A Mode Switch Logic for component-based multi-mode systems

Yin Hang Hans Hansson
Milardalen Real-Time Research Centre Milardalen Real-Time Research Centre
Milardalen University Milardalen University
Visteras, Sweden Visteras, Sweden
young.hang.yin@mdh.se hans.hansson@mdh.se
Abstract

Component-Based Development (CBD) reduces development time and effort by allowing sys-
tems to be built from pre-developed reusable components. A classical approach to reduce embed-
ded systems design and run-time complexity is to partition the behavior into a set of major system
modes. In supporting system modes in CBD, a key issue is seamless composition of multi-mode
components into systems. In addressing this issue, we have developed a Mode Switch Logic (MSL)
for component-based multi-mode systems, implementing seamless coordination and synchronization
of mode switch in systems composed of independently developed components.

1 Introduction

Traditionally, partitioning system behaviors into different operational modes has been used to reduce
complexity and improve resource efficiency. Each mode corresponds to a specific system behavior. The
system can start by running in a default mode and switches to another appropriate mode when some
condition changes. In this way, the complexity of both system design and verification can be reduced
while system execution efficiency is improved. A typical multi-mode system is the control software of an
airplane, which e.g. could run in taxi mode (the initial mode), raking off mode, flight mode and landing
mode.

There are a variety of alternatives to design and develop a multi-mode system. We set our focus
on Component-Based Development (CBD), a promising solution for the development of embedded sys-
tems. CBD boasts quite a number of appealing features such as complexity management, increased
productivity, higher quality, faster developing time, lower maintenance costs and reusability [3]. The
most adorable feature of CBD for us is its component reuse idea, which allows us to build a system by
reusable components, i.e. a system does not have to be developed from scratch, instead, some of its
components or subsystems may be directly obtained from a repository of pre-developed components.

Our focus is component-based multi-mode systems (CBMMSs), i.e. multi-mode systems built by
a set of hierarchically organized components. Just as what its name indicates, a CBMMS has two dis-
tinctive features: (1) It is built in a component-based manner; (2) It supports multiple operational modes
and can switch between different modes under certain circumstances. Figure[I]illustrates the hierarchical
component structure of a typical CBMMS that will be used throughout this report. From the top level, the
system consists of three components: a, b and ¢c. Component b is composed of three other components:
d, e and f. With respect to the terminology of CBD, we can distinguish two basic types of components:
(1) A primitive component is directly made by software codes, thus it cannot be further decomposed into
other components; (2) A composite component is the composition of other components. Obviously, in
Figure[l] a, ¢, d, e and f are primitive components whereas Top and b are composite components. Since
the component hierarchy of the system has a tree structure, the subcomponents of a composite compo-
nent at one level down can be called children and this composite component is called parent. Moreover,
the system supports two modes: m1 and m2. When the system is in m1, Component f is deactivated
(invisible in m1 in Figure[I). By contrast, when the system is in m2, f is activated whilst ¢ and e become
deactivated. Besides, Component a has different mode-specific behaviors presented by black and grey
colors in Figure

young.hang.yin@mdh.se
hans.hansson@mdh.se

A Mode Switch Logic for component-based multi-mode systems Hang and Hansson

TOIJ Mode: m1

LI

Figure 1: A component-based multi-mode system

Mode: m2

Figure|[T|presents the component hierarchy of the system, yet without showing how these components
are connected. A component must have ports to communicate with another component. Depending
on the system software architecture and system functionalities, components can be connected in many
different ways. Figure [2] presents the component connection of the system in Figure [l As a simple
example, each component has only one input port and one output port denoted by blue texts and there
is only one-to-one connection with single direction. Actually this is a typical pipe-and-filter system,
which waits for some input data, processes the data and then generates the output data. Component
functionality is presented by the red texts. The input data is an integer i and each component performs
simple numerical calculation. For instance, Component a calculates i * 10 in mode m1 and i * 20 in mode
m?2. This is consistent with Figure[I|as Component a has different mode-specific behaviors in these two
modes. The consistence is also reflected from deactivated components, which are not connected to any
component in the corresponding mode.

