
ProCom: Formal Semantics

Jagadish Suryadevara, Aneta Vulgarakis, Jan Carlson,
Cristina Seceleanu and Paul Pettersson

Mälardalen University, Väster̊as, Sweden

1

Contents

1 Introduction 3
1.1 Overview of ProCom . 3
1.2 A Formalizing Approach . 3
1.3 Underlying Formalism . 4
1.4 Formal Semantics of the FSM Language 4
1.5 Overview of ProCom formalization 5

2 Formal Semantics of ProSave elements 6
2.1 Service . 6
2.2 Component . 8
2.3 Connections . 9
2.4 Connectors . 9

2.4.1 Data Fork . 9
2.4.2 Control Fork . 10
2.4.3 Data Or . 11
2.4.4 Control Or . 11
2.4.5 Control Join . 11
2.4.6 Selection . 12

3 Formal Semantics of ProSys elements 12
3.1 Subsystems . 12
3.2 Message channels . 13

4 Using ProSave in a ProSys subsystem 14
4.1 Clock . 14
4.2 Input message port . 15
4.3 Output message port . 15

2

1 Introduction

1.1 Overview of ProCom

The goal of PROGRESS is to provide theories, methods and tools to increase
predictability, and reuse in the development of embedded systems in particular
those in the vehicular domain. For reusability a component based approach is
adopted for the overall development process.

In order to cover the whole development process of these systems and ad-
dress the different concerns that exist on different levels of granularity i.e. both
the design of a complete system and of the low-level control-based functionali-
ties, ProCom component model is designed in a layered manner. Accordingly,
ProCom is a two-layered component model that is introduced in [3], [4] and [6].
The top layer in ProCom is called ProSys, in which a system is modelled as a
collection of concurrent, communicating subsystems. The components on this
level are often meant to be allocated to different nodes in a distributed system.
Even a single subsystem may consists of parts that end up on different nodes
(the distribution is however specified by a separate deployment model). The
modeling constructs of ProSys layer are: systems, subsystems, connections, and
message channels.

The lower layer in ProCom is called ProSave, which defines a component-
based design language for modelling subsystems with complex control function-
ality. A subsystem is constructed by hierarchically structured, interconnected
components. These components are design-time entities that are typically not
distinguishable as individual units in the final executing system. The modeling
constructs of ProSave layer are: components (basic, composite, services, ports
(data, trigger), connections, and connectors.

The ProCom language has other elements which do not belong to either of
the above two layers, but serve for connecting the two layers together. These
elements are useful to map and interrelate the concepts and design elements
of the two layers. The additional elements which exist in this middle layer are
clocks and message ports.

1.2 A Formalizing Approach

To achieve predictability, the component language and the related component
model needs to be formally analyzable which in turn requires a formal seman-
tics. In this report, we present a formalizing approach which is very suitable
for overall design goals of ProCom (and PROGRESS). The formal semantics of
ProCom layers are described using a higher-level formal language (separately
defined for this purpose). The semantics description language is FSM-like i.e.
presents an extension of finite state machine (FSM) notation with necessary
constructs as required for formal semantics of elements of ProCom. The lan-
guage is formally defined below. Using this language the formal semantics of
ProCom is presented in three phase. First, we present the semantics of ProSave

3

elements, then those of ProSys, and finally we describe the remaining elements
of ProCom.

1.3 Underlying Formalism

Definition 1. Let V be a set of variables, G a set of boolean conditions (or
guards) over V , B the set of booleans, A a set of variable updates, and I a set
of intervals of the form [n1, n2], where n1 ≤ n2 and n1, n2 are natural numbers.
Our FSM language is a tuple 〈S, s0, T,D〉, where S is a set of states, s0 ∈ S is
the initial state, T ⊆ S ×G× B × B × A× S is the set of transitions between
states, in which B × B represent priority and urgency (described below), and
D : S → I is a partial function associating delay intervals with states.

Graphical Notation The FSM language relies on a graphical representation
that consists of the usual graphical elements, that is, states and transitions
labeled with guards, priority, urgency, and updates, see first two columns of
Figure 1. A transition can be either urgent or non-urgent, and it can have
priority or no priority. As shown in Figure 1, a transition may be decorated
with the non-urgency symbol *, and/or the priority symbol ↑. Note that, a
transition that is not annotated with * is urgent. A state can be associated
with a delay interval, which is graphically located within the state circle.

