
Classification and Survey of Component Models
Ivica Crnković, Aneta Vulgarakis

Mälardalen research and technology
centre

PO Box 883, SE-721 23, Västerås,
Sweden

{ivica.crnkovic,
aneta.vulgarakis}@mdh.se

Mario Žagar, Ana Petričić, Juraj
Feljan, Luka Lednicki

Faculty of Electrical Engineering and
Computing

University of Zagreb, Croatia
{mario.zagar, ana.petricic, juraj.feljan,

luka.lednicki}@fer.hr

Josip Maras
Faculty of Electrical Engineering,

Mechanical Engineering and Naval
Architecture

University of Split, Croatia
josip.maras@fesb.hr

Abstract: As component-based software engineering is growing
and its usage expanding, more and more component models are
developed. In this paper we present a survey of software
component models in which models are described and classified
respecting the classification framework for component models
proposed by Crnković et. al. [1]. This framework specifies
several groups of important principles and characteristics of
component models: lifecycle, constructs, specification and
management of extra-functional properties, and application
domain. This paper gives examples three component models
using the classification framework.

1. INTRODUCTION

Today there exist many component models. Some
component models target specific application domains, such
as embedded systems or business domains. Other component
models are domain-independent, but are based on certain
technological platforms. All component models are based on
some, often implicit, assumptions about the architecture of
the types of systems they are targeting. For this reason
different component models have similar yet different
principles, often not explicitly expressed and used in the
technologies. In [1], a framework that identifies
characteristics and common characteristics of component
models, and that enables comparison between different
component models, is provided. In this paper we use this
framework and give an overview of three component models,
namely AUTOSAR, ProCom, a domain specific component
models, and EJB a general-purpose component model.

The rest of the paper is organized as follows. Section 1
gives a short overview of the classification framework,
section 2 a short introduction of three component models
selected. Sections 3,4,and 5 give a more comprehensive
description of each component model.

2. THE CLASSIFICATION FRAMEWORK

Starting from these premises, we divide the basic
characteristics and principles of component models into the
following three dimensions:

• Lifecycle. The lifecycle dimension identifies the
support provided by a component model and the
component forms throughout the lifecycle of
components.

• Construction. The construction dimension identifies
principles and mechanisms for building systems
from components including (i) the component
functional specification (of which the interface is a
prominent part), (ii) the means of establishing
connections between the components, i.e. biding,
and the means of intercommunications, i.e.
interactions between the components.

• Extra-Functional Properties. The extra-functional
properties dimension identifies the facilities a
component model offers for the specifications,
management and composition of extra-functional
properties.

Details of these three dimensions are in detail described in
[1], and according to it the models are described below.

3. CLASSIFICATION OF SELECTED COMPONENT
MODELS

This section provides a classification of three component
models according to the classification framework; ProCom –
a research component model for embedded systems
developed at Mälardalen University; Enterpise JavaBeans –
an industrial model developed by Sun Microsystems and
primarily used for a client – server model of distributed
computing; AUTOSAR – an industrial component model
used in development of vehicular embedded systems. The
classification is presented in Table 1.

Table 1: Classification of selected component models

Lifecycle

Component models Modeling Implementation Packaging Deployment
AUTOSAR use of virtual functional bus C non-formal specification of container at compilation

EJB N/A Java EJB-Jar files at run-time
ProCom ADL-like language, timed automata C file system based repository at compilation

Constructs - interface specification

Component models Interface type Distinction of
provides and requires

Distinctive features Interface language Interface levels

AUTOSAR operation-based,
port-based

yes AUTOSAR Interface C header files syntactic

EJB operation-based no N/A Java + annotations syntactic
ProCom port-based yes data- and trigger ports XML based, timed

automata
syntactic, behavioral

Constructs - interaction

Component models Interaction styles Communication type Binding type
Exogenous Hierarchical

AUTOSAR request-response, message passing synchronous, asynchronous no delegation
EJB request-response synchronous, asynchronous no no

ProCom pipe-and-filter, message passing synchronous, asynchronous yes delegation

EFPs

Component models Management of EFPs Properties specification Composition and analysis support
AUTOSAR endogenous per collaboration (A) N/A N/A

EJB exogenous systemwide (D) N/A N/A
ProCom endogenous systemwide (B) timing and resources timing and resources at design- and compile-time

Domains

Component models Domain
AUTOSAR specialized

EJB general-purpose
ProCom specialized

4. PROCOM

ProCom [2] is a component model for control-intensive
distributed embedded systems and is designed to cover the
whole development process in the vehicular-, automation- and
telecommunication domains.