Modc: ml
in a11 aol bllr_d_li _________________ éo_lubol cil col iout
In[}ut—h—b-—h—b-—b-—b‘—b-—b—b Output
- , '
| - | Ly fol’ b | |
! e Top !
Mode: m2
}"""_"_"_,___‘ ____________ Top !
in jail aol bil, dil dol fil fol bol 1out
Input ; d q‘J f » =E » Output
@ 120 ' Hlein eol U | cil col
' |

Figure 2: Component connections in different modes

From the example in Figure 2] we can see that the system behavior of a CBMMS is highly depen-
dent on its components in each mode. This dependency also holds during a mode switch. When a
system switches from one mode to another mode, its mode switch is essentially achieved by the joint
mode switches of certain components. The central issue is that the mode switches of different compo-
nents must be coordinated and synchronized to achieve a successful and efficient global mode switch.
Notwithstanding that there is plenty of research work dealing with mode switch, little attention has been
paid to this composable mode switch problem. To this end, we have developed a Mode Switch Logic
(MSL) for CBMMSs.

2 Related work

Mode switch problems (sometimes also called "Mode change”) can be found in a multitude of related
ongoing research works on miscellaneous topics, a majority of which delve into multi-mode real-time

A Mode Switch Logic for component-based multi-mode systems Hang and Hansson

systems, in particular the study of mode switch protocols and scheduling issues during mode switch. One
of the earliest publications related to mode switch is by Sha et al. [[18]], who developed a simple mode
switch protocol in a prioritized preemptive scheduling environment guaranteeing short and bounded
mode switch latency. Later Real and Crespo [[16]] conducted a survey of different mode switch protocols
and proposed several new protocols along with associated schedulability analysis. Protocols for symmet-
rical multiprocessor platforms are presented in [11], and extended to uniform multiprocessor platforms
in [23]]. There are also a number of papers, e.g. [21] and [12]], targeting mode switch schedulability
analysis, including EDF scheduling for multi-mode real-time systems [[1] [19] [L1O].

In addition, Phan et al. study multi-mode real-time systems from a different perspective. They ex-
tend the traditional Real-Time Calculus (RTC) into multi-mode RTC to determine typical system prop-
erties [14]. They also present a multi-mode automaton model for modeling multi-mode applications and
an interface-based technique for their compositional analysis [15]. Their most recent work presents a
semantic framework for mode switch protocols [13]].

Several frameworks have been developed for the support of multi-mode systems, such as COMDES-
II [9] and MyCCM-HI [2]]. Moreover, mode switch can be supported by a few programming languages/-
models, such as AADL [4], Giotto [8] and TDL [20] (implemented in the Ptolemy II framework [[17]]).

Compared with these existing works, the research on composable mode switch of CBMMSs is rela-
tively new and also demanding. In [5], we proposed the original MSL for CBMMSs, which serves as the
basis of this report. Based on the original MSL, a preliminary timing analysis of the global mode switch
was provided in [[7]]. One unrealistic assumption that has been made in our original MSL is that all com-
ponents support the same modes. In [6]], this assumption was lifted and a mode mapping mechanism was
proposed to handle the mode incompatibility problem. In this report, the original MSL will be updated
and explained in detail.

3 The mode-aware component model

Dozens of component models have already been proposed to date. However, most of them do not support
multiple modes. The COMDES-II component model considers multiple modes and mode switch, but
provides no mechanism guiding different components to realize the composable mode switch. Here we
propose a new mode-aware component model tailored to our MSL.

Figure [3]illustrates the mode-aware component model for both primitive and composite components.
A few points need to be mentioned:

e A component typically has one or more input and output ports. Each port is externally connected
to a neighboring component, its parent or internally connected to one subcomponent.

e For a primitive component, we introduce a mode switch dedicated port pMSR(MSR will be ex-
plained in the next section) to communicate with its parent during a mode switch. For a composite
component, we introduce two mode switch dedicated ports, during a mode switch, one is p”Sk for
the communication with its parent and the other is p%SR for the communication with its subcom-

ponents.

e For both primitive and composite components, the internal MSL defines how a component per-
forms its own mode switch and also controls its own mode switch behavior.

e A component has predefined configuration for each mode. The configuration of a primitive compo-
nent consists of its running status (activated or deactivated) and mode-specific behavior. The con-
figuration of a composite component consists of its running status (also activated or deactivated),
activated subcomponents, and active inner component connections. In each mode, only activated

