
Verification of COMDES-II Systems Using UPPAAL
with Model Transformation

Xu Ke1, Paul Pettersson2, Krzysztof Sierszecki1, Christo Angelov1

1 Mads Clausen Institute for Product Innovation, University of Southern Denmark
Alsion, Alsion 2, 6400 Soenderborg, Denmark

{xuke, ksi, angelov}@mci.sdu.dk
2Department of Computer Science and Electronics, Mälardalen University

Högskoleplan 1, Box 883, 72123, Västerås, Sweden
paul.pettersson@mdh.se

Abstract. COMDES-II is a component-based software framework intended for
Model Integrated Computing (MIC) of embedded control systems with hard
real-time constraints. We present a transformational approach to formally
verifying both timing and functional behavior of COMDES-II systems using
UPPAAL. The proposed approach adopts timed automata in UPPAAL as the
semantic units to which the behavioral semantics of COMDES-II are anchored,
such that a COMDES-II system can be equivalently transformed into the timed
automata models in UPPAAL, and verified with precise preservation of system
operational semantics. In the paper a concrete discussion of semantic
transformation from COMDES-II to UPPAAL is given, and a turntable case
study is developed to show how to apply the presented approach in practice.

Verification of COMDES-II Systems Using UPPAAL with Model Transformation 1

Table of Contents

1. Introduction.. 4
2. Modeling in COMDES-II... 6
3. Timed Automata in UPPAAL.. 10
4. Transformation from COMDES-II to UPPAAL .. 11

4.1 Transformation of Concurrency and Time ... 11
4.1.1 Modeling Actors in UPPAAL ... 12
4.1.2 Modeling Actor Interaction in UPPAAL .. 13
4.1.3 Modeling Actor Concurrency in UPPAAL ... 14
4.1.4 Modeling Discrete-Time Scheduler in UPPAAL.................................. 16

4.2 Transformation of Functionality .. 17
5. Turntable Case Study ... 19

5.1 COMDES-II Design of Turntable system .. 20
5.2 Model Transformation of Turntable Case Study Design.............................. 31

5.2.1 Instantiation of Task Control Blocks... 32
5.2.2 Actor Interaction in UPPAAL... 33
5.2.3 Actor Functional Behavior in Timed Automata 34
5.2.4 Formulation of System Properties... 38

6. Conclusion ... 41
References.. 42
Appendix A: UPPAAL Model of Turntable Case Study 43

Global Declarations.. 43
System Declarations... 55
Timed Automata Models.. 56

2

List of Figures:

Fig. 1. Semantic anchoring process of CODMES-II.. 4
Fig. 2. Hierarchical architecture model of a COMDES-II system 6
Fig. 3. Split-phase execution of actors under timed multitasking 7
Fig. 4. Interaction between a state machine FB and a modal FB 8
Fig. 5. An example of state machine FB in COMDES-II .. 9
Fig. 6. Status transition graph of actor tasks .. 13
Fig. 7. Actor concurrency over discrete-time in UPPAAL 14
Fig. 8. Discrete-time scheduler automaton in UPPAAL.. 16
Fig. 9. UPPAAL automaton equivalent to SMFB_1.. 17
Fig. 10. The turntable system setup ... 19
Fig. 11. System design illustrated by an actor diagram ... 20
Fig. 12. TurntableSupervisor actor .. 23
Fig. 13. TurntableSupervisor actor task... 24
Fig. 14. TurntableController actor... 25
Fig. 15. DrillClampSupervisor actor.. 26
Fig. 16. DrillClampSupervisor actor task .. 27
Fig. 17. DrillController actor... 28
Fig. 18. TesterSupervisor actor .. 29
Fig. 19. TesterSupervisor actor task... 29
Fig. 20. TesterController actor .. 30
Fig. 21. Behavior of Input environment process: product loading......................... 30
Fig. 22. Behavior of Output environment process: product unloading 31
Fig. 23. Timed automata for TurntableSupervisor actor functional behavior........ 35
Fig. 24. Timed automata for TurntableController actor functional behavior 38
Fig. 25. Timed automata for discrete-time scheduler... 56
Fig. 26. Timed automata for TurntableController actor functional behavior 56
Fig. 27. Timed automata for DrillController actor functional behavior 56
Fig. 28. Timed automata for TesterController actor functional behavior 56
Fig. 29. Timed automata for TurntableSupervisor actor functional behavior........ 57
Fig. 30. Timed automata for DrillClampeSupervisor actor functional behavior ... 58
Fig. 31. Timed automata for Input system ... 58
Fig. 32. Timed automata for Output system .. 58
Fig. 33. Timed automata for TesterSupervisor actor functional behavior.............. 59

Verification of COMDES-II Systems Using UPPAAL with Model Transformation 3

List of Tables:

Table 1. Behavioral differences between COMDES-II and UPPAAL.................. 11
Table 2. Sensors and actuators of the system .. 19
Table 3. Execution information of actors .. 21
Table 4. Messages exchanged among actors ... 21
Table 5. Actor output functions... 34
Table 6. System properties and verification results ... 39

4

1. Introduction

Recently emerging concepts and techniques, such as model-integrated computing
(MIC) and component-based design (CBD) are considered as appropriate methods for
efficient development of reliable embedded software systems [1]. On one hand, MIC
advocates a domain-specific model-driven approach for the embedded software
development, by equipping developers with a domain-specific modeling language
(DSML) that captures the modeling concepts, constraints and assumptions of the
application domains. On the other hand, CBD can be regarded as one of the most
suitable design paradigms for MIC, due to the considerable benefits brought by
reusability of components and higher-level of abstraction. Moreover, from a software
engineering point of view, CBD is also an effective way to bridge the gap between
conceptual system design models and concrete system implementations [2], provided
that an automatic code generation technique is developed.

Fig. 1. Semantic anchoring process of CODMES-II

COMDES-II is a component-based software framework adopting MIC as a
methodological basis for the development of distributed control systems with hard
real-time constraints. In order to achieve this objective, COMDES-II provides various
kinds of component models to address the critical domain-specific issues, such as
system concurrency, real-time operation, sequential behavior with continuous
computation etc. using a separation-of-concerns approach [3]. A meta-modeling
process formally defines the syntax and static semantics of the framework component

Verification of COMDES-II Systems Using UPPAAL with Model Transformation 5

models [1], however, specification and verification of the composed component
behaviors still remain a challenging problem.

Semantic anchoring [1,4] is a promising approach to transformational specification
and verification of system behavioral semantics, by relying on semantic units (such as
finite state machines, timed automata etc.) with well-defined operational semantics
and tool support. Briefly, the elements and their relationships in a DSML can be
equivalently transformed onto the counterparts in an executable semantic unit with
well-defined behavior, which can subsequently be validated and verified – by
preserving the original system operational semantics – using the supportive toolsets.
This transformation process from the original DSML to the corresponding semantic
unit is referred to as semantic anchoring, as shown in Fig. 1.

We choose timed automata in UPPAAL as the semantic unit, and this paper
presents the concrete process of developing such a transformational approach to
specify and verify the behavior of COMDES-II systems via semantic anchoring. The
structure of paper follows a logical sequence: Section 2 and 3 provide an overview
about COMDES-II component models and timed automata in UPPAAL respectively,
which would give a general perspective on the semantic gaps between two kinds of
systems. Section 4 subsequently describes in details how the behavioral semantic gaps
are bridged. Section 5 presents a turntable case study as an example to demonstrate
the application of the proposed approach. Finally, the concluding section summarizes
the features of our work and their implications.

6

2. Modeling in COMDES-II

As a component-based design framework intended for the real-time control systems,
COMDES-II takes into account both the architectural and behavioral characteristics
of the targeted domain during a system development process.

Fig. 2. Hierarchical architecture model of a COMDES-II system

COMDES-II employs a hierarchical model to specify systems architecture as
illustrated in Fig. 2: at the system level a control application is conceived as a network
of communicating actors (active components), which interact transparently with each

i_m
i_d

o_m
o_m

Actor_1

i_m
i_m

o_m
o_d

Actor_2

msg_2

msg_3

msg_1

data_1 data_2

environment
actor communication

signal

inp out

i_data_1

inp out

i_msg_1

inp out

o_msg_2

inp out

o_msg_1inp
inp

out
out

Task
id1_v

om1_vim1_v

om2_v

Actor_1

input communication
driver control task

output communication
driver

input physical driver local signal

e1
e2

sta
sta

control

inp out

pre_processing_1

inp out

pre_processing_2

input_1

input_2

output_1

output_2

Task
function block instance

input

output

S1

S2

e1

e2

state

state_updated

initialState

1 []

1

e1[]

1

e2[]

control

Verification of COMDES-II Systems Using UPPAAL with Model Transformation 7

other by exchanging labeled messages (signals), following an asynchronous producer-
consumer protocol.

At the actor level, an actor is specified as a software artifact containing multiple
I/O drivers and a single actor task (execution thread). The I/O drivers are responsible
for sensing or actuating signals from/to network or physical units, while the actor task
processes the acquired signals to fulfill the required functionality which is specified
by a composition of different function block instances. Function block instances are
instantiations of reusable and reconfigurable function block types, which can be
categorized into four function block kinds (meta-types): basic, composite, modal as
well as state machine function blocks. A detailed description of the CODEMS-II
systems architecture and function block models is out of the scope of this paper and
we refer the interested readers to [3].

As to the systems behavior modeling, a separation-of-concerns approach is
extensively applied. In COMDES-II, concurrency and time are separated from the
functionality, in the sense that scheduling and real-time issues are specified with
respect to actors, while the functional behavior can be represented by the composition
of different kinds of function block instances contained within the actor tasks.

Fig. 3. Split-phase execution of actors under timed multitasking

Scheduling of actors follows a fixed-priority timed multitasking (TM) strategy [5],
in which actors can be activated by either a periodic or an aperiodic event, and
execute preemptively according to the assigned priorities with non-blocking read-do-
write semantics. The core element of TM in COMDES-II is a time-triggered
scheduler which controls I/O activities and execution status of actors over discrete-
time, such that the timestamps of actor behavior are represented as the multiples of a
basic timing unit (i.e. the period of scheduler activation).

8

Upon activation, input drivers of the activated actor will be invoked (read) in
logically zero time to acquire all input signals which are latched throughout the whole
actor execution. The activated actor task will process (do) exactly once the input data
stepwise along the time axis, as long as it becomes the highest priority task among all
released/preempted tasks in the processor. The processed data will then be buffered
into output drivers that can be atomically executed to generate (write) output signals
when the corresponding actor deadline expires. If the deadline of an actor is not be
specified (i.e. deadline = 0), the actor output drivers will be immediately executed
when the actor task finishes its computation. This split-phase execution pattern of
COMDES-II actors is illustrated as in Fig. 3.

The four kinds of function blocks (FBs) defined in COMDES-II are pure functional
components implementing concrete computation or control algorithms to specify
different kinds of system functional behavior. Specifically, basic and composite FBs
are used to model the data-flow computation process executing in a single mode of
operation, while state machine FBs and modal FBs are jointly used to specify the
system reactive behavior (control-flow) combined with multi-mode (modal) data-flow
computations. Among these two kinds of behaviors, data-flow computation is not of
our analysis interest, but rather, the system reactive behavior is.

A COMDES-II state machine FB consists of a number of binary event/guard
inputs, an event-driven state machine model, and exactly two outputs: state and
state_updated. When a state machine FB is executed, the integrated state machine
parses the binary event/guard input signals, determines the current state and updates
two outputs: state and state_updated. Here, state represents the currently active state,
and state_updated will be set true if a state transition has happened, otherwise it is not
blocked, but set as false.

Fig. 4. Interaction between a state machine FB and a modal FB

The two output signals from a state machine FB will be used by the corresponding

modal FBs to execute the control actions associated with the specific state, as shown
in Fig. 4. A modal FB has a number of operation modes (states) and each mode
contains a function block diagram representing the control action to be performed.
The selection of executing state is decided by the currently active state information
provided from the supervisory state machine FB, whereas the enabledness of
executing state is determined by the state_updated value, i.e. the control action should
only be performed when a state transition occurs, since the state machine model is
event-driven.

Verification of COMDES-II Systems Using UPPAAL with Model Transformation 9

In this computation model, a modal FB merely acts as a component containing
multi-mode (modal) data-flow execution actions, whereas the system control logic
(reactive behavior) is actually specified by the corresponding state machine FB. As a
result we will introduce state machine FBs in more details, and refer the interested
readers to [] for more information about the other kinds of function blocks.

An example of state machine FB called SMFB_1 is illustrated as in Fig. 5. The
SMFB_1 contains three binary event inputs e1, e2 and e3, an event-driven state
machine model, and exactly two outputs: state and state_updated. The internal state
machine includes a dummy initialState pointing to the actual initial state s1, two
states s1 and s2, three state transitions that are labeled by events and transition orders.
Transition events are manipulated as input signals of SMFB_1 acquired from input
drivers or preprocessing FBs, and transition orders are numbers starting from 1 to
indicate the importance of transitions (e.g. two outgoing transitions from s1). Based
on transition orders, the choice of transition to be fired is deterministic when multiple
transition triggers associated with the current state are true at the same time, as
required in safety-critical control systems.

s1

initialState

s2

e3

e1

state_updated
e2

state

1[]

1

e3[]

2

e2[]

1

e1[]

Fig. 5. An example of state machine FB in COMDES-II

When the host actor is activated and then SMFB_1 is executed, its internal state
machine parses binary input event signals, determines current state and updates two
outputs: state and state_updated. The two output signals will be used by the
associated modal FBs to perform the corresponding control actions, as introduced
above.

SMFB_1

10

3. Timed Automata in UPPAAL

The theory of timed automata has proven to be useful for specification and
verification of real-time systems. In this section we briefly review the basic definition
needed in this paper. We refer the reader to [6] for a more thorough description for the
timed automata used in the UPPAAL tool [7].

Assume a finite set of real-valued variables C standing for clocks, and a finite set
of actions Act. Let B(C) denote the set of Boolean combination of clock constraints of
the form x ~ n or x - y ~ n, where x, y ∈ C and n is a natural number.

