors, and
will be invoked in theaskOutputDrivers(int taskiD) primitive when the
corresponding actor comes to the time point to ggaeoutputs. An example of
TurnTable message is given as below:

/[Turn table state values

const int READY = 0;
const int LOADING = 1;

const int LOADED = 2;

const int DRILLING = 3;
const int DRILLED = 4;

const int TESTING = 5;

const int TESTOK = 6;

const int TESTBAD = 7;

const int TESTED = 8;

const int UNLOADING = 9;
const int UNLOADED = 10;
const int ROTATING = 11;
const int ROTATED = 12;

/Imessage definition of TurnTable
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typedef struct{
meta intfREADY, ROTATED] status;
meta bool updated;

}TTurnTable;

TTurnTable TurnTable = {READY, false};

The TurnTable message instantiates the typeTdurnTable which indicates
turntablestatus and statusipdated information. Apparently th&urnTable is
initially in the READY status that has not been updated, whose valuesbean
determined by theTurnTableSupervisorOutput(int taskID) function
that will be executed in théaskOutputDrivers(int taskiD) primitive
whenTurntableSupervisoactor faskID =3 ) has finished its control activity (i.e.
task[3].status == FINISHED ).

This message provides coordinating information TarntableControlleractor,
DrillClampSupervisoractor andTesterSupervisoactor to control their functional
behavior specified as timed automata (see Secti@rB)5 and Table 5 lists the
implemented output functions of each system actor.

Table5. Actor output functions

Actor Output Function

TesterSupervisor void TesterSupervisorOutput(int taskID)

DrillClampSupervisor | void DrillClampSupervisorOutput(int taskID)

TurntableSupervisor | void TurnTableSupervisorOutput(int taskiD)

TurntableController void TurnTableControllerOutput(int taskID)

DrillController void DrillControllerOutput(int taskID)

TesterController void TesterControllerOutput(int taskID)

For complete details of communication messagesaasdciated functions we refer
interested readers to Appendix A.

5.2.3 Actor Functional Behavior in Timed Automata

Among the three most significant model transfororatiprocedures, a correct
specification of the actor sequential functionalityJPPAAL timed automata is a key
step as it is directly related to the behavior we iaterested to analysis — the system
sequential behavior. In Section 4.2 a guidelinebfidging the semantic gap between
COMDES-II state machine function blocks and UPPA#hed automata has been
given, based on which we will exemplify in this 8en how to equivalently model
the actor sequential control behaviors, by usingntableSupervisoractor and
TurntableControlleractor as examples.
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Fig. 23. Timed automata fof urntableSupervisadgctor functional behavior
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For TTSStateMachintunction block inTurntableSupervisoactor (see Fig. 13), its
equivalent timed automaton model is presented &&gin23. In this automaton all the
transition edges are ordered and only one of thesy be fired when the actor
execution status BOMPUTERccording to the techniques introduced in Secti@n

Initially the automaton is ineady location, and when the host actor completes its
computation task[3].status == COMPUTED ), the guardslfput.status
== LOADED && TTSlot[0].status == EMPTY ) associated with the highest
order transition ready -> loaded ) will be evaluated. In case they are satisfied
(i.e. a product i OADEDInto the input system and slotO is sEIMPTY then this
transition is fired to lead the automatonlé@aded location, where the slotO status
will be changed a$ OADED(i.e. TTSlot[0].status = LOADED ). Otherwise
the transition guards aéady -> drilling will be checked, i.e. if a product has
been LOADEDinto slotl which is ready for drillingT({TSlot[1].status ==
LOADEI) AND slot0 has finished its loading proceSsT§lot[0].status !=
EMPTY, then the automaton will be in the drilling loicat such that turntable system
starts drilling the product in slotl, and so fofteady -> testing , ready ->
unloading , ready -> rotating ).

