
Support for Holistic Response-time Analysis in an Industrial Tool Suite:

Implementation Issues, Experiences and a Case Study

Saad Mubeen∗, Jukka Mäki-Turja∗† and Mikael Sjödin∗

∗ Mälardalen Real-Time Research Centre (MRTC), Mälardalen University, Västerås, Sweden
† Arcticus Systems, Järfälla, Sweden

{saad.mubeen, jukka.maki-turja, mikael.sjodin}@mdh.se

Abstract—The process of implementing and integrating
state-of-the-art real-time analysis techniques with an existing
industrial tool suite for the development of Distributed Real-
time Embedded (DRE) systems offers many challenges. The
implementer has to not only code and implement the analysis in
the tool suite, but also deal with several issues such as extraction
of unambiguous timing and tracing information from the
design model. In this paper we present an implementation of
the Holistic Response-Time Analysis (HRTA) as a plug-in for
an industrial tool suite Rubus-ICE that is used for component-
based development of DRE systems. We discuss and solve the
issues encountered and highlight the experiences gained during
the process of implementation, integration and evaluation of
HRTA plug-in. We also provide a proof of concept by modeling
an automotive application (autonomous cruise control system)
using component-based development and analyzing it with
HRTA plug-in.

Keywords-Distributed real-time embedded systems; holistic
response-time analysis; component-based development;

I. INTRODUCTION

In order to provide evidence that each action in the system

will meet its deadline, a priori analysis techniques such as

schedulability analysis have been developed by the research

community. Response Time Analysis (RTA) [1], [2] is one

of the methods to check the schedulability of a system.

It calculates upper bounds on response times of tasks or

messages in a real-time system or a network respectively.

Holistic Response-Time Analysis (HRTA) [3], [4], [5] is an

academic well established schedulability analysis technique

to calculate upper bounds on the response times of event

chains (distributed transactions) in a distributed real-time

system. The process of transferring such academic research

results to the tools for industrial use can be challenging.

A tool chain for the industrial development of component-

based Distributed Real-time Embedded (DRE) systems con-

sists of a number of tools such as designer, compiler, builder,

debugger, simulator, etc. Often, a tool chain may comprise

of tools that are developed by different tool vendors. The

implementation of state-of-the-art complex real-time anal-

ysis techniques such as RTA and HRTA in such a tool

chain is non-trivial because there are several issues that

are encountered apart from merely coding and testing the

analysis algorithms.

A. Goals and Paper Contributions

In this paper, we discuss the implementation of HRTA as

a standalone plug-in in the industrial tool suite Rubus-ICE

(Integrated Component development Environment) [6]. Our

goals in this paper are as follows.

1) Transfer the state-of-the-art real-time analysis results,

i.e., holistic response-time analysis to the tools for

industrial use.

2) Discuss and solve several issues encountered dur-

ing the implementation, integration and evaluation of

HRTA as a plug-in for Rubus-ICE.

3) Discuss the experiences gained during the implemen-

tation, integration and evaluation of HRTA plug-in.

4) Provide a proof of concept by conducting an

automotive-application case study.

We believe, the contributions in this paper may provide guid-

ance for the implementation of complex real-time analysis

techniques in any industrial tool suite that supports a plug-

in framework for the integration of new tools and allows

component-based development of DRE systems.

B. Paper Layout

The rest of the paper is organized as follows. Section II

presents the background and related work. Section III dis-

cusses the implemented analysis. Section IV describes the

experiences gained and issues encountered during the im-

plementation of HRTA. Section V presents a test plan. In

Section VI, we present an automotive case study by model-

ing and analyzing a DRE application. Section VII concludes

the paper and presents the future work.

II. BACKGROUND AND RELATED WORK

A. The Rubus Concept

Rubus is a collection of methods and tools for model-

and component-based development of dependable embedded

real-time systems. Rubus is developed by Arcticus Sys-

tems [6] in close collaboration with several academic and

industrial partners. Rubus is today mainly used for develop-

ment of control functionality in vehicles. The Rubus concept

is based around the Rubus Component Model (RCM) [7] and

its development environment Rubus-ICE, which includes

2012 19th IEEE International Conference and Workshops on Engineering of Computer-Based Systems

978-0-7695-4664-3/12 $26.00 © 2012 IEEE

DOI 10.1109/ECBS.2012.38

210

2012 IEEE 19th International Conference and Workshops on Engineering of Computer-Based Systems

978-0-7695-4664-3/12 $26.00 © 2012 IEEE

DOI 10.1109/ECBS.2012.38

210

modeling tools, code generators, analysis tools and run-

time infrastructure. The overall goal of Rubus is to be

aggressively resource efficient and to provide means for

developing predictable and analyzable control functions in

resource-constrained embedded systems.

RCM expresses the infrastructure for software functions,

i.e., the interaction between software functions in terms

of data and control flow separately. The control flow is

expressed by triggering objects such as internal periodic

clocks, interrupts, internal and external events. In RCM,

the basic component is called Software Circuit (SWC). The

execution semantics of an SWC is simply: upon triggering,

read data on data in-ports; execute the function; write data

on data out-ports; and activate the output trigger. Recently,

we extended RCM for the development of DRE systems by

introducing new components [8], [9]. A detailed comparison

of RCM with several component models is presented in [8].

Figure 1 depicts the sequence of main steps followed

in Rubus-ICE from modeling of an application to the

generation of code. The component-based design of an

application is modeled in the Rubus Designer tool. Then

the compiler compiles the design model into an Intermediate

Compiled Component Model (ICCM). After that the builder

tool sequentially runs a set of plug-ins. Finally, a coder tool

generates the code.