Semantics Intuitively, the execution of an FSM starts in the initial state.
At a given state, an outgoing transition may be taken only if it is enabled,
i.e., its associated guard evaluates to true for the current variable values. If
from the current state, more than one outgoing transition is enabled, one of
them is taken non-deterministically, and prioritized transitions are preferred
over non-prioritized transitions. In case all enabled outgoing transitions of a
state are non-urgent, it is possible to delay in the state. On the other hand, if
there are any outgoing urgent enabled transitions, one of them must be taken
immediately. Thus, the notions of priority and urgency avoid unnecessary non-
determinism among enabled transitions, clarifying the modeling aspects and
possibly improving the performance of formal analysis. A state that is associated
with a delay interval [n1, n2] may be left anytime between n1 and n2 time units
after it is entered.

In order to form a system, FSMs may be composed in parallel. The semantic
state of the composed system is the combined states and variable values of the
FSMs. The notions of urgency and priority are applied globally, and time is
assumed to progress with the same rate in all FSMs.

1.4 Formal Semantics of the FSM Language

In this section, we formally define the semantics of our FSM language using
timed automata (TA) [1] with priorities [5] and urgent transitions [2] as a se-
mantic domain. The translation of each FSM element to TA is depicted in
Figure 1. The FSM language has four kinds of transitions: urgent transition,

4

Informal FSM TA

non-urgent transition
c?

a?

b?

d?

urgent transition

urgent transition with priority

non-urgent transition with priority

state with delay interval [n1,n2]

clki n2

clki n1

≤

≥clki 0=
[n1,n2]

∗

↑

∗ ↑

initial state

state

urgent transition with guard

x==5 and update x=x+1
x==5 x=x+1 x==5 a? x=x+1

Figure 1: The graphical notation of our FSM formalism and the translation of
the FSM elements into TA.

urgent transition with priority, non-urgent transition, and non-urgent transition
with priority. In TA we introduce four channels: a, b, c, and d. Channels a
and b are urgent, and channels b and d have higher priority than channels a and
c. Accordingly we map the transitions of FSMs into TA edges labeled with the
appropriate channels, as defined in Figure 1. The translated TA edges need a
timed automaton offering synchronization on the complementary channels (e.g.,
a! complementary to a?), depicted in Figure 2.

1.5 Overview of ProCom formalization

Each ProCom architectural element has a set of ports, through which it can
interact. Each port can be either an input port or an output port, as well as
either a data port, a trigger port or a message port. A data and a message port
have a type associated with them. The data and message ports are associated
with variables of the same type as the ports. They are holding the latest value
written to the ports. Likewise, a trigger port is associated with a boolean
variable determining the activation of that port. Ports of composite components
are represented by two variables, corresponding to the port viewed from outside
and from inside. Accordingly, in the ProCom formalization we let the following
set of shared variables through which the FSMs communicate:

5

a
! b!

d!

c!

chan c,d;

urgent chan a,b;

priority a,c < b,d

Figure 2: The automaton used for synchronization.

• vdi : variable associated with a data port di of corresponding type.

• vti : boolean variable associated with a trigger port ti indicating whether
the port is triggered, default false.

• vmi : variable associated with a message port mi of corresponding type.

• v′di and v′ti : internal variables for ports of composite components, corre-
sponding to port variables vdi and vti , respectively.

Additionally, we let ε be a null value of any type indicating that no data is
present on a data or message port.

The semantics of all ProCom elements is defined as a translation to the FSM
language, and the semantics of an entire ProCom system is defined by the par-
allel composition of FSMs for the individual constructs. The constituent FSMs
of a composition interact via shared variables; their transitions can be fired in-
dependently from one another, whenever there are no transition conditions on
the shared variables, restricting such a behavior.

2 Formal Semantics of ProSave elements

The main modeling constructs of ProSave are Services, Components (basic,
composite), Ports (data, trigger), Connection, and Connectors. Each of these
elements are defined formally below.

2.1 Service

A set of services depict the functionality of a ProSave component. Each service
is triggered individually. Services may execute concurrently while sharing only
data. A service consists of the following parts:

• One input port group consisting of one trigger port and zero or more data
ports.
• Zero or more output port groups consisting of one trigger port and zero or

more data ports.

6

Each port belongs only to one group port, and each port group belongs to
one service. An input port group may only be accessed at the very start of
each invocation of a service. Allowing multiple output port groups gives the
possibility, a service to produce outputs at different points of time. The read
operation is always urgent, so no time is allowed to pass when a service reads.
After reading, the services switches to executing state, where it performs internal
computations and writes to its output port groups. The data and triggering of
an output group of a service must always be produced atomically and each of
the service output port groups must have been activated exactly once before the
service returns to idle state. This restriction serves for tight read-execute-write
behavior of a service.

