
Benchmarking of a Real-Time System that utilises
a booster

J. Furunäs
Mälardalen Real-Time Research Centre

Mälardalen University, Sweden
e-mail: johan.furunas@mdh.se

Abstract Application speedups can be achieved by
speeding up the hardware, e.g. by utilising an
Operating System co-processor. The paper present
results from a comparison of executing benchmark
programs on a system with and without a co-
processor, but which otherwise are identical. The
observed speedup is mostly due to the fact that
there is no need for clock tick administration, in the
system with co-processor, and that the booster
scheduler is faster than the software based one. In
general the system calls are faster without the co-
processor for the benchmark considered in this
paper. This is mostly due to the slow bus accesses
when communicating with the co-processor.

Keywords: Real-Time Operating System co-
processor, benchmark.

1. Introduction

It is not always possible to achieve increased
performance by upgrading a processor,
supporting faster clock frequencies, or utilising
multiple application processors. Faster clock
frequencies are limited by physical laws and are
dependent of the silicon manufacturing
techniques. The utilisation of multiple
application processors may be limited by the
possibility of making the application parallel
and the architecture used, e.g. in an architecture
with a shared bus, accessing the bus may be a
bottleneck. On the other hand the developer of
control systems more and more utilises
Commercial Off The Shelf (COTS)
components, e.g. computer boards, processors,
I/O cards etc, and are therefore not able to
optimise the system performance so easy. One
solution to increase performance is to decrease
the administration, e.g. scheduling, clock-tick
administration etc., by utilising a co-processor.
There are several examples of utilising special
purpose RTOS co-processors [11] [12] [13]
[14] [16] [8], or standard processor RTOS co-
processors [9] [10]. The benefit of utilising

special purpose hardware compared to utilising
a standard processor is that it can be designed to
be more predictable and to have greater
performance, due to utilisation of parallel
hardware. Additionally the flexibility of
utilising a standard processor is not as
distinguished as it was before the invention of
flexible hardware, e.g. Field Programmable
Gate Array (FPGA). This paper focuses on a
special purpose scheduling co-processor called
Booster [1], which is a commercial scheduler
based on the Real-Time Unit research [18].

The motivation for this paper is to show that it
is possible to increase performance, both in a
single processor system and a multiprocessor
system, through the utilisation of a Booster co-
processor. Further motivation is to show that
one must prevent bottlenecks e.g. slow busses
etc. to efficiently utilise a RTOS co-processor.
Results presented are based on benchmarks of
a model of a telecommunication application
running on:
1. A processor supervised by a commercial

single processor RTOS.
2. A processor supervised by a RTOS with

Booster support.
3. Two processors supervised by a RTOS

with Booster support.

The following application components are
measured:
• The application response time, i.e. how

fast the application program completes.
• RTOS overhead for the clock tick

administration, i.e. the RTOS overhead
handling the scheduling of time events
such as scheduling periodic- and delayed
tasks etc.

The paper is organised as follows. In section 2
the hardware architecture of the benchmark is

described and in section 3 the Booster co-
processor is described. Section 4 describes the
benchmark application and section 5 describes
the method of measurement used. Section 6
presents the benchmark results and section 7
discusses some ideas on how to improve the
use of the Booster. Finally, section 8 concludes
the paper and presents some ideas on future
work.

2. Hardware Architecture

The system that runs the benchmark is a
CPX2208 [4] 8 slot Compact PCI [3] chassis
with one MCP750 [6] board, two MCPN750
[7] boards and a Booster (cf. Figure 1). The
MCP750 is a system master board that is
placed in the first slot of the CPX2208 and the
booster is placed into its PMC [7] slot.

Figure 1: Compact PCI system with one
MCP750 board (with a booster) and two
MCPN750 boards.

The memory on the MCP750 board is
configured as a global memory, which means
that the MCPN750 boards are able to access
that memory.

The benchmark application is either executed
on one of the MCPN750 boards, with or
without booster assistance, or shared between
two MCPN750 boards that are assisted by a
booster.