Syntactically a timed automaton A is a tuple <N, l0, E, I> where: N is a finite set of
locations, l0 ∈ N is the initial location, E ∈ N × B(C) × Act × 2C × N is the set of
edges, and I : N → B(C) assigns invariants to locations.

The semantics of a timed automaton is a timed transition system with states of the
form <l, u> , where l ∈ N and u is a clock assignment assigning all clocks in C to a
non-negative real-number. Transitions are defined by the two rules:

− (discrete transitions) <l, u> →a <l′, u′>
 if <l, g, a, r, l′> ∈ E, u ∈ g, u′ = [r a 0]u and u′ ∈ I(l ′)

− (delay transitions) <l, u> →d <l, u ⊕ d>
if u ∈ I(l) and (u ⊕ d) ∈ I(l) for a non-negative real number d

where u ⊕ d denotes the clock assignment which maps each clock x in C to the

value u(x)+d, and [r a 0]u is the clock assignment u with each clock in r to be zero.
A network of automata is a finite set of automata processes composed in parallel

with a CCS-like parallel composition operator [8]. For a network with the timed
automata A1, …, An the intuitive meaning is similar to the CCS parallel composition of
A1, …, An with all actions being restricted, that is, (A1 | … | An) \ Act. Thus an edge
labeled with action a must synchronize with an edge labeled with an action
complementary to a, and edges with the silent τ action are internal, so they do not
synchronize. In UPPAAL '?' and ' !' are used to represent complementary actions, so
a? and a! are considered complementary and can synchronize. The silent τ action is
represented in UPPAAL by no synchronization action (i.e., an edge with an empty
synchronization action).

Finally, we note that the flavor of timed automata used in the UPPAAL tool is
extended with data variables with finite domains, including Booleans and finite
domain Integers, as well as records and (multidimensional) arrays of data variables,
action channels, and clocks. In UPPAAL it is also possible to declare functions
defined a C-like programming language that can be sequentially composed with the
resets r of the edges. The programming language allows for branching with
if/then/else statements, for, while and do/while loops, and a return statement. We refer
the reader to the online help available on the UPPAAL homepage1 for more
information about this feature.

1 The UPPAAL home page is located at www.uppaal.com.

Verification of COMDES-II Systems Using UPPAAL with Model Transformation 11

4. Transformation from COMDES-II to UPPAAL

The introduction in the previous two sections has shown that processes and timed
automata in UPPAAL may act as the basic architectural elements to which actors and
state machine FBs in COMDES-II can be anchored. However, the scheduling policy
of actors and the operational semantics of state machine FBs differ from their
counterparts in UPPAAL in all aspects listed in Table 1, which requires an extensive
model transformation be performed at the meta-level to bridge the semantic gaps
between two languages. In this section we will show where these gaps are located and
how we bridge them.

Table 1. Behavioral differences between COMDES-II and UPPAAL

Behavioral aspects COMDES-II UPPAAL

Concurrency

Fixed-priority preemptive
scheduling of actors with
non-blocking read-do-
write semantics

Interleaving parallelism of
timed automata processes

Time
Execution of timed I/O
activities over discrete-
time

Continuous real-time

Reactive behavior
State machine FB as
introduced in Section 2

Timed automata as
introduced in Section 3

4.1 Transformation of Concurrency and Time

The preemptive timed multitasking (TM) scheduling policy of actors in COMDES-II
is principally different from the interleaving parallelism of UPPAAL processes as
defined in CCS. The key factor to overcome concurrency differences between two
kinds of systems is to identify how to model the discrete-time scheduler that controls
the actor execution status in UPPAAL. In order to achieve this objective, the
following four modeling procedures should be accomplished successively, and our
solutions will be presented step-by-step in the posterior subsections.

• Finding out a way to model actors and represent their execution information
• Modeling actor interaction following an asynchronous producer-consumer

communication protocol
• Establishing a method to manage the non-blocking read-do-write concurrency of

actors with preemption
• Modeling the discrete-time scheduler based on the previous three steps

12

4.1.1 Modeling Actors in UPPAAL

The actor model was briefly introduced in Section 2, from which we can see that the
read (input drivers), do (actor task) and write (output drivers) actions of a specific
actor will be performed in an ordered sequence within non-successive timing phases
(see Fig. 3). Hence from a temporal point of view, it is natural to separately model
these three kinds of actor behaviors using different software artifacts so that they can
be easily controlled by the time-triggered scheduler.

In UPPAAL, the actor tasks are specified by the corresponding task control blocks
containing all the information needed for scheduling tasks execution. The task control
block is a data structure defined as following:

typedef struct{

int[0,4] status;
meta int period;
meta int executionTime;
meta int deadline;
meta int mode;
bool modeUpdated;
int timeSinceReleased;
int computationTimer;

}TTask;

Where status is a bounded-value integer ([0, 4]) denoting the execution status of
a given task. A task could be in READY (0), ACTIVE (1), COMPUTED (2),
FINISHED (3) or ERROR (4) status which are determined and updated by the system
scheduler. For a better understanding, Fig. 6 conceptually illustrates the status
transition graph of a specific task over discrete-time, whose concrete meaning and
determination strategy will subsequently be explained in Section 4.1.3. The three
integers period , executionTime and deadline represent the execution
period, worst-case execution time and deadline of a specific task. These three
parameters remain unchanged during system execution, as a result they are declared
as the meta integers whose values will be used in the task execution and scheduling,
but will not be recorded in the verification state space. Another meta integer mode
indicates the currently active control state of a task (e.g. product_ready,
pre_processing, etc.), and the Boolean variable modeUpdated is used to denote if a
state transition happens or not in the corresponding task state machine in the current
cycle of execution. These two variables control the generation of task outputs
associated with the current state at the deadline if a state transition has taken place.
The integer timeSinceReleased represents the discrete-time which has elapsed
since a specific task is released: upon release of the given task, this variable is reset
(see Fig. 6), and will be incremented each time the scheduler is executed. The integer
variable computationTimer is a timer used to record the time left for a task
computation. This variable will be set to the value of executionTime when a task
is released (see Fig. 6), and count down if the task is the highest priority ACTIVE task
each time the scheduler is executed. The value of that timer will be used to determine

Verification of COMDES-II Systems Using UPPAAL with Model Transformation 13

the task status as well as for schedulability analysis. A detailed explanation is given in
Section 4.1.3.

The task control block TTask can be instantiated into an array of tasks to specify
their execution and scheduling information, and the array index (starting from 1)
corresponds to the priority of each task: the higher index, the higher priority.

Fig. 6. Status transition graph of actor tasks

Actor input/output drivers will be implemented within two functions in UPPAAL:
taskInputDrivers(int taskID) and taskOutputDrivers(int taskID) .
These two functions are application-dependent, and when a specific task i is released
or its deadline expires, they (taskInputDrivers(i) and taskOutputDri-
vers(i)) will be invoked and executed atomically to exchange the information with
other tasks, as described in the next section.

4.1.2 Modeling Actor Interaction in UPPAAL

Communication between actors in COMDES-II follows an asynchronous producer-
consumer protocol with signal-based non-blocking semantics. Signals are labeled
messages containing process data, while in UPPAAL a hand-shaking interaction
mechanism is adopted to primarily synchronize the actions between automata
processes as defined in CCS parallelism, and no data is exchanged between processes.

A natural way for solving this problem is to model CODEMS-II communication
mechanism in UPPAAL through shared variables and data structures. Information

14

between processes is exchanged by updating and reading from these global resources,
where the data race problem is settled by following the COMDES-II semantics:

− When multiple tasks are released, or their deadlines expire simultaneously, the

corresponding I/O functions will be invoked and executed sequentially according
to the order of task priorities.

− If the deadline of task i expires at the same instant as task j is released (ji ≠), then

the output action taskOutputDrivers(i) of task i will be performed by
preceding the input action taskInputDrivers(j) of task j, regardless the
order of i and j. This rule guarantees that the task j can always use the latest data as
computed by task i, if the interaction (ji →) happens.

4.1.3 Modeling Actor Concurrency in UPPAAL

Unlike in UPPAAL where the time point of state transitions can be precisely captured
by real-time clocks, in TM model of computation it is hard to predict when the actor
state transitions will actually happen, but fortunately we do not need to know that
either. This is because the determinism of temporal behavior of an actor is enabled by
the read/write actions performed at precisely specified time instants, such that the
state transitions of an actor (do) may logically happen at any instant confined by its
activation instant and deadline, without any side effect to the interaction between
actors. Based on this semantics, we model the COMDES-II actor concurrency in
UPPAAL by adopting the following abstractions and assumptions.

Fig. 7. Actor concurrency over discrete-time in UPPAAL

An actor task may be conceptually in READY, ACTIVE, COMPUTED and
FINISHED status if all tasks are schedulable, as illustrated in Fig. 7, otherwise the
actor task will be in ERROR status. In which READY means that a task is ready for
activation. Status ACTIVE denotes that a task has been released, but not completed its

Verification of COMDES-II Systems Using UPPAAL with Model Transformation 15

computation yet. In a system it is always the highest-priority ACTIVE task to be
running, i.e. the corresponding task computationTimer decrements with the
invocation period of the scheduler. When the computationTimer of a specific
ACTIVE task reduces to zero before its deadline, the task status will be set as
COMPUTED, meaning that the computation effort has completed and the actor state
transition may take place instantaneously, which is followed by the FINISHED
status. The FINISHED status indicates that a particular task computation and control
activities have already finished such that the output signals are available for
generation, when the associated deadline expires. If the computationTimer of an
ACTIVE task is greater than zero (the task has not finished its computation) when its
deadline comes, the task will be scheduled into the ERROR status.

Manipulation of the task execution status can be accomplished by invoking a
number of scheduling primitives implemented in UPPAAL, including release() ,
run() , finish() , outputAction() and inputAction() . These primitives
mimic their counterparts in COMDES-II with the following design philosophy:

− release(int taskID) takes an integer taskID as its argument and will be

invoked when the activation condition of a specific READY task i becomes true
(release(i)). This primitive will set the released task status as ACTIVE, reset
the timeSinceReleased entry in the corresponding task control block and
initialize the computationTimer with the value of executionTime (see
Fig. 7).

− run() is invoked in every cycle of scheduler execution. This primitive polls the
status of all tasks ordered by their priorities from high to low. Once the highest
priority ACTIVE task is detected, its computationTimer is decremented by
the value of scheduler execution period. If the computationTimer reduces to
be zero (i.e. the task completes its computation effort), the task status will be set as
COMPUTED meaning that the task state transition can now take place, and then the
primitive is exited.

− finish(int taskID, int mode, bool modeUpdated) will be
invoked immediately when a specific COMPUTED task i finishes its state transition
activity. The primitive records the current operation state as well as the state
updated information of task i into the corresponding entries of the task control
block, through its three arguments, and then set the task status as FINISHED (see
Fig. 7). In case that the deadline of a specific task j is not specified (i.e. deadline =
0), the task output drivers (taskOutputDrivers(j)) will be immediately
executed within the finish() primitive to generate the output signals,
afterwards the status of task j is set as READY (see e.g. Fig. 6).

− outputAction() is a primitive used to detect the deadline instant of each task
and perform the associated output actions. This primitive is invoked in each cycle
of scheduler execution and compares the timeSinceReleased of each task
with its deadline parameter if it is greater than zero (i.e. the task deadline is
specified). Once the timeSinceReleased of a given task i equals to its
deadline , the task computationTimer will be checked to see whether the
computation time violates the deadline or not. In case that task is schedulable (i.e.
computationTimer is zero) and task has FINISHED its control activities, the
task output drivers (taskOutputDrivers(i)) will be executed to generate the

16

output signals, followed by a change of task status to be READY. If a task is non-
schedulable, the task status will be set as ERROR.

− inputAction() principally takes care of the releasing and input actions for
periodic tasks (i.e. period > 0). This primitive will be invoked by the time-
triggered scheduler to check if timeSinceReleased of a given periodic task i
is equal to its period or not. If the activation instant has not been reached, the
timeSinceReleased value will be incremented. Otherwise two conditions
should be considered: 1) If the deadline of task i is zero, its
computationTimer will be firstly checked to determine the schedulability of
task i, which is true iff the task computation has completed before the activation
instant. In case that task i is schedulable, it will be released by invoking the
release(i) primitive and its input signals sampled via the execution of
taskInputDrivers(i) ; otherwise the task status will be set as ERROR. 2) If
the deadline of task i is greater than zero, it will directly be released its input
signals acquired via the associated primitives.

4.1.4 Modeling Discrete-Time Scheduler in UPPAAL

The approach to modeling COMDES-II actor concurrency as C-like programs in
UPPAAL largely eases the design effort of discrete-time scheduler, which is modeled
as a timed automaton as shown below:

task_run

s <= SCHEDULER_PERIOD

!task_state_transition && s == SCHEDULER_PERIOD

OIRActions(), s = 0

Fig. 8. Discrete-time scheduler automaton in UPPAAL

The scheduler contains only one location called task_run , and one edge guarded
by !task_state_transition && s == SCHEDULER_PERIOD . In the edge
guard, s is a clock variable that evolves autonomously in real time, and the value of s
is confined by SCHEDULER_PERIOD as an invariant condition specified in
task_run location. SCHEDULER_PERIOD is an integer constant denoting the
execution period of scheduler, which is calculated as the greatest common divisor
(GCD) of the non-zero period , executionTime and deadline of all tasks. A
global Boolean variable task_state_transition is used to guarantee the
system behavioral determinism if the scheduler state transition and a task state
transition are both fired simultaneously: when an ACTIVE task completes its
computation and is then in the COMPUTED status, the task_state_transition
will be set as true to indicate that at the moment a task state transition should
happen in the system. If in the meanwhile s is equal to SCHEDULER_PERIOD, then
the scheduler behavior will be preceded by the task state transition via guarding
condition !task_state_transition . When the COMPUTED task finishes its
state transition, the finish() primitive will be invoked to reset the
task_state_transition variable instantaneously such that the disabled
scheduler state transition is enabled. In this approach, non-deterministic concurrent
state transitions are equivalently converted into deterministic sequential steps which

Verification of COMDES-II Systems Using UPPAAL with Model Transformation 17

execute logically in zero time, resulting in considerably reduced state space as only
one deterministic state transition pattern is possible during verification.