Typically, complex distributed embedded systems from
targeted domains have different characteristics at different
levels of granularity. ProCom tackles this problem by using
two layers: ProSys and ProSave.

4.1 ProSys

ProSys is a hierarchical component model which acts as
an upper layer that models the system as a number of active
and concurrent subsystems which communicate by
asynchronous message passing.

ProSys subsystems can be: composite subsystems,
subsystems realized with ProSave or wrapped legacy
subsystems. Each subsystem is specified by:

• Typed input- and output ports which express what
messages the subsystem receives and sends.
Message ports are connected with message channels
which support n-to-n communication.

• Attributes and models related to functionality,
reliability, timing and resource usage.

4.2 ProSave

ProSave is the lower layer which models the internal
design of a single ProSys subsystem down to primitive
functional components implemented by code.

ProSave components are passive, reusable units of
functionality that can either be realized by code (C functions),
or by interconnected sub-components. They use pipe-and-
filter communication paradigm and are typically not
distinguishable as individual units in the final executing
system.

The architectural style is based on a data/control flow
model with a separation of data transfer and control flow,
which is manifested with the existence of data- (enable data
read, write) and trigger ports (control the activation of
components).

Information about a component is represented using
structured attributes and its functionality is made available by
a set of services. Attributes define simple or complex types of
component properties such as behavioral models, resource
models, dependability measures and documentation. Each
service consists of:

• Input port group – contains a trigger port for
activation and a set of data ports for required data.

• Output port groups – contains a set of data ports and
a trigger port which indicates when new data is
available.

Components can be connected using:
• Simple connections that connect two ports and that

can be used to transfer data or control.
• Connectors – constructs that may be used to control

the data- and control-flow, for example to fork or
join data or trigger connections.

Components and information about them (requirements,
behavior models, resource usage) are stored in a file system
based repository.

4.3 Connecting ProSave and ProSys

ProSys subsystems can be defined with a collection of
interconnected ProSave components, ProSave connectors,
and additional connector types such as:

• Input message port which acts as a ProSave
connector with one output trigger port and one
output data port. Whenever a ProSys subsystem
receives a message, the message port writes message
data to the output port and activates the output
trigger.

• Output message port is similar to the input message
port only it has one input trigger and one input data
port. When a trigger is received it sends a message
with the data from the data port.

• Clock is used for generating periodic triggers. It only
has one output port which is periodically triggered.

5. EJB

Enterprise JavaBeans (EJB) is a component model
developed by Sun Microsystems with current version 3.0 [3].
EJB has quite limited scope but despite its limitations, it has
been widely used and popular in Java community. EJB is
primarily used for a client – server model of distributed
computing. It envisions the construction of object-oriented
and distributed business applications. The model simplifies
the development of middleware by providing server support
for a set of services, such as transactions, security,
persistence, concurrency and interoperability.

The EJB component model logically extends the
JavaBeans [4] component model to support server
components. Server components are reusable, prepackaged
pieces of application functionality that are designed to run in
an application server. They are similar to development
components, but they are generally larger grained and more
complete than development components. EJB components
(enterprise beans) cannot be manipulated by a visual Java

IDE in the same way that JavaBeans components can.
Instead, they can be assembled and customized at deployment
time using tools provided by an EJB-compliant Java
application server.

5.1 Constructs

EJB components
An enterprise bean is a reusable, portable J2EE

component which consists of methods that encapsulate
business logic, and run inside an EJB Container. EJB
components are limited to Java programming language, but
they may be invoked from various other languages e.g. C++,
C#, Visual Basic .NET. The EJB 3.0 bean class can be a pure
Java class often referred as POJO and the interface can be a
simple business interface.

EJB specification introduces three kinds of components
called beans: Entity beans, Session beans and Message –
driven beans.