Designer Compiler Builder Coder

XML XML

Plug-ins

ICCM Code

Figure 1. Sequence of steps from design to code generation in Rubus-ICE

B. Plug-in Framework in Rubus-ICE

The plug-in framework in Rubus-ICE [10] facilitates the

implementation of state-of-the-art research results in an iso-

lation (without needing Rubus tools) and their integration as

add-on plug-ins (binaries or source code) with the integrated

development environment. A plug-in is interfaced with a

builder tool as shown in Figure 1. The plug-ins are executed

sequentially which means that the next plug-in can execute

only when the previous plug-in has run to completion.

Hence, each plug-in reads required attributes as an input,

runs to completion and finally writes the results to ICCM

file. An Application Programming Interface (API) defines

the services required and provided by a plug-in. Each plug-

in specifies the supported system model, required inputs,

provided outputs, error handling mechanisms and a user

interface. Figure 2 shows a conceptual organization of a

Rubus-ICE plug-in.

C. Response-Time Analysis

1) RTA of Tasks in a Node: Liu and Layland [11]

provided theoretical foundation for analysis of fixed-priority

scheduled systems. Joseph and Pandya published the first

RTA [12] for the simple task model presented in [11].

Subsequently, it has been applied and extended in a number

of ways by the research community. RTA is used to perform

a schedulability test which means it checks whether or

not tasks in the system will satisfy their deadlines. RTA

applies to systems where tasks are scheduled with respect

to their priorities and which is the predominant scheduling

technique used in real-time operating systems [13]. In [13],

it is claimed that amongst the more traditional, analytical,

schedulability analysis techniques, RTA of tasks with offsets

stands out as the prime candidate because of its better preci-

sion and ability to analyze quite complex system behaviors.

API Calls
Analysis

Algorithms

User Interaction

Error Handling

API Calls

Figure 2. Conceptual organization of a plug-in in Rubus-ICE

Tindell [4] developed the schedulability analysis for tasks

with offsets for fixed-priority systems. It was extended by

Palencia and Gonzalez Harbour [5]. Later, Mäki-Turja and

Nolin [14] reduced pessimism from RTA developed in [4],

[5] and presented a tighter RTA for tasks with offsets by

accurately modeling inter-task interference. We implemented

RTA of tasks with offsets [14] as part of HRTA plug-in.

2) RTA of Messages in a Network: There are many

protocols such as, CAN (Controller Area Network), TTCAN

(Time-Triggered CAN), FlexRay, etc., that are used in DRE

systems. To stay focussed, we will consider only CAN and

its high-level protocols. Tindell et al. [15] developed the

schedulability analysis of CAN which has served as a basis

for many research projects. Later on, this analysis was re-

visited and revised by Davis et al. [16]. The analysis in [15],

[16] assumes that all CAN device drivers implement priority-

based queues. In [17] Davis et al. pointed out that this

assumption may become invalid when some nodes in a CAN

network implement FIFO queues. Hence, they extended the

analysis of CAN with FIFO queues as well. However, the

existing analysis does not support mixed messages which

are implemented by several high-level protocols for CAN.

In [18], [19], Mubeen et al. extended the existing analysis

to support RTA of mixed messages in the CAN network

where some nodes use FIFO queues while others use priority

queues.

3) Holistic RTA: It combines the analysis of nodes

(uniprocessors) and a network. Hence, it computes the re-

sponse times of event chains that are distributed over several

nodes in a DRE system. In this paper, we consider a timing

model that corresponds to the holistic schedulability analysis

for DRE systems [3]. An example distributed transaction in a

DRE system is shown in Figure 3. The holistic response time

is equal to the elapsed time between the arrival of an event

(corresponding to the brake pedal input) and the response

time of Task4 (corresponding to the production of a signal

for brake actuation). In [20], we discussed our preliminary

211211

findings about implementation issues that are encountered

when HRTA is transferred to the industrial tools.

Task1 Task2 Task3 Task4

Network

Sensor Node Computation Node Actuation Node

Holistic Response Time

Brake

Pedal

Input

Brake

Actuator

Figure 3. Holistic response-time in a distributed real-time system

D. Tools for Timing Analysis of DRE Systems

We briefly discuss few tool suits that provide similar real-

time analysis support for DRE systems. The MAST tool

suite [21] implements a number of state-of-the-art analysis

algorithms for DRE systems. Among them is the offset-

based analysis algorithm [4], [5] whose tighter version [14]

is implemented in Rubus-ICE. The MAST model also allows

visual modeling and analysis of real-time systems in a UML

design environment. The Volcano Family [22] is a bunch of

tools for designing, analyzing, testing and validating auto-

motive embedded software systems. Among them, Volcano

Network Architect (VNA) [23] is a communication design

tool that supports the analysis of CAN and LIN networks.

It also supports end-to-end timing analysis of a system

with more than one networks. It implements RTA of CAN

developed by Tindell et al. [15].

SymTA/S [24] is a tool for model-based timing analysis

and optimization. It implements several real-time analysis

techniques for single-node, multiprocessor and distributed

systems. It supports RTA of software functions, RTA of buss

messages and end-to-end timing analysis of both single-rate

and multi-rate systems. It is also integrated with the UML

development environment to provide a timing analysis sup-

port for the applications modeled with UML [25]. RAPID

RMA [26] implements several scheduling schemes and

supports end-to-end analysis for single- and multiple-node

real-time systems. It also allows real-time analysis support

for the systems modeled with Real-Time CORBA [27].