A Mode Switch Logic for component-based multi-mode systems Hang and Hansson

components are running, while deactivated components are temporarily unavailable. Likewise, in
each mode, only active component connections are considered. A connection becomes inactive
when it is disconnected due to a mode switch. The mode switch of a component corresponds to its

reconfiguration.
MSR pMSR MSR
S n
2! S—
Halatutainlet - -*- TITToraa Mode Switch Logic (MSL) .
| Mode Switch Logic (MSL) i | feemooommo et i
”””””” T Control
Control l
Mode 1:
Mode 1: -
. Running status 1
Running status | Activated eob 1
- ctivated subcomponents
Behavior | Aot - D 0
- ctive connections
Po...pk » Pi+1...Pm
Mode n: Po...pre Mode n: . T Pitl...pm
Running status n Running status o ‘
Behavior n Activated subcomponents u|
Active connections n ‘

(a) Primitive component
(b) Composite component

Figure 3: The mode-aware component model

Based on this mode-aware component model, both primitive and composite components can be for-
mally defined. If we define PC as primitive component and CC as composite component, then each
c € PCis atuple:

< P,M,B,MB,S,MSL >

where P is the set of ports (the mode switch dedicated ports are implicit and thus not included) of ¢
partitioned into the disjoint subsets of input ports P, and output ports P,,; M is the set of operational
modes supported by c; B is the set of mode-specific behaviors of c; the function MB : M — B defines
the behavior associated with a certain mode; the function S : M — { Activated, Deactivated} indicates the
running status of ¢ in a certain mode; and MSL is the mode switch logic integrated in ¢, which will be
described as algorithms in later sections.

Similarly, each ¢ € CC is a tuple:

< P,SC,Con,M,S,ASC,ACon,MSL >

where P is the set of ports of ¢ (defined in the same way as ¢ € PC); SC is the set of subcomponents of c;
Con C (Py,» UP) x (Py,, UP) is the set of connections between the subcomponents in SC and connections
between ¢ and SC, where Py, is the set of ports of SC:

Pup = U D

compeSC

PEPcomp
M is the set of operational modes supported by c; the function S : M — { Activated, Deactivated} in-
dicates the running status of ¢ in each mode m € M; the function ASC : M — 25C defines the set of
activated subcomponents in each mode; the function ACon : M — 2¢°" defines the set of active connec-
tions (connections in use) in each mode; and MSL is the mode switch logic integrated in c. Now let’s
take Component ¢ and b in Figure[2] as examples. As a primitive component, Component ¢ is defined by
the tuple:

A Mode Switch Logic for component-based multi-mode systems Hang and Hansson

<P.,M.,B.,MB.,S.,MSL. >

where MSL. can be separately described as an algorithm and:

P, = {cil,col}

M, = {ml,m2}

B. = {B.(ml)}

MB. = {ml— B.(ml),m2— 0}

S. = {ml — Activated,m2 — Deactivated}

Since Component c is deactivated in mode m2, it has no mode-specific behavior in this mode, i.e.
m2 — (. By contrast, as a composite component, Component b is defined by the tuple:

< Py, SCy, Cony, My, S, ASCp,ACony, MSL;, >

where MSL;, can be separately described as an algorithm and:

P, = {bil,bol}

SC, = {d.e f}

Conp, = {(bil,dil),(dol,eil),(eol,bol),(dol, fil),(fol,bol)}
M, = {ml,m2}

Sp = {ml — Activated,m2 — Activated}

ASC, = {ml—{d,e},m2—{d,f}}

ACon, = {ml — {(bil,dil),(dol,eil),(eol,bol)},m2 — {(bil,dil),(dol, fil),(fol,bol)}}

Note that, each pair of connections (e.g., (do1,eil)) implies a data flow from first to second element
(e.g., dol to eil).

4 The MSR propagation mechanism

To simplify the problem, in this report we assume that the system and all its components support the
same modes. For instance, when the system is in mode m1, all its components are also running in m1.
Thus the triggering of a mode switch will contribute to a global activity. Theoretically speaking, a mode
switch can be triggered by any component of a CBMMS. This event must be propagated to all the other
components by some kind of signal, which is called Mode Switch Request (MSR):

Definition 1. Mode Switch Request (MSR) is a signal telling each component to switch mode. The
MSR itself contains information on the current MSR sender and the target mode which the receiver
should switch to. It is originally triggered by a particular component and then propagated to all related
components.