3. Booster

The booster is a hardware scheduler that
schedule processes on one, two or three
processors, interacted via register accesses. An
RTOS has been implemented that utilises the
booster, over the interconnection bus (cf. fig.
2). The RTOS has the same Application
Interface (API) as the commercial pure
software based RTOS utilised in the
benchmark i.e. the booster RTOS is a direct
descendent of the pure software one. Different
APIs, e.g. POSIX [15] and OSE [17] etc., have
been implemented for the booster without any
changes in the booster hardware.

As described above the booster is mainly a
scheduler, but by adding components with
other functionality, e.g. semaphores,
watchdogs etc. one can speedup other
functionality related to a RTOS. An example
of a RTOS co-processor with more
functionality is the Real-Time Unit (RTU)
[18].
The Booster have 17 registers, were 12 are
processor specific registers i.e. 4 per processor.
These registers are for handling service calls,
round robin times and showing current
running-process identity etc. for respective
processor. The other 5 registers are shared
between all processors and are mainly used for
time management, e.g. periodic processes,
system time etc. To measure time in the
benchmark, the Booster timer register is

Transparent PCI to
PCI bridge

Non-Transparent PCI
to PCI bridge

Non-Transparent PCI
to PCI bridge

Compact PCI bus

Processor
to PCI bridge

Processor
to PCI bridge

Processor
to PCI bridge

Booster+
PCI
bridge

PPC750 RAM PPC750 RAM PPC750 RAM

Local PCI busLocal PCI bus Local PCI bus

Slot 1: MCP750 Slot 2: MCPN750 Slot 3: MCPN750

utilised as a 1 µs timer. For more details about
Booster see [1].

Figure 2: Application with RTOS in software
and booster in hardware.

4. Application

A common telecommunication application,
implementing the central transitions in a
telecom switch, has been chosen as
benchmark. The application, can be build as
follows from Ericsson UAB [2] (A Swedish
telecom company).
There are x number of rings consisting of y
number of prioritised workload processes with
w number of workload loops and z number of
iterations in a workload loop. Each ring
represents a telephone call connection. Every
process within a ring has identical priority and
the priority is increased by one for each new
ring. When a process finish z iterations of a
workload loop it sends a signal buffer to the
next process in the ring and pend until a signal
buffer is sent to it i.e. from the previous
process in the ring. After w number of
workload loops the workload process suspends
itself.
The x and y parameters controls the number of
workload processes in the system and are used
to load the RTOS kernel. W and z controls the
process workload. By tuning x, y, w and z it is
possible to affect the workload, which also
affect the idle process execution time. A low
workload is when the idle process gets a lot of
execution time.
There are three types of RTOS configurations
that the benchmark is tested on, namely.
1. A uniprocessor system based on a

commercial widely utilised RTOS (the
name of which cannot be disclosed) that
utilises local memory for code and global

memory for data. One MCPN750 board
executes the application.

2. A uniprocessor system that utilises local
memory for code, global memory for data
and the same RTOS as above is utilising a
Booster. One MCPN750 board executes
the application.

3. A multiprocessor system that utilises local
memory for code, global memory for data
and the RTOS is utilising a Booster. Two
MCPN750 boards share the execution of
the application.

To be able to compare the three configurations
the following has been added to the
application.
• A high priority process is included to

create the rings, start the rings, and to
present the results.

• The idle process increases an idle loop
variable each time it is executed.

• Code that samples the Booster timer before
and after an RTOS service call i.e. services
call time.

• Make the ring processes send the service
call times to the high priority process,
which will present the times.

