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Abstract—The development of embedded systems often requires
the use of various models such as requirements specification, ar-
chitectural (component-based), and deployment models, across
different phases. However, there exists little design support
for obtaining suitable component-based designs that satisfy
specified requirements and timing constraints. In order to
provide guided support for the design process of embedded
systems, we introduce several component templates, referred
as patterns, which we also formally verify against relevant
properties. To illustrate the usefulness of the approach, we
have applied the proposed patterns to obtain a component-
based design of a temperature control system.

Keywords-clock constraints; UML/Marte; components; em-
bedded system;

I. INTRODUCTION

To achieve behavioral predictability of an embedded sys-
tem, one might need to use, during system development
phases, extensive modeling and analysis, prior to the actual
system implementation. In general, these phases rely on
various models, such as, requirements specification, design,
and deployment models, before the implementation stage. As
different models are based on different semantics, and focus
on different aspects of the system, a guided design process
from one phase to another is needed. Further, the design
process should ensure that the system aspects, such as,
functional requirements, timing constraints etc, are met by
all system models, from any design phase to the subsequent
ones.

Designing an embedded system in a component-based
style has become an attractive approach. With benefits rang-
ing from simplification and parallel working to pluggable
maintenance and reuse, the advantages are significant. In
this context, an embedded system consists of identifiable,
relatively independent and generally replaceable units of
composition, called components, which encapsulate complex
functionality. A component model defines syntax and seman-
tics of a component language through its architectural level
elements, such as, components, ports, connections, and con-
nectors to build system parts and their compositions. There
exist several component models such as JavaBeans [1],
Koala [2], SOFA [3], [4], and ProCom [5], [6], to name
a few.

In this paper, we present a pattern-based design pro-
cess to develop component based designs of an embedded

system that preserve the specified functional requirements
and related timing constraints. We propose a set of com-
ponent templates, called component patterns in this paper,
to transform a specification model together with functional
and timing constraints, into a corresponding component
design. The proposed patterns are described in ProCom [5],
[6], a language for component-based design of embedded
systems. Further, the patterns are formally verified to satisfy
relevant timing properties. This is done by translating the
pattern specifications in ProCom, into corresponding timed
automata models, and model-check the resulting models
using UPPAAL [7].

To specify the functional requirements, and related tim-
ing constraints of a system, we use an extended form of
UML statemachines [8] together with UML/Marte timing
profile [9], as the specification models (also referred as
modemachines in this paper). The timing constraints are
specified using the standard constructs of Marte CCSL
(Clock Constraints Specification Language).

Finally, to illustrate the applicability of our approach, we
apply the patterns in the development of a ProCom based
component design for a Temperature Control System (TCS).

The rest of the paper is organized as follows. In Section II,
we present an overview of the ProCom component language.
As a running example, we describe a Temperature Control
System (TCS), in Section III. In Section IV, we present the
specification language for modeling the functionality, and
timing constraints of an embedded system. In Section V, we
propose a set of component patterns for modeling “timers”,
“clocks”, “controllers”, as well as the periodic and sequential
behaviors. Also, the formal verification of the patterns with
respect to relevant properties is described in Section VI. In
Section VII, a complete ProCom design of TCS is presented.
Related work is discussed in Section VIII. Finally, in Section
IX, we conclude the paper with future directions of work.

II. PROCOM COMPONENT MODEL: AN OVERVIEW

In this section, we present an overview of ProCom1 [5],
[6], a recently developed component model for designing
real-time embedded systems in the vehicular and telecom
domains. To address the different concerns that exist on
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Figure 1. a) A ProSys subsystem and b) A ProSave component.

different levels of granularity or various phases of system
development, ProCom is organized into two distinct layers:
ProSys and ProSave. The layers also differ in terms of
architectural style and communication paradigm. In ProSys,
a system is modeled as a collection of communicating
subsystems that execute concurrently, and communicate by
asynchronous messages sent and received at typed output
and input message ports.

On the other hand, the lower layer, i.e., ProSave con-
sists of passive units, and is based on a pipes-and-filters
architectural style with an explicit separation between data
and control flow. The former is captured by data ports
where data of a given type can be written or read, and
the latter by trigger ports that control the activation of
components. Data ports always appear in a group together
with a single trigger port, and the ports in the same group
are read and written together in a single atomic action. In
addition to simple connections from output- to input ports,
ProSave contains connectors that provide detailed control
over the data- and control flow, including forking, joining
and dynamically changing connection patterns. For detailed
description of these elements, we refer to ProCom language
reference manual [5].