Two actions will be performed when the execution period of scheduler has come
and no task state transition in the system happens: OIRActions() and s = 0 . In
which OIRActions() is a function simply encapsulating the outputAction() ,
intputAction() and run() primitives to fulfill the corresponding scheduling
functionality in a sequential order. And s = 0 resets the value of real-time clock so
that it is ready to count the time for next cycle of scheduler execution. As to the
task_run location, it means that when scheduler functionality is not executed, the
tasks are allowed to be running to perform computation and control activities.

4.2 Transformation of Functionality

In COMDES-II the functional behavior of a system is described as a composition of
different kinds of function blocks (FBs) which are intrinsically independent of the
scheduling and timing issues specified at the actor level, hence system functionality
can be directly transformed via FBs, regardless of the actor concurrency and time.

We model the COMDES-II basic, composite and modal FBs as functions handling
integer variables or data structures in the transformed UPPAAL models. In particular,
the basic and/or composite FBs preprocessing the event/guard signals for a state
machine FB can be implemented as UPPAAL functions, and invoked in
taskInputDrivers(int taskID) primitive when the host actor is activated.
The modal FBs may be treated in a similar way but will be executed in
taskOutputDrivers(int taskID) primitive when the host actor deadline
expires. To this end, the state and state_updated information as required by a modal
FB can be obtained from the mode and mode_updated entries of the task control
block instance indexed by taskID .

On the other hand, system reactive behavior specified by the state machine FBs
can be transformed into equivalent timed automata in UPPAAL without timing
annotations, since time is not involved in the transformation of functionality.

s2

s1

!e3 && task[1].status == COMPUTED

finish(1, 2, false)

e3 && task[1].status == COMPUTED

finish(1, 1, true)

!e1 && !e2 && task[1].status == COMPUTED

finish(1, 1, false)

!e1 && e2 && task[1].status == COMPUTED

finish(1, 1, true)

e1 && task[1].status == COMPUTED

finish(1, 2, true)

Fig. 9. UPPAAL automaton equivalent to SMFB_1

An UPPAAL automaton with the equivalent semantics to SMFB_1 illustrated in
Fig. 5 is established as in Fig. 9, based on the assumptions and design philosophy

18

described in previous sections. The model also contains two locations s1 and s2, and a
number of transition edges tagged with transition guards and update actions.

A transition guard basically consists of two parts: one is the application-specific
event, e.g. e1 in the transition from s1 to s2. The other one is a condition expression
justifying if the status of host actor task is COMPUTED or not, as explained in Section
4.1.3. The condition expression task[1].status == COMPUTED is labeled in
all transitions, in which task[] is an array of instances of the task control block, and
1 indicates the task priority.

In case that a transition edge is enabled, the finish() primitive is invoked as the
update action to perform some finishing activities. For instance in the transition from
s1 to s2, finish(1, 2, true) will register current state index (2) and state
updating information (true) into the corresponding entries (say, mode and
modeUpdated) of task control block task[1] , and then change the task status to
be FINISHED . All the recorded information will be used to help generate correct
output signals at the task deadline instant.

The transition order can be determined by explicitly complementing Boolean event
values in the transition guards, as exemplified by two of three outgoing transitions
associated with s1: from s1 to s2, e1 guards the transition, while !e1 && e2 in the
self-loop transition of s1 explicitly specifies that it can only be true after e1 has firstly
been evaluated as false, and e2 is true. An additional self-loop transition of s1 guarded
by !e1 && !e2 is used to overcome the blocking semantics of UPPAAL automata:
assuming that the current location is s1 and both event signals (e1 and e2) are false
such that no actual state transitions can happen, the automaton behavior would not be
blocked, but rather this transition will be fired to notify the task control block that
actor state remains unchanged via the primitive finish(1, 1, false) . The
techniques enabling ordered and non-blocking transitions are applied to all control
states in an automaton, as illustrated in Fig. 9.

Based on the model transformation principles described in this section, the
semantics in concurrency, time and functionality aspects of a COMDES-II system can
now be safely anchored onto an UPPAAL model, and then verified against desired
timing and functional requirements. In next Section we will present a turntable case
study to show how we apply this transformational analysis approach in practice.

Verification of COMDES-II Systems Using UPPAAL with Model Transformation 19

5. Turntable Case Study

The verification technique is illustrated by a case study, which is based on the
turntable system – an example of a real-life manufacturing system that is used for
(real-time) control research [9, 10].

The system consists of a turntable, drill, clamp and a tester, as shown in Fig. 10.
The turntable transports products in four slots from the input position (0) to the
drill/clamp (1), tester (2), and finally to the output position (3). Each slot can hold at
most one product, which enters the process in position 0 and leaves in position 3. In
position 1 the product is locked by the clamp, a hole is made by the drill, and clamp
unlocks the product. The drilling process is checked by the tester in position 2, which
tests the depth of the hole, since it is possible that the drilling went wrong.

0

1

2

3

0 – loading

1 – drilling

2 – testing

3 – unloading

Turntable

Slot

Clamp

Tester

Product

Drill

TTopSensor,

TPositionSensor,

TPositionDrive

DTopSensor,

DPositionSensor,

DPositionDrive

CLockedSensor,

CUnlockedSensor,

CActuator

TTPositionSensor

TTPositionDrive

DDrillingDrive

Fig. 10. The turntable system setup

In order to perform the operation of the system, a number of sensors and actuators are
used, as summarized in Table 2 and shown in Fig. 10.

Table 2. Sensors and actuators of the system

Sensors

TTPositionSensor indicates position (rotation) of the TurnTable

CLockedSensor shows if Clamp is locked

CUnlockedSensor shows if Clamp is unlocked

20

DTopSensor true if Drill is in top position

DPositionSensor indicates position of the Drill

TTopSensor true if Tester is in top position

TPositionSensor indicates position of the Tester

Actuators

TTPositionDrive rotates TurnTable in counter-clockwise direction

CActuator lockes/unlocks product during drilling

DPositionDrive moves Drill up/down

DDrillingDrive makes actual hole

TPositionDrive moves Tester up/down

5.1 COMDES-II Design of Turntable System

For the purpose of the case study, the turntable system has been designed in
COMDES-II. The top-level system design is presented by an actor diagram shown as
in Fig. 11.

Fig. 11. System design illustrated by an actor diagram

The designed system consists of 6 actors grouped in 3 subsystems: Turntable,
DrillClamp and Tester subsystems. Each subsystem is built up from a supervisor and
a controller actor to delegate functionality of a subsystem with different dynamics to
appropriate body. Therefore, real-time operations are performed by controllers
executed periodically, whereas overall tasks coordination is achieved by supervisors

Turntable

DrillClamp

Tester

Verification of COMDES-II Systems Using UPPAAL with Model Transformation 21

that could be invoked for execution either by timing or external events. However, in
this particular design, all actors are executed periodically, where controllers have
relatively small periods of the order of few milliseconds, whereas supervisors –
relatively big – around 100 ms. The period, worst case execution time (WCET) and
deadline of each actor are described as in Table 3 according to priority orders.

Table 3. Execution information of actors

Actor priority Period WCET Deadline
TesterSupervisor 1 100 2 0
DrillClampSupervisor 2 100 2 0
TurntableSupervisor 3 100 2 0
TurntableController 4 10 1 10
DrillController 5 10 1 10
TesterController 6 10 1 10

Actors interact by exchanging physical signals with an environment via sensors

and actuators (see Table 2), as well as by exchanging messages (communication
signals), which are presented in Table 4.

Table 4. Messages exchanged among actors

Message name.field Type Values Description

TurnTable.state enum

ready, loading, loaded,
drilling, drilled, testing,
testOK, testBad,
unloading, unloaded,
rotating, rotated

Denotes states of the
turntable

TurnTable.updated bool true/false
Indicates an update of
turntable state

TTSlot0.state enum
empty, loaded, drilled,
testedOK, testedBad

Reports state of product in
position 0

TTSlot1.state enum
empty, loaded, drilled,
testedOK, testedBad

Reports state of product in
position 1

TTSlot2.state enum
empty, loaded, drilled,
testedOK, testedBad

Reports state of product in
position 2

TTSlot3.state enum
empty, loaded, drilled,
testedOK, testedBad

Reports state of product in
position 3

Input.state enum ready, loading, loaded
Denotes phases of product
loading

DrillClamp.state enum
ready, lock, startDrill,
drilling, moveUp,
stopDrill, unlock, drilled

Denotes phases of product
drilling

DrillClamp.updated bool true/false
Indicates an update of Drill
state

Tester.state enum
ready, testing, testOK,
testBad, tested

Denotes phases of product
testing

Tester.updated bool true/false
Indicates an update of Tester
state

22

Output.state enum
ready, markOK, markBad,
unloading, unloaded

Denotes phases of product
unloading

TablePosition
 .rotated

bool true/false
Becames 1 if turntable
completed 90° turn

TablePosition
 .setpoint

int 0-360
Position of turntable in next
rotation (degrees °)

TablePosition
 .rotation

int 0-360
Currrent position of turntable
(degrees °)

DrillPosition.down bool true/false True if Drill reaches bottom

DrillPosition.top bool true/false True if Drill reaches top

TesterPosition.down bool true/false True if Tester is at bottom

TesterPosition.top bool true/false True if Tester reaches top

TesterPosition.BAD bool true/false Indicates bad drilling

HoleDepth.setpoint int 0-100
Setpoint for Drill and Tester
indicating drilling and
testing depth (mm)

Each actor accepts a set of messages, as well produces some of them to

communicate with other actors. For example, the TurntableSupervisor actor informs
interested actors about slots status in various positions by sending TTSlotX messages
(where X replaces 0-3).

The Turntable subsystem consists of two actors: TurntableSupervisor and
TurntableController. The former actor is responsible for supervising of the latter one,
as well it coordinates operation of the whole system with other subsystems
supervisors.

Each actor has a task encapsulating a function block diagram: in case of the
TurntableSupervisor, the task consists of set of comparators, state machine and modal
function blocks, see Fig. 12 and Fig. 13 for details.

Verification of COMDES-II Systems Using UPPAAL with Model Transformation 23

Fig. 12. TurntableSupervisor actor

The particular design given here, presents a tutorial/simplified version of the
TurntableSupervisor with a sequential behavior, however, the real implementation
will most likely involve a greater number of state machines such that various
processes (loading, drilling, testing, unloading) will be performed concurrently.

The TTSModal modal function block (see Fig. 13) changes slot status in its modes
according to the state signal received from TTSStateMachine: loaded sets slot 0 to
loaded, drilled sets slot 1 to drilled, testOK sets slot 2 to testedOK, testBad sets slot 2
to testedBad, unloaded sets slot 3 to empty, rotated mode shifts the slot information:
from 0 to 1, 1→2, 2→3, 3→0.

1
2
3
4
5
6
7
8
9

1
2
3
4
5
6

TTSTask

1
2
3

2TablePosition

1
2

3DrillClamp

1

1Input

1
2

4Tester

1

5Output

1

6TTSlot0

1

7TTSlot1

1

8TTSlot2

1

9TTSlot3

1

5TTSlot3

1

4TTSlot2

1

3TTSlot1

1

2TTSlot0

1
2

1TurnTable

state

state

state

state

state

state

state

state

updated

state

state

state

rotated

state

state

drilled

1
2

1

compareTestBad

empty

drilled

1
2

1

compareSlot1

1
2

1

compareSlot3

1
2

1

compareTested

1sl
2sl
3sl
4sl
5st
6en

1sl
2sl
3sl
4sl

TTSModal

loaded

1
2

1

compareSlot2

1
2

1

compareTestOK

6

5

4

3

2

1

9

8

7

6

5

4

3

2

1

loaded

unloaded

testBad

1
2

1

compareInput

1lo
2ro
3dr
4te
5te
6te
7un
8sl
9sl
10s
11s

1st
2up

TTSStateMachine

1
2

1

compareSlot0

tested

tested

testOK

1
2

1

compareOutput

1
2

1

compareDrillClamp loaded

state

state

slot1_loaded

state

updated

state

testOK

updated

tested

state

rotated

drilled

state

state

state
slot3_tested

state

state

unloaded

testBad

state

state

state

state

slot_drilled

slot0_empty

24

drilled

1

2
1

compareTestBad

empty

drilled

1

2
1

compareSlot1

1

2
1

compareSlot3

1

2
1

compareTested

1sl

2sl

3sl

4sl

5st

6en

1sl

2sl

3sl

4sl

TTSModal

loaded

1

2
1

compareSlot2

1

2
1

compareTestOK

6

5

4

3

2

1

9

8

7

6

5

4

3

2

1

loaded

unloaded

testBad

1

2
1

compareInput

1lo

2ro

3dr

4te

5te

6te

7un

8sl

9sl

10s

11s

1st

2up

TTSStateMachine

1

2
1

compareSlot0

tested

tested

testOK

1

2
1

compareOutput

1

2
1

compareDrillClamp loaded

state

state

slot1_loaded

state

updated

state

testOK

updated

tested

state

rotated

drilled

state

state

state
slot3_tested

state

state

unloaded

testBad

state

state

state

state

slot_drilled

slot0_empty

1

unloaded

6enabled

5state

1slot0

2slot1

3slot2

4slot3

1slot0

4slot3
3slot2

2slot1

1

testBad

1

testOK

1

drilled

1

2

3

4

1

2

3

4

rotated

1

loaded

drilling

rotated unloading

ready testOK

loaded testingdrilled

testBad

unloadedrotating

1loaded[slot0_empty]

1unloaded[]

1true[]

1 drilled[]

2

slot1_loaded[]

1

true[]

3

slot2_drilled[]

2

testBad[]

5

true[]

2
[!rotated]

[]

1[rotated]

1

true[]4

slot3_tested[]

1

testOK[]

1

true[]

1

true[]

1

true[]

Fig. 13. TurntableSupervisor actor task

Verification of COMDES-II Systems Using UPPAAL with Model Transformation 25

The TurntableController actor task (TTCTask) comprises only a modal function
block – the TTCModal, which is directed by the supervisory state machine of the
TurntableSupervisor, see Fig. 14. The TTCModal has two modes: rotating responsible
for rotation of the turntable, and rotated setting next position to go.