The Rubus tool suite allows a developer to specify timing

information and perform holistic response-time analysis at

the modeling phase during component-based development

of DRE systems. To the best of our knowledge, Rubus-

ICE is the only tool suite that implements RTA of mixed

messages in CAN [18] and a tighter version of offset-based

RTA algorithm [14] as part of the holistic RTA.

III. IMPLEMENTED ANALYSIS IN RUBUS-ICE

We implemented HRTA as a standalone plug-in in Rubus-

ICE. The plug-in can be used to compute the response times

of individual tasks in a node, messages in a network and

Distributed Transactions (DTs) in a distributed system.

A. Node Analysis

In order to analyze tasks in each node, we implemented

RTA of tasks with offsets developed by [4], [5] and improved

by [14].

B. Network Analysis

We implemented a network RTA that supports the analysis

of CAN and its high-level protocols. It is based on the

following RTA profiles for CAN.

1) RTA of CAN [15], [16].

2) RTA of CAN for mixed messages [18].

The above analysis assumes that the CAN nodes implement

priority-ordered queues. The next step, as a future work,

will be the implementation of CAN analysis that also

supports FIFO ordered queues, i.e., RTA of CAN with FIFO

queues [17] and RTA of CAN with FIFO Queues for Mixed

Messages [19].

C. Holistic Analysis

The HRTA algorithm iteratively runs the analysis algo-

rithms for node and network analysis. In the first step,

release jitter of all messages and tasks in the system is

assumed to be zero. The response times of all messages

in the network and all tasks in each node are computed.

In the second step attribute inheritance is carried out. This

means that each message inherits a release jitter equal to the

response time of its sender task (computed in the first step).

Similarly, each receiver of a message inherits a release jitter

equal to the response time of the message (computed in the

first step). In the third step, response times of all messages

and tasks are computed again. The newly computed response

times are compared with the response times previously

computed in the first step. The analysis terminates if the

values are equal otherwise these steps are repeated. The

conceptual view of HRTA that is implemented in Rubus-ICE

is shown in Figure 4. The pseudocode of HRTA algorithm

is shown in Algorithm 1.

HRTA Plug-in

Algorithms for RTA of

Tasks in a Node

Algorithms for RTA of

Messages in a Network

HRTA Algorithm

Figure 4. Conceptual view of HRTA plug-in in Rubus-ICE

IV. IMPLEMENTATION ISSUES AND EXPERIENCES

We discuss several issues encountered during the process

of implementation and integration of HRTA as a standalone

plug-in in Rubus-ICE. We also present our solution for

each individual issue. Moreover, we discuss the summary of

our experiences that are gained while translating theoretical

results (HRTA) into the industrial tool suite.

A. Extraction of Unambiguous Timing Information

One common assumption in HRTA is that the timing

attributes required by the analysis are available as an input.

However, when HRTA is implemented in a tool chain for the

analysis of component-based DRE systems, the implementer

212212

Algorithm 1 HRTA Algorithm

RTPrev ← 0 // Initialize Response Time (RT) to zero

Repeat ← TRUE

while Repeat = TRUE do

for all Messagesandtasksinthesystem do

JitterMsg ← RTSender

JitterReceiver ← RTMsg

ComputeRTof allmessages

ComputeRTof all tasksineverynode

if RT > RTPrev then

RTPrev ← RT

Repeat ← TRUE

else

Repeat ← FALSE

end if

end for

end while

has to not only code and implement the analysis, but also

extract unambiguous timing information from the compo-

nent model and map it to the inputs for the analysis model.

This is because the design and analysis models are build

upon different meta-models [28]. Often, the design model

contains redundant timing information and hence, it is not

trivial to extract unambiguous timing information for HRTA.

We divide the timing information (to be extracted) into

two categories. The first category corresponds to the timing

attributes of tasks (in each node) and network messages

that are provided in the modeled application by the user.

These timing attributes include Worst Case Execution Times

(WCETs), periods, minimum update times, offsets, priori-

ties, deadlines, blocking times, precedence relations in event

chains, jitters, etc. In [9], we identified all the timing at-

tributes of nodes, networks, transactions, tasks and messages

that are required by HRTA. This timing information should

be extracted from the modeled application and be made

available as an input for HRTA.

The second category corresponds to the timing attributes

that are not directly provided by the user but they must

be extracted from the modeled application. For example,

message period (in case of periodic transmission) or message

inhibit time (in case of sporadic transmission) is often not

specified by the user. These attributes must be extracted from

the modeled application because they are required by the

RTA of network communication. In fact, a message inherits

the period or inhibit time from the task that queues this

message. Thus, we assign a period or inhibit time to the

message equal to the period or inhibit time of its sender

task respectively.

However, the extraction of message timing attributes

becomes complex when the sender task has both periodic

and sporadic activation patterns. In such a case, not only

the timing attributes of a message have to be extracted

but also the transmission type of the message has to be

identified. This issue can be visualized in an example shown

in Figure 5. It should be noted that an Out Software Circuit

(OSWC), shown in the figure, is one of the network interface

components in RCM that sends a message to the network.

The other network interface component is In Software Cir-

cuit (ISWC) that receives a message from the network [8].