The overall operational behavior ofurntableSupervisoractor could be
represented by the following repeatedly occurretiestransition trace in which each
state transition can only take place when the hottr completes its computation
(task[3].status == COMPUTED ), and once a time:

ready (TTSlot[0].status == EMPTY, TTSlot[1].status ==
EMPTY, TTSlot[2].status == EMPTY, TTSlot[3].status ==

EMPTY) ->

loaded (TTSlot[0].status == LOADED, TTSlot[1].statu s ==
EMPTY, TTSlot[2].status == EMPTY, TTSIot[3].status ==
EMPTY) ->

ready -> rotating ->

rotated (TTSlot[0].status == EMPTY, TTSlot[1].statu s ==
LOADED, TTSlot[2].status == EMPTY, TTSlot[3].status ==
EMPTY) ->

ready ->

loaded (TTSlot[0].status == LOADED, TTSlot[1].statu s ==
LOADED, TTSlot[2].status == EMPTY, TTSlot[3].status ==
EMPTY) ->

ready -> drilling ->

drilled (TTSlot[0].status == LOADED, TTSlot[1].stat us
== DRILLED, TTSlot[2].status == EMPTY, TTSlot[3].st atus
== EMPTY) ->
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ready -> rotating ->

rotated (TTSlot[0].status == EMPTY, TTSlot[1].statu
LOADED, TTSlot[2].status == DRILLED, TTSlot[3].stat
== EMPTY) ->

ready ->

loaded (TTSlot[0].status == LOADED, TTSlot[1].statu
LOADED, TTSlot[2].status == DRILLED, TTSlot[3].stat
== EMPTY) ->

ready -> drilling ->

drilled (TTSlot[0].status == LOADED, TTSlot[1].stat
== DRILLED, TTSlot[2].status == DRILELD,
TTSlot[3].status == EMPTY) ->

ready -> testing ->

(testOK || testBad) (TTSlot[0].status == LOADED,
TTSlot[1].status == DRILLED, TTSlot[2].status ==
(TESTOK || TESTBAD), TTSlot[3].status == EMPTY) ->

ready -> rotating ->

rotated (TTSlot[0].status == EMPTY, TTSlot[1].statu
LOADED, TTSlot[2].status == DRILLED, TTSlot[3].stat
== (TESTOK || TESTBAD)) ->

ready ->

loaded (TTSlot[0].status == LOADED, TTSlot[1].statu
LOADED, TTSlot[2].status == DRILLED, TTSlot[3].stat
== (TESTOK || TESTBAD)) ->

ready -> drilling ->

drilled (TTSlot[0].status == LOADED, TTSlot[1].stat
== DRILLED, TTSlot[2].status == DRILLED,
TTSlot[3].status == (TESTOK || TESTBAD)) ->

ready -> testing ->

(testOK || testBad) (TTSlot[0].status == LOADED,
TTSlot[1].status == DRILLED, TTSlot[2].status ==
(TESTOK || TESTBAD), TTSlot[3].status == (TESTOK ||
TESTBAD)) ->

S ==
us

S ==
us

us

S ==
us

S ==
us

us
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ready -> unloading ->

unloaded (TTSlot[0].status == LOADED, TTSlot[1].sta tus
== DRILLED, TTSlot[2].status == (TESTOK || TESTBAD) ,
TTSlot[3].status == EMPTY) ->

ready -> rotating ->

rotated (TTSlot[0].status == EMPTY, TTSlot[1].statu s ==
LOADED, TTSlot[2].status == DRILLED, TTSlot[3].stat us
== (TESTOK || TESTBAD)) -> ready -> ...

For TurntableControlleractor (priority = 4), it does not contain any etatachine
function block, instead only a modal function blozklled TTCModal (see Fig. 14)
will be executed periodically with the activatiohtmst actor to control the physical
units of turntable, according the operatistate and state_updated
information provided fronTurntableSupervisoactor (see Fig. 11 and Fig. 14). As a
result the function behavior of this actor is medeas in Fig 24:

read task[TurntableController_priority].status == COMPUTED

finish(TurntableController_priority, READY, true)

Fig. 24. Timed automata foFurntableControlleractor functional behavior

This automaton simply consists of one locaticeadly ) and one transition edge,
which is fired every time th&urntableControlleractor completes its computation
(task[4].status == COMPUTED ), such that the dedicated control behavior can
be performed by th&urnTableControllerOutput(int taskID) function
(see Table 5) that implements the functionalityTofCModal when the corresponding
deadline deadline =10 ) expires.

The above mentioned modeling mechanisms can bédpplthe other Supervisor
and Controller actors, and more details are refleimedppendix A.