Fig. 1 (a) shows the graphical representation of a ProSys
subsystem with one input port and two output ports, and (b)
shows a simple ProSave component with one input port
group and two output port groups. Triangles and boxes
denote trigger- and data ports, respectively.

ProCom arcitectural elements have a precise formal se-
mantics [10]. The semantics is described in terms of finite
state machines extended with notions of urgency, timing,
and priorities. Below, we informally describe the semantics
of ProSave elements used in this paper. For through details,
we refer the reader to [11].
• Components: internally, a ProSave component may

be described by code or other inter-connected sub-
components. The functionality of a component is cap-
tured by a set of services.

• Services: the services of a component are triggered in-
dividually and can execute concurrently, while sharing
only data. A service consists of one input port group
and zero or more output port groups, and each port
group consists of one trigger port and a number of
data ports. When triggered, the input ports are read

in one atomic step, and then the service switches to an
executing state, where it performs internal computations
and writes (atomically) at its output port groups. Before
the service returns to idle, each of the associated output
port groups must have been activated exactly once. This
restriction serves for tight read-execute-write behavior
of a service.

• Connections: the migration of data or trigger over a
ProSave connection is loss-less, atomic, and follows
a push model. However, the trigger signals are not
allowed to arrive to any port before all data have arrived
to all end destinations. This should hold also in case
when data passes through a connector. In case more
data (trigger) connections are enabled at the same time,
the order is non-deterministic.

• Connectors: together with connections, connectors
can be used to define complex data and control flow for
a ProSave composition. ProSave defines different kinds
of connectors such as data fork, control fork, data or,
control or, control join and selection. A connector is a
stateless component and executes atomically.

• Clocks: it is a special type of construct that has one
output trigger port, which is activated periodically at a
given rate. Clocks are not allowed to drift, but it is not
assumed that all clocks are initially synchronized.

Both layers of the ProCom are hierarchical, meaning
that subsystems as well as components can be nested. The
way in which the two layers are linked together is that a
primitive ProSys subsystem (i.e., one that is not composed of
other subsystems) can be further decomposed into ProSave
components. Thus, a mapping has been defined between the
message passing in ProSys and the trigger/data communi-
cation used in ProSave. At the bottom of the hierarchy, the
behavior of a primitive ProSave component is implemented
as a C function.

III. EXAMPLE: A TEMPERATURE CONTROL SYSTEM
(TCS)

As the running example of the paper, we consider a
Temperature Control System (TCS), for a heat producing
reactor [12]. It has a collection of control rods that can
be inserted into the core of the reactor, to control the heat
producing (chain) reaction. If inserted, a control rod absorbs
neutrons and consequently the reaction is slowed down, with
the temperature inside the core decreasing at a fixed rate,
depending on the rod inserted. When pulled out, the reaction
speeds up, and temperature increases in the core. The main
functionality of the TCS is to maintain the temperature in the
reactor between the specified MIN and MAX values. However,
when a rod has been used for cooling for a fixed duration,
say “T” time units, it is then unavailable for a certain time
duration, proportional to T.

In the next section, we propose a language for specifi-
cation of functional, and timing properties of an embedded



system. We use the language to specify the functionality,
and timing constraints of the TCS system.

IV. OUR SPECIFICATION LANGUAGE: MODEMACHINE +
MARTE CCSL

A specification is a way of explicitly stating system
requirements and behavior. In this section, we propose a lan-
guage for the abstract specification of system functionality,
and related timing constraints of an embedded system. We
use an extended form of statemachines that we call Modema-
chines (see Fig. 2). A modemachine adds to the original
statemachine the system behavior, defined externally, which
could be in turn a finite statemachine, a timed automaton etc.
Also, in a modemachine, one can specify clock constraints,
by using UML/Marte CCSL (Clock Constraint Specification
Language) [9]. Graphically, a Modemachine is similar to
UML statemachines [8].

A. Modemachine Definition and Graphical Notation

A modemachine is a tuple 〈M,B, T , C,A,s〉, where M
is a set of modes, s is the entry mode, B is a set of externally
defined behaviors, A is a set of events, T ⊆M×A×M is
the set of transitions between modes, and C is a set of clock
constraints.