In Figure 5(a), the sender task is activated by a clock and

hence, the corresponding message is periodic. Similarly, the

corresponding message is sporadic in Figure 5(b) because

the sender task is activated by an event. However, the sender

task in Figure 5(c) is triggered by both a clock and an

event. Thus, the corresponding message will be a mixed

message [18]. If there are periodic and sporadic messages

in the modeled application, the HRTA plug-in uses the first

profile of network analysis as discussed in the previous

Section. On the other hand if the modeled application

contains mixed messages as well, the second profile of

network analysis is used. We extract the transmission type of

a message from the modeled application as follows. If the

sender of a message has a periodic or sporadic activation

pattern then the message is assigned a periodic or sporadic

transmission type respectively. However, if the sender is

activated both periodically and sporadically, the message is

assigned a mixed transmission type.

(c)

(a) (b)

Figure 5. Extraction of transmission type of a message

B. Extraction of Tracing Information from Distributed

Transactions

In order to perform HRTA, correct tracing information of

DTs should be extracted from the design model [29]. For

this, we need to have a mapping among signals, data ports

and messages. Consider the following DT in a two-node

DRE system modeled with RCM as shown in Figure 6.

SWC1→ OSWC A→ ISWC B → SWC2→ SWC3

In this example, our focus is on the network interface

components, i.e., OSWC and ISWC [8]. In order to compute

the holistic response time of this DT, we need to extract trac-

ing information from the component model. We identified a

need for the following mappings in the component model.

• At the sender node, mapping between signals and input

data ports of OSWC components.

• At the sender node, mapping between signals and a

message that is sent to the network.

213213

• At the receiver node, mapping between data output

ports of ISWC components and the signals to be sent

to the desired components.

• At the receiver node, mapping between message re-

ceived from the network and the signals to be sent to

the desired component.

• Mapping between multiple signals and a complex data

port. For example, mapping of multiple signals ex-

tracted from a received message to a data port that sends

a complex signal (structure of signals).

• Mapping of all trigger ports of network interface com-

ponents along a DT as shown by a bidirectional arrow

in Figure 6.

Controller Area Network (CAN)

Node A

Signals

SWC1

OSWC_A

CAN

SEND

Ext

messages

Signals

ISWC_B

SWC2 SWC3

CAN

RECEIVE

Node B
Data Port

Trigger

Port

External

Event
Ext

Data

Source

Data

Sink

Figure 6. Two-node DRE system modeled in RCM

C. Impact of Design Decisions in Component Model on the

Implementation of Analysis

Design decisions made in the component model can have

indirect impact on the response times computed by the

analysis. For example, design decisions could have impact

on WCETs and blocking times which in turn have impact

on the response times. In order to implement, integrate

and test HRTA, the implementer needs to understand the

design model (component model), analysis model and run-

time translation of the design model. In the design model,

the architecture of an application is described in terms of

software components, their interconnections and software

architectures. Whereas in the analysis model, the application

is defined in terms of tasks, transactions, messages and

timing parameters. At run-time, a task may correspond

to a single component or chain of components. The run-

time translation of a software component may differ among

different component models.

D. Direct Cycles in Distributed Transactions

A direct cycle in a DT is formed when any two tasks

located on different nodes send messages to each other.

When there are direct cycles in a DT, the holistic analysis

algorithm may run forever and may not produce converging

results, i.e., the response times increase in every iteration.

Consider a two-node application modeled in RCM as

shown in Figure 7 (a). The OSWC A component in node

A sends a message m1 to node B where it is received

by ISWC B component. Similarly, OSWC B component

in node B sends a message m2 to ISWC A component

in node A. There are two options for run-time allocation

of the network interface components (OSWC and ISWC)

as shown in Figure 7 (b). First option is to allocate a

network interface component to the task that corresponds

to the immediate SWC, i.e., to the same task as that of

the component that receives/sends the signals from/to it.

Since SWC A is immediately connected to both network

interface components in node A, there will be only one task

in node A denoted by τA as shown in Figure 7 (b). Similarly,

τB is the run-time representation of ISWC B , SWC B

and OSWC B components. It is obvious that the run-time

allocation of network interface components in the first option

results in direct cycles.

The direct cycles in DTs can be avoided by allocating each

network interface component to a separate task as shown

in the option 2 in Figure 7 (b). Although same messages

are sent between the nodes, one task can not be both a

sender and a receiver. No doubt there is a cycle between

the nodes, but not a direct one. In this case, the holistic

algorithm may produce converging response-time results and

non-terminating execution of the plug-in may be avoided. It

is interesting to note that the requirements and limitations of

the analysis implementation provides feedback to the design

decisions concerning the run-time allocation of modeling

components.

Node B

ISWC_B OSWC_BSWC_B

Node A

ISWC_A OSWC_ASWC_A

m2

Node B

�SWC_B

�OSWC_B

�ISWC_B

Node A

�SWC_A

�ISWC_A

�OSWC_A

Option 2

Node B

�B

Node A

�A

Option 1

m1

m2

m1

(a) (b)

Figure 7. Run-time allocation of network interface components

E. Analysis of DRE Systems with Multiple Networks

In a DRE system, a node may be connected to more than

one network. If a transaction is distributed over more than

one network, the computation of its holistic response time

involves the analysis of more than one network. Consider

an example of a DRE system with two networks, i.e., CAN

and LIN as shown in Figure 8. There are five nodes in

the system. Node 3 is a gateway node that is connected

to both the networks. Consider a transaction in which task1

in Node1 sends a message to task1 in Node5 via Node3.

The computation of holistic response time of this transaction

will involve the computation of message response times in

both CAN and LIN networks.