From now on, we will use MSR to denote that it functions as a primitive. An MSR is originally
triggered by the Mode Switch Triggering Source (MSTS):

Definition 2. Mode Switch Triggering Source (MSTS) is the component who triggers a mode switch and
initiates an MSR. An MSTS could be either a primitive or composite component.

When an MSTS triggers a mode switch, a key issue is how its MSR can be propagated to other
components. The simplest way is to broadcast its MSR to all other components, however, this is against

A Mode Switch Logic for component-based multi-mode systems Hang and Hansson

CBD. When a component is integrated into a component-based system, it shouldn’t be aware of the other
components in the system. Instead, it only knows its own subcomponents at one level down. Therefore,
an MSR must be propagated and forwarded from component to component through the hierarchy. To
guarantee that all components can be notified by the MSR, an MSR propagation mechanism is required.

Our MSR propagation mechanism works differently for primitive and composite components. For a
primitive component:

o Ifitis an MSTS, it will send an MSR to its parent and itself as it triggers a mode switch.

e Ifitis not an MSTS, it does not propagate the MSR, but will start its own mode switch upon arrival
of an MSR.

For a composite component, if it is an MSTS, when it initiates an MSR, it needs to send the MSR to
itself, all its subcomponents and its parent if it has one. If it is not an MSTS, it is sensitive to where the
MSR comes from:

o If the MSR comes from one of its subcomponents, it propagates the MSR to all its other subcom-
ponents and to its own parent if it is not at the top level.

e [f the MSR comes from its parent, then it propagates the MSR to all its subcomponents.

As an illustration, suppose that d in Figure [1|is the MSTS. Then the MSR propagation process is as
follows:

1. Component d sends an MSR to its parent b and to itself.
2. Component b propagates the MSR to e and f. It also sends the MSR to the top component.

3. The top component sends the MSR to a and c. When both a and c receive the MSR, MSR propa-
gation is terminated.

MSTS: d

Figure 4: MSR propagation

One problem that we haven’t addressed yet is that a system can have multiple MSTSs leading to
different mode switch activities, i.e., it is possible that the system receives a second MSR during a mode
switch. In this report, we assume that the interval between two consecutive MSRs is long enough so that
the next MSR will not be issued until the mode switch of the system triggered by the previous MSR is
completed.

In order to prove the correctness of our MSR propagation mechanism, a few more concepts need to
be explained:

Definition 3. The Depth Level of a component X, i.e. DL,, represents the hierarchical level of a compo-
nent in a system. The Depth Level of the top component is 0 and the Depth Level is increased by I at one
level down. The higher Depth Level value, the lower hierarchical level a component is at.

A Mode Switch Logic for component-based multi-mode systems Hang and Hansson

Definition 4. If Component y is within Component x and DL, — DL, > 1, then X is the ancestor of y and
y is one descendant of Xx. If 'y is within x and DL, — DL, = 1, then X is the parent of 'y, and y is one
child/subcomponent of X.

The correctness of our MSR propagation mechanism is reflected from two aspects: (1)When an
MSTS triggers a mode switch, all components should be notified; (2)When a mode switch is triggered,
each component receives one and only one MSR. The latter one also indicates its efficiency.

Theorem 1. Our MSR propagation mechanism guarantees that when a mode switch is triggered, all the
components will receive the MSR initiated from the MSTS no matter where the MSTS is.

Proof. Without losing generality, let’s define Component x (x € CC and DL, = n) as the MSTS. First, x
can send the MSR to itself, thus x can surely receive the MSR. When x initiates an MSR, we need to prove
that any other component y; with DL, = k and 0 < k < DLyax (DLyax is the maximal depth level in
a system) will receive the MSR. With respect to the position of another component in the hierarchy, we
distinguish three different cases:

e y; is one descendant of x. In this case, n < k < DLyax. Suppose y; does not receive the MSR from
x. Then Jy,_1, such that y, € SC,, , and DLy, | =k—1, and y;_ does not receive the MSR (If y;_;
has received the MSR, then according to our MSR propagation mechanism, it will send the MSR
to all its subcomponents including y;). By this structural induction, 3y, 1, such that y,; € SC;

and DL, ., = n+1, and y,;| does not receive the MSR. This is in contradiction with our MSR

propagation mechanism because x must send the MSR to all its subcomponents including y,+; at
the very beginning of the MSR propagation process. Therefore, y;, will surely receive the MSR

from x.