Entity beans
An entity bean is a complex business entity which

represents a business object that exists in the database. Its
purpose is to access to data remotely over network. Each
entity bean represents an object view on one record from the
database and is defined by primary key. Entity beans may be
shared between multiple users that use a primary key to
access a particular bean. Invocations are performed
synchronously. Entity beans are state full due to permanent
storage background.

Entity beans introduced in EJB 3.0 specification are
represented by Java Persistence API [5] entities, and they
differentiate from the concept of entity beans that existed in
previous EJB specifications (EJB 1.x, EJB 2.x). The EJB 1.x
and 2.x entity beans must conform to a strict component
model. Each bean class must implement a home and a
business interface. The EJB 1.x and 2.x container requires
very detail XML configuration files to map the entity beans to
tables in the relational database. All these requirements are
the reason why entity beans were obviated by software
developers.. Introducing of entity beans as POJOs, made EJB
3.0 much more eligible an it simplified enterprise Java
development with EJB.

Session beans
Session beans perform a task for a client; optionally they

may implement a web service. Contrary to entity beans,
session beans are not permanent and have no primary key
since they are not backed by a database or other form of
permanent storage.

Session beans are not shareable, as each session bean
represents a single client inside the application server. To
access an application that is deployed on the server, the client
invokes the session bean’s methods. The session bean
performs work for its client, shielding the client from

complexity by executing business tasks inside the server.
Invocations of session beans are synchronous.

Session beans may be statefull or stateless. Statefull bean
maintains its state across different method calls through its
instance variables which represent the state of a unique client-
bean session. As a consequence, statefull session bean can be
used by one remote client at a time. Stateless bean does not
hold its state, when a client invokes the methods of a stateless
bean, the bean’s instance variables may contain a state
specific to that client, but only for the duration of the
invocation. Except during method invocation, all instances of
a stateless bean are equivalent, therefore stateless beans may
be used by more than one remote client at a time.

Message – driven beans
Message-driven beans act as a listener for a particular

messaging type, such as the Java Message Service (JMS)
API. Similar to session beans, message-driven beans do not
represent any data directly, however they may access any data
in an underlying database. The most visible difference
between message-driven beans and session beans is that
clients do not access message-driven beans through
interfaces. In other words, client components do not locate
message-driven beans and invoke methods directly on them.
Instead, a client accesses a message-driven bean through
some messaging service (for example JMS). Message-driven
beans are executed when a message from a client arrives on a
server, this means that their invocation in asynchronous. A
single message-driven bean can process messages from
multiple clients.

EJB Interfaces
An interface of an enterprise bean is specified as a set of

methods and attributes, using Java programming language.
Unlike session beans, message-driven and entity beans do not
have interfaces that define client access because they have a
different programming model.

A client can access a session bean only through the
methods defined in the bean’s business interface. All other
aspects of the bean (method implementations and deployment
settings) are hidden from the client. Session beans can expose
one of two kinds of interfaces:

• remote interface: represents provisions of a bean.
Provides an access point for a remote client and
defines the business and life cycle methods that are
specific to the bean

• local interface: defines the bean’s business and life
cycle methods that allow only local access (a local
client must run in the same Java virtual machine
(JVM) as the enterprise bean it accesses)

Each session bean has to implement at least one interface
(remote or local). Although it is uncommon, it is possible for
an enterprise bean to allow both remote and local access.
Both kinds of bean interfaces are provided interfaces. EJB
does not support required interfaces of a bean.

Message-driven beans and entity beans can also define
and implement some interface, but it is not obligatory.

In addition, bean class can, but is not required to
implement interfaces that it defines. However, implicitly, the
interface of an enterprise bean is a set of the methods it
implements and its attributes.

In order to additionally specify an enterprise bean, EJB
3.0 uses metadata annotations which are inspected by service
framework. The EJB 3.0 specification itself defines a wide
range of annotations that cover different attributes such as
transaction or security settings, object-relational mapping and
injection of environment or resource references. Metadata
annotations are also used to specify the bean or interface and
run time properties of enterprise beans. For example, a
Session bean is marked with @Stateless or @Stateful to
specify the bean type, message-driven beans are marked with
@MessageDriven annotation.

As an alternative to Java annotations, there are
deployment descriptors which were also used in previous
versions of EJB (EJB 1.x, EJB 2.x). Deployment descriptor is
an XML file which can be used to override some annotations,
but also for describing application level metadata.