If a mode contains other modes, it is called a composite
mode. A mode with no internal modes is called an atomic
mode. The elements of a modemachine are further described
below, informally.

B. Modes, and Behaviors

A mode consists of a set of behaviors, where a behavior
denotes the specific functionality of the system. A mode
instance is the set of active behaviors at a particular instance
of time. Behaviors can be externally specified, for example
using external modeling tools such as Matlab/Simulink,
UML Rhapsody, etc, or denote the reusable code of sys-
tem functionalities. Within a mode or submode, behaviors
execute concurrently, sequentially, or periodically, based on
the associated mode constraints. Mode changes occur when a
corresponding event or timeout occurs, or implicitly when all
behaviors in the mode terminate. Further, an enabled mode
change due to a timeout, has higher precedence over other
simultaneously enabled mode changes, if any.

C. Events, Triggers, and Timeouts

The execution of a behavior is triggered by the occurrence
of an external event or time event. For an embedded system,
the external events are generated by its environment consist-
ing of sensors and actuators. A trigger denotes a periodic
time event, and it is usually generated by “system clocks”
(e.g., IdealClock in UML/Marte, for measurement of discrete
chronometric time). Triggers can be used to specify periodic
behaviors within a mode. A timeout denotes the expiry of
the specified amount of (discrete) time duration. Timeouts

Figure 2. Modemachine specification of a temperature control system.

are useful to model delays associated with an embedded
system. A timeout can be associated with atomic modes,
making them delay in particular states of the system model.
The expiry of a timeout is denoted by the internally signaled
sigTimeOut event.

D. Mode constraints using UML/Marte CCSL

The recently adopted UML Profile for Modeling and
Analysis of Real-Time and Embedded systems (MARTE)[9]
provides necessary and relevant features for modeling soft-
ware of the real-time and embedded domain. Further, it
aims at bringing interoperability between existing languages
and formalisms of the real-time embedded domain. MARTE
defines an expressive Time-Model for a generic timed inter-
pretation of UML models. CCSL is a language annexed to
MARTE specification. It is a declarative language that speci-
fies constraints imposed on the clocks, i.e., both physical and
logical, denoting the activation conditions of a model. Some
of the constraints used in the paper are briefly discussed
below:

• discretizedBy: specifies a discrete clock from a dense
chronometric clock (e.g., IdealClock defined in Marte
Time package). Expression (1) below defines a clock,
whose period is 0.01 s, where s is the time unit of the
IdealClock.

IdealClock discretizedBy 0.01 (1)

• isPeriodicOn: specifies a discrete clock from another
discrete clock of finer granularity (or faster clock).
Expression (2) below defines a discrete clock that ticks
10 times slower than C (a tick of C’ comes with every
10th tick of C):

C ′ isPeriodicOn C period 10 (2)

• alternatesWith: implies causality between two
clocks. Expression (3) states that each instance of clock
C precedes and causes the corresponding instance of



clock C’.

C alternatesWith C ′ (3)

• NFP duration: supports the description of dura-
tion values with respect to an ideal chronometric
clock. A NFP Duration value is defined, in the
non-functional types model library in Marte (i.e.,
MARTE::BasicNFP Types), as a tuple containing a real
value and a time unit.

Marte constraints in (1) and (2) are related to the basic
synchronous constraint coincidesWith (also denoted
by “=”) which can also be used in specifying a mode
constraint. The Marte constraint alternatesWith (see
(3) above), is useful to specify constraints over logical
clocks (e.g., non-periodic event occurrences, beginning and
termination of behavior paths, etc), for instance, to specify
causality dependencies between behavioral paths. Another
useful Marte constraint for component models is delayedFor
(e.g., “a delayedFor n on b”, i.e., every nth tick of
b following a tick of a). Together with precedes relation
(�), it can be used to specify complex timing constraints of
particular behaviors, like timing relationships between the
start and the end of a behavior (e.g., B1.finish � (B1.start
delayedFor 3 on C)).

E. Example Specification: TCS Modemachine
A modemachine specification of TCS is given in Fig.

2. At the top level, it contains two composite modes
TempControl, and Cooling. Transitions between the modes
are enabled with occurrence of events Rod inserted, and
Rod deleted.