e y; is the parent or one ancestor of x. In this case, 0 < k < n, thus the top component is also
included. Suppose y; does not receive the MSR from x. If yj is the parent of x, it is obviously
in contradiction of the MSR propagation mechanism, as x will send the MSR to its own parent at
the very beginning. If y; is one ancestor of x, then Jy;; which is also one ancestor of x, such
that y;, | € SCy, and DL,,,, = k+ 1, and y;| does not receive the MSR (According to our MSR
propagation mechanism, each ancestor of the MSTS will receive the MSR from a subcomponent
and must propagate it further to its own parent if there is one. Therefore, if y;; has received the
MSR, then according to our MSR propagation mechanism, it will send the MSR to y; upwards). By
this structural induction, Jy,_1, such that x € SCy, | (i.e. y,_1 is the parentof x) and DL,, =n—1,
and y,_1 does not receive the MSR. This is in contradiction with our MSR propagation mechanism
because x must send the MSR to its own parent at the very beginning of the MSR propagation
process. Therefore, y; will surely receive the MSR from x.

e y, is neither the descendant nor the ancestor of x. In this case, 0 < k < DLyax. Suppose y; does
not receive the MSR from x. Then Jdy;_1, such that y; € SCy, | and DL, , =k — 1, and y;_; does
not receive the MSR(The same reason as the first case). If y;_; is the parent or one ancestor of x,
it is in contradiction with the second case which has been proved (The parent and any ancestor of
x can surely receive the MSR from x). If y;_; is neither the parent nor one ancestor of x, by this
structural induction, Jy,, such that DL, = m and 0 <m <k, and y,, does not receive the MSR. In
order not to violate the fact already proved in the second case, y,, still cannot be the parent or any
ancestor of x. However, during the induction, as m decreases, y,, will be finally the top component
when m = 0. And the top component is the ancestor of all components including x. Therefore, y,,
will inevitably be either the parent or one ancestor of x. And it will be in contradiction with the
fact proved in the second case anyway. Therefore, y; will surely receive the MSR from x.

A Mode Switch Logic for component-based multi-mode systems Hang and Hansson

Since, both the MSTS x and any other component y; (y; must belong to one of the three cases above)
will surely receive the MSR from x no matter where the MSTS is, Theorem|I]is proved. O

Theorem 2. Our MSR propagation mechanism guarantees that there is no redundant MSR transmission.

Proof. We have proved that an MSTS guarantees each other component will receive one MSR. Now we
can assume that one component receives two identical MSRs. If we can prove that this is in contradiction
with our MSR propagation mechanism, we will know a component cannot receive the same MSR twice
with regard to the same MSTS. More generally speaking, we will also conclude that a component cannot
receive the same MSR more than twice because it has to receive two before it can receive more MSRs.
Then this will imply that each component should receive one and only one MSR from the MSTS and
Theorem [2] will be proved.

Considering one MSTS, a component rather than the MSTS can receive the same MSR twice only
due to the following possible reasons:

1. The MSTS sends the same MSR twice to the same target(s), which will thus propagate it twice.

2. There is a loop in the component hierarchical structure so that the same MSR can be propagated
back to a component which has already propagated it before.

3. There is at least one component who propagates the same MSR twice to at least one target even
after receiving the MSR only once.

4. There is at least one component who propagates the MSR back to the current sender after receiving
the MSR from that sender.

Now let’s analyze these four reasons above:

e The first reason makes no sense because our MSR propagation mechanism only allows the MSTS
to send one MSR to the same target, who could be its parent or one of its subcomponents.

e The second reason makes no sense either. The component hierarchy has a typical tree structure as
it roots at the top and extends itself to lower levels. No overlapping or loop can be found in the
component hierarchy.

e The third reason is actually in contradiction with our MSR propagation mechanism. During MSR
propagation, no component will send the same MSR twice to another component.

e According to our MSR propagation mechanism, when a component receives the MSR from its
parent, it will propagate the MSR to all its subcomponents but not its parent. When a component
receives the MSR from one subcomponent, it will propagate the MSR to its parent (if it has one)
and all its subcomponents rather than the sender. This means that the MSR is never propagated
back from a receiver to a sender. Therefore, such a component mentioned in the fourth reason
never exists.