Fig. 14. TurntableController actor

1
2
3

2TablePosition

1
2
3

2TablePosition

1
2

3TurnTable

1

1TTPositionDrive

1

1TTPositionSensor
1
2
3
4

1
2
3
4

TTCTask

angle

state

setpoint

PWM

setpoint

updated

rotated

rotation

4enabled

1angle

3state

2rotated

4rotation

3setpoint

1
2

1
2

rotating

1PWM

2setpoint

1 1

rotated

1an
2se
3st
4en

1PW
2ro
3se
4ro

TTCModal

2

4

1

2

4

3

1

3

PWM
angle

rotated

state

updated

setpoint

setpoint

rotation

26

Similarly to the Turntable subsystem, DrillClamp subsystem consists of two
actors: DrillClampSupervisor and DrillController . The supervisor, besides
coordinating the subsystem operation, controls also the Clamp, whereas the controller
manages drilling process: turning the Drill on/off, moving it up/down.

The DCSModal function block of the supervisor generates signal controlling
Clamp actuator, more precisely: lock tightens the product, startDrill, drilled stops the
Clamp actuator, unlock releases the product.

Fig. 15. DrillClampSupervisor actor

1
2

2TurnTable

1

2CActuator

1

5CUnlockedSensor

1

4CLockedSensor

1
2

1DrillClamp

1
2

3DrillPosition

1

1TTSlot1

1
2
3
4
5
6

1
2
3

DCSTask

state

unlocked

state

down
top PWM

locked

updated

state

1
2

1

compareRotated

1sl
2ro
3ro
4do
5to
6lo
7un

1st
2up

DCSStateMachine

1
2

1

compareRotating

1
2

1

compareSlot1

3

2

1

1st
2en

1PW

DCSModal

5

4

3

loaded

rotatated

1

rotating

6

2

locked

rotated

rotating

down

state

updated

state

slot1_loaded

top

unlocked

PWM

state
updated

state

state

Verification of COMDES-II Systems Using UPPAAL with Model Transformation 27

1

2
1

compareRotated

1sl

2ro

3ro

4do

5to

6lo

7un

1st

2up

DCSStateMachine

1

2
1

compareRotating

1

2
1

compareSlot1

3

2

1

1st

2en
1PW

DCSModal

5

4

3

loaded

rotatated

1

rotating

6

2

locked

rotated

rotating

down

state

updated

state

slot1_loaded

top

unlocked

PWM

state

updated

state

state

2enabled

1

startDrill, drilled

1

2

lock

1

2

unlock

1PWM

1state

startDrill

drilling

lock

stopDrill

unlock

moveUp

drilledready
[]

1

unlocked[]

1locked[]

1
true[]

1 [down] 1 [top]

1

true[]

1ready[slot1_loaded]

2
[!top]

1ready[]

2
[!down]

Fig. 16. DrillClampSupervisor actor task

28

The DrillController actor task (DCTask) comprises one modal function block – the
DCModal, which is directed by the supervisory state machine of the
DrillClampSupervisor, see Fig. 17. The DCModal has four modes: drilling
responsible for moving the Drill down, moveUp moves the Drill up, startDrill turns
on the Drill, and finally stopDrill turn off the Drill.

Fig. 17. DrillController actor

1

3DrillingDrive

1

2HoleDepth

1

2DPositionDrive

1
2

1DrillClamp

1
2

1DrillPosition

1

4DPositionSensor

1

3DTopSensor

1
2
3
4
5

1
2
3
4

DCTask

setpoint PWM

top
down

on/of f

updated

top

state

depth

4

4

3

1
1

3

2
2

5

1st
2en
3se
4to
5de

1do
2to

3PW
4on

DCModaldepth

top

PWM

on/off

down

top

setpoint

updated

state

1
1
2

moveUp

1
2

1
2

drilling

1

stopDrill

2top

4top

3setpoint

2enabled

4on/off

3PWM

5depth

1state

1down

1

startDrill

Verification of COMDES-II Systems Using UPPAAL with Model Transformation 29

Tester subsystem consists of two actors: TesterSupervisor and TesterController,
and as previously, the supervisor takes care of the subsystem cooperation with the rest
of the system and it directs the controller responsible for controlling the continuous
part the subsystem: the Tester drive.

Fig. 18. TesterSupervisor actor

tested

testOK
testing

testBad

ready

2
[down]

2
[!top]

2
[!top]

1rotating[]
[]

1 [BAD] 1

testOK[top]

3

[!BAD & !down]

1

testing[slot2_drilled]

1

testBad[top]

Fig. 19. TesterSupervisor actor task

The TesterController actor task (TCTask) comprises one modal function block –
the TCModal, which is directed by the supervisory state machine of the

1
2

2TurnTable

1
2
3

3TesterPosition

1
2

1Tester

1

1TTSlot2

1
2
3
4
5

1
2

TSTask
down

top

state

state

state

BAD

updated

testOK

rotatated

rotating

testBad

drilled

5

4

3

1

1

2

2

1sl
2ro
3ro
4te
5te
6do
7to
8BA

1st
2up

TSStateMachine

1
2

1

compareTestBad

1
2

1

compareTestOK

1
2

1

compareRotated

1
2

1

compareSlot2

1
2

1

compareRotating
rotating

top

BAD

state

rotated

state

testOK

slot2_drilled

updated

down

testBad

state
state

state

30

TesterSupervisor, see Figure 20. The TCModal has two modes: testing responsible for
moving the Drill down, and testOK, testBad moving the Drill up.

Fig. 20. TesterController actor

The design is completed by presenting of Input and Output environment processes
responsible for loading and unloading of products to/from the turntable.

loadedloading

ready

1

[slot0_loaded]

1 delay[]

1

ready[slot0_empty]

[]

Fig. 21. Behavior of Input environment process: product loading

1

2HoleDepth
1

2TPositionDrive

1

4TPositionSensor

1

3TTopSensor

1
2
3

1TesterPosition

1
2

1Tester
1
2
3
4
5

1
2
3
4

TCTask

down
state

depth

updated

setpoint

BAD

top

PWM

top

4

1

3

3

4

1

2

5

21st
2en
3se
4to
5de

1do
2to

3BA
4PW

TCModal

down

top
BAD

depth
PWM

top

setpoint

updated

state

1
1
2

testBad, testOK

1
2

1
2
3

testing

1down

3BAD

1state

5depth

2enabled

3setpoint

4top

4PWM

2top

Verification of COMDES-II Systems Using UPPAAL with Model Transformation 31

unloading

ready

unloaded

1

unloading[]

1

[slot3_empty]

1 delay[]

[]

Fig. 22. Behavior of Output environment process: product unloading

Given the above design, the system should meet the following properties:

1. The system has to be schedulable, none of the deadlines is missed (safety)
2. The system cannot block, i.e. it does not contain deadlock (safety)
3. Every product is drilled (liveness)
4. Every product is tested (liveness)
5. Product is drilled and tested with the same hole depth (safety)
6. Every product leaves the turntable eventually (liveness)
7. The turntable does not rotate if any process (loading, drilling, testing, unloading)

is in operation (safety)
8. No drilling, testing and unloading takes place if there is no product in the slot and

no loading is performed if there is a product in the slot (safety)
9. The system should not perform redundant operations (safety)

In order to find answers to the formulated properties a transformation to an
analysis model must be conducted – the UPPAAL model, along the path presented in
the previous sections of the paper.

5.2 Model Transformation of Turntable Case Study Design

As a real example for illustrating the practical application of aforementioned model
transformation techniques, the establishment of an UPPAAL analysis model for
Turntable case study in equivalence with its design in COMDES-II is presented in this
section, which primarily consists of three parts regarding the separated design
concerns:

− Actor concurrency and timeliness: instantiation of task control blocks to regulate

timed execution and scheduling behavior of the Turntable system actors (see
Section 4.1.1).

− Actor interaction: 1) definition and instantiation of a number of message data
structures in UPPAAL used to exchange information between actors, and 2)
implementation of COMDES-II modal function blocks contained in the host
Turntable actors as a set of UPPAAL functions, which will be invoked in the

32

taskOutputDrivers(int taskID) primitive to update the message data
values (see Section 4.1.2).

− Actor functionality: modeling COMDES-II state machine function blocks in the
corresponding Turntable actors as different timed automata in UPPAAL, following
the transformation approaches described in Section 4.2.

5.2.1 Instantiation of Task Control Blocks

In order to schedule the timed execution of prioritized actors, the task control block
defined in Section 4.1.1 is instantiated as below according to the actor execution
meta-data summarized in Table 3.

// Defining task control block
typedef struct{
 int[0,4] status;
 meta int period;
 meta int executionTime;
 meta int deadline;
 meta int mode;
 bool modeUpdated;
 int timeSinceReleased;
 int computationTimer;
}TTask;

/** ****
 Initializing application-specific tasks
 == ===
*** ***/
const int TASKS_NUM = 6;
 typedef int[1,TASKS_NUM] t_num;
TTask task[t_num] = {
 // TesterSupervisor
 {READY, 100, 2, 0, 0, false, 0, 0},
 //DrillClampSupervisor
 {READY, 100, 2, 0, 0, false, 0, 0},
 //TurntableSupervisor
 {READY, 100, 2, 0, 0, false, 0, 0},
 //TurntableController
 {READY, 10, 1, 10, 0, false, 0, 0},
 //DrillController
 {READY, 10, 1, 10, 0, false, 0, 0},
 //TesterController
 {READY, 10, 1, 10, 0, false, 0, 0}
};

The task control block is instantiated as an array in the length of actor numbers

with starting index 1 (e.g. const int TASKS_NUM = 6; typedef

Verification of COMDES-II Systems Using UPPAAL with Model Transformation 33

int[1,TASKS_NUM] t_num;), and the array elements are ordered according to
actor priorities from low to high. In this case study all the tasks are periodic tasks
specified by the corresponding non-zero period , executionTime and
deadline information. Initially every task is in the READY status, with zero
timeSinceReleased and computationTimer .

The given task control block instances provide the central information for discrete-
time scheduler (see Section 4.1.4) to control the I/O activities and execution status of
actors. For example, the TesterSupervisor actor (priority = 1) will be released in every
100 basic timing units, and upon releasing its corresponding input signals can be
acquired via taskInputDrivers(int taskID) primitive. During execution its
status is controlled by the discrete-time scheduler according to the scheduling
principles described in Section 4.1.3. When the corresponding executionTime (2)
has been consumed, a control state transition in the timed automata specifying the
functional behavior of this actor may happen, and subsequently the output signals will
be immediately generated via taskOutputDrivers(int taskID) primitive
since its deadline is not specified (deadline = 0), otherwise the outputs will be
generated when the deadline expires (e.g. TesterContrller actor whose deadline is 10).

5.2.2 Actor Interaction in UPPAAL

The asynchronous producer-consumer communication scheme for COMDES-II actors
is achieved in UPPAAL by a number of globally declared message data structures and
the related functions responsible for updating message data values. The message data
structures are defined in consistency with the information provided from Table 4,
while the functions dedicated to updating message content status emulate the
functionality of those modal function blocks contained within the system actors, and
will be invoked in the taskOutputDrivers(int taskID) primitive when the
corresponding actor comes to the time point to generate outputs. An example of
TurnTable message is given as below:

//Turn table state values
const int READY = 0;
const int LOADING = 1;
const int LOADED = 2;
const int DRILLING = 3;
const int DRILLED = 4;
const int TESTING = 5;
const int TESTOK = 6;
const int TESTBAD = 7;
const int TESTED = 8;
const int UNLOADING = 9;
const int UNLOADED = 10;
const int ROTATING = 11;
const int ROTATED = 12;

//message definition of TurnTable

34

typedef struct{
 meta int[READY, ROTATED] status;
 meta bool updated;
}TTurnTable;
TTurnTable TurnTable = {READY, false};

The TurnTable message instantiates the type of TTurnTable which indicates

turntable status and status updated information. Apparently the TurnTable is
initially in the READY status that has not been updated, whose values can be
determined by the TurnTableSupervisorOutput(int taskID) function
that will be executed in the taskOutputDrivers(int taskID) primitive
when TurntableSupervisor actor (taskID = 3) has finished its control activity (i.e.
task[3].status == FINISHED).

This message provides coordinating information for TurntableController actor,
DrillClampSupervisor actor and TesterSupervisor actor to control their functional
behavior specified as timed automata (see Section 5.2.3), and Table 5 lists the
implemented output functions of each system actor.

Table 5. Actor output functions

Actor Output Function

TesterSupervisor void TesterSupervisorOutput(int taskID)

DrillClampSupervisor void DrillClampSupervisorOutput(int taskID)

TurntableSupervisor void TurnTableSupervisorOutput(int taskID)

TurntableController void TurnTableControllerOutput(int taskID)

DrillController void DrillControllerOutput(int taskID)

TesterController void TesterControllerOutput(int taskID)

For complete details of communication messages and associated functions we refer

interested readers to Appendix A.

5.2.3 Actor Functional Behavior in Timed Automata

Among the three most significant model transformation procedures, a correct
specification of the actor sequential functionality in UPPAAL timed automata is a key
step as it is directly related to the behavior we are interested to analysis – the system
sequential behavior. In Section 4.2 a guideline for bridging the semantic gap between
COMDES-II state machine function blocks and UPPAAL timed automata has been
given, based on which we will exemplify in this section how to equivalently model
the actor sequential control behaviors, by using TurntableSupervisor actor and
TurntableController actor as examples.