The composite mode TempControl contains two atomic
submodes MeasureTemp, and SelectAndInsertRod. Fur-
ther, the submode MeasureTemp contains a periodic be-
havior as specified by the associated Marte constraint
discretizedBy. Also, the sequential dependency i.e.,
causality between behaviors of MeasureTemp, and Se-
lectAndInsertRod is specified by the Marte constraint
alternatesWith. SelectAndInsertRod contains the de-
tailed behavior based on the data inputs received, for e.g.,
a rod selection and insertion is skipped when the current
temperature value, communicated by the MeasureTemp
component, is within the specified interval MIN and MAX,
as described in Section III.

The duration of the delay is specified using the Marte
NFP duration property. For instance, the composite mode
Cooling contains a delay mode Delay characterized by a
duration of 150 sec. When the timeout expires, it triggers
the atomic mode DeleteRod.

Now let us assume a repository of ProCom components,
which should be used for the architectural design of the TCS.
Therefore, we will transform the above modemachine into
a component-based design. To accomplish this, we need to
tackle the following design issues/challenges:

• How to transform a composite mode with periodic,
and sequential behaviors, into a component-compliant
description?

• How to transform the control structure of a modema-
chine e.g. event, and signal based transitions?

• How to represent timeout in a component based-design?

• How to integrate different design aspects into a com-
plete system design?

In order to address the above design issues, we introduce
a set of component patterns that guides a designer in
transforming a modemachine-based specification, e.g, the
specification model of the temperature control system (TCS)
in Fig. 2, into a corresponding ProCom based architectural
design. The patterns are described in the next section.

V. COMPONENT PATTERNS

The component patterns, proposed in this section, provide
simple mechanisms for modeling the time, and event based
executions of system behaviors through reusable, easy to
understand component designs. The patterns are described in
ProCom component language (see Section II). To illustrate
our approach, we apply the proposed pattern-based support,
in transforming the elements of the modemachine specifica-
tion of the TCS system (see Fig. 2), into a corresponding
design aspects in ProSave.

For ProCom-based pattern descriptions, we assume that
the components are triggered, where necessary, by a clock,
say MainClock, of fixed periodicity, say “P”. In turn, the
MainClock itself can be defined by the clock pattern (de-
scribed below) using the IdealClock from the Marte time
library. The MainClock is denoted by the conventional clock-
icon symbol in the pattern descriptions below. Further,
we specify additional constraints on the resulting designs
(referred as “pattern constraints”), if any, by the pattern
description (in a dotted text box, e.g., Fig. 3).

The set of patterns proposed below, address the de-
sign issues identified earlier, in the previous section: the
“Timer Pattern” characterizes a time out in a component
based design; the “Discrete Clock Pattern” addresses the
clock synchronization problem between clocks of different
granularity; the “Periodic Behavior Pattern” represents the
design of periodically executed components; finally the
“Controller Pattern” addresses event-triggered executions
in a component-based design, and the development of a
complete system design.

A. Timer Pattern

Timers, and timeouts constitute important aspects of an
embedded system behavior. The pattern models a timeout
(or delay) behavior of a system or its parts. It is triggered
by a discrete, chronometric clock e.g., the IdealClock



Figure 3. The timer pattern in ProSave.

in UML/Marte time package. When triggered, time is in-
ternally measured (using a state variable) until the specified
duration/delay units are expired. The output, i.e., the time-
out sigTimeOut, is indicated as both data and control.
This facilitates using the timeout as either sampled data
or reactive trigger (design choice based on the specified
timing constraints). Further, the pattern specifies the timer
mechanism set to assign the timer value (the value itself
can be assigned statically or dynamically).

A ProSave description of the pattern is given in Fig. 3. The
component Timer contains two services set, and tick. The
service set, when triggered, sets the timer value (based on
the statically assigned duration value through corresponding
data port). The service tick, the periodic behavior triggered
by the MainClock, decrements the timer value, if set, during
each execution cycle and generates a timeout (denoted by
sigTimeOut) when the value becomes zero. The con-
nectors Select, DataFork are required to differentiate the
final timeout output from trigger outputs corresponding
to individual executions of Timer component (due to the
semantics of a ProSave component).

The timer pattern corresponds to the Marte clock con-
straint in (4) below, where n is a natural number, and s is
the time unit. However, the timer pattern suffers from a jitter
of one period of the triggering clock i.e., the MainClock (as
verified in Section VI). This implies the need for choosing a
suitable granularity for the MainClock. Further, this should
be taken into consideration while evaluating other timing
aspects of the design, such as, end-to-end latency.