Among the four possible reasons, the first two makes no sense and the last two are in contradiction
with our MSR propagation mechanism. As a result, it is impossible for any component to receive the
same MSR twice with regard to one MSTS. Then based on the reasoning at the beginning of this proof,
Theorem [2]is proved. O

A Mode Switch Logic for component-based multi-mode systems Hang and Hansson

5 Mode switch dependency rules

The MSR propagation mechanism is only applied during MSR propagation, which is just the initial
stage of the global mode switch process. After MSR propagation, each component will start its own
mode switch. The mode switches of different components must be properly synchronized. Here we
make a mode switch dependency rule to achieve this goal:

Rule 1. Each component starts its reconfiguration after its MSR propagation. There is no dependency
on the reconfigurations of different components. A primitive component completes its mode switch after
its reconfiguration and then it must send an ms_done signal to its parent. A composite component is
supposed to collect ms_done from all its subcomponents. A composite component completes its mode
switch when its reconfiguration is completed and it has received ms_done from all its subcomponents.
Upon mode switch completion, a composite component will send ms_done to its own parent if it is not at
the top level. When the top component completes its mode switch, the global mode switch is completed.

Based on our mode switch dependency rule, the mode switch of a CBMMS is completed in a bottom-
up manner as the mode switch of a composite component is dependent on the mode switches of its sub-
components. One advantage of our dependency rule is that it is independent of component connection.
What it concerns is only the system component hierarchy.

Figure [5] demonstrates the global mode switch process of the system in Figure [l Component d is
the MSTS. The global mode switch starts by MSR propagation which has already been described in the
previous section. After receiving the MSR, each component will start its reconfiguration, presented by
black bars in Figure[5] For primitive components such as a, ¢, d, e and f, an ms_done signal is sent right
after the reconfiguration which equals mode switch completion for them. The top component has a short
reconfiguration time, yet it still needs to wait for the ms_done signals from its subcomponents a, b and
¢, thus it is temporarily blocked before its mode switch completion as indicated by the white bar in the
figure.

MR

MS completion

. Reconfiguration D Blocked

Figure 5: The global mode switch process

The correctness of our mode switch dependency rule can be reflected from the following theorem:
Theorem 3. Our mode switch dependency rule is deadlock-free.

Proof. Our mode switch dependency rule is applied after MSR propagation. Since then, there are only
two kinds of activities: component reconfiguration and ms_done transmission. For a system supporting
fully parallel execution, there is no dependency between the reconfiguration of any two components. If
no parallel execution is supported, the reconfigurations of different components may be affected by the
scheduling policy, but all their reconfigurations can be completed. Thus component reconfiguration will

A Mode Switch Logic for component-based multi-mode systems Hang and Hansson

not lead to any deadlock. Besides, since ms_done is always sent from a subcomponent to its parent in a
bottom-up manner, a component never needs to wait for anything from the parent after its reconfiguration.
This will not give rise to any deadlock either. The only one possible deadlock situation is that a composite
component is waiting for ms_done from its subcomponents and at least one subcomponent will never send
ms_done to it. Suppose one composite component x is waiting for one ms_done from one subcomponent y
that never comes. If y is primitive, since the reconfiguration time of any component is bounded, based on
our dependency rule, y must send ms_done to x as soon as it completes its reconfiguration. This deadlock
situation will be in contradiction with the dependency rule. If y is composite, this must imply that y is
also waiting for ms_done from at least one of its subcomponents. By this structural induction to lower
levels, we will unavoidably find that this deadlock is caused by a primitive component z who never sends
ms_done to its parent after reconfiguration. This is obviously in contradiction with the dependency rule.
Therefore, our mode switch dependency rule is deadlock-free. Theorem [3]is proved. O

