
Extended Abstract

Software Architecture Evolution – An Integrated Approach in Industry

Hongyu Pei Breivold*, Ivica Crnkovic**
*ABB Corporate Research, Industrial Software Systems, Västerås, Sweden.

**Mälardalen University, Västerås, Sweden.
Emails: hongyu.pei-breivold@se.abb.com, ivica.crnkovic@mdh.se

Abstract

To improve the capability in being able to

understand and analyze systematically software

architecture evolution, we introduced in our earlier

work a software evolvability model and software

architecture evolvability analysis method. This

extended abstract reports the integration of the

evolvability model and evolvability analysis method

in an industrial context.

Keywords: Software evolvability, Software

evolution, Software architecture.

1 Introduction

Software evolution is characterized by inevitable
changes of software and increasing software
complexities, which in turn may lead to huge costs
unless rigorously taking into account change
accommodations. Software evolvability has thus been
recognized as a fundamental element for increasing
strategic and economic value of software, as it “bears

on the ability of a system to accommodate changes in

its requirements throughout the system’s lifespan with

the least possible cost while maintaining architectural

integrity” [4]. This is in particular true for long-lived
systems. For such systems, there is a need to address
evolvability explicitly, carry out software evolution
efficiently, and prolong the productive life of the
software systems. As software architecture holds a key
to the possibility to implement changes in an efficient
manner [1], software architecture evolution has become
an integral part of software lifecycle.

2 An Integrated Approach

To improve the capability in being able to understand
and analyze systematically software architecture
evolution, we introduced a software evolvability model
[2], in which subcharacteristics of software evolvability
and corresponding measuring attributes are identified.
The subcharacteristics that are of primary importance
for software evolvability in a given context (long-lived
software-intensive systems) are: analyzability,
architectural integrity, changeability, extensibility,
portability, testability and domain-specific attributes. In
addition, we also introduced a structured method for
analyzing evolvability at the architectural level, i.e. the
ARchitecture Evolvability Analysis (AREA) method
[3].

The evolvability model is a way to articulate
subcharacteristics for an evolvable system that an

architecture must support. The evolvability analysis
method starts with identification of change stimuli and
guides architects through the analysis of potential
architectural requirements that the software architecture
needs to adapt to, as well as their implications.
Integration of the evolvability model and the analysis
method ensures that the implications of the potential
requirements, improvement strategies and evolution
paths of the software architecture are assessed
systematically with respect to evolvability
subcharacteristics. Fig. 1 illustrates the process flow of
the integrated approach, showing the activities (in the
squares) and corresponding input/output artefacts.

Fig. 1 Process workflow of the integrated approach

3 Managing Software Architecture

Evolution at ABB

The integrated approach that embodies both the
software evolvability model and analysis method was
applied to assess an industrial automation control
system. A change stimulus from the business
perspective was the need for distributed application
development.

3.1 Background

The automation control system consists of more than
three million lines of C/C++ code. All the source code
was compiled into a single binary software package,
which consists of various software applications, aiming
for specific tasks that enable the automation controller
to handle various applications. The main problem with
the software architecture was its monolithic
characteristic with the existence of tight coupling
between some components that resided in different
layers. As a consequence, source code updates had to be
done not only on the application level, but through
several layers, several subsystems and components. As
the system was expanding, it became more difficult to

ensure that the modifications of specific application
software would not affect the quality of other
applications. This constituted a bottleneck in the effort
to enable distributed application development.

3.2 Activities

The refactoring process was performed through close
collaboration between the corporate research team and
local software development organization. It was a
continuous maturation process that took approximately
one calendar year including analysis, identification of
architecture evolution path and refactoring of some
primary components. The identification and analysis of
potential architectural requirements was performed by
architecture core team which consists of 6-7 persons.
These architectural requirements were categorized and
checked according to the subcharacteristics identified in
the software evolvability model. This was to justify
whether the identified requirements have covered
primary evolvability aspects, and whether the
realization of each requirement would lead to an
improvement of the subcharacteristics or possibly a
decrease, which would then require a tradeoff decision.