Verification of COMDES-II Systems Using UPPAAL with Model Transformation 35

ro
ta

te
d

ro
ta

ti
n

g

u
n

lo
ad

ed
u

n
lo

ad
in

g

te
st

B
ad

te
st

O
K

te
st

in
g

d
ri

lle
d

d
ri

lli
n

g

lo
ad

ed

re
ad

y

T
T

S
lo

t[2
].s

ta
tu

s
!=

 T
E

S
T

B
A

D
 &

&

T
T

S
lo

t[2
].s

ta
tu

s
!=

 T
E

S
T

O
K

 &
&

ta

sk
[T

ur
nt

ab
le

S
up

er
vi

so
r_

pr
io

rit
y]

.s
ta

tu
s

=
=

 C
O

M
P

U
T

E
D

fin
is

h(
T

ur
nt

ab
le

S
up

er
vi

so
r_

pr
io

rit
y,

 T
E

S
T

IN
G

, f
al

se
)

D
ril

lC
la

m
p.

st
at

us
 !=

 D
R

IL
LE

D
 &

&

ta
sk

[T
ur

nt
ab

le
S

up
er

vi
so

r_
pr

io
rit

y]
.s

ta
tu

s
=

=
 C

O
M

P
U

T
E

D

fin
is

h(
T

ur
nt

ab
le

S
up

er
vi

so
r_

pr
io

rit
y,

 D
R

IL
LI

N
G

, f
al

se
)

!T
ab

le
P

os
iti

on
.r

ot
at

ed
 &

&

ta
sk

[T
ur

nt
ab

le
S

up
er

vi
so

r_
pr

io
rit

y]
.s

ta
tu

s
=

=
 C

O
M

P
U

T
E

D

fin
is

h(
T

ur
nt

ab
le

S
up

er
vi

so
r_

pr
io

rit
y,

 R
O

T
A

T
IN

G
, t

ru
e)

ta
sk

[T
ur

nt
ab

le
S

up
er

vi
so

r_
pr

io
rit

y]
.s

ta
tu

s
=

=
 C

O
M

P
U

T
E

D

fin
is

h(
T

ur
nt

ab
le

S
up

er
vi

so
r_

pr
io

rit
y,

 R
E

A
D

Y
, t

ru
e)

T
ab

le
P

os
iti

on
.r

ot
at

ed
 &

&

ta
sk

[T
ur

nt
ab

le
S

up
er

vi
so

r_
pr

io
rit

y]
.s

ta
tu

s
=

=
 C

O
M

P
U

T
E

D

fin
is

h(
T

ur
nt

ab
le

S
up

er
vi

so
r_

pr
io

rit
y,

 R
O

T
A

T
E

D
, t

ru
e)

T
T

S
lo

t[0
].s

ta
tu

s
!=

 E
M

P
T

Y
 &

&
 T

T
S

lo
t[1

].s
ta

tu
s

!=
 L

O
A

D
E

D
 &

&

T
T

S
lo

t[2
].s

ta
tu

s
!=

 D
R

IL
LE

D
 &

&
 T

T
S

lo
t[3

].s
ta

tu
s

!=
 T

E
S

T
B

A
D

 &
&

T

T
S

lo
t[3

].s
ta

tu
s

!=
 T

E
S

T
O

K
 &

&

ta
sk

[T
ur

nt
ab

le
S

up
er

vi
so

r_
pr

io
rit

y]
.s

ta
tu

s
=

=
 C

O
M

P
U

T
E

D

fin
is

h(
T

ur
nt

ab
le

S
up

er
vi

so
r_

pr
io

rit
y,

 R
O

T
A

T
IN

G
, t

ru
e)

ta
sk

[T
ur

nt
ab

le
S

up
er

vi
so

r_
pr

io
rit

y]
.s

ta
tu

s
=

=
 C

O
M

P
U

T
E

D

fin
is

h(
T

ur
nt

ab
le

S
up

er
vi

so
r_

pr
io

rit
y,

 R
E

A
D

Y
, t

ru
e)

O
ut

pu
t.s

ta
tu

s
=

=
 U

N
LO

A
D

E
D

 &
&

ta

sk
[T

ur
nt

ab
le

S
up

er
vi

so
r_

pr
io

rit
y]

.s
ta

tu
s

=
=

 C
O

M
P

U
T

E
D

fin
is

h(
T

ur
nt

ab
le

S
up

er
vi

so
r_

pr
io

rit
y,

 U
N

LO
A

D
E

D
, t

ru
e)

T
T

S
lo

t[0
].s

ta
tu

s
!=

 E
M

P
T

Y
 &

&
 T

T
S

lo
t[1

].s
ta

tu
s

!=
 L

O
A

D
E

D
 &

&

T
T

S
lo

t[2
].s

ta
tu

s
!=

 D
R

IL
LE

D
 &

&

(T
T

S
lo

t[3
].s

ta
tu

s
=

=
 T

E
S

T
B

A
D

 ||
 T

T
S

lo
t[3

].s
ta

tu
s

=
=

 T
E

S
T

O
K

)
&

&

ta
sk

[T
ur

nt
ab

le
S

up
er

vi
so

r_
pr

io
rit

y]
.s

ta
tu

s
=

=
 C

O
M

P
U

T
E

D

fin
is

h(
T

ur
nt

ab
le

S
up

er
vi

so
r_

pr
io

rit
y,

 U
N

LO
A

D
IN

G
, t

ru
e)

ta
sk

[T
ur

nt
ab

le
S

up
er

vi
so

r_
pr

io
rit

y]
.s

ta
tu

s
=

=
 C

O
M

P
U

T
E

D

fin
is

h(
T

ur
nt

ab
le

S
up

er
vi

so
r_

pr
io

rit
y,

 R
E

A
D

Y
, t

ru
e)

ta
sk

[T
ur

nt
ab

le
S

up
er

vi
so

r_
pr

io
rit

y]
.s

ta
tu

s
=

=
 C

O
M

P
U

T
E

D

fin
is

h(
T

ur
nt

ab
le

S
up

er
vi

so
r_

pr
io

rit
y,

 R
E

A
D

Y
, t

ru
e)

T
T

S
lo

t[2
].s

ta
tu

s
=

=
 T

E
S

T
B

A
D

 &
&

 ta
sk

[T
ur

nt
ab

le
S

up
er

vi
so

r_
pr

io
rit

y]
.s

ta
tu

s
=

=
 C

O
M

P
U

T
E

D

fin
is

h(
T

ur
nt

ab
le

S
up

er
vi

so
r_

pr
io

rit
y,

 T
E

S
T

B
A

D
, t

ru
e)

T
T

S
lo

t[2
].s

ta
tu

s
=

=
 T

E
S

T
O

K
 &

&
 ta

sk
[T

ur
nt

ab
le

S
up

er
vi

so
r_

pr
io

rit
y]

.s
ta

tu
s

=
=

 C
O

M
P

U
T

E
D

fin
is

h(
T

ur
nt

ab
le

S
up

er
vi

so
r_

pr
io

rit
y,

 T
E

S
T

O
K

, t
ru

e)

T
T

S
lo

t[0
].s

ta
tu

s
!=

 E
M

P
T

Y
 &

&
 T

T
S

lo
t[1

].s
ta

tu
s

!=
 L

O
A

D
E

D
 &

&

T
T

S
lo

t[2
].s

ta
tu

s
=

=
 D

R
IL

LE
D

 &
&

 ta
sk

[T
ur

nt
ab

le
S

up
er

vi
so

r_
pr

io
rit

y]
.s

ta
tu

s
=

=
 C

O
M

P
U

T
E

D

fin
is

h(
T

ur
nt

ab
le

S
up

er
vi

so
r_

pr
io

rit
y,

 T
E

S
T

IN
G

, t
ru

e)

ta
sk

[T
ur

nt
ab

le
S

up
er

vi
so

r_
pr

io
rit

y]
.s

ta
tu

s
=

=
 C

O
M

P
U

T
E

D

fin
is

h(
T

ur
nt

ab
le

S
up

er
vi

so
r_

pr
io

rit
y,

 R
E

A
D

Y
, t

ru
e)

D
ril

lC
la

m
p.

st
at

us
 =

=
 D

R
IL

LE
D

 &
&

ta

sk
[T

ur
nt

ab
le

S
up

er
vi

so
r_

pr
io

rit
y]

.s
ta

tu
s

=
=

 C
O

M
P

U
T

E
D

fin
is

h(
T

ur
nt

ab
le

S
up

er
vi

so
r_

pr
io

rit
y,

 D
R

IL
LE

D
, t

ru
e)

T
T

S
lo

t[0
].s

ta
tu

s
!=

 E
M

P
T

Y
 &

&
 T

T
S

lo
t[1

].s
ta

tu
s

=
=

 L
O

A
D

E
D

 &
&

ta

sk
[T

ur
nt

ab
le

S
up

er
vi

so
r_

pr
io

rit
y]

.s
ta

tu
s

=
=

 C
O

M
P

U
T

E
D

fin
is

h(
T

ur
nt

ab
le

S
up

er
vi

so
r_

pr
io

rit
y,

 D
R

IL
LI

N
G

, t
ru

e)

ta
sk

[T
ur

nt
ab

le
S

up
er

vi
so

r_
pr

io
rit

y]
.s

ta
tu

s
=

=
 C

O
M

P
U

T
E

D

fin
is

h(
T

ur
nt

ab
le

S
up

er
vi

so
r_

pr
io

rit
y,

 R
E

A
D

Y
, t

ru
e)

In
pu

t.s
ta

tu
s

=
=

 L
O

A
D

E
D

 &
&

T

T
S

lo
t[0

].s
ta

tu
s

=
=

 E
M

P
T

Y
 &

&
ta

sk
[T

ur
nt

ab
le

S
up

er
vi

so
r_

pr
io

rit
y]

.s
ta

tu
s

=
=

 C
O

M
P

U
T

E
D

fin
is

h(
T

ur
nt

ab
le

S
up

er
vi

so
r_

pr
io

rit
y,

 L
O

A
D

E
D

, t
ru

e)

Fig. 23. Timed automata for TurntableSupervisor actor functional behavior

36

For TTSStateMachine function block in TurntableSupervisor actor (see Fig. 13), its
equivalent timed automaton model is presented as in Fig. 23. In this automaton all the
transition edges are ordered and only one of them may be fired when the actor
execution status is COMPUTED, according to the techniques introduced in Section 4.2.

Initially the automaton is in ready location, and when the host actor completes its
computation (task[3].status == COMPUTED), the guards (Input.status
== LOADED && TTSlot[0].status == EMPTY) associated with the highest
order transition (ready -> loaded) will be evaluated. In case they are satisfied
(i.e. a product is LOADED into the input system and slot0 is still EMPTY) then this
transition is fired to lead the automaton to loaded location, where the slot0 status
will be changed as LOADED (i.e. TTSlot[0].status = LOADED). Otherwise
the transition guards of ready -> drilling will be checked, i.e. if a product has
been LOADED into slot1 which is ready for drilling (TTSlot[1].status ==
LOADED) AND slot0 has finished its loading process (TTSlot[0].status !=
EMPTY), then the automaton will be in the drilling location such that turntable system
starts drilling the product in slot1, and so forth (ready -> testing , ready ->
unloading , ready -> rotating).

The overall operational behavior of TurntableSupervisor actor could be
represented by the following repeatedly occurred state transition trace in which each
state transition can only take place when the host actor completes its computation
(task[3].status == COMPUTED), and once a time:

ready (TTSlot[0].status == EMPTY, TTSlot[1].status ==
EMPTY, TTSlot[2].status == EMPTY, TTSlot[3].status ==
EMPTY) ->

loaded (TTSlot[0].status == LOADED, TTSlot[1].statu s ==
EMPTY, TTSlot[2].status == EMPTY, TTSlot[3].status ==
EMPTY) ->

ready -> rotating ->

rotated (TTSlot[0].status == EMPTY, TTSlot[1].statu s ==
LOADED, TTSlot[2].status == EMPTY, TTSlot[3].status ==
EMPTY) ->

ready ->

loaded (TTSlot[0].status == LOADED, TTSlot[1].statu s ==
LOADED, TTSlot[2].status == EMPTY, TTSlot[3].status ==
EMPTY) ->

ready -> drilling ->

drilled (TTSlot[0].status == LOADED, TTSlot[1].stat us
== DRILLED, TTSlot[2].status == EMPTY, TTSlot[3].st atus
== EMPTY) ->

Verification of COMDES-II Systems Using UPPAAL with Model Transformation 37

ready -> rotating ->

rotated (TTSlot[0].status == EMPTY, TTSlot[1].statu s ==
LOADED, TTSlot[2].status == DRILLED, TTSlot[3].stat us
== EMPTY) ->

ready ->

loaded (TTSlot[0].status == LOADED, TTSlot[1].statu s ==
LOADED, TTSlot[2].status == DRILLED, TTSlot[3].stat us
== EMPTY) ->

ready -> drilling ->

drilled (TTSlot[0].status == LOADED, TTSlot[1].stat us
== DRILLED, TTSlot[2].status == DRILELD,
TTSlot[3].status == EMPTY) ->
ready -> testing ->

(testOK || testBad) (TTSlot[0].status == LOADED,
TTSlot[1].status == DRILLED, TTSlot[2].status ==
(TESTOK || TESTBAD), TTSlot[3].status == EMPTY) ->

ready -> rotating ->

rotated (TTSlot[0].status == EMPTY, TTSlot[1].statu s ==
LOADED, TTSlot[2].status == DRILLED, TTSlot[3].stat us
== (TESTOK || TESTBAD)) ->

ready ->

loaded (TTSlot[0].status == LOADED, TTSlot[1].statu s ==
LOADED, TTSlot[2].status == DRILLED, TTSlot[3].stat us
== (TESTOK || TESTBAD)) ->

ready -> drilling ->

drilled (TTSlot[0].status == LOADED, TTSlot[1].stat us
== DRILLED, TTSlot[2].status == DRILLED,
TTSlot[3].status == (TESTOK || TESTBAD)) ->

ready -> testing ->

(testOK || testBad) (TTSlot[0].status == LOADED,
TTSlot[1].status == DRILLED, TTSlot[2].status ==
(TESTOK || TESTBAD), TTSlot[3].status == (TESTOK ||
TESTBAD)) ->

38

ready -> unloading ->

unloaded (TTSlot[0].status == LOADED, TTSlot[1].sta tus
== DRILLED, TTSlot[2].status == (TESTOK || TESTBAD) ,
TTSlot[3].status == EMPTY) ->

ready -> rotating ->

rotated (TTSlot[0].status == EMPTY, TTSlot[1].statu s ==
LOADED, TTSlot[2].status == DRILLED, TTSlot[3].stat us
== (TESTOK || TESTBAD)) -> ready -> …

For TurntableController actor (priority = 4), it does not contain any state machine

function block, instead only a modal function block called TTCModal (see Fig. 14)
will be executed periodically with the activation of host actor to control the physical
units of turntable, according the operation state and state_updated
information provided from TurntableSupervisor actor (see Fig. 11 and Fig. 14). As a
result the function behavior of this actor is modeled as in Fig 24:

ready task[TurntableController_priority].status == COMPUTED

finish(TurntableController_priority, READY, true)

Fig. 24. Timed automata for TurntableController actor functional behavior

This automaton simply consists of one location (ready) and one transition edge,
which is fired every time the TurntableController actor completes its computation
(task[4].status == COMPUTED), such that the dedicated control behavior can
be performed by the TurnTableControllerOutput(int taskID) function
(see Table 5) that implements the functionality of TTCModal, when the corresponding
deadline (deadline = 10) expires.