5.2.4 Formulation of System Properties

Having the complete analysis model of Turntableecstsidy, the last step to final
verification of system design is to formulate thesided system requirements as a set
of temporal logic properties which can be acceethe UPPAAL verifier. In Table

6, temporal logic expressions corresponding to shstem requirements given in
Section 5.1 are listed, together with the verifmatresults as well as memory
footprint. All the priorities can be verified withi30s on a computer with Duo CPUs
of 1.66 GHz each and 1 GBytes RAM.
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Table 6. System properties and verification results
System Temporal Logic Verification | Memory
Requirement Formula Result Footprint
Input.status ==
. : READY &&
If slot0 is available, &) +q15107 status == . 18884
product will be EMPTY s Satisfied Kbytes
loaded TTSlot[0].status ==
LOADED
TTSlot[0].status ==
Every product is LOADED -> Satisfied 23396
drilled TTSlot[1].status == Kbytes
DRILLED
TTSlot[1].status ==
DRILLED - >
Every product is (TTSlot[2].status - 25672
tested == TESTOK || Satisfied | ) tes
TTSlot[2].status ==
TESTBAD)
Products are drilled | A[] 29304
and tested with the | TTSlot[2].status != Satisfied Kbvies
same hole depth TESTBAD yt
TurnTable.status ==
Every product leaves LOADED s 30236
the turntable TurnTable.status == Satisfied Kbytes
eventually UNLOADED
All not
(TurnTable.status
The turntable does ZE ut ST;J;A‘TING__ &&
not rotate if any LOE)AD'IN G - I
process ('0"?‘0"”9' DrillClamp.status Satisfied 28888
drilling, testing, —— DRILLING I Kbytes
unIoadjng) isin Tester.status ==
operation TESTING I
Output.status ==
LOADING))
No drilling, testing '(A(‘Pn utstatus == not
and unloading takes LOAp\DI.NG o &&
place if there is no =
product in the TTSlot[0] status 1= - 23364
. EMPTY) I Satisfied
corresponding slots (DrillClamp.status Kbytes
and no loading is b DRILLING 2&

performed if there is
a product in slot0

TTSlot[1].status
EMPTY) Il
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(Tester.status ==
TESTING
TTSlot[2].status ==
EMPTY)

(Output.status ==

UNLOADING
TTSlot[3].status ==
EMPTY) )

The system should
not perform
redundant operations

Al]

((Input.status ==
LOADING
TTSlot[0].status ==
LOADED)
(DrillClamp.status
== DRILLING
TTSlot[1].status ==
DRILLED)
(Tester.status ==
TESTING
(TTSlot[2].status
== TESTOK
TTSlot[2].status ==
TESTBAD))

(Output.status ==

UNLOADING
TTSlot[3].status ==
EMPTY))

not

&&

&&

I
&&
I

I
&&

Satisfied

23400
Kbytes

The system is
deadlock free

A[] not deadlock

Satisfied

23240
Kbytes

Schedulability
Analysis

All forall(i :
int[1, TASKS_NUM])
task[i].status =
ERROR

Satisfied

23232
Kbytes
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6. Conclusion

The paper has investigated a transformational @mbrao formal specification and
verification of dynamic behaviofor COMDES-II systems by using UPPAAL, on
both theoretical and practical levels. The adoptethodology — semantic anchoring
— provides a theoretical foundation for the modeahs$formation that equivalently
anchors the behavioral semantics of COMDES-II ddRPAAL timed automata at
the meta-level, which is subsequently instantidtedteer the verification effort of a
practical case study — Turntable Case Study dedign€EOMDES-II.

As a component-based framework intended for modeéd development of real-
time embedded software, COMDES-II applies an extenseparation-of-concerns
approach to model different behavioral concernghsas concurrency, real-time
operation, sequential control behavior combinechwibntinuous computation etc.
Specifically, system actors are prioritized andesthed with a preemptive timed
multitasking approach, with 1/O activities perfortnat precisely specified activation
and deadline instants. As to functional behavibe s$tate machine function blocks
and modal function blocks are jointly used to spethe system reactive control
functionality. However, these behavioral charastes are completely different from
their counterparts in UPPAAL, as summarized in €ahlSection 4.

In order to bridge the semantic gap, a concreteeinwdnsformation procedure is
described as in Section 4 by taking into accounthal behavioral aspects that would
influence the overall system operational semaniticsyuding:

» A task control block is defined to encompass thecakion information of actors,
such as period, WCET, deadline etc.

« The communication primitives are defined to enahke asynchronous producer-
consumer interaction pattern between actors.

e A number of scheduling primitives are implementedhsthat the discrete-time
scheduler is able to manage the preemptive execuaticactors with timed 1/0O
activities, based on the execution information #p@etin the task control block
instances.