6 Algorithms for the MSL

In this section, the MSR propagation mechanism and the mode switch dependency rule are combined
together as the MSL and they can be implemented in both primitive and components as algorithms. Since
the mode switch behaviors of primitive and composite components are different, they will be discussed
separately. Algorithm [I] and [2] describe the MSL that control the mode switch processes of primitive
and composite components respectively. Before presenting the algorithms, we introduce the following
notations:

e m; denotes the current mode of a component.

e Wait and Signal are primitives for receiving and sending MSR and ms_done via the mode switch

dedicated ports, i.e. pSR or pM5R,

e MSR(x,y) is the MSR carrying the new target mode x and the identity of the sending component y.
e ms_done(x) is the ms_done signal carrying the identity of the sender.

e Reconfiguration(mgq,mye,) changes running status and mode-specific behavior for a primitive
component. For a composite component, it changes running status and its inner component con-
nections. It may also include some cleaning up in the old mode and preparation for the new mode.

e For a composite component, fop is a boolean variable only set to true if it is the top component.

o exec(MB,(my,,)) means that x starts to execute its behavior defined in mode my,,, after mode
switch.

e N"s-don¢ denotes the number of ms_done signals already received from the subcomponents of a
composite component.

7 Current work and future work

Our original MSL assumes all components support the same modes and this unrealistic assumption has
been lifted in [6]. Another unrealistic assumption is that the execution of a component is aborted imme-
diately when an MSR arrives. However, in a practical system, it is fairly common that one component
or even a group of components have atomic execution, which must run to completion before a mode

10

A Mode Switch Logic for component-based multi-mode systems Hang and Hansson

Algorithm 1 AlgPC.mode_switch(x € PC,m; € M)

current _mode := m;;

loop
Wait (pMSR MSR (mye,, origin));
Reconfiguration(current_mode, mye,,);
Signal (p™SR ms_done(x));
current _mode = Myeyy;
if Sy (Mpew) = Activated then

exec(MBy(myey));

end if

end loop

Algorithm 2 AlgCC.mode_switch(x € CC,m; € My,top)
current _mode := m;;
loop
Wait (pMSE N pMSR MSR (myew, origin));
if origin = parent then
Ve € SCy : Signal (pSR MSR (myen, X))

else
Ve € (SC, \ {origin}) : Signal (pY5R MSR(myey, X));
if —top then
Signal (pMSR MSR (mype,, x));
end if
end if

Reconfiguration(current_mode, mye,,);
while Ns-done < |SC, | do
Wait;
end while
if —zop then
Signal (p5R
end if
current_mode := NMyey;
end loop

,ms_done(x));

switch can be taken. As one of our current works, we are trying to extend the original MSL by adding
the support for atomic component execution. Apart from this, we are also looking into the analysis of the
global mode switch time while atomic component execution is considered. In addition, we need to come
up with a mechanism to resolve the conflict of multiple MSRs. The conflict may occur in two conditions:
(1) The same MSTS triggers two MSRs with so short interval that some other components receive the
second MSR before mode switch completion; (2) One MSTS x triggers an MSR without knowing that
another MSR has already been triggered by another MSTS y and that MSR has not been propagated to
x yet, or x and y trigger different mode switches simultaneously. These two conditions may be treated
differently. Furthermore, when our MSL is mature enough, it is our ambition to implement it in the
ProCom framework [22] that embodies the feature of component reuse very well.

11

A Mode Switch Logic for component-based multi-mode systems Hang and Hansson

8

Acknowledgments

This work is supported by the Swedish Research Council.

References

(1]

(2]

(3]

(4]

(5]

(6]

(71

(8]

(9]

[10]

[11]

[12]

[13]

[14]

[15]

[16]

[17]

[18]

[19]

[20]

B. Andersson. Uniprocessor edf scheduling with mode change. In 12th International Conference on Princi-
ples of Distributed Systems, pages 572-577, 2008.

E. Borde, G. Haik, and L. Pautet. Mode-based reconfiguration of critical software component architectures.
In Conference on Design, Automation and Test in Europe, pages 1160-1165, 2009.

Ivica Crnkovic and Magnus Larsson. Building reliable component-based software systems. Artech House,
2002.

P. H. Feiler, D. P. Gluch, and J. J. Hudak. The architecture analysis & design language (AADL): An intro-
duction. Technical Report CMU/SEI-2006-TN-011, Software engineering institute, MA, February 2006.