NFP duration = n s (4)

Application of the timer pattern to TCS: The pattern
can be applied to transform a delay mode (i.e. an atomic
mode with NFP duration value) of a modemachine into
a corresponding design in ProSave. For example, in TCS
specification, the internal mode Delay (within the composite
mode Cooling, see Fig. 2), is translated into a ProSave
design, as shown in Fig. 4. Further, if the delay mode is
not connected by a transition to any other internal mode,
its timeout i.e., sigTimeOut is communicated to the
controller (described below, by the controller pattern) of
a containing composite mode. For TCS, the time-out from
Delay mode triggers the mode DeleteRod.

Figure 4. Transformation of the composite mode Cooling of TCS into a
ProSave Design, by applying the timer pattern.

Figure 5. The discrete clock pattern in ProSave.

B. Discrete Clock Pattern

Clocks are central to embedded system behavior. The
pattern models a coarse-grained discrete clock (i.e., a slower
clock) triggered by a finer-grained clock (e.g., the Main-
Clock). Also, the pattern facilitates the synchronization of
various clocks within a component-based design.

The pattern is similar to the timer pattern described above,
but does not require a set operation (as the state variable
is simply incremented, when triggered). Further, unlike the
timer pattern, the output of a discrete clock pattern is always
a trigger rather than data as this is justified by the fact that
clock ticks represent causality, between the clock and the
triggered component, in a component-based design.

A ProSave description of the pattern is given in Fig. 5.
The service tick, when triggered by the finer-grained clock,
e.g., MainClock, increments the value of the state variable,
modulo m (see the associated pattern constraint). The con-
nector Select is needed to output the trigger only when the
specified period expires, indicated by the associated boolean
data output port. Hence, the final output trigger corresponds
to a tick for every m ticks of the triggering clock.

The discrete clock pattern corresponds to the following
Marte clock constraints as shown in (5), (6) below. Except
for the initial tick, the discrete clock pattern does not suffer
from any jitter (as verified in Section VI). This is consistent
with the ProSave clock semantics.

MainClock discretizedBy n (5)

isPeriodicOn MainClock Period P (6)

Application of the discrete clock pattern to TCS: The
pattern can support the design of periodic behaviors in a
component-based design, also described by the following
patterns below. Additionally, it can be used to synchronize
different clocks in a design. This not only simplifies the



Figure 6. The periodic behavior pattern in ProSave.

design, increasing its readability, and understandability, but
avoids clock jitters and corresponding unpredictable delays,
if any, which can be caused by different clocks. In the
case of TCS component-based design, as shown in Fig. 11,
the MainClock triggers both the Controller component, and
the Timer component. Additionally, it could also trigger
the Clock component, which instead is triggered by the
Controller, for further simplification of the design.

C. Periodic Behavior Pattern

An embedded system is commonly described as a col-
lection of periodic behaviors. The pattern describes two
behaviors, say B1, and B2, where the periodic behavior
B1 triggers the execution of B2. This causality makes the
behavior B2 sequential, and also periodic. However, it is
generally important for behavior B2 to act on the output
generated from B1, which entails the constraint that “B2
must be at idle state when B1 completes the execution”.

In Fig. 6, we give the ProSave description of this pattern.
The component B1 (containing the behavior B1) is triggered
by a clock of corresponding periodicity (can be designed
using the discrete clock pattern described above). Further,
the output of B1 triggers the component containing the
behavior B2. However, the design must ensure that the
specified pattern constraint is preserved. That is, B2 must
be idle, when B1 completes its execution. The formal
verification of the pattern (see Section VI), verifies the
conditions for the constraint to hold, in terms of the period
of B1, and also the end-to-end response time of B1, and
B2.

The pattern corresponds to the following Marte clock
constraint in (7) below.