* A method allowing an equivalent transformation frastate machine function
blocks to the corresponding timed automata is dgesl, as a result the actor
reactive control behavior can be precisely modeiddPPAAL.

The above model transformation techniques covatifigrent behavioral concerns
are finally applied to verify a practical case stutesigned in COMDES-II — the
turntable control system — against a list of dessgstem requirements, as described
in Section5. The verification results illustrate anpositive way that the developed
methods can be used to precisely analyze the sleisiity and functional behavior
of COMDES-II applications using UPPAAL, with a colage preservation of the
original system operational semantics.
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Appendix A: UPPAAL Mode of Turntable Case Study

Global Declarations:
Il Place global declarations here.

clock s;

/ * * * * * * * *kkkkkkkkkkk * * *kkk

Defining task-related types and macros
kkkkkkkkkkhhkhhhhhhkhkkkkkkkkkkkkkkhkkkkkhhhhhhhhkx ***/

// Defining task status

const int READY =0;

const int ACTIVE =1;

const int COMPUTED =2;
const int FINISHED =3;
const int ERROR =4,

// Defining maximum task numbers and macro of tasks
const int MAX_TASKS =16;
const int TASK1 =1;

const int TASK2 =2;

const int TASK3 =3;

const int TASK4 =4;

const int TASK5 =5;

const int TASK6 = 6;

const int TASK7 =7,

const int TASK8 =28;

const int TASK9 =09;

const int TASK10 =10;

const int TASK11 =11;

const int TASK12 =12;

const int TASK13 =13;

const int TASK14 = 14;

const int TASK15 =15;

const int TASK16 = 16;

// Defining task control block
typedef struct{

int[0,4] status;

meta int period;

meta int executionTime;
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meta int deadline;

meta int mode;

bool modeUpdated;

int timeSinceReleased;

int computationTimer;
}TTask;

/Ibroadcast chan not_sch;

*kkk

J** * * * * * * *

Initializing application-specific tasks

*kkkkkkkk * *

const int TASKS_NUM = 6;
typedef int[1,TASKS_NUM] t_num;

TTask task[t_num] = {

{READY, 100, 2, 0, 0, false, 0, 0},
{READY, 100, 2, 0, 0, false, 0, 0},
{READY, 100, 2, 0, 0, false, 0, 0},
{READY, 10, 1, 10, 0, false, 0, 0},
{READY, 10, 1, 10, 0, false, 0, 0},
{READY, 10, 1, 10, 0, false, 0, 0}

/***************************************

Actors priority definition

const int TurntableSupervisor_priority = 3;
const int TurntableController_priority = 4;
const int DrillClampSupervisor_priority = 2;
const int DrillController_priority = 5;

const int TesterController_priority= 6;

const int TesterSupervisor_priority= 1;

const int SCHEDULER_PERIOD = 1;
bool task_state_transition = false;

Declare environment variables Here
x|

*kkkk * * * *

[ITurn table state values
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/lconst int READY = 0;

const int LOADING = 1;

const int LOADED = 2;

const int DRILLING = 3;
const int DRILLED = 4;

const int TESTING = 5;

const int TESTOK = 6;

const int TESTBAD = 7;

const int TESTED = 8;

const int UNLOADING = 9;
const int UNLOADED = 10;
const int ROTATING = 11;
const int ROTATED = 12;

//message definition of TurnTable
typedef struct{
meta intfREADY, ROTATED] status;
meta bool updated;
}TTurnTable;

TTurnTable TurnTable = {READY, false};

Il Slots state values
const int EMPTY = 13;

/Imessage definition of slots
typedef struct{
intfLOADED, EMPTY] status;
int[0,100] depth;
JTTTSlot;

TTTSlot TTSlot[4] = {{EMPTY, 0}, {EMPTY, 0}, {EMPTY

0}, {EMPTY, 0}};

/Imessage definition of Input from environment
typedef struct{

meta intfREADY, LOADED] status;
}Tinput;

Tlnput Input = {READYY;

/I DrillClamp state values

const int LOCK = 14;
const int STARTDRILL = 15;
const int MOVEUP = 16;

45
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const int STOPDRILL = 17;
const int UNLOCK = 18;