5. Method of measurement

To measure the processor utilisation factor the
response time upon finished work is measured.
The response time (cf. figure 3) is measured
between starting the ring until the idle process
starts, which is done by sampling the booster
timer register configured as a 1 µs timer.
To measure the clock tick administration
overhead the idle process increments a counter
continuously. By knowing how much time it
takes to count up to a certain number, without
clock tick interruption, and how much time
idle is executing it is possible to calculate the
clock tick administration time (cf. example
below).
Example:
Idle has counted to 5222424. To count up to
198000 (without clock tick) it takes 0.9
seconds. The Idle time is then
5222424/(198000/0.9)=23.8 seconds. Idle
starts after 5.2 second i.e. the work processes
have finished their work. The time that idle
and work processes have to disposal is 29.7
seconds i.e. the time the highest prioritised
process is delayed. Idle total time, including
clock tick administration is 29.7 - 5.2 = 24.5

RTOS

Booster

Application

Software

Hardware

Interconnection bus

seconds. The clock tick time is then 24.5 - 23.8
= 0.68 seconds, which makes 0.68/24.5 = 2.77
% i.e. 2.77 % is clock tick administration
during the considered 24.5 seconds period.

Figure 3: Response time upon finished work.

The RTOS overhead for send, receive alloc
and free are measured by sampling (reading
the Booster timer) the time before and after the
respective RTOS calls. To show the effects of
utilising an RTOS co-processor in a
uniprocessor and multiprocessor system, the
benchmark is executed on the respective
system.

6. Results

This section presents the results of the
benchmark test, including.
• The application response time, i.e. how

fast the application completes.
• RTOS overhead for clock tick

administration.
• Effects of utilising an RTOS co-processor

in a uniprocessor system and
multiprocessor system.

The application response time is decreased
when an RTOS co-processor is used. Table 1
shows the response time of the benchmark
application with workload loop value 250000.
The first column holds the number of workload
processes used and the other columns holds the
response times (in seconds) for respectively
configuration. Each configuration can be
described as follows:
• 32 ms/1 ms (GM) = RTOS without co-

processor running with 32 ms/1 ms clock
ticks, all data is located in a globally
accessed memory and the code is located
in a locally accessed memory.

• 32 ms/2 ms (LM) = RTOS without co-
processor running with 32 ms/2 ms clock
ticks, both code and data is located in a
locally accessed memory.

• 32 ms/1 ms ($) = RTOS without co-
processor running with 32 ms/2 ms clock

ticks, both code and data is located in
cache memory.

• Boost1 (GM) = one processor with RTOS
co-processor, all data is located in a
globally accessed memory and the code is
located in a locally accessed memory.

• Boost2 (GM) = two processors with RTOS
co-processor, all data is located in a
globally accessed memory and the code is
located in a locally accessed memory.

• Boost1 (LM) = one processor with RTOS
co-processor, both code and data is located
in a locally accessed memory.

• Boost1 ($) = one processor with RTOS co-
processor, both code and data is located in
cache memory.

Figure 4: Response time, global memory
configuration.

Figure5: Response time, local memory
configuration.

0

5

10

15

20

25

30

35

32 ms (LM) 2 ms (LM) Boost1 (LM)

Configuration

Ti
m

e
in

 s
ec

on
ds 56

28

4

0

0

50

100

150

200

250

32 ms (GM) 1 ms (GM) Boost1 (GM) Boost2 (GM)

Configuration

105
28
4
0

Workload
processes

Idle

Response
time

Figure 6: Response time, cache memory
configuration.

of
proc

32 ms
(GM)

32 ms
(LM)

32 ms
($)

1 ms
(GM)

105 137,0 198,1
56 29,89 4,34
28 36,34 14,9 2,17 52,82
4 5,22 2,14 0,31 7,54
0 1,4e-4 5,5e-5 4e-6 1,5e-4
of
proc

2 ms
(LM)

1 ms
($)

Boost1
(GM)

105 79,8
56 31,62 4,35
28 15,8 2,17 21,1
4 2,26 0,31 3,04
0 5,5e-5 5e-6 2,79e-4
of
proc

Boost2
(GM)

Boost1
(LM)

Boost1
($)

105 53,2
56 16,23 4,06
28 14,3 8,12 2,03
4 2,05 1,16 0,29
0 1,4e-4 1,1e-4 2,4e-5

Table 1: Response times in seconds.