B1.finish alternatesWith B2.start (7)

Application of the periodic behavior pattern to TCS:
The pattern can be used in transforming a mode with peri-
odic behaviors into corresponding component-based design.
In the TCS modemachine (Fig. 2), the composite mode
TempControl contains atomic submodes with periodic, and
sequential behaviors MeasureTemp, SelectAndInsertRod,
respectively. Thus, the composite mode TempControl can
be translated into a ProSave design as shown in Fig. 7.
The Clock component is designed by the application of
the discrete clock pattern, and based on the periodicity
of MeasureTemp mode behavior (represented by Tem-
pControl component), as specified by the corresponding

Figure 7. Transformation of composite mode TempControl of TCS into
a ProSave design, by applying the periodic behavior pattern.

timing constraint (see Fig. 2). When triggered by the Clock
component periodically, the TempControl executes by read-
ing the temperature data and provides output, temperature
deviation within the allowed interval. This value is read by
SelectAndInsertRod component to determine if a control
rod is required to be inserted or not.

D. Controller Pattern

The behavior of an embedded system consists mainly of
event-, or time-triggered behaviors. We have already covered
the time-triggered behaviors by the patterns described above.
Here, we introduce the controller pattern, to describe the
event triggered execution of system behaviors. This corre-
sponds to the reactive part of the system behavior.

In principle, a component-based design is based on time-
triggered, and control-, data-flow semantics. Hence, the
pattern transforms event-based execution of mode behaviors
into the executions based on sampling of the environment
data corresponding to sensors, and actuators. Within a
component-based design, events can be represented by pre-
defined predicates over the environment data [13]. When
triggered by a system clock (e.g., the MainClock discussed
previously), the data is sampled to determine the occurrence
of events, through the evaluation of corresponding predi-
cates.

Fig. 8 shows the ProSave design of the pattern. The Con-
troller component is triggered by a system clock, e.g., Main-
Clock, periodically (in an implementation, the controller thus
becomes a periodic task in the system). The periodicity of
the clock is to be determined by the periodicity of data
occurrences or their criticality. Also, there can exist multiple
clocks of different periodicity (can be or-ed using ProSave
connector ControlOr). Further, the controller implements
the mode change behavior of a modemachine(e.g., Fig. 2). It
also implements a datastructure representing the predicate-
event mapping ([13]) described above. The controller can be
triggered by internal signals i.e., sigTimeOut, when the
signal represents a trigger rather than data (as described in
the Timer pattern previously).

Application of the controller pattern to TCS: The pattern
can be used in transforming the control structure of a
modemachine specification into corresponding component-
based design. For example, the event-based transitions cor-
responding to the top-level control structure of the TCS



Figure 8. The controller pattern in ProSave

Figure 9. Transformation of the top level mode transitions of TCS into a
ProSave design, by applying the controller pattern.

modemachine specification (Fig. 2), is transformed into the
corresponding component-based design in Fig. 9. When trig-
gered, the Controller evaluates the predicates corresponding
to the event occurrence Rod inserted, and Rod deleted,
respectively. In this case, no timeout is communicated to
the controller, hence using the control-or connector, shown
in the pattern, is not required.

VI. PATTERN VERIFICATION

In this section, we describe the formal verification with
respect to component patterns, presented in the previous
section. The approach is based on the formal semantics
of the architectural elements of the ProSave language [10],
[11]. The formal semantics is based on an extension of finite
state machine formalism with the notions of urgency, priority
etc. The semantics of the formalism itself was given in terms
of timed automata (TA) [14]. This provides a mechanism to
formally verify ProSave designs using UPPAAL, the timed
automata based model-checker [7] .

For formal verification, a component pattern is translated
into the corresponding network of timed automata, based on
the underlying semantics of constituting ProSave elements.

A. Verification of periodic behavior pattern

For periodic behavior pattern (in Fig. 6), the correspond-
ing network of timed automata is given in Fig. 10. Each
of the timed automata ClockTA, ClockToB1, B1, B1ToB2,
B2 correspond to the periodic trigger to B1, trigger connec-
tion to B1, component B1, trigger connection from B1 to
B2, and component B2, respectively. Also, the end-to-end
response time (say, R) of components B1, B2 are modeled
in corresponding TA (3, 4 in this example). ChannelsTA
denotes the timed automaton that contains complementary
channels, corresponding to urgent channels A, B of other
TA.

Figure 10. Translation of the periodic behavior pattern in ProSave into
the corresponding network of timed automata.