Composition of constructs
It is important to mention that EJB does not support

connection-oriented programming, but follows traditional
object-oriented composition (third party can not bind EJBs,
but an EJB can specify dependencies to other components).
Binding of enterprise beans is performed at runtime. In
addition the composition specification of EJB components is
location-transparent; the run-time location of components
(placed on a local or a remote node) is specified separately
from the binding information. A strength of EJB is automatic
composition of component-instances with appropriate
services and resources that component-instances are
dependent on. This includes automatic configuration of
necessary implicit middleware services based on needs
specified by annotations or in the deployment-descriptor
(transactions, persistence and security)

Communication between beans or between client and a
bean is performed using Remote Method Invocation [6],
which is a Java implementation of a Remote Procedure Call.
Communication between enterprise beans is managed by
JVM.

5.2 Life cycle

Packaging
EJB are packaged into an EJB JAR file, the module that

stores the enterprise bean. An EJB JAR file is portable and
can be used for different applications. To assemble a Java EE
application, one or more modules (such as EJB JAR files) are
packaged into an EAR file, the archive file that holds the
application.

Deployment

EJB beans are deployed in an EJB Container which is in
charge of their management at runtime (start, stop,
passivation or activation) and extra-functional properties
(such as security, reliability, performance). The Container can
hide to application programmers some of the complexities
inherent in the handling of non-functional aspects in a
software system, such as distribution and fault-tolerance.

5.3 Extra-functional properties

EJB is primarily aiming at industrial use and it has been
designed to support component developers at an
implementation level, while lacking the sufficient support for
specifying or analyzing extra-functional properties.

5.4 Benefits of Enterprise Beans

For several reasons, enterprise beans simplify the
development of large, distributed applications. First, the EJB
Container provides system-level services to enterprise beans
so the bean developer can concentrate on solving business
logic problems. The EJB container, rather than the bean
developer, is responsible for system-level services such as
transaction management and security authorization.

Another benefit is that enterprise beans contain the
application’s business logic, therefore the developer of an
enterprise bean client can focus on the presentation of the
client. The client developer does not have to code the routines
that implement business rules or access databases. As a result,
the clients are thinner, a benefit that is particularly important
for clients that run on small devices.

Due to the fact that enterprise beans are portable
components, the application assembler can build new
applications from existing beans. These applications can run
on any compliant Java EE server provided that they use the
standard APIs.

6. AUTOSAR

AUTOSAR is a new standardized architecture created by
a partnership of a number of automotive manufacturers and
suppliers. The goal of AUTOSAR is to provide a way for
managing increasing complexity of vehicular embedded
systems, enable detection of errors in early design phases and
improve flexibility, scalability, quality and reliability of such
systems [7].

AUTOSAR defines a layered software architecture
consisting of five layers. First three layers, Microcotroller
Abstraction Layer, ECU Abstraction Layer and Service Layer
sit on top of hardware and provide a standardized and
hardware-independent interface to the AUTOSAR Runtime
Environment. This Runtime Environment then supports the
Application Layer, the AUTOSAR Component Model.

The main goal of AUTOSAR is to provide a standard for
location independence and portability of software
components for the automotive industry. Thus, the component
model itself is not very advanced and does not fully reflect
the capabilities of current state-of-the-art models [8].

During the development process, AUTOSAR provides
some levels of system modeling by giving us the ability to
interconnect components using a Virtual Functional Bus
(VFB). The VFB provides an abstract level of viewing all
communication mechanisms provided by AUTOSAR. In this
way AUTOSAR enables early system integration that is
independent of the physical allocation of components. At the
time of deployment, the VFB is replaced by the AUTOSAR
Runtime Environment that provides implementation for
selected communication mechanisms.

During deployment of a system, AUTOSAR Software
Components are compiled and linked into ECU specific
executable. Although this provides a more efficient systems,
ti also means losing the benefits of the component-based
approach during run-time.

AUTOSAR Software Component package consist of
implementation and component description. Implementation
of a component can be either object code, or C source code.
Component description consists of operations and data that
the component provides and requires, requirements that the
component has on the infrastructure, resources needed by the
component and information about specific implementation of
the component. Because of the hardware abstraction layer
provided by AUTOSAR Runtime Environment the
component's implementation is independent from the
hardware infrastructure, e.g. type of microcontroller or ECU.