Figure 4 to 6 shows the response time for the
different configurations. The faster the
memory system is the less the response time
differences between using and not using a co-
processor gets. When using cache and utilising
a co-processor, the accesses to the co-
processor are costly. With a logic-analyser
connected to the processor bus and the PCI
bus, write access times have been measured to
230 ns - 1130 and read accesses to 1360 ns -
3630 ns. The PCI bridges and other devices
cause the access time variation. Since the PCI

bridges have 32 access buffers an access can
vary if the buffers gets full i.e. the bridges can't
keep up with the processor bus. Additionally
other devices, e.g. other processors (if
multiprocessor system), Ethernet chips, may
access the PCI bus delaying each other's
accesses resulting in access time variations.

32 ms
(GM)

32 ms
(LM)

32 ms
($)

1 ms
(GM)

2 ms
(LM)

2,8 0,2 0,01 32,7 5,8
1 ms
($)

Boost1
(GM)

Boost2
(GM)

Boost1
(LM)

Boost1
($)

0,1 0 0 0 0

Table 2: Clock tick administration in %.

Table 2 shows the clock tick administration for
the different configurations. As seen, the clock
tick administration is up to 32 %, when the
commercial RTOS runs with 1 ms clock tick
resolution and data located in a global memory
accessed over the PCI-bus. In the booster case,
clock tick administration is zero since the co-
processor takes care of that. One can also see
that when a faster memory system is used the
clock tick administration decrease. Note that
the booster RTOS is implemented to support
multiprocessor systems and the commercial
RTOS only supports single processor systems.
Due to this fact the two RTOS:es are not
totally comparable. The comparison would be
more accurate if the booster RTOS only
supported single processor systems. In the
future this change will be implemented and the
result from that is that greater speedup is
expected.

7. Modifications

The results in previous section show that the
PCI-bus accesses are very costly compared to
local- or cache accesses, which means that
performance could be improved if the co-
processor would be located differently in a
system. Below some ideas on where to locate a
co-processor is described with remarks
concerning easiness, scalability and
performance.
• Integrate the booster with the CPU.

Easiness: Is easy when building an own
processor but not on COTS processor.
Scalability: Is possible to scale when
building a system on chip based on own

0
0,5

1
1,5

2
2,5

3
3,5

4
4,5

5

32 ms ($) 1 ms ($) Boost1 ($)

Configuration

Ti
m

e
in

 s
ec

on
ds 56

28

4

0

implemented processors else it doesn't
scale well.
Performance: Here the greatest
performance gains can be achieved, since
the co-processor can perform the context
switch and the RTOS instruction can be
integrated in the processor instruction set.

• Place the booster on the processor bus.
Easiness: Simpler than first idea. One must
probably design a new processor board
since there are not many COTS boards that
have an FPGA on the processor bus.
Scalability: Doesn't scale well.
Performance: Some improved
performance but not as good as first idea.

• Place the booster on the processor bus and
use snoop signals on the mcp750 to
enforce coherency.
Easiness: Same as previous.
Scalability: Same as previous.
Performance: Some improved
performance compared to previous but not
as good as the first idea.

• Make the booster registers part of the L2
cache.
Easiness: Simpler than first idea. One must
probably design a new processor board
since there are not many COTS boards that
have an FPGA on the L2 cache bus.
Scalability: Same as previous.
Performance: Some improved
performance compared to previous but not
as good as the first idea.

• Make the booster registers distributed to
either L2 cache or local memory over a
gigabit network (one for each CPU).
Easiness: Simpler than first idea. One must
probably design a new processor board
since there are not many COTS boards that
have an FPGA on the L2 cache - or
processor bus.
Scalability: Does scale well.
Performance: Same as previous.

8. Conclusion & Future Work

This paper describes results of benchmarks of
a real-time system, build on COTS
components, with and without operating
system co-processor. A common
telecommunication application, implementing
the central transitions in a telecom switch, has
been chosen as benchmark. It has been shown
that application speedups can bee achieved
when utilising a co-processor. But the

speedups can possibly be greater if locating the
booster differently within a system. Also,
greater speedups are expected when the co-
processor RTOS is optimised for single
processor systems. In the future that will be
tested.
Some suggestions on where to locate the
booster have been described and should be
practically evaluated to prove the correctness
of them.