Assume a ProSave component with one service, say S1. Let S1 consists of
one input port group and two output port groups (Fig. 3 (a)). The formal
semantics of a service, for example S1 is described below and shown in Fig. 3
(b).

(b)

Service

S1

d2

d3

t1

d4

d0

d1

t0

t2

(a)

 w1=true

v´t1=false

vt1=v´t1

vd3=v´d3

vd2=v´d2

vt0

(w
1

 /\ w
2

) /\ (¬
 v

´
t0)

Execute

(¬ (w
1 /\ w

2)) /\ (¬ v´
t0)

Error 1

vt0=false

w2=false

w1=false

v´t0=vt0

v´d1=vd1

v´d0=vd0

(¬ w1) /\ v´t1

w2=true

v´t2=false

vt2=v´t2

vd4=v´d4

(¬ w2) /\ v´t2

Error 2

Idle

(w

1
/\

 v
´ t1

) \
/ (

w
2

/\
v´

t2
)

Figure 3: (a) A ProSave service S1 and (b) its formal semantics.

Let w1, w2 be boolean variables corresponding to output port group indi-
cating whether the group has been activated. By associating boolean variables
w1, w2 with output port groups, we ensure that the groups are written only
once during an execution instance of a service. While being in an Execute state
a service may yield into two error scenarios:

• a service might try to go back to the Idle state before all output groups
have been activated. In the formal semantics of a service this is depicted
by the state Error 1.
• During execution, a service might try to activate an already activated

output port group. This problem is captured by the state Error 2.

7

As such, the formal semantics, ensures that the triggering and data of a service
is always produced atomically and each of the service output groups can be
activated only once before the service returns to the Idle.

2.2 Component

A ProSave component is a parallel composition of its services, which execute
concurrently and may share data. An example of a ProSave component with
two services is presented in Fig. 4. The functionality of a ProSave component
can be implemented by a single C function (primitive component) or by inter-
connected internal components (composite component).

S1

S2

Figure 4: External view of a ProSave component with two services; S1 has two
output groups and S2 has a single output group.

In early stages of development, a component may still be a black box with
known behavior, but unknown inner structure. Later on, the component may
be detailed and in the end implemented. However, all components follow the
same execution semantics. In an early stage of development, when only the
behavior of the component is assumed to be known, it is the responsibility
of the behavior model to signal the end of execution, and to take care of the
internal variables (data and trigger) of a component accordingly. In a later
stage of development, when the inner structure of a composite component is
known, its formalization is handled by the inter-connected subcomponents. In
this case, we assume that there is a virtual controller in charge of signaling when
the internal trigger of a component has become false i.e. all subcomponents have
returned to the idle state. Consequently, in both cases, the internal variables are
left to be modified by the behavior, code or inner realization, but the external
variables of a component are always handled by the semantics of a service. This
emphasizes the fact that, from an external observer’s point of view, there is no
difference between early design black box components and fully implemented
components.

8

2.3 Connections

A connection is a directed edge that connects two ports of same kind - either
input data port to output data port or input trigger port to output trigger port.
Two data ports may only be connected together if they have compatible types.
ProSave components can not be distributed, so the migration of data/trigger
over a connection is atomic. ProSave follows push model for data transfer. A
transfer between two different connections can be carried out concurrently or
in arbitrary order. However, ProSave has a restriction that the trigger signals
are not allowed to arrive to any port before all data have arrived to all end
destinations.

Assume ProSave connections between two data ports p1 and p2 and two
trigger ports t1 and t2. Then the formal semantics of these connections is
described below (see Fig. 5 and Fig. 6).

To ensure the data is transferred prior to trigger, and to avoid undesirable
consequences otherwise, the transitions in our FSM formalism (Fig. 5) are as-
sociated with priority in the case of data connections. This is also the case in
the semantics of all connectors that forward data (see Section 2.4).

DataInTransit

(b)

vd1=temp

d0 d1

(a)

↑ε

↑

temp=vd0 vd0 = vd0 != ε

Figure 5: (a) A ProSave data connection and (b) its formal semantics.

2.4 Connectors

ProSave defines different kinds of connectors which together with connections
can be used to define complex data and control flow for a ProSave composition.

2.4.1 Data Fork

A data fork connector is used to split a data connection to several outgoing ones.
It has one input data port and two or more output data ports. Informally, it
copies the contents of its input port to its output ports atomically. The formal
semantics of a data fork is presented in Fig. 7.