If a modeled system contains more than one network, we

divide it into sub-systems (each having a single network)

and analyze them separately. In the above example, we first

perform HRTA using CAN network. Then we provide the

response times of the messages that are received at the

gateway node as input jitters to the receiver tasks (attribute

inheritance). Finally, HRTA of LIN network is performed.

214214

However, the implemented HRTA does not support the

analysis of transactions that are distributed cyclically on

multiple networks, i.e., the transactions that are distributed

over more than one network and first and last task of the

transaction are located on the same network.

Task1 Task1 Task2 Task1

CAN

Node1 Node2
Gateway Node

Node3

Task1

LIN

Node4 Node5

Task1

Figure 8. Multiple networks in a DRE system

F. Sequential Execution of Plug-ins in Rubus Plug-in

Framework

The Rubus plug-in framework allows only sequential

execution of plug-ins. Hence, a plug-in has to execute to

completion and terminate before running the next plug-in.

It should be noted that there exists a plug-in in Rubus-ICE

that performs RTA of tasks in a node and it is already in

the industrial use. There are two options to develop HRTA

plug-in for Rubus-ICE, i.e., option A and B as shown in

Figure 9.

The option A supports reusability by building the HRTA

plug-in upon the existing Node RTA Plug-in. Thus, HRTA

plug-in is built by integrating existing RTA plug-in and two

new plug-ins, i.e., one implementing network RTA algo-

rithms and the other implementing holistic RTA algorithm.

In this case HRTA plug-in is very light weight. It iteratively

uses the analysis results produced by the node and the

network RTA plug-ins and accordingly provides new inputs

to them until converging holistic response times are ob-

tained. On the other hand, option B requires the development

of HRTA plug-in from the scratch, i.e, implementing the

algorithms of node, network and holistic RTA. This option

does not support any reuse of existing plug-ins.

Node RTA Plug-in

Rubus Builder

Algorithms for RTA

of Tasks in a Node

Node Timing

Information

Network RTA Plug-in

Algorithms for RTA of

messages in a Network

Network Timing

Information

HRTA Plug-in

Algorithms for HRTA

End-to-end

Timing Information

Rubus Builder

HRTA Plug-in

Algorithms for

RTA of Tasks

in a Node

Algorithms for

RTA of messages

in a Network

Algorithms for HRTA

End-to-end

Timing Information

Analysis

Results

Analysis Results Analysis Results

Analysis

Results

Option A Option B

Figure 9. Options to develop HRTA Plug-in for Rubus-ICE

Since, option A allows the reuse of a pre-tested and

heavy weight (having most complex algorithms compared

to network and holistic RTA) node RTA plug-in, it is easy

to implement and requires less time for implementation,

integration and testing compared to option B. However, the

implementation method in option A is not supported by

the plug-in framework of Rubus-ICE because the plug-ins

can only be sequentially executed and one plug-in can not

execute the other. Hence, we had to select option B for the

implementation of HRTA.

G. Presentation of Analysis Results

When HRTA of a modeled application has been per-

formed, the next issue is how to present the analysis results.

There can be a large number of tasks and messages in the

system. It may not be appropriate to display the response

time of all the tasks and messages because it may contain a

lot of useless information (if the user is not interested in all

of it). Furthermore, presenting the response times of only

DTs to the user may not be appropriate because there may

be hundreds of DTs in a DRE application. A way around

this problem is to provide the response times of only those

tasks and DTs which have deadline requirements (specified

by the user) or which produce control signals for external

actuators (e.g., the analysis results of case study that will be

discussed in Section VIII). Apart from this, we also provide

an option for the user to get detailed analysis results.

H. Interaction between the User and HRTA Plug-in

We identified that it is important to provide a progress

report of HRTA plug-in during its execution. Based on

the progress, the user should be able to interact with the

plug-in while it is running. The HRTA algorithm iteratively

runs the algorithms of node RTA and network RTA until

converging values of the response times are computed or the

computed response times exceed the deadlines (if deadlines

are specified). We feel that it is important to display the

number of iterations, running time and over all progress of

the plug-in during its execution. Moreover, the user should

be able to stop, rerun or exit the plug-in at any time.

I. Suggestions to Improve Schedulability Based on Analysis

Results

If the analysis results indicate that the modeled system is

unschedulable, it can be interesting if HRTA plug-in is able

to provide suggestions (e.g., by varying system parameters)

guiding the user to make the system schedulable. However,

it is not trivial to provide such feedback because there can be

so many reasons behind the system being not schedulable.

The support for this type of feedback in HRTA plug-in will

be provided in the future.

J. Requirement for Continuous Collaboration between Inte-

grator and Implementer

Our experience of integrating HRTA plug-in with Rubus-

ICE shows that there is a need of continuous collaboration

between the integrator of the plug-in and its implementer

especially in the phase of integration testing (see next Sec-

tion). This collaboration is more obvious when the plug-in

215215

is developed in isolation by the implementer (from research

background) and integrated with the industrial tool chain

by the integrator (with limited experience of integrating

complex real-time analysis but aware of overall objective).

A continuous consultation and communication was required

between the integrator and the implementer for the verifica-

tion of the plug-in. Examples of small DRE systems with

varying architectures were created for the verification. The

implementer had to verify these examples by hand. The

integration testing and verification of HRTA plug-in was

non-trivial and most tedious activity.

V. TESTING AND EVALUATION

In this section we discuss our test plan for both standalone

and integration testing of HRTA plug-in. Error handling

and sanity checking routines make a significant part of the

implementation. The purpose of these routines is to detect

and isolate faults and present them to the user during the

analysis. Our test plan contains the following sets of error

handling routines.