Acknowledgements
Ericsson UAB supported this work.
References

[1] "BOOSTER RTU - Hardware Functional
Specification ",RF RealFast AB, Dragverksg 138,
S-724 74 Västerås, Sweden, http://www.realfast.se/

[2] Ericsson UAB, Älvsjö, Sweden.

[3] Compact PCI is a computer bus that is defined
by PICMG (PCI Industrial Computer
Manufacturers Group),
http://www.picmg.com/gcompactpci.htm

[4] “CompactPCI CPX 2108/2208 Chassis
Installation Guide CPX2108A/IH2”,
http://library.mcg.mot.com/mcg/hdwr_systems/@G
eneric__CollectionView

[5] “MCP750 CompactPCI Single Board Computer
Programmer's Reference Guide”,
http://library.mcg.mot.com/mcg/hdwr_boards/@Ge
neric__CollectionView

[6] “MCPN750 CompactPCI Single Board
Computer Programming and Reference Guide”,
http://library.mcg.mot.com/mcg/hdwr_boards/@Ge
neric__CollectionView

[7] PCI Mezzanine Card is defined in IEEE
P1386.1/Draft 2.0 (April 4, 1995),
http://www.force.de/technology/draft/pmc_draft.pd
f

[8] J. Hildebrandt, F. Golatowski, D.Timmermann,
”Scheduling Coprocessor for Enhanced Least-
Laxity-First Scheduling in Hard Real-Time
Systems”, 11th Euromicro Conference on Real-
Time Systems, York, England, June 9-11, 1999.

[9] W. A. Halang, A. D. Stoyenko, "Constructing
Predictable Real Time Systems", Kluwer Academic
Publisher 1991.

[10] M. Colnaric, D. Verber, W. A. Halang,
"Design of Embedded Hard Real-Time
Applications with Predictable Behaviour", Real-
Time Applications, Proceedings of the IEEE
Workshop, 1993 .

[11] T. Nakano, A. Utama, M. Itabashi, A. Shiomi,
M. Imai,"Hardware Implementatiuon of a Real-
Time Operating System", Proceedings of the 12th

TRON Project International Symposium 28 nov. -2
dec. 1995.

[12] J. Roos, "The Design of a Real-Time
Coprocessor for Ada Tasking", Department of
Computer Engineering, Lund University, P.O. Box
118,S-221 00 Lund, Sweden, June 21, 1989.

[13] L. D. Molesky, K. Ramamritham, C. Shen, J.
A. Stankovic, G. Zlokapa, "Implementing a
Predictable Real-Time Multiprocessor Kernel - The
Spring Kernel", Department of Computer and
Information Science University of Massachusetts,
Amherst, MA 01003, USA, May 1990.

[14] Parisoto A., Souza Jr. A., Carro L., Pontremoli
M., Pereira C., Suzim A.,"F-Timer: Dedicated
FPGA to Real-Time Systems Design Support",
Euromicro Workshop on Real-Time Systems,
Toledo, Spain, June 11-13, 1997.

[15] [POSIX] Portable Operating System Interface
Standard.
http://standards.ieee.org/regauth/posix/index.html

[16] Lindh L.,"Utilization of Hardware Parallelism
in Realizing Real Time Kernels", Doctoral Thesis,
Department of Electronics Royal Institute of
Technology S-100 44, Stockholm, Sweden, 1994.

[17] http://www.enea.com/

[18] J. Adomat, J. Furunäs, L. Lindh, J. Stärner.”
Real-Time Kernel in Hardware RTU: A Step
Towards Deterministic and High-Performance
Real-Time Systems”. Proceedings of the 1996
Euromicro Workshop on Real-Time Systems, 12-14
June, L’Aquila, Italy.