The AUTOSAR Software Components are defined as
applications which run on the AUTOSAR infrastructure.
These components are atomic, meaning that one component
cannot be distributed over several AUTOSAR ECUs. An
exception to this is composition, a logical interconnection of
components packaged as a new component. The components
inside the composition can be distributed over several ECUs.

A special type of AUTOSAR software components are
sensor/actuator components. These components encapsulate
dependencies on specific sensor or actuator hardware. They
are dependent on a specific sensor or actuator, but
independent of the ECU.

AUTOSAR Software Components interact with each
other through their well-defined ports. Services or data that a
port provides or requires are defined by AUTOSAR
Interfaces (which, accordingly, a port can provide or require).
AUTOSAR Interfaces are described by C header files and
cover only syntactical information.

Communication between components can follow either
Client-Server (Request-Response) or Sender-Receiver
(message passing) pattern. In case of Client-Server
communication pattern providing port (server) implements
operations defined by the interface, while the port that

requires the interface (client) can invoke those operations.
This type of communication can be either synchronous (if the
client blocks its execution until the server returns a response)
or asynchronous (in case the client does not block after the
operation request is initiated). The Sender-Receiver pattern
allows only asynchronous transfer of data. In this pattern the
providing port (sender) generates the data and requiring port
(receiver) has the ability to read this data. After the sender
generates the data it doesn't wait or expect any response from
the receiver. Type of communication is defined by the
AUTOSAR interface that a port provides or requires.

Binding of AUTOSAR components is endogenous,
having no separate connector entities. The connection
between ports is managed by the ports themselves.

AUTOSAR allows use of compositions for sub-system
abstraction. However, they are only used to group existing
software components to manage complexity when designing
logical system architecture [9]. They do not add any new
functionality to that already defined by the components inside
the composition, and do not have any binary footprint when
deployed to ECU. Surface ports of a composite exposes can
by explicitly defined by delegating ports of the aggregated
components.

Although AUTOSAR Software Component descriptions
have the ability to specify some extra functional properties,
like resource (memory, CPU-time, etc.) that a software
component requires, there is a lack of the capability to
express the multitude of non-functional constraints,
insufficient expressiveness of the interfaces [8]. In
AUTOSAR, there is also a lack of ability to analyze
properties of component composition, e.g. ability to
guarantee that component's properties are preserved across
integration, or that requirements of global properties of
composed objects are meet.

7. CONCLUSION

In this paper, we have presented a framework for the
classification and comparison of component models, which
identifies issues related to component-based development.
The survey made on three selected component models
indicates that many principles comprised in the component-
based approach are not always included in every component
model.
The intention of this work is to increase the understanding of
component-based approach by identifying the main concerns,
common characteristics and differences of component
models. The proposed framework does not include all the
elements of all component models, however it identifies the
minimal criteria for assuming a model to be a component
model and it groups the basic characteristics of the models.

REFERENCES

[1] Ivica Crnković, Séverine Sentilles, Aneta Vulgarakis,
Michel Chaudron, A Classification Framework for
Component Models, 2008

[2] S. Sentilles, A. Vulgarakis, T. Bureš, J. Carlson, I.
Crnković, A Component Model for Control-Intensive
Distributed Embedded Systems, Proceedings of the 11th
International Symposium on Component Based Software
Engineering (CBSE2008), Springer Berlin, 2008

[3] Sun Microsystems Inc., Enterprise Java Beans 3.0, Final
Relase, 2006

[4] Sun Microsystems, JavaBeans
[5] Sun Microsystems Inc., Java Persistence API
[6] Sun Microsystemc Inc., Remote Method Invocation
[7] AUTOSAR Development Partnership, AUTOSAR -

Technical Overview, 2008
[8] Heinecke H., Damm W., Josko B., Metzner A., Kopetz

H., Sangiovanni-Vincentelli A., Di Natale M., Software
Components for Reliable Automotive Systems, 2008

[9] AUTOSAR Development Partnership, AUTOSAR -
Software Component Template v3.0.1, 2008