On the above models, we have verified with UPPAAL [7],
that the following properties are satisfied by the periodic
behavior pattern:

A[] not deadlock (8)

A[] B1.trigOut imply (not B2.InExecution) (9)

Property (8) states that there is no deadlock in the
pattern. Though basic, this is a very important model
feasibility property. Property (9) verifies the main constraint
of the pattern i.e., that B2 is idle, that is, ready to begin
execution, whenever B1 terminates its execution. However,
it is observed that this property is satisfied, provided that
the following conditions hold:

Periodicity of B1=

{
≤ EB1 if EB1 > EB2

> EB2 if EB2 > EB1

where

EB1, EB2 denote the response time of B1, B2 respec-
tively.

B. Verification of other Patterns

In addition to “no deadlock”, we have verified other
properties like the ones expressed by (10 - 12), this time
for the Timer pattern (see Fig. 3). Expression (10) describes
a liveness property (also called leads to, or response property
[7]), as follows: when the timer is set, it eventually performs
a timeout. Formulae (11), (12), verified to be satisfied by the
pattern, indicate that the timer duration has a jitter of one
period of the MainClock.

timerV alue == Set.N  timerV alue == 0 (10)

A[] (TimeOut imply (obsClk >= (m− 1) ∗ P )) (11)

A[] (TimeOut imply (obsClk <= (m+ 1) ∗ P )) (12)

For the discrete clock pattern, we have model-checked the
corresponding network of automata against the following



properties: deadlock freedom, liveness (as given by (10)),
and jitter freedom (see (13)). The latter means that the Clock
discretizes the MainClock perfectly, without any jitter, unlike
the timeout duration of the timer pattern:

A[] TimeOut imply (obsClk = m ∗ P ) (13)

VII. TEMPERATURE CONTROL SYSTEM: A COMPLETE
PROCOM DESIGN

In this section, we complete the approach introduced in
sections IV and V, by describing the final steps leading to
a complete ProCom system design.

We have applied the Timer pattern, of the Fig. 3, to
transform the composite mode Cooling of the TCS spec-
ification (Fig. 2), which contains the delay mode Delay,
and an atomic mode DeleteRod with its corresponding
behavior. The expiration of the timeout, signaled by the
event sigTimeOut from the Timer component, triggers
the execution of the behavior in DeleteRod.

To recall, Fig. 5 presents a ProSave design corresponding
to the composite mode TempControl in the TCS specifica-
tion. The corresponding design in ProSave, is obtained by
applying the discrete clock pattern to the composite mode.

Also, the top level control structure, corresponding to the
reactive behavior of the TCS modemachine (Fig. 2), with
respect to the events Rod inserted, and Rod deleted is
translated into the corresponding ProSave design in Fig. 8,
through the controller pattern.

The complete ProCom design of the TCS is presented in
Fig. 11. For simplicity, the complete system is represented as
a single ProSys subsystem (see Section II). For integrating
different design parts, for instance, those described above,
the following design steps are applied:

• Synchronize the clocks using discrete clock pattern:
different clocks in the component-based design can be
synchronized by applying the discrete clock pattern,
and a finest-grained clock, e.g., the MainClock. This
not only simplifies the component design, but also
minimizes clock jitters, if any. For TCS, the different
clocks, due to Controller, PeriodicBehavior, and Timer
patterns, are synchronized using the MainClock.

• Interconnect ProSys message ports with ProSave ports:
the system can be designed as a basic ProSys system
(also called ProSave Subsystem) by connecting mes-
sage ports to ProSave control, and data ports (as shown
in Figure 11). Sensor and other data values, received as
messages through ProSys message ports are forwarded
to the internal ProSave components through their ports.

Figure 11. The Temperature Control System in ProCom: a ProSys
component made of ProSave components.

VIII. RELATED WORK

In the domain of synchronous languages [15], mode
automata and the notion of running modes have been in-
troduced, to reduce the gap between the initial design of
a system and the program written for it. The formalism
has been proposed to support both dataflow, and imperative
styles. The modemachine described in this paper corresponds
to the event-based, hierarchical, high-level control structure
of the system and associated timing constraints.

Sandén proposes the “state-machine” pattern [16], for
designing concurrent real-time software in Ada [17]. Many
possible implementations of the pattern, corresponding to
concurrent, reactive, and time-triggered behaviors, are de-
scribed. Also, patterns for non-functional aspects such as
resource usage, quality-of-service have been proposed [18].
However, such patterns focus on the design or implemen-
tation phase of the system. The patterns proposed in this
paper support the design process, by directly mapping the
specification aspects, with associated timing constraints, into
the corresponding design elements.