The above mentioned modeling mechanisms can be applied to the other Supervisor
and Controller actors, and more details are referred to Appendix A.

5.2.4 Formulation of System Properties

Having the complete analysis model of Turntable case study, the last step to final
verification of system design is to formulate the desired system requirements as a set
of temporal logic properties which can be accepted by the UPPAAL verifier. In Table
6, temporal logic expressions corresponding to the system requirements given in
Section 5.1 are listed, together with the verification results as well as memory
footprint. All the priorities can be verified within 30s on a computer with Duo CPUs
of 1.66 GHz each and 1 GBytes RAM.

Verification of COMDES-II Systems Using UPPAAL with Model Transformation 39

Table 6. System properties and verification results

System
Requirement

Temporal Logic
Formula

Verification
Result

Memory
Footprint

If slot0 is available, a
product will be
loaded

Input.status ==
READY &&
TTSlot[0].status ==
EMPTY -- >
TTSlot[0].status ==
LOADED

Satisfied
18884
Kbytes

Every product is
drilled

TTSlot[0].status ==
LOADED -- >
TTSlot[1].status ==
DRILLED

Satisfied
23396
Kbytes

Every product is
tested

TTSlot[1].status ==
DRILLED -- >
(TTSlot[2].status
== TESTOK ||
TTSlot[2].status ==
TESTBAD)

Satisfied
25672
Kbytes

Products are drilled
and tested with the
same hole depth

A[]
TTSlot[2].status !=
TESTBAD

Satisfied
22324
Kbytes

Every product leaves
the turntable
eventually

TurnTable.status ==
LOADED -- >
TurnTable.status ==
UNLOADED

Satisfied
30236
Kbytes

The turntable does
not rotate if any
process (loading,
drilling, testing,
unloading) is in
operation

A[] not
(TurnTable.status
== ROTATING &&
(Input.status ==
LOADING ||
DrillClamp.status
== DRILLING ||
Tester.status ==
TESTING ||
Output.status ==
LOADING))

Satisfied
28888
Kbytes

No drilling, testing
and unloading takes
place if there is no
product in the
corresponding slots
and no loading is
performed if there is
a product in slot0

A[] not
((Input.status ==
LOADING &&
TTSlot[0].status !=
EMPTY) ||
(DrillClamp.status
== DRILLING &&
TTSlot[1].status ==
EMPTY) ||

Satisfied
23364
Kbytes

40

(Tester.status ==
TESTING &&
TTSlot[2].status ==
EMPTY) ||
(Output.status ==
UNLOADING &&
TTSlot[3].status ==
EMPTY))

The system should
not perform
redundant operations

A[] not
((Input.status ==
LOADING &&
TTSlot[0].status ==
LOADED) ||
(DrillClamp.status
== DRILLING &&
TTSlot[1].status ==
DRILLED) ||
(Tester.status ==
TESTING &&
(TTSlot[2].status
== TESTOK ||
TTSlot[2].status ==
TESTBAD)) ||
(Output.status ==
UNLOADING &&
TTSlot[3].status ==
EMPTY))

Satisfied
23400
Kbytes

The system is
deadlock free

A[] not deadlock
Satisfied

23240
Kbytes

Schedulability
Analysis

A[] forall(i :
int[1,TASKS_NUM])
task[i].status !=
ERROR

Satisfied
23232
Kbytes

Verification of COMDES-II Systems Using UPPAAL with Model Transformation 41

6. Conclusion

The paper has investigated a transformational approach to formal specification and
verification of dynamic behavior for COMDES-II systems by using UPPAAL, on
both theoretical and practical levels. The adopted methodology – semantic anchoring
– provides a theoretical foundation for the model transformation that equivalently
anchors the behavioral semantics of COMDES-II onto UPPAAL timed automata at
the meta-level, which is subsequently instantiated to steer the verification effort of a
practical case study – Turntable Case Study designed in COMDES-II.

As a component-based framework intended for model-driven development of real-
time embedded software, COMDES-II applies an extensive separation-of-concerns
approach to model different behavioral concerns, such as concurrency, real-time
operation, sequential control behavior combined with continuous computation etc.
Specifically, system actors are prioritized and scheduled with a preemptive timed
multitasking approach, with I/O activities performed at precisely specified activation
and deadline instants. As to functional behavior, the state machine function blocks
and modal function blocks are jointly used to specify the system reactive control
functionality. However, these behavioral characteristics are completely different from
their counterparts in UPPAAL, as summarized in Table 1, Section 4.

In order to bridge the semantic gap, a concrete model transformation procedure is
described as in Section 4 by taking into account all the behavioral aspects that would
influence the overall system operational semantics, including:

• A task control block is defined to encompass the execution information of actors,

such as period, WCET, deadline etc.
• The communication primitives are defined to enable the asynchronous producer-

consumer interaction pattern between actors.
• A number of scheduling primitives are implemented such that the discrete-time

scheduler is able to manage the preemptive execution of actors with timed I/O
activities, based on the execution information specified in the task control block
instances.

• A method allowing an equivalent transformation from state machine function
blocks to the corresponding timed automata is developed, as a result the actor
reactive control behavior can be precisely modeled in UPPAAL.

The above model transformation techniques covering different behavioral concerns

are finally applied to verify a practical case study designed in COMDES-II – the
turntable control system – against a list of desired system requirements, as described
in Section5. The verification results illustrate in a positive way that the developed
methods can be used to precisely analyze the schedulability and functional behavior
of COMDES-II applications using UPPAAL, with a complete preservation of the
original system operational semantics.

42

References

1. Kai Chen, Janos Sztipanovits and Sandeep Neema: Toward a semantic anchoring
infrastructure for domain-specific modeling languages. Proceedings of the 5th ACM
international conference on Embedded software, Jersey City, NJ, USA, 2005

2. J. Reekie and E. A. Lee: Lightweight Component Models for Embedded Systems.
Technical Memorandum UCB/ERL M02/30, University of California, Berkeley, CA
94720, USA, October 30, 2002

3. Xu Ke, Krzysztof Sierszecki, Christo Angelov: COMDES-II: A Component-Based
Framework towards Generative Development of Distributed Real-Time Control
Systems. Proceedings of the 13 IEEE International Conference on Embedded and
Real-Time Computing Systems and Applications, Daegu, S.Korea, 2007

4. Anantha Narayanan and Gabor Karsai: Using Semantic Anchoring to Verify
Behavior Preservation in Graph Transformations. Proceedings of the Second
International Workshop on Graph and Model Transformation, Brighton, United
Kingdom, 2006

5. C. Angelov and J. Berthing: Distributed Timed Multitasking: a Model of
Computation for Hard Real-Time Distributed Systems. Proc. of the 5th IFIP Working
Conference on Distributed and Parallel Embedded Systems DIPES'06, Braga,
Portugal, Oct. 2006

6. Gerd Behrmann, Alexandre David, and Kim G. Larsen: A Tutorial on UPPAAL. In
proceedings of the 4th International School on Formal Methods for the Design of
Computer, Communication, and Software Systems (SFM-RT'04). LNCS 3185

7. Kim G. Larsen, Paul Pettersson and Wang Yi: Uppaal in a Nutshell. In Springer
International Journal of Software Tools for Technology Transfer 1(1+2), 1997

8. Robin Milner: Communication and Concurrency. Prentice Hall, 1989. ISBN 0-13-
114984-9

9. Bos, V., Kleijn, J.J.T.: Automatic verification of a manufacturing system. Robotics
and Computer Integrated Manufacturing, vol. 17, (2001), 185-198

10. Bortnik, E., Trčka, N., Wijsc, A.J., Luttik, B., van de Mortel-Fronczak, J.M., Baeten,
J.C.M., Fokkink, W.J., Rooda, J.E.: Analyzing a χ Model of a Turntable System
using Spin, CADP and Uppaal. Journal of Logic and Algebraic Programming, vol.
65, (2005), 51-104

Verification of COMDES-II Systems Using UPPAAL with Model Transformation 43

Appendix A: UPPAAL Model of Turntable Case Study

Global Declarations:

// Place global declarations here.

clock s;

/** ****
 Defining task-related types and macros
*** ***/

// Defining task status
const int READY = 0;
const int ACTIVE = 1;
const int COMPUTED = 2;
const int FINISHED = 3;
const int ERROR = 4;

// Defining maximum task numbers and macro of tasks
const int MAX_TASKS = 16;

const int TASK1 = 1;
const int TASK2 = 2;
const int TASK3 = 3;
const int TASK4 = 4;
const int TASK5 = 5;
const int TASK6 = 6;
const int TASK7 = 7;
const int TASK8 = 8;
const int TASK9 = 9;
const int TASK10 = 10;
const int TASK11 = 11;
const int TASK12 = 12;
const int TASK13 = 13;
const int TASK14 = 14;
const int TASK15 = 15;
const int TASK16 = 16;

// Defining task control block
typedef struct{
 int[0,4] status;
 meta int period;
 meta int executionTime;

44

 meta int deadline;
 meta int mode;
 bool modeUpdated;
 int timeSinceReleased;
 int computationTimer;
}TTask;

//broadcast chan not_sch;

/** ****
 Initializing application-specific tasks
=== ====
*** ***/
const int TASKS_NUM = 6;
typedef int[1,TASKS_NUM] t_num;

TTask task[t_num] = {
 {READY, 100, 2, 0, 0, false, 0, 0},
 {READY, 100, 2, 0, 0, false, 0, 0},
 {READY, 100, 2, 0, 0, false, 0, 0},
 {READY, 10, 1, 10, 0, false, 0, 0},
 {READY, 10, 1, 10, 0, false, 0, 0},
 {READY, 10, 1, 10, 0, false, 0, 0}
};

/***************************************
 Actors priority definition
***/

const int TurntableSupervisor_priority = 3;
const int TurntableController_priority = 4;
const int DrillClampSupervisor_priority = 2;
const int DrillController_priority = 5;
const int TesterController_priority = 6;
const int TesterSupervisor_priority = 1;

const int SCHEDULER_PERIOD = 1;
bool task_state_transition = false;

/***
 Declare environment variables Here
**/

//Turn table state values

Verification of COMDES-II Systems Using UPPAAL with Model Transformation 45

//const int READY = 0;
const int LOADING = 1;
const int LOADED = 2;
const int DRILLING = 3;
const int DRILLED = 4;
const int TESTING = 5;
const int TESTOK = 6;
const int TESTBAD = 7;
const int TESTED = 8;
const int UNLOADING = 9;
const int UNLOADED = 10;
const int ROTATING = 11;
const int ROTATED = 12;

//message definition of TurnTable
typedef struct{
 meta int[READY, ROTATED] status;
 meta bool updated;
}TTurnTable;

TTurnTable TurnTable = {READY, false};

// Slots state values
const int EMPTY = 13;

//message definition of slots
typedef struct{
 int[LOADED, EMPTY] status;
 int[0,100] depth;
}TTTSlot;

TTTSlot TTSlot[4] = {{EMPTY, 0}, {EMPTY, 0}, {EMPTY ,

0}, {EMPTY, 0}};

//message definition of Input from environment
typedef struct{
 meta int[READY, LOADED] status;
}TInput;

TInput Input = {READY};

// DrillClamp state values
const int LOCK = 14;
const int STARTDRILL = 15;
const int MOVEUP = 16;

46

const int STOPDRILL = 17;
const int UNLOCK = 18;

//message definition of DrillClamp
typedef struct{
 meta int[READY, UNLOCK] status;
 meta bool updated;
 int[-1,1] PWM;
}TDrillClamp;

TDrillClamp DrillClamp = {READY, false, 0};

//message definition of Tester
typedef struct{
 meta int[READY, TESTED] status;
 meta bool updated;
 //int[-1,1] PWM;
}TTester;

TTester Tester = {READY, false};

// Environment Output state values
const int MARKOK = 19;
const int MARKBAD = 20;

//message definition of Output to environment
typedef struct{
 meta int[READY, MARKBAD] status;
}TOutput;

TOutput Output = {READY};

//message definition of TablePosition
typedef struct{
 bool rotated;
 meta int[0,360] setpoint;
 int[0,360] rotation;
 //int[0,1] PWM;
}TTablePosition;

TTablePosition TablePosition = {false, 90, 0};

//message definition of DrillPosition
typedef struct{

Verification of COMDES-II Systems Using UPPAAL with Model Transformation 47

 bool top;
 bool down;
}TDrillPosition;

TDrillPosition DrillPosition = {true, false};