• A set of routines evaluating the validity of all inputs:

attributes of all nodes, transactions, tasks, networks and

messages in the system.

• A set of routines evaluating the validity of linking and

tracing information of all DTs in the system.

• A set of routines evaluating the validity of intermediate

results that are iteratively inherited as inputs (e.g., a

message inheriting the worst-case response time of the

sender tasks as a release jitter).

• A set of routines evaluating the overload conditions

during the analysis. For example, processor utilization

exceeding 100%, presence of direct cycles in the sys-

tem, etc. Since HRTA algorithm is iterative, the analysis

may never terminate in the presence of these conditions.

• A set of routines evaluating variable overflow during

the analysis.

A. Standalone Testing

Standalone testing means testing the implementation of

HRTA before it is integrated as a plug-in with the Rubus

builder tool. In other words, it refers to the testing of HRTA

in an isolation. The following input methods were used for

standalone testing.

1) Hard coded input test vectors.

2) Test vectors are read from external files.

3) Test vectors are generated using a test case generator

(a separate program). This generator produces test

cases with varying architectures. It also randomly

inserts invalid inputs to check if the error handling

routines are able to catch the errors.

The analysis results provided by the plug-in corresponding

to the test vectors in the first two input methods were also

verified by hand.

B. Integration Testing

Integration testing refers to the testing of HRTA plug-in

after integrating it with the Rubus builder tool. Although

standalone testing is already performed, the integration of

HRTA with Rubus-ICE may induce unexpected errors. Our

experience shows that integration testing is much more

difficult and time consuming activity compared to standalone

testing. The following input methods were used for integra-

tion testing.

1) Test vectors are read from external files.

2) Test vectors are manually written in ICCM file (see

Figure 1) to make it appear as if test vectors were

extracted from the modeled application.

3) Test vectors are automatically extracted from several

DRE applications modeled with RCM.

The analysis results provided by the plug-in corresponding

to all types of test cases were also verified by hand.

VI. AUTOMOTIVE CASE STUDY

We provide a proof of concept for the analysis approach

that we implemented in Rubus-ICE by conducting an auto-

motive case study. First, we model an Autonomous Cruise

Control (ACC) system with RCM using Rubus-ICE. Then,

we analyze the modeled ACC system using HRTA plug-in.

A. Autonomous Cruise Control System

A cruise control system is an automotive feature that

allows a vehicle to automatically maintain a steady speed

to the value that is preset by the driver. It uses velocity

feedback from the speed sensor (e.g., a speedometer) and

accordingly controls the engine throttle. However, it does

not take into account traffic conditions around the vehicle.

Whereas, an Autonomous Cruise Control (ACC) system

allows the cruise control of the vehicle to adapt itself to

the traffic environment without communicating with the

surrounding vehicles. Often, it uses a radar to create a

feedback of distance to and velocity of the preceding vehicle.

Based on the feedback, it either reduces the vehicle speed

to keep a safe distance and time gap from the preceding

vehicle or accelerates the vehicle to match the preset speed

specified by the driver [30].

An ACC system may be divided into four subsystems,

i.e., Cruise Control, Engine Control, Brake Control and User

Interface subsystem [31]. Figure 10 shows the block diagram

of ACC system. The subsystems communicate with each

other via a CAN network.

1) User Interface Subsystem: The User Interface (UI)

subsystem reads inputs (provided by the driver) and shows

status messages and warnings on the display screen. The

inputs are acquired by means of switches and buttons

mounted on the steering wheel. These include Cruise Switch

input (corresponding to ON/OFF/Standby states for ACC),

Set Speed input (desired cruising speed set by the driver) and

desired clearing distance from the preceding vehicle. Apart

216216

from user inputs, it also receives some other parameters from

the rest of the subsystems via CAN network. These include

linear and angular speed of the vehicle, i.e., kilometer per

hour (KPH) and revolution per minute (RPM), status of man-

ual brake sensor, state of ACC subsystem, status messages

and warnings to be displayed on the screen. Apart from

showing status messages and warnings, it sends messages

(including status of driver’s input) to other subsystems.

Controller Area Network (CAN)

Brake Control

Subsystem

Engine Control

Subsystem

Cruise Control

Subsystem

User Interface

Subsystem

Figure 10. Block diagram of Autonomous Cruise Control System

2) Cruise Control Subsystem: The Cruse Control (CC)

subsystem receives user input information as a CAN mes-

sage from the UI subsystem. From the received message it

analyzes the state of the cruise control switch; if it is in ON

state then it activates the cruise control functionality. It reads

input from proximity sensor (e.g., radar) and processes it to

determine the presence of a vehicle in front of it. Moreover,

it processes the radar signals along with the information

received from other subsystems such as vehicle speed to

determine its distance from the preceding vehicle. Accord-

ingly, it sends control information to the Brake Control

and Engine Control subsystems to adjust the speed of the

vehicle with the cruising speed or clearing distance from the

preceding vehicle. It also receives the status of manual brake

sensor from Brake Control subsystem. If brakes are pressed

manually then the cruise control functionality is disabled. It

also sends status messages to the UI subsystem.

3) Engine Control Subsystem: The Engine Control (EC)

subsystem is responsible for controlling the vehicle speed by

adjusting engine throttle. It reads sensor input and accord-

ingly determines engine torque. It receives CAN messages

sent by other subsystems. The messages include information

regarding vehicle speed, status of manual brake sensor, and

input information processed by UI system. Based on the

received information, it determines whether to increase or

decrease engine throttle. It then sends new throttle position

to the actuators that control engine throttle.