/Imessage definition of DrillClamp
typedef struct{
meta intfREADY, UNLOCK] status;
meta bool updated,;
int[-1,1] PWM;
}TDrillClamp;

TDrillClamp DrillClamp = {READY, false, 0};

/Imessage definition of Tester

typedef struct{
meta intfREADY, TESTED] status;
meta bool updated;
/lint[-1,1] PWM,;

}TTester;

TTester Tester = {READY, false};

/l Environment Output state values
const int MARKOK = 19;
const int MARKBAD = 20;

/Imessage definition of Output to environment
typedef struct{

meta intfREADY, MARKBAD] status;
}TOutput;

TOutput Output = {READY};

/Imessage definition of TablePosition
typedef struct{
bool rotated;
meta int[0,360] setpoint;
int[0,360] rotation;
/lint[0,1] PWM;
}TTablePosition;

TTablePosition TablePosition = {false, 90, 0};

/Imessage definition of DrillPosition
typedef struct{
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bool top;
bool down;
}TDrillPosition;

TDrillPosition DrillPosition = {true, false};
/Imessage definition of TesterPosition
typedef struct{

bool top;

bool down;

bool BAD;
}TTesterPosition;

TTesterPosition TesterPosition = {true, false, fals e}

/Imessage definition of HoleDepth

const int HoleDepthSetpoint = 30; // Hole depth is

30mm

/Imessage definition of EnvClamp

const int LOCKED = 21;
const int UNLOCKED = 22;
typedef struct{

intfLOCKED, UNLOCKED] status;
}TEnvClamp;

TEnvClamp Clamp = {UNLOCKEDY};

int[0,100] drill_position = 0;

/ * * * * * * * *kkkkkkkkkkk * * *kkk

Actions performed in output drivers of a specific t ask
kkkkkkkkkkkhkhhhkkhkhkkkkkkkkkkkkkkhkkkkhhhhhhhhhkx ***/

void TurnTableSupervisorOutput(int taskID){
intfLOADED, EMPTY] slotTempStatus;
int[0,100] slotTempDepth;
int[0,3] slotindex;
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TurnTable.status = task[taskID].mode;
TurnTable.updated = task[taskID].modeUpdated;
if(task[taskiD].modeUpdated)
{
if(task[taskiD].mode == LOADED)
TTSlot[0].status = LOADED;
else if(task[taskID].mode == DRILLED)
TTSlot[1].status = DRILLED;

}
else if(task[taskiID].mode == TESTOK ||
task[taskID].mode == TESTBAD)

[ITTSlot[2].status = task[taskID].mode;
}else if(task[taskiD].mode == UNLOADED)
TTSlot[3].status = EMPTY;
}else if(task[taskiD].mode == ROTATED)
slotTempStatus = TTSlot[3].status;
slotTempDepth = TTSlot[3].depth;

for(slotIndex = 3; slotindex>0;
slotindex--)

TTSlot[slotindex].status =
TTSlot[slotIndex-1].status;

TTSlot[slotindex].depth
TTSlot[slotindex-1].depth;

TTSlot[0].status = slotTempStatus;
TTSlot[0].depth = slotTempDepth;

if(TablePosition.setpoint < 360)

{
TablePosition.setpoint += 90;
}
else
TablePosition.setpoint = 90;
TablePosition.rotation = 0;
}
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void TurnTableControllerOutput(int taskiD){
if(task[TurntableSupervisor_priority]. modeUpdated)

if (task[TurntableSupervisor_priority].mode
== ROTATING)

if(TablePosition.rotation ==
TablePosition.setpoint)

TablePosition.rotated = true;
[ITablePosition.PWM = 0;

}
else
{
TablePosition.rotated = false;
[ITablePosition.PWM = 1;
TablePosition.rotation += 90;
}
}
else
(task[TurntableSupervisor_priority].mode == ROTATED )
{
}

}

void DrillClampSupervisorOutput(int taskID){
DrillClamp.status = task[taskID].mode;
DrillClamp.updated = task[taskID].modeUpdated;
if (task[taskiD].modeUpdated)
if(task[taskiD].mode == LOCK)
Clamp.status = LOCKED;
}
else if(task[taskID].mode == UNLOCK)
{
Clamp.status = UNLOCKED;
}
else if(task[taskID].mode == DRILLING)

if(TTSlot[1].depth >=
HoleDepthSetpoint) // Start to stop driller

DrillPosition.down = true;
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}

void DrillControllerOutput(int taskiD){
if(task[DrillClampSupervisor_priority]. modeUpdated

if(task[DrillClampSupervisor_priority].mode

== DRILLING)
{
DrillPosition.top = false;
if(drill_position++ == 10)
TTSlot[1].depth +=1;
drill_position = 0;
}
}
else

if(task[DrillClampSupervisor_priority]. mode == MOVE
{

DrillPosition.top = true;
DrillPosition.down = false;