//message definition of TesterPosition
typedef struct{
 bool top;
 bool down;
 bool BAD;
}TTesterPosition;

TTesterPosition TesterPosition = {true, false, fals e};

//message definition of HoleDepth

const int HoleDepthSetpoint = 30; // Hole depth is

30mm

//message definition of EnvClamp

const int LOCKED = 21;
const int UNLOCKED = 22;

typedef struct{
 int[LOCKED, UNLOCKED] status;
}TEnvClamp;

TEnvClamp Clamp = {UNLOCKED};

int[0,100] drill_position = 0;

/** ****
Actions performed in output drivers of a specific t ask
*** ***/

void TurnTableSupervisorOutput(int taskID){
 int[LOADED, EMPTY] slotTempStatus;
 int[0,100] slotTempDepth;
 int[0,3] slotIndex;

48

 TurnTable.status = task[taskID].mode;
 TurnTable.updated = task[taskID].modeUpdated;
 if(task[taskID].modeUpdated)
 {
 if(task[taskID].mode == LOADED)
 {
 TTSlot[0].status = LOADED;
 }
 else if(task[taskID].mode == DRILLED)
 {
 TTSlot[1].status = DRILLED;
 }
 else if(task[taskID].mode == TESTOK ||

task[taskID].mode == TESTBAD)
 {
 //TTSlot[2].status = task[taskID].mode;
 }
 else if(task[taskID].mode == UNLOADED)
 {
 TTSlot[3].status = EMPTY;
 }
 else if(task[taskID].mode == ROTATED)
 {
 slotTempStatus = TTSlot[3].status;
 slotTempDepth = TTSlot[3].depth;
 for(slotIndex = 3; slotIndex>0;

slotIndex--)
 {
 TTSlot[slotIndex].status =

TTSlot[slotIndex-1].status;
 TTSlot[slotIndex].depth =

TTSlot[slotIndex-1].depth;
 }
 TTSlot[0].status = slotTempStatus;
 TTSlot[0].depth = slotTempDepth;

 if(TablePosition.setpoint < 360)
 {
 TablePosition.setpoint += 90;
 }
 else
 {
 TablePosition.setpoint = 90;
 TablePosition.rotation = 0;
 }
 }
 }
}

Verification of COMDES-II Systems Using UPPAAL with Model Transformation 49

void TurnTableControllerOutput(int taskID){
 if(task[TurntableSupervisor_priority].modeUpdated)
 {
 if (task[TurntableSupervisor_priority].mode

== ROTATING)
 {
 if(TablePosition.rotation ==

TablePosition.setpoint)
 {
 TablePosition.rotated = true;
 //TablePosition.PWM = 0;
 }
 else
 {
 TablePosition.rotated = false;
 //TablePosition.PWM = 1;
 TablePosition.rotation += 90;
 }
 }
 else if

(task[TurntableSupervisor_priority].mode == ROTATED)
 {

 }
 }
}

void DrillClampSupervisorOutput(int taskID){
 DrillClamp.status = task[taskID].mode;
 DrillClamp.updated = task[taskID].modeUpdated;
 if (task[taskID].modeUpdated)
 {
 if(task[taskID].mode == LOCK)
 {
 Clamp.status = LOCKED;
 }
 else if(task[taskID].mode == UNLOCK)
 {
 Clamp.status = UNLOCKED;
 }
 else if(task[taskID].mode == DRILLING)
 {
 if(TTSlot[1].depth >=

HoleDepthSetpoint) // Start to stop driller
 {
 DrillPosition.down = true;

50

 }
 }
 }
}

void DrillControllerOutput(int taskID){
 if(task[DrillClampSupervisor_priority].modeUpdated)
 {
 if(task[DrillClampSupervisor_priority].mode

== DRILLING)
 {
 DrillPosition.top = false;
 if(drill_position++ == 10)
 {
 TTSlot[1].depth += 1;
 drill_position = 0;
 }
 }
 else

if(task[DrillClampSupervisor_priority].mode == MOVE UP)
 {
 DrillPosition.top = true;
 DrillPosition.down = false;
 }
 }
}

void TesterSupervisorOutput(int taskID){
 Tester.status = task[taskID].mode;
 Tester.updated = task[taskID].modeUpdated;
}

void TesterControllerOutput(int taskID){
 if(task[TesterSupervisor_priority].modeUpdated)
 {
 if(task[TesterSupervisor_priority].mode ==

TESTING)
 {
 TesterPosition.top = false;
 if(TTSlot[2].depth !=

HoleDepthSetpoint)
 {
 TesterPosition.down = false;
 TesterPosition.BAD = true;
 }
 else
 {
 TesterPosition.down = true;

Verification of COMDES-II Systems Using UPPAAL with Model Transformation 51

 TesterPosition.BAD = false;
 }

 }
 if(task[TesterSupervisor_priority].mode ==

TESTBAD || task[TesterSupervisor_priority].mode ==
TESTOK)

 {
 TesterPosition.top = true;
 TTSlot[2].status =

task[TesterSupervisor_priority].mode;
 TTSlot[2].depth = 0;
 }
 }
}

// Input function of tasks
void taskInputDrivers(int taskID){
 /*insert code of input drivers here*/

}

// Output function of tasks
void taskOutputDrivers(int taskID){
 /*insert code of output drivers here*/

 if (taskID == TurntableSupervisor_priority) //

Turntable Supervisor
 {
 TurnTableSupervisorOutput(taskID);
 }
 else if(taskID == TurntableController_priority) //

Turntable Controller
 {
 TurnTableControllerOutput(taskID);
 }
 else if (taskID == DrillClampSupervisor_priority)

// DrillClamp Supervisor
 {
 DrillClampSupervisorOutput(taskID);
 }
 else if(taskID == DrillController_priority) //

Drill Controller
 {
 DrillControllerOutput(taskID);
 }

52

 else if(taskID == TesterSupervisor_priority) //
Tester Supervisor

 {
 TesterSupervisorOutput(taskID);
 }
 else if(taskID == TesterController_priority) //

Tester Controller
 {
 TesterControllerOutput(taskID);
 }
}

/************************************
 Defining task functions
*************************************/

// Release a task
void release(int taskID){
 if(task[taskID].status == READY)
 {
 task[taskID].status = ACTIVE;
 task[taskID].timeSinceReleased = 0;
 task[taskID].computationTimer =

task[taskID].executionTime;
 }
}

// Schedule the highest priority active task to run
void run(){
 int i = TASKS_NUM;
 for(i; i>0; i--)
 {
 if(task[i].status == ACTIVE)
 {
 if(task[i].computationTimer != 0)
 {
 task[i].computationTimer -=

SCHEDULER_PERIOD;
 }
 if(task[i].computationTimer == 0)
 {
 task_state_transition = true;
 task[i].status = COMPUTED;
 }
 return;
 }
 }

Verification of COMDES-II Systems Using UPPAAL with Model Transformation 53

}

// When the running task finishes, schedule it back to

READY status
void finish(int taskID, int mode, bool modeUpdated) {
 task[taskID].mode = mode;
 task[taskID].modeUpdated = modeUpdated;
 task[taskID].status = FINISHED;
 if(task[taskID].deadline == 0)
 {
 taskOutputDrivers(taskID);
 task[taskID].status = READY;
 }
 task_state_transition = false;
}

/** ****
 I/O actions of tasks performed at specific trigge ring

instant and deadline
*** ***/

void outputAction(){
 int i = TASKS_NUM;
 for(i; i>0; i--)
 {
 if

(task[i].timeSinceReleased*SCHEDULER_PERIOD ==
task[i].deadline && task[i].deadline != 0)

 {
 if(task[i].computationTimer > 0) // if

a non-zero deadline task is not schedulable
 {
 task[i].status = ERROR;
 }
 else if (task[i].status == FINISHED)
 {
 taskOutputDrivers(i);
 task[i].status = READY;
 }
 }
 }
}

void inputAction(){
 int i = TASKS_NUM;
 for(i; i>0; i--)
 {

54

 // input actions for periodic tasks
 if (task[i].period != 0)
 {
 if (task[i].timeSinceReleased == 0 ||

task[i].timeSinceReleased*SCHEDULER_PERIOD ==
task[i].period)

 {
 if (task[i].deadline == 0)
 {
 if (task[i].computationTimer

> 0) // if a zero deadline task is not schedulable
 {
 task[i].status =

ERROR;
 return;
 }
 }
 taskInputDrivers(i);
 release(i);
 }
 task[i].timeSinceReleased++;
 }
 // input actions for aperiodic tasks
 else
 {
 if(task[i].status == ACTIVE ||

task[i].status == FINISHED)
 {
 task[i].timeSinceReleased++;
 }
 }
 }
}

void OIRActions(){
 outputAction();
 inputAction();
 run();
}

Verification of COMDES-II Systems Using UPPAAL with Model Transformation 55

System Declarations:

// Place template instantiations here.

TurntableSupervisor_I =
TurntableSupervisor(TurntableSupervisor_priority);

TurntableController_I =
TurntableController(TurntableController_priority);

DrillClampSupervisor_I =
DrillClampSupervisor(DrillClampSupervisor_priority) ;

DrillController_I =
DrillController(DrillController_priority);

TesterController_I =
TesterController(TesterController_priority);

TesterSupervisor_I =
TesterSupervisor(TesterSupervisor_priority);

// List one or more processes to be composed into a
system.

system TurntableSupervisor_I, TurntableController_I ,
DrillClampSupervisor_I, DrillController_I,
TesterController_I, TesterSupervisor_I, EnvInput,
EnvOutput, Scheduler;

56

Timed Automata Models:

task_run

s <= SCHEDULER_PERIOD

!task_state_transition && s == SCHEDULER_PERIOD

OIRActions(), s = 0

Fig. 25. Timed automata for discrete-time scheduler

ready task[TurntableController_priority].status == COMPUTED

finish(TurntableController_priority, READY, true)

Fig. 26. Timed automata for TurntableController actor functional behavior

ready task[DrillController_priority].status == COMPUTED

finish(DrillController_priority, READY, true)

Fig. 27. Timed automata for DrillController actor functional behavior

ready task[TesterController_priority].status == COMPUTED

finish(TesterController_priority, READY, true)

Fig. 28. Timed automata for TesterController actor functional behavior

Verification of COMDES-II Systems Using UPPAAL with Model Transformation 57

ro
ta

te
d

ro
ta

ti
n

g

u
n

lo
ad

ed
u

n
lo

ad
in

g

te
st

B
ad

te
st

O
K

te
st

in
g

d
ri

lle
d

d
ri

lli
n

g

lo
ad

ed

re
ad

y

T
T

S
lo

t[2
].s

ta
tu

s
!=

 T
E

S
T

B
A

D
 &

&

T
T

S
lo

t[2
].s

ta
tu

s
!=

 T
E

S
T

O
K

 &
&

ta

sk
[T

ur
nt

ab
le

S
up

er
vi

so
r_

pr
io

rit
y]

.s
ta

tu
s

=
=

 C
O

M
P

U
T

E
D

fin
is

h(
T

ur
nt

ab
le

S
up

er
vi

so
r_

pr
io

rit
y,

 T
E

S
T

IN
G

, f
al

se
)

D
ril

lC
la

m
p.

st
at

us
 !=

 D
R

IL
LE

D
 &

&

ta
sk

[T
ur

nt
ab

le
S

up
er

vi
so

r_
pr

io
rit

y]
.s

ta
tu

s
=

=
 C

O
M

P
U

T
E

D

fin
is

h(
T

ur
nt

ab
le

S
up

er
vi

so
r_

pr
io

rit
y,

 D
R

IL
LI

N
G

, f
al

se
)

!T
ab

le
P

os
iti

on
.r

ot
at

ed
 &

&

ta
sk

[T
ur

nt
ab

le
S

up
er

vi
so

r_
pr

io
rit

y]
.s

ta
tu

s
=

=
 C

O
M

P
U

T
E

D

fin
is

h(
T

ur
nt

ab
le

S
up

er
vi

so
r_

pr
io

rit
y,

 R
O

T
A

T
IN

G
, t

ru
e)

ta
sk

[T
ur

nt
ab

le
S

up
er

vi
so

r_
pr

io
rit

y]
.s

ta
tu

s
=

=
 C

O
M

P
U

T
E

D

fin
is

h(
T

ur
nt

ab
le

S
up

er
vi

so
r_

pr
io

rit
y,

 R
E

A
D

Y
, t

ru
e)

T
ab

le
P

os
iti

on
.r

ot
at

ed
 &

&

ta
sk

[T
ur

nt
ab

le
S

up
er

vi
so

r_
pr

io
rit

y]
.s

ta
tu

s
=

=
 C

O
M

P
U

T
E

D

fin
is

h(
T

ur
nt

ab
le

S
up

er
vi

so
r_

pr
io

rit
y,

 R
O

T
A

T
E

D
, t

ru
e)

T
T

S
lo

t[0
].s

ta
tu

s
!=

 E
M

P
T

Y
 &

&
 T

T
S

lo
t[1

].s
ta

tu
s

!=
 L

O
A

D
E

D
 &

&

T
T

S
lo

t[2
].s

ta
tu

s
!=

 D
R

IL
LE

D
 &

&
 T

T
S

lo
t[3

].s
ta

tu
s

!=
 T

E
S

T
B

A
D

 &
&

T

T
S

lo
t[3

].s
ta

tu
s

!=
 T

E
S

T
O

K
 &

&

ta
sk

[T
ur

nt
ab

le
S

up
er

vi
so

r_
pr

io
rit

y]
.s

ta
tu

s
=

=
 C

O
M

P
U

T
E

D

fin
is

h(
T

ur
nt

ab
le

S
up

er
vi

so
r_

pr
io

rit
y,

 R
O

T
A

T
IN

G
, t

ru
e)

ta
sk

[T
ur

nt
ab

le
S

up
er

vi
so

r_
pr

io
rit

y]
.s

ta
tu

s
=

=
 C

O
M

P
U

T
E

D

fin
is

h(
T

ur
nt

ab
le

S
up

er
vi

so
r_

pr
io

rit
y,

 R
E

A
D

Y
, t

ru
e)