Subsequently, 2-3 persons in architecture core team
identified refactoring solution proposals that were
discussed and documented in terms of the following
views: (i) problem of the original design of the
component; (ii) new requirements that the component
needs to fulfill; (iii) architectural solution to design
problems; (iv) rationale of the solution proposal and
architectural implications of the deployment of the
component on quality attributes; and (v) estimated
workload for implementation and verification. The
architectural implications were assessed with respect to
the subcharacteristics identified in the software
evolvability model as well. These proposals were
discussed with the main technical responsible persons
and architects at the development organization,
documented as evolution path for the architecture,
circulated among the core team for inspection, and
transferred further to the implementation teams.

3.3 Results

By integrating the evolvability analysis method and the
evolvability model, potential architectural requirements
for future changes were captured and analyzed in a
systematic way. Likewise, by analyzing improvement
proposals with respect to their implications on
evolvability subcharacteristics, we further avoided an
ad hoc choice of potential evolution paths of software
architecture. The refactoring proposal report
highlighted major software components that exhibited
architectural shortcomings. Positive experience was that
the architecture requirements, corresponding
architectural decisions, rationale and architecture
evolution path became more explicit, better founded
and documented. The refactoring improvement
proposals were widely accepted by the involved
stakeholders. The defects and refactoring proposals
were reported to the development organization which

started corresponding improvement activities by the
implementation teams.

3.4 Experiences and Lessons Learned

Throughout the architecture refactoring process,
reasonable and measurable targets were set up to
constantly monitor the progress. For instance, a metric
was the number of exposed public interfaces.
Monitoring of this metric was conducted on a regular
interval. It provided signal indication on analyzing the
reason for trend of increasing number of interfaces
when this happened. This in turn provided a source of
input progress measurement and risk judgments.

Incremental architecture transformation strategy was a
preferred choice with the intention of not to disrupt the
ongoing development projects. The criteria for
prioritization of potential architectural requirements
were thus set up as: (i) enable building of existing types
of extensions after refactoring and architecture
restructuring; and (ii) enable new extensions and
simplify interfaces that may have negative effects on
implementing new extensions. Accordingly,
components that needed to be refactored could be
categorized into different priorities. A sequence of
incremental code transformation steps was identified,
performed and verified.

One aspect that may be further improved in the
integrated approach is that the determination of
potential refactoring proposals is on a qualitative level
in terms of their impact on evolvability
subcharacteristics. In addition, the importance of
evolvability subcharacteristics has been treated
implicitly, i.e. the choice of prioritized architectural
requirements qualitatively and implicitly set weight on
these subcharacteristics. Explicit quantitative
assessment remains to be done in the future work.

4 Conclusions and Future Focus

Following the described experiences, we will continue
with the integrated approach for software evolvability
assessment in other domains. We also plan to extend
the evolvability analysis method with weight score
computation to quantitatively define relative
preferences on evolvability subcharacteristics provided
by different stakeholders, and quantitatively weight
how refactoring alternatives support these
subcharacteristics.

References

[1] Bass, L., Clements, P., and Kazman, R.: ‘Software
Architecture in Practice’, Addison-Wesley Professional, 2003.

[2] Breivold, H.P., Crnkovic, I., and Eriksson, P.J.:
‘Analyzing Software Evolvability’, COMPSAC 2008.

[3] Breivold, H.P., Crnkovic, I., Land, R., and Larsson, M.:
‘Analyzing Software Evolvability of an Industrial Automation
Control System: A Case Study’, ICSEA 2008, pp. 205-213.

[4] Rowe, D., Leaney, J., and Lowe, D.: ‘Defining systems
evolvability- a taxonomy of change’, ECBS 1998.