}

void TesterSupervisorOutput(int taskID){
Tester.status = task[taskiD].mode;
Tester.updated = task[taskID].modeUpdated;

}

void TesterControllerOutput(int taskID){
if(task[TesterSupervisor_priority]. modeUpdated)

if(task[TesterSupervisor_priority].mode ==

TESTING)
{
TesterPosition.top = false;
if(TTSlot[2].depth 1=
HoleDepthSetpoint)
{
TesterPosition.down = false;
TesterPosition.BAD = true;
}
else
{

TesterPosition.down = true;

UP)
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TesterPosition.BAD = false;

}
if(task[TesterSupervisor_priority].mode ==
TESTBAD Il task[TesterSupervisor_priority]. mode ==
TESTOK)
{

TesterPosition.top = true;
TTSlot[2].status =
task[TesterSupervisor_priority].mode;
TTSlot[2].depth = 0;
}

I/l Input function of tasks
void taskIinputDrivers(int taskID){
/*insert code of input drivers here*/

}

// Output function of tasks
void taskOutputDrivers(int taskID){
[*insert code of output drivers here*/

if (taskID == TurntableSupervisor_priority) //
Turntable Supervisor

{
TurnTableSupervisorOutput(taskID);

else if(taskID == TurntableController_priority) //
Turntable Controller
{
TurnTableControllerOutput(taskiD);

}
else if (taskiID == DrillClampSupervisor_priority)
/I DrillClamp Supervisor

DrillClampSupervisorOutput(taskiD);

else if(taskID == DrillController_priority) //
Drill Controller

DrillControllerOutput(taskiD);
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else if(taskID == TesterSupervisor_priority) //
Tester Supervisor
{
TesterSupervisorOutput(taskID);
else if(taskID == TesterController_priority) //
Tester Controller
{

TesterControllerOutput(taskID);

Defining task functions

* * *kkkkkkkk * * a/

/I Release a task
void release(int taskiD){
if(task[taskID].status == READY)

task[taskID].status = ACTIVE;
task[taskID].timeSinceReleased = 0;

task[taskID].computationTimer
task[taskID].executionTime;

}

I/l Schedule the highest priority active task to run
void run(){
inti = TASKS_NUM;
for(i; i>0; i--)
if(task]i].status == ACTIVE)
if(task[i].computationTimer != 0)

task]i].computationTimer
SCHEDULER_PERIOD;

if(task[i].computationTimer == 0)

task_state transition = true;
task]i].status = COMPUTED;

return;
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}

/l When the running task finishes, schedule it back to
READY status
void finish(int taskID, int mode, bool modeUpdated) {
task[taskID].mode = mode;
task[taskID].modeUpdated = modeUpdated;
task[taskID].status = FINISHED;
if(task[taskID].deadline == 0)

taskOutputDrivers(taskID);
task[taskID].status = READY;

}

task_state_transition = false;

/************************************************** *kkk

I/O actions of tasks performed at specific trigge ring
instant and deadline

* * *kkkkkkkkkkk * * * * * * * ***/

void outputAction()}{
inti = TASKS_NUM;
for(i; i>0; i--)
{
if
(task[i].timeSinceReleased*SCHEDULER_PERIOD ==
task[i].deadline && task]i].deadline != 0)
{

if(task[i].computationTimer > 0) // if
a non-zero deadline task is not schedulable

task]i].status = ERROR;
}
else if (task]i].status == FINISHED)

taskOutputDrivers(i);
task[i].status = READY;

}

void inputAction(){
inti = TASKS_NUM;
for(i; i>0; i--)
{
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/I input actions for periodic tasks
if (task]i].period != 0)
{

if (task[i].timeSinceReleased == 0 ||
task[i].timeSinceReleased*SCHEDULER_PERIOD ==
task[i].period)
if (task[i].deadline == 0)

if (task[i].computationTimer
> 0) // if a zero deadline task is not schedulable

task]i].status

ERROR;
return;
}
taskinputDrivers(i);
release(i);

task]i].timeSinceReleased++;

/I input actions for aperiodic tasks
else

if(task]i].status == ACTIVE Il
task[i].status == FINISHED)

task]i].timeSinceReleased++;

}
}
}
void OIRActions(){
outputAction();
inputAction();
run();
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System Declar ations:

I/l Place template instantiations here.