Y. Hang, E. Borde, and H. Hansson. Composable mode switch for component-based systems. In APRES ’11:
Third International Workshop on Adaptive and Reconfigurable Embedded Systems, pages 19-22, 2011.

Y. Hang and H. Hansson. A mode mapping mechanism for component-based multi-mode systems. In 4th
Workshop on Compositional Theory and Technology for Real-Time Embedded Systems, pages 38—45, 2011.
Y. Hang and H. Hansson. Timing analysis for a composable mode switch. In The Work-in-Progress session
of the 23rd Euromicro Conference on Real-Time Systems, pages 15-18, 2011.

T. A. Henzinger, B. Horowitz, and C. Meyer Kirsch. Giotto: A time-triggered language for embedded
programming. In PROCEEDINGS OF THE IEEE, pages 166184, 2001.

X. Ke, K. Sierszecki, and C. Angelov. COMDES-II: A component-based framework for generative devel-
opment of distributed real-time control systems. In /3th IEEE International Conference on Embedded and
Real-Time Computing Systems and Applications, 2007.

V. Nélis, B. Andersson, J. Marinho, and S. M. Petters. Global-edf scheduling of multimode real-time systems
considering mode independent tasks. In 23rd Euromicro Conference on Real-Time Systems, pages 205-214,
2011.

V. Nélis, J. Goossens, and B. Andersson. Two protocols for scheduling multi-mode real-time systems upon
identical multiprocessor platforms. In 27st Euromicro Conference on Real-Time Systems, pages 151-160,
20009.

Paulo Pedro and Alan Burns. Schedulability analysis for mode changes in flexible real-time systems. In /0th
Euromicro Conference on Real-Time Systems, pages 172—179, 1998.

L. T. X. Phan, I. Lee, and O. Sokolsky. A semantic framework for mode change protocols. In /7th IEEE
Real-Time and Embedded Technology and Applications Symposium, pages 91-100, 2011.

Linh T. X. Phan, Samarjit Chakraborty, and P S Thiagarajan. A multi-mode real-time calculus. In Real-Time
Systems Symposium, pages 59—69, 2008.

Linh T. X. Phan, Insup Lee, and Oleg Sokolsky. Compositional analysis of multi-mode systems. In 22nd
Euromicro Conference on Real-Time Systems, pages 197-206, 2010.

J. Real and A. Crespo. Mode change protocols for real-time systems: A survey and a new proposal. Real-Time
Systems, 26(2):161-197, 2004.

P. D. Stefan Resmerita and W. Pree. Timing definition language (TDL) modeling in ptolemy II. Technical
report, Department of Computer Science, University of Salzburg, June 2008.

L. Sha, R. Rajkumar, J. Lehoczky, and K. Ramamritham. Mode change protocols for priority-driven preemp-
tive scheduling. Real-Time Systems, 1:243-264, 1989.

N. Stoimenov, S. Perathoner, and L. Thiele. Reliable mode changes in real-time systems with fixed priority
or edf scheduling. In Conference on Design, Automation and Test in Europe, pages 99—-104, 2009.

Josef Templ. TDL specification and report. Technical report, Department of Computer Science, University
of Salzburg, November 2003.

12

A Mode Switch Logic for component-based multi-mode systems Hang and Hansson

[21] K. W. Tindell, A. Burns, and A. J. Wellings. Mode changes in priority pre-emptively scheduled systems. In
Real Time Systems Symposium, pages 100—109, 1992.

[22] A. Vulgarakis, J. Suryadevara, J. Carlson, C. Seceleanu, and P. Pettersson. Formal semantics of the Pro-
Com real-time component model. In 35th Euromicro Conference on Software Engineering and Advanced
Applications, pages 478-485, 2009.

[23] P. Meumeu Yomsi, V. Nelis, and J. Goossens. Scheduling multi-mode real-time systems upon uniform

multiprocessor platforms. In 15th IEEE International Conference on Emerging Technologies and Factory
Automation, 2010.

13

	Introduction
	Related work
	The mode-aware component model
	The MSR propagation mechanism
	Mode switch dependency rules
	Algorithms for the MSL
	Current work and future work
	Acknowledgments