Maxwell et al. have proposed a formal framework [19]
for heuristics-based transformation of architectural designs.
The authors capture heuristics in a structured and formal
manner, such that the architectural transformations can be
performed for optimizing the non-functional qualities of
a system. Denford et al. have proposed an architectural
refinement method [20] that focuses on non-functional re-
quirements e.g., reliability, performance, while still address-
ing the functional requirements. While these works focus
on non-functional aspects such as performance, we address
architectural designs through timing constraints of embedded
systems. However, this is done by including the functional
requirements also.

UML/Marte profile is extensively used in the context of
AADL (Architecture analysis and design language [21]) for
component-based designs of real-time, embedded systems
[22], [23]. AADL supports the modeling of both software
components such as thread, subprogram, process, and plat-
form components, e.g., bus, memory, processor, and device.
However, AADL introduces avoidable redundancies that
obscure the model and may even lead to design inconsis-



tence. To address this deficiency, the Marte clock constraints
have been used [23] to precisely specify both event, and
time triggered communications for AADL models, and to
compute end-to-end flow latency. These works focus on
models related to software and platform mapping. In this
paper, we offer formally verified support for component-
based system design, in the form of patterns based on timing
constraints.

EastADL [24] is a layered architecture language for
model-based development of automotive software. To ad-
dress various concerns of system’s life-cycle development,
it provides abstraction layers such as feature level, re-
quirements, analysis, design, and implementation. Mallet et
al. have described Marte CCSL specification of EastADL
timing requirements [25]. This enables the use of Marte tools
for timing verification of EastADL requirements. The work
is similar to model driven aspects underlying the proposed
patterns in this paper.

IX. CONCLUSIONS

In this paper, we have proposed a set of component
based patterns for developing embedded system designs.
The patterns are based on the specification of reactive,
and time-triggered behaviors of an embedded system. An
extended form of statemachine, referred as modemachine,
combined with UML/Marte clock constraints is used as
the specification language. We have proposed component
patterns for clocks, timers, periodic, and reactive behaviors.
Also, we have described the implementation of the proposed
patterns in the ProCom language, in order to support the
design process based on the specification of functionality,
and timing constraints. Further, we have described the corre-
spondence of the proposed patterns with related UML/Marte
clock constraints.

To guarantee timing correctness aspects, we have formally
verified our patterns, by model checking their corresponding
timed automata models, in UPPAAL. This facilitates the
development of component based-design models with pre-
cise timing aspects. We have demonstrated the approach, by
transforming the modemachine specification of an example
temperature control system, into a corresponding design in
ProCom component model. The explicit representation of
running modes in the design, by application of the proposed
patterns, may be useful for developing efficient deployment
models. However, this requires further validation. Also, we
intend to extend the approach to other Marte constraints,
and validate the approach with complex systems. Further,
we plan to work on the compositional verification of timing
properties of the resulting component-based system designs.
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functional refinement of computer based systems
architecture,” in Proceedings of the 11th IEEE
International Conference and Workshop on Engineering
of Computer-Based Systems. Washington, DC, USA: IEEE
Computer Society, 2004, pp. 168–. [Online]. Available:
http://portal.acm.org/citation.cfm?id=998673.999275

[21] Society of Automotive Engineers (SAE). (2006, June)
Architecture analysis and design language (AADL). [Online].
Available: http://www.sae.org/technical/standards/AS5506/1

[22] M. Faugere, T. Bourbeau, R. De Simone, and S. Gerard,
“MARTE: Also an UML profile for modeling AADL appli-
cations,” in Engineering Complex Computer Systems, 2007.
12th IEEE International Conference on, 2007, pp. 359 –364.

[23] F. Mallet, R. de Simone, and L. Rioux, “Event-triggered
vs. time-triggered communications with UML MARTE,” in
Specification, Verification and Design Languages, 2008. FDL
2008. Forum on, 2008, pp. 154 –159.

[24] ATESST (Advancing Traffic Efficiency through Software
Technology). (2008, March) East-ADL2 specification.
[Online]. Available: http://www.atesst.org, 2008-03-20

[25] F. Mallet, M.-A. Peraldi-Frati, and C. Andre, “Marte
CCSL to execute East-ADL timing requirements,” in
Object/Component/Service-Oriented Real-Time Distributed
Computing, 2009. ISORC ’09. IEEE International Symposium
on, March 2009, pp. 249 –253.