9

(b)

TriggerInTransit
vt1=true

vt0

(a)

t0 t1

vt0=false

Figure 6: (a) A ProSave trigger connection and (b) its formal semantics.

(a) (b)

vd0 !=

Data
forkd0

d1

dn

... vd1=vd0,
...

vdn=vd0

↑

ε

Figure 7: (a) A ProSave data fork connector and (b) its formal semantics

2.4.2 Control Fork

A control fork connector is used to split a trigger connection to several outgoing
ones. It has one input trigger port and two or more output trigger ports.
Informally, whenever the input trigger port is triggered, the trigger is transferred
to all output trigger ports, atomically. The formal semantics of a control fork
with is presented in Fig. 8.

vt1 =true,
...
vtn =true,
vt0 =false

(a) (b)

vt0

ControlForkt0
t1

tn

...

Figure 8: (a) A ProSave control fork connector and (b) its formal semantics

10

2.4.3 Data Or

A data or connector merges several data connections into one. It has one output
data port and at least two input data ports. Informally, each incoming data is
forwarded to the output data port. The formal semantics of a data-or with two
input data ports and one output data port is presented in Fig. 9.

vd2=vd0,
 vd0=

(a) (b)

vd0 !=

vd2=vd1,
vd1=

vd1 !=

DataOr d2

d0

d1

εε

ε ε

↑↑

Figure 9: (a) A ProSave dataor connector and (b) its formal semantics

2.4.4 Control Or

Control or connector joins control flows of alternative paths. It has at least two
input trigger ports and one output trigger port. Informally, each incoming trig-
ger is forwarded to the output trigger. It does not wait for all input triggers to
be triggered (difference from control join). The formal semantics of a controlor
with two input trigger ports and one output trigger port is presented in Fig. 10.

vt2=true,
vt0=false

(a) (b)

vt0

vt2=true,
vt1=false

vt1

ControlOr
t0

t1

t2

Figure 10: (a) A ProSave connector controlor and (b) its formal semantics

2.4.5 Control Join

Control join connector joins control flows of several concurrent paths. It has at
least two input trigger ports and one output trigger port. Informally, it waits
until all input trigger ports are triggered and then it triggers the output port.
The formal semantics of a control-join with two input trigger ports and one
output trigger port is presented in Fig. 11.

11

vt2=true,
vt0=false, vt1=false

(a) (b)

vt0 /\ vt1

ControlJoin

t0

t2

t1

Figure 11: (a) A ProSave connector controljoin and (b) its formal semantics

2.4.6 Selection

Selection connector is used to chose a path of the control flow depending on a
condition. A selection connector has one input trigger port, at least one input
data port and several output trigger ports. Informally, conditions are associated
over data coming from the input data ports. Based on the result of evaluating
the conditions, it forwards the incoming trigger to exactly one of the output
trigger ports. The formal semantics of a selection connector with two input
data ports, and three exclusively disjunctive expressions Pred1, Pred2, Pred3
over data port variables p1 and p2 is presented in Fig. 12.

vt1=pred1,
vt2=pred2,
vt3=pred3,
vt0=false

(a) (b)

vt0

Selection

t0 t1

t2d1

d2 t3

Figure 12: (a) A ProSave connector selection and (b) its formal semantics

3 Formal Semantics of ProSys elements

The main modeling constructs of ProSys are message channels and subsystems.

3.1 Subsystems

Internally a ProSys primitive subsystem can be modeled as a collection of
ProSave constructs: components, connections, connectors (described in Section
2 and additional connectors: message ports and clocks (described in Section 4).

12

A composite subsystem internally consists of subsystems and message channels.
Subsystems are often meant to be allocated to different nodes in a distributed
system. Subsystems are active, with their own thread of execution. Message
passing between subsystems is asynchronous. A subsystem is specified by typed
input- and output message ports, as presented in Figure 13. An example of a
composite subsystem is shown in Fig. 14.

Figure 13: External view of a subsystem with three input message ports and
two output message ports.

Figure 14: An example of a composite subsystem.

3.2 Message channels

A message channel interconnects m output message ports to n input message
ports through “m + n connections. A message channel is associated with the
shared information. There are connections that associate message channels
with message ports of the composite subsystem or the subsystems inside. Two
message channels connected to the same message port will typically not manifest
as two separate units in the final system. The formal semantics of input/output
message port to a message channel is presented in Fig. 15, using our FSM
formalism.