O
ut

pu
t.s

ta
tu

s
=

=
 U

N
LO

A
D

E
D

 &
&

ta

sk
[T

ur
nt

ab
le

S
up

er
vi

so
r_

pr
io

rit
y]

.s
ta

tu
s

=
=

 C
O

M
P

U
T

E
D

fin
is

h(
T

ur
nt

ab
le

S
up

er
vi

so
r_

pr
io

rit
y,

 U
N

LO
A

D
E

D
, t

ru
e)

T
T

S
lo

t[0
].s

ta
tu

s
!=

 E
M

P
T

Y
 &

&
 T

T
S

lo
t[1

].s
ta

tu
s

!=
 L

O
A

D
E

D
 &

&

T
T

S
lo

t[2
].s

ta
tu

s
!=

 D
R

IL
LE

D
 &

&

(T
T

S
lo

t[3
].s

ta
tu

s
=

=
 T

E
S

T
B

A
D

 ||
 T

T
S

lo
t[3

].s
ta

tu
s

=
=

 T
E

S
T

O
K

)
&

&

ta
sk

[T
ur

nt
ab

le
S

up
er

vi
so

r_
pr

io
rit

y]
.s

ta
tu

s
=

=
 C

O
M

P
U

T
E

D

fin
is

h(
T

ur
nt

ab
le

S
up

er
vi

so
r_

pr
io

rit
y,

 U
N

LO
A

D
IN

G
, t

ru
e)

ta
sk

[T
ur

nt
ab

le
S

up
er

vi
so

r_
pr

io
rit

y]
.s

ta
tu

s
=

=
 C

O
M

P
U

T
E

D

fin
is

h(
T

ur
nt

ab
le

S
up

er
vi

so
r_

pr
io

rit
y,

 R
E

A
D

Y
, t

ru
e)

ta
sk

[T
ur

nt
ab

le
S

up
er

vi
so

r_
pr

io
rit

y]
.s

ta
tu

s
=

=
 C

O
M

P
U

T
E

D

fin
is

h(
T

ur
nt

ab
le

S
up

er
vi

so
r_

pr
io

rit
y,

 R
E

A
D

Y
, t

ru
e)

T
T

S
lo

t[2
].s

ta
tu

s
=

=
 T

E
S

T
B

A
D

 &
&

 ta
sk

[T
ur

nt
ab

le
S

up
er

vi
so

r_
pr

io
rit

y]
.s

ta
tu

s
=

=
 C

O
M

P
U

T
E

D

fin
is

h(
T

ur
nt

ab
le

S
up

er
vi

so
r_

pr
io

rit
y,

 T
E

S
T

B
A

D
, t

ru
e)

T
T

S
lo

t[2
].s

ta
tu

s
=

=
 T

E
S

T
O

K
 &

&
 ta

sk
[T

ur
nt

ab
le

S
up

er
vi

so
r_

pr
io

rit
y]

.s
ta

tu
s

=
=

 C
O

M
P

U
T

E
D

fin
is

h(
T

ur
nt

ab
le

S
up

er
vi

so
r_

pr
io

rit
y,

 T
E

S
T

O
K

, t
ru

e)

T
T

S
lo

t[0
].s

ta
tu

s
!=

 E
M

P
T

Y
 &

&
 T

T
S

lo
t[1

].s
ta

tu
s

!=
 L

O
A

D
E

D
 &

&

T
T

S
lo

t[2
].s

ta
tu

s
=

=
 D

R
IL

LE
D

 &
&

 ta
sk

[T
ur

nt
ab

le
S

up
er

vi
so

r_
pr

io
rit

y]
.s

ta
tu

s
=

=
 C

O
M

P
U

T
E

D

fin
is

h(
T

ur
nt

ab
le

S
up

er
vi

so
r_

pr
io

rit
y,

 T
E

S
T

IN
G

, t
ru

e)

ta
sk

[T
ur

nt
ab

le
S

up
er

vi
so

r_
pr

io
rit

y]
.s

ta
tu

s
=

=
 C

O
M

P
U

T
E

D

fin
is

h(
T

ur
nt

ab
le

S
up

er
vi

so
r_

pr
io

rit
y,

 R
E

A
D

Y
, t

ru
e)

D
ril

lC
la

m
p.

st
at

us
 =

=
 D

R
IL

LE
D

 &
&

ta

sk
[T

ur
nt

ab
le

S
up

er
vi

so
r_

pr
io

rit
y]

.s
ta

tu
s

=
=

 C
O

M
P

U
T

E
D

fin
is

h(
T

ur
nt

ab
le

S
up

er
vi

so
r_

pr
io

rit
y,

 D
R

IL
LE

D
, t

ru
e)

T
T

S
lo

t[0
].s

ta
tu

s
!=

 E
M

P
T

Y
 &

&
 T

T
S

lo
t[1

].s
ta

tu
s

=
=

 L
O

A
D

E
D

 &
&

ta

sk
[T

ur
nt

ab
le

S
up

er
vi

so
r_

pr
io

rit
y]

.s
ta

tu
s

=
=

 C
O

M
P

U
T

E
D

fin
is

h(
T

ur
nt

ab
le

S
up

er
vi

so
r_

pr
io

rit
y,

 D
R

IL
LI

N
G

, t
ru

e)

ta
sk

[T
ur

nt
ab

le
S

up
er

vi
so

r_
pr

io
rit

y]
.s

ta
tu

s
=

=
 C

O
M

P
U

T
E

D

fin
is

h(
T

ur
nt

ab
le

S
up

er
vi

so
r_

pr
io

rit
y,

 R
E

A
D

Y
, t

ru
e)

In
pu

t.s
ta

tu
s

=
=

 L
O

A
D

E
D

 &
&

T

T
S

lo
t[0

].s
ta

tu
s

=
=

 E
M

P
T

Y
 &

&
ta

sk
[T

ur
nt

ab
le

S
up

er
vi

so
r_

pr
io

rit
y]

.s
ta

tu
s

=
=

 C
O

M
P

U
T

E
D

fin
is

h(
T

ur
nt

ab
le

S
up

er
vi

so
r_

pr
io

rit
y,

 L
O

A
D

E
D

, t
ru

e)

Fig. 29. Timed automata for TurntableSupervisor actor functional behavior

58

drilled

unlock

moveUpdrilling

lock

ready

!DrillPosition.top&&
task[DrillClampSupervisor_priority].status == COMPUTED

finish(DrillClampSupervisor_priority, MOVEUP, true)

!(TurnTable.status == READY && TTSlot[1].status == LOADED) &&
task[DrillClampSupervisor_priority].status == COMPUTED

finish(DrillClampSupervisor_priority, READY, false)

TurnTable.status != READY &&
task[DrillClampSupervisor_priority].status == COMPUTED

finish(DrillClampSupervisor_priority, DRILLED, false)

Clamp.status != UNLOCKED &&
task[DrillClampSupervisor_priority].status == COMPUTED

finish(DrillClampSupervisor_priority, UNLOCK, false)

!(Clamp.status == LOCKED &&
TurnTable.status == DRILLING) &&
task[DrillClampSupervisor_priority].status == COMPUTED

finish(DrillClampSupervisor_priority, LOCK, false)

TurnTable.status == READY &&
task[DrillClampSupervisor_priority].status == COMPUTED

finish(DrillClampSupervisor_priority, READY, true)

Clamp.status == UNLOCKED &&
task[DrillClampSupervisor_priority].status == COMPUTED

finish(DrillClampSupervisor_priority, DRILLED, true)

DrillPosition.top&&
task[DrillClampSupervisor_priority].status == COMPUTED

finish(DrillClampSupervisor_priority, UNLOCK, true)

!DrillPosition.down &&
task[DrillClampSupervisor_priority].status == COMPUTED

finish(DrillClampSupervisor_priority, DRILLING, true)

DrillPosition.down &&
task[DrillClampSupervisor_priority].status == COMPUTED

finish(DrillClampSupervisor_priority, MOVEUP, true)

Clamp.status == LOCKED &&
TurnTable.status == DRILLING &&
task[DrillClampSupervisor_priority].status == COMPUTED

finish(DrillClampSupervisor_priority, DRILLING, true)

TurnTable.status == READY &&
TTSlot[1].status == LOADED &&
task[DrillClampSupervisor_priority].status == COMPUTED

finish(DrillClampSupervisor_priority, LOCK, true)

Fig. 30. Timed automata for DrillClampeSupervisor actor functional behavior

loadedloading

ready
TTSlot[0].status == LOADED

Input.status = READY

Input.status = LOADED

TurnTable.status == READY &&
TTSlot[0].status == EMPTY

Input.status = LOADING

Fig. 31. Timed automata for Input system

unloadedunloading

ready

TTSlot[3].status == EMPTY

Output.status = READY

Output.status = UNLOADED

TurnTable.status == UNLOADING

Output.status = UNLOADING

Fig. 32. Timed automata for Output system

Verification of COMDES-II Systems Using UPPAAL with Model Transformation 59

te
st

ed

te
st

O
K

te
st

B
ad

te
st

in
g

re
ad

y

!(
T

ur
nT

ab
le

.s
ta

tu
s

=
=

 T
E

S
T

IN
G

 &
&

 T
T

S
lo

t[2
].s

ta
tu

s
=

=
 D

R
IL

LE
D

)
&

&

ta
sk

[T
es

te
rS

up
er

vi
so

r_
pr

io
rit

y]
.s

ta
tu

s
=

=
 C

O
M

P
U

T
E

D

fin
is

h(
T

es
te

rS
up

er
vi

so
r_

pr
io

rit
y,

 R
E

A
D

Y
, f

al
se

)

T
ur

nT
ab

le
.s

ta
tu

s
!=

 R
O

T
A

T
IN

G
 &

&
ta

sk
[T

es
te

rS
up

er
vi

so
r_

pr
io

rit
y]

.s
ta

tu
s

=
=

 C
O

M
P

U
T

E
D

fin
is

h(
T

es
te

rS
up

er
vi

so
r_

pr
io

rit
y,

 T
E

S
T

E
D

, f
al

se
)

T
ur

nT
ab

le
.s

ta
tu

s
=

=
 R

O
T

A
T

IN
G

 &
&

ta
sk

[T
es

te
rS

up
er

vi
so

r_
pr

io
rit

y]
.s

ta
tu

s
=

=
 C

O
M

P
U

T
E

D

fin
is

h(
T

es
te

rS
up

er
vi

so
r_

pr
io

rit
y,

 R
E

A
D

Y
, t

ru
e)

!T
es

te
rP

os
iti

on
.to

p
&

&
ta

sk
[T

es
te

rS
up

er
vi

so
r_

pr
io

rit
y]

.s
ta

tu
s

=
=

 C
O

M
P

U
T

E
D

fin
is

h(
T

es
te

rS
up

er
vi

so
r_

pr
io

rit
y,

 T
E

S
T

O
K

, t
ru

e)

T
es

te
rP

os
iti

on
.to

p
&

&
ta

sk
[T

es
te

rS
up

er
vi

so
r_

pr
io

rit
y]

.s
ta

tu
s

=
=

 C
O

M
P

U
T

E
D

fin
is

h(
T

es
te

rS
up

er
vi

so
r_

pr
io

rit
y,

 T
E

S
T

E
D

, t
ru

e)

!T
es

te
rP

os
iti

on
.to

p
&

&
ta

sk
[T

es
te

rS
up

er
vi

so
r_

pr
io

rit
y]

.s
ta

tu
s

=
=

 C
O

M
P

U
T

E
D

fin
is

h(
T

es
te

rS
up

er
vi

so
r_

pr
io

rit
y,

 T
E

S
T

B
A

D
, t

ru
e)

T
es

te
rP

os
iti

on
.to

p
&

&
ta

sk
[T

es
te

rS
up

er
vi

so
r_

pr
io

rit
y]

.s
ta

tu
s

=
=

 C
O

M
P

U
T

E
D

fin
is

h(
T

es
te

rS
up

er
vi

so
r_

pr
io

rit
y,

 T
E

S
T

E
D

, t
ru

e)

!T
es

te
rP

os
iti

on
.B

A
D

 &
&

 !T
es

te
rP

os
iti

on
.d

ow
n

&
&

ta
sk

[T
es

te
rS

up
er

vi
so

r_
pr

io
rit

y]
.s

ta
tu

s
=

=
 C

O
M

P
U

T
E

D

fin
is

h(
T

es
te

rS
up

er
vi

so
r_

pr
io

rit
y,

 T
E

S
T

IN
G

, t
ru

e)

!T
es

te
rP

os
iti

on
.B

A
D

 &
&

 T
es

te
rP

os
iti

on
.d

ow
n

&
&

ta
sk

[T
es

te
rS

up
er

vi
so

r_
pr

io
rit

y]
.s

ta
tu

s
=

=
 C

O
M

P
U

T
E

D

fin
is

h(
T

es
te

rS
up

er
vi

so
r_

pr
io

rit
y,

 T
E

S
T

O
K

, t
ru

e)

T
es

te
rP

os
iti

on
.B

A
D

 &
&

ta
sk

[T
es

te
rS

up
er

vi
so

r_
pr

io
rit

y]
.s

ta
tu

s
=

=
 C

O
M

P
U

T
E

D

fin
is

h(
T

es
te

rS
up

er
vi

so
r_

pr
io

rit
y,

 T
E

S
T

B
A

D
, t

ru
e)

T
ur

nT
ab

le
.s

ta
tu

s
=

=
 T

E
S

T
IN

G
 &

&

T
T

S
lo

t[2
].s

ta
tu

s
=

=
 D

R
IL

LE
D

 &
&

ta

sk
[T

es
te

rS
up

er
vi

so
r_

pr
io

rit
y]

.s
ta

tu
s

=
=

 C
O

M
P

U
T

E
D

fin
is

h(
T

es
te

rS
up

er
vi

so
r_

pr
io

rit
y,

 T
E

S
T

IN
G

, t
ru

e)

Fig. 33. Timed automata for TesterSupervisor actor functional behavior