4) Brake Control Subsystem: The Brake Control (BC)

subsystem receives inputs from sensor for manual brakes

status and linear and angular speed sensors connected to

all wheels. It also receives a CAN message that includes

control information processed by CC subsystem. Based on

this feedback, it computes new vehicle speed. Accordingly,

it produces control signals and sends them to the brake and

back light actuators. It also sends CAN messages to other

subsystems that carry information regarding status of manual

brake, vehicle speed and RPM.

B. Modeling of ACC System with RCM in Rubus-ICE

In RCM, we model each subsystem as a separate node

connected to a CAN network as shown in Figure 11. The

selected speed of CAN bus is 500kbps . The extended frame

format is selected which means that all frames will use 29-

bit identifier [32].

Figure 11. Model of Autonomous Cruise Control System in RCM

There are seven CAN messages that are sent by the nodes

as shown in Figure 12. A signal data base that contains all

the signals sent to the network is also shown. Each signal

in the signal database is linked to one or more messages.

The extracted attributes of all messages including data size

(sm), priority (Pm), transmission type (ξm) and period or

minimum inter-arrival time (Tm) are listed in Table 1.

Figure 12. Model of CAN messages and signal database in RCM

A high-level architecture of UI, CC, EC and BC nodes in

RCM is shown in Figures 13, 14, 15 and 16 respectively.

Figure 13. Architecture of a User Interface node in RCM

Figure 14. Architecture of a Cruise Control node in RCM

Figure 15. Architecture of a Engine Control node in RCM

In this Section, we discuss the internal model of only

CC node. The details of internal models of the rest of

the nodes are presented in the Appendix A. The CC node

217217

Table I
MESSAGE ATTRIBUTES EXTRACTED FROM THE MODEL AND

CORRESPONDING ANALYSIS RESULTS

Msg sm Pm ξm Tm Cm Rm

μSec μSec μSec

m1 8 7 Periodic 10000 320 3860

m2 8 6 Periodic 10000 320 2360

m3 8 4 Periodic 10000 200 2540

m4 8 3 Sporadic 10000 320 7340

m5 2 5 Sporadic 10000 320 6520

m6 2 2 Periodic 10000 200 1200

m7 1 1 Sporadic 10000 180 7500

Figure 16. Architecture of a Brake Control node in RCM

is modeled with four assemblies as shown in Figure 14.

An assembly in RCM is a container for various software

items. The Input from Sensors assembly contains an SWC

that reads radar sensor values as shown in Figure 17.

The Input from CAN assembly contains three ISWCs,

i.e., GUI Input Msg ISWC, Vehicle speed Msg ISWC

and Manual brake input Msg ISWC as depicted in Fig-

ure 18. These components receive messages m1 , m6 and

m7 from CAN network respectively. Similarly, the assem-

bly Output to CAN contains three OSWC components as

shown in Figure 19. These components send messages

m5 , m4 and m2 to CAN network. The Cruise Control

assembly contains two SWCs: one handles the input and

cruise control mode signals while the other processes the

received information and produces control messages for the

other nodes. The internal structure of this assembly is shown

in Figure 20.

Figure 17. Internals of an assembly reading sensors

C. Modeling of Deadline Requirements

We specify deadline requirements on four DTs in ACC

system using a deadline object in RCM. Upon reading the

radar signal, these DTs produce brake and engine actuation

signals and display information for the driver. All these

transactions have a common initiator, i.e., their first task

corresponds to the SWC that reads radar signal and is located

in the CC node. The last tasks of first and second DTs are

located in the Brake Control node. These tasks correspond

to the SWCs SetBrakeSignal and SetBackLightSignal as

shown in Figure. 16. The last task of third DT corresponds

to SetThrottlePosition SWC and is located in the Engine

Control node as shown in Figure. 15. The last task of fourth

DT corresponds to GUIdisplay SWC and is located in the

User Interface node as shown in Figure. 13.

Figure 18. Internals of an assembly reading CAN messages

Figure 19. Internals of an assembly sending CAN messages

D. HRTA of ACC System using HRTA Plug-in

The run-time allocation of all the components in the

model of ACC system results in 19 transactions, 36 tasks

and 7 messages. Due to lack of space, the extracted timing

attributes and detailed analysis results of all transactions and

tasks can not be provided. The transmission times (Cm) and

worst-case response times (Rm) of all messages computed

by HRTA plug-in are shown in Table 1. The analysis report

in Table 2 provides worst-case holistic response times of

four DTs (discussed in the previous subsection) using HRTA

plug-in. The corresponding deadlines are also shown. The

response time of a DT is counted from the activation of the

first task to the completion of the last task in the chain.

The response time of these four DTs correspond to the

production of control signals for brake actuators, back lights,

engine throttle actuator and graphical user interface.

VII. CONCLUSION AND FUTURE WORK

We presented an implementation of state-of-the-art Holis-

tic Response Time Analysis (HRTA) as a plug-in for the

industrial tool suite Rubus-ICE. The implemented analysis

is general as it supports the integration of real-time analysis

of various networks without a need for changing the holistic

analysis algorithm. We discussed and solved several issues

that we faced during the implementation, integration and

evaluation of HRTA plug-in. The experience gained by

dealing with the implementation issues provided a feed back

218218

Figure 20. SWCs comprising the Cruise Control assembly

Table II
ANALYSIS REPORT

DT Control Signal Deadline Holistic

Produced by DT (μSec) Response

Time(μSec)

1 SetBrakeSignal 10000 6000

2 SetBackLightSignal 10000 6500

3 SetThrottlePosition 5000 3000

4 GUIdisplay 12000 1500

to the component model, for example, feed back on the

design decisions for efficient run-time allocation of network

interface components. We also discussed the steps that we

followed for testing and evaluating HRTA plug-in. We found

the integration testing to be a tedious and non-trivial activity.