• buffi: an unbounded buffer of messages, with operations insert() and re-
move()

• A message can not be removed more than once, and only a message that
was previously inserted into the buffer can be removed from it

13

• The operation remove() removes a message from the buffer and writes it
to corresponding port variable vmi

The defined formal semantics above represent the weakest possible behavior
of a message channel such that any further refinement e.g. buffer as FIFO etc.
must satisfy the above defined behavior. The detailed behavior is undefined
regarding individual message values (e.g. ordering, duration of stay in buffer
etc).

(a)

m1

m2

m0 ch

vm0

vm1

vm2

buff1

buff2

buff1.insert(vm0),
buff2.insert(vm0),
vm0 =

vm0 !=

ε

ε

(b)

Figure 15: (a) Graphical representation of connecting message ports to a mes-
sage channel and (b) its formal semantics

4 Using ProSave in a ProSys subsystem

ProSave elements can be used to model the internals of ProSys subsystem.
Internally, a ProSys subsystem is a collection of interconnected ProSave com-
ponents and ProSave connectors, but with some additional constructs: clocks
and message ports (input and output). These constructs are not allowed inside
ProSave components and serve for bridging the gap between the two commu-
nication paradigms: message passing in case of ProSys and pipe-and-filters in
case of ProSave. Clocks serve for periodic activation of ProSave components and
message ports are used for mapping between message passing and trigger/data
communication. The coupling between ProSave and ProSys is done only at the
top level in ProSave.

4.1 Clock

A clock is used for producing periodic triggers. It has one output trigger port
which generates a trigger at a specific rate (period). All clocks are assumed to
follow a common conceptual time, but it is not assumed that all clocks produce
their first activation simultaneously.

We assume that P is an integer representing the period of the clock.
Then the formal semantics of a clock is presented in Fig. 16.

14

vt0=true

Clock t0

(a)

[0,P] [P,P]

(b)

∗

∗

Figure 16: (a) Graphical representation of a clock and (b) its formal semantics

4.2 Input message port

An input message port has one output trigger and one output data port. It can
be connected to a ProSave component or connector. Whenever a message is
received, the message port writes this message data to the output data port and
activates the output trigger. Let todata()is a function that translates messages
into data. Then the formal semantics of a input message port is presented in
Fig. 17.

vd0=todata(vm0),
t0.t=true

(a) (b)

vm0 != d0

m0

t0

ε

Figure 17: (a) Graphical representation of a input message port and (b) its
formal semantics

4.3 Output message port

An output message port has one input trigger and one input data port. It
can be connected to a ProSave component or connector. Whenever the trigger
is activated the output message port sends a message with the data currently
present on the input data port. Let tomessage()is a function that translates data
into message. Then the formal semantics of a output message port is presented
in Fig. 18.

15

vm0 =tomessage(vd0),
vt0=false

(a) (b)

vt0d0

m0

t0

Figure 18: (a) Graphical representation of a output message port and (b) its
formal semantics

16

References

[1] R. Alur and D. L. Dill. A theory of timed automata. Theoretical Computer
Science, 126(2):183–235, 1994.

[2] Johan Bengtsson, W. O. David Griffioen, Kre J. Kristoffersen, Kim G.
Larsen, Fredrik Larsson, Paul Pettersson, and Wang Yi. Automated analysis
of an audio control protocol using uppaal. Journal of Logic and Algebraic
Programming, 52–53:163–181, July-August 2002.

[3] Tomas Bures, Jan Carlson, Ivica Crnkovic, Sverine Sentilles, and Aneta Vul-
garakis. Procom - the progress component model reference manual, version
1.0. Technical Report ISSN 1404-3041 ISRN MDH-MRTC-230/2008-1-SE,
Mälardalen University, June 2008.

[4] Tomas Bures, Jan Carlson, Sverine Sentilles, and Aneta Vulgarakis. A com-
ponent model family for vehicular embedded systems. In The Third In-
ternational Conference on Software Engineering Advances. IEEE, October
2008.

[5] Alexandre David, John H̊akansson, Kim Guldstrand Larsen, and Paul Pet-
tersson. Model checking timed automata with priorities using DBM subtrac-
tion. In 4th International Conference on Formal Modelling and Analysis of
Timed Systems (FORMATS’06), pages 128–142. Springer-Verlag, Septem-
ber 2006.

[6] Sverine Sentilles, Aneta Vulgarakis, Tomas Bures, Jan Carlson, and Ivica
Crnkovic. A component model for control-intensive distributed embedded
systems. In Michel R.V. Chaudron and Clemens Szyperski, editors, Pro-
ceedings of the 11th International Symposium on Component Based Software
Engineering (CBSE2008), pages 310–317. Springer Berlin, October 2008.

17