TurntableSupervisor_| =
TurntableSupervisor(TurntableSupervisor_priority);

TurntableController_| =
TurntableController(TurntableController_priority);

DrillClampSupervisor_| =
DrillClampSupervisor(DrillClampSupervisor_priority) ;

DrillController_| =
DrillController(DrillController_priority);

TesterController_| =
TesterController(TesterController_priority);

TesterSupervisor_| =
TesterSupervisor(TesterSupervisor_priority);

Il List one or more processes to be composed into a
system.

system TurntableSupervisor_|, TurntableController_|
DrillClampSupervisor_|I, DrillController_1I,
TesterController_I, TesterSupervisor_I, Envinput,
EnvOutput, Scheduler;
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Timed Automata M odels;

Itask_state_transition && s == SCHEDULER_PERIOD

OIRActions(), s = 0 s <= SCHEDULER_PERIOD

task_run

Fig. 25. Timed automata for discrete-time scheduler

read task[TurntableController_priority].status == COMPUTED

finish(TurntableController_priority, READY, true)

Fig. 26. Timed automata fofurntableControlleractor functional behavior

read task[DrillController_priority].status == COMPUTED
finish(DrillController_priority, READY, true)

Fig. 27. Timed automata fdDrillController actor functional behavior

read task[TesterController_priority].status == COMPUTED
finish(TesterController_priority, READY, true)

Fig. 28. Timed automata foFesterControlleractor functional behavior
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(TumTable.status == READY && TTSlot[1].status == LOADED) &&
task{DrillClampSupervisor_priority].status == COMPUTED
TurnTable status == READY &&

finish(DrillClampSupervisor_prior task{DrillClampSupervisor_priority].status == COMPUTED

finish(DrillClampSupervisor_priority, READY, true)
TumTable status '= READY &&
task[DrillClampSupervisor_priority].status == COMPUTED
finish(DrillClampSupervisor_priority, DRILLED, false)

Clamp.status == UNLOCKED &&
task[DrillClampSupervisor_priority].status == COMPUTED

finish(DrillClampSupervisor_priority, DRILLED, true)

|(Clamp status == LOCKED Clamp.status = UNLOCKED &&
TurnTable statu DR\LUN@ 88 task[DrillClampSupervisor_priority].status == COMPUTED
task[DrillClampSupervisor_priority].stat PUTED finish(DrillClampSupervisor_priority, UNLOCK, false)

finish(DrillClampSupervisor_pri ,Loc false)

M=

DrillPosition.top&&.
Clamp status == LOCKED && task[DrillClampSupervisor_priority.status == COMPUTED
TurnTable.status == DRILLING &&

task[DrillClampSupervisor_priority].statifs == COMPUTED finish(DrillClampSupervisor._priority, UNLOCK, true)

finish(DrillClampSupervisor_priority, DRILLING, true)

DrillPosition.down &
task[D! rlI\C\ampSupeN\sor priority].status == |COMPUTS

ang finish(DrillC| _priority, MO

1D top&s.
task[DrillClampSupervisor_priority].status == COMPUTED

IDrillPosition.down &&
task[DrillClampSupervisor_priority].statug

finish(DrillClampSupervisor_priority,|

MPUTED finish(DrillClampSupervisor_priority, MOVEUP, true)

RILLING, true)

Fig. 30. Timed automata foDrillClampeSupervisoactor functional behavior

TurnTable.status == READY &&
TTSlot[0].status == EMPTY TTSlot[0].status == LOADED

Input.status = LOADING ;&{dy Input.status = READY
&

lgading Input.status = LOADED Igaded

Fig. 31. Timed automata fainput system

ready
©-

TurnTable.status == UNLOADING

Output.status = UNLOADING Output status = READY

uploading Output.status = UNLOADED uhloaded

Fig. 32. Timed automata foDutputsystem

TTSlot[3].status == EMPTY
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Fig. 33. Timed automata foFesterSupervisaactor functional behavior