Our experience of implementing, integrating and evaluating

HRTA plug-in shows that a considerable amount of work

and time is required to transfer complex real-time analysis

results to the industrial tools.

We provided a proof of concept by modeling an au-

tonomous cruise control system using component-based de-

velopment and analyzing it with HRTA plug-in. We believe

that most of the implementation issues discussed in this

paper are generally applicable when real-time analysis is

transferred to any industrial or academic tool suite. More-

over, the contributions in this paper may provide guidance

for the implementation of other complex real-time analysis

techniques in any industrial tool suite that supports a plug-in

framework (for the integration of new tools) and component-

based development of DRE systems.

In the future, we plan to implement the analysis of other
network communication protocols (e.g., Flexray, switched
ethernet, etc.) and integrate them within HRTA plug-in.
Another future work could be the implementation of end-to-
end latency analysis in Rubus-ICE to support the analysis
of multi-rate real-time systems. We also plan to provide a
support for asynchronous data-flow using the two different
semantics of data-age and reaction described in [33].

ACKNOWLEDGEMENT

This work is supported by Swedish Knowledge Foun-
dation (KKS) within the projects Femmva and EEMDEF,
the Swedish Research Council (VR) within project TiPCES,
and the Strategic Research Foundation (SSF) with the centre

PROGRESS. The authors would like to thank the industrial
partners Arcticus Systems and BAE Systems Hägglunds.

REFERENCES

[1] N. Audsley, A. Burns, R. Davis, K. Tindell, and A. Wellings, “Fixed
priority pre-emptive scheduling:an historic perspective,” Real-Time
Systems, vol. 8, no. 2/3, pp. 173–198, 1995.

[2] L. Sha, T. Abdelzaher, K.-E. A. rzén, A. Cervin, T. P. Baker, A. Burns,
G. Buttazzo, M. Caccamo, J. P. Lehoczky, and A. K. Mok, “Real Time
Scheduling Theory: A Historical Perspective,” Real-Time Systems,
vol. 28, no. 2/3, pp. 101–155, 2004.

[3] K. Tindell and J. Clark, “Holistic schedulability analysis for
distributed hard real-time systems,” Microprocess. Microprogram.,
vol. 40, pp. 117–134, April 1994.

[4] K. W. Tindell, “Using offset information to analyse static priority pre-
emptively scheduled task sets,” Dept. of Computer Science, University
of York, Tech. Rep. YCS 182, 1992.

[5] J. Palencia and M. G. Harbour, “Schedulability Analysis for Tasks
with Static and Dynamic Offsets,” Real-Time Systems Symposium,
IEEE International, p. 26, 1998.

[6] “Arcticus Systems,” http://www.arcticus-systems.com.

[7] K. Hänninen et.al., “The Rubus Component Model for Resource Con-
strained Real-Time Systems,” in 3rd IEEE International Symposium
on Industrial Embedded Systems, June 2008.

[8] S. Mubeen, J. Mäki-Turja, M. Sjödin, and J. Carlson, “Analyzable
Modeling of Legacy Communication in Component-Based Distributed
Embedded Systems,” in 37th EUROMICRO Conference on Software
Engineering and Advanced Applications (SEAA), 2011, Sep. 2011,
pp. 229 –238.

[9] S. Mubeen, J. Mäki-Turja, and M. Sjödin, “Extraction of end-to-end
timing model from component-based distributed real-time embedded
systems,” in Time Analysis and Model-Based Design, from Functional
Models to Distributed Deployments (TiMoBD) workshop located at
Embedded Systems Week. Springer, October 2011, pp. 1–6.

[10] K. Hänninen et.al., “Framework for real-time analysis in Rubus-ICE,”
in Emerging Technologies and Factory Automation, 2008. ETFA 2008.
IEEE International Conference on, 2008, pp. 782 –788.

[11] C. Liu and J. Layland, “Scheduling algorithms for multi-programming
in a hard-real-time environment,” ACM, vol. 20, no. 1, pp. 46–61,
1973.

[12] M. Joseph and P. Pandya, “Finding Response Times in a Real-Time
System,” The Computer Journal (British Computer Society), vol. 29,
no. 5, pp. 390–395, October 1986.

[13] M. Nolin, J. Mäki-Turja, and K. Hänninen, “Achieving Industrial
Strength Timing Predictions of Embedded System Behavior,” in ESA,
2008, pp. 173–178.

[14] J. Mäki-Turja, , and M. Nolin, “Tighter response-times for tasks
with offsets,” in Real-time and Embedded Computing Systems and
Applications Conference (RTCSA). Springer-Verlag, August 2004.

[15] K. Tindell, H. Hansson, and A. Wellings, “Analysing real-time com-
munications: controller area network (CAN),” in Real-Time Systems
Symposium (RTSS) 1994, pp. 259 –263.

[16] R. Davis, A. Burns, R. Bril, and J. Lukkien, “Controller Area Network
(CAN) schedulability analysis: Refuted, revisited and revised,” Real-
Time Systems, vol. 35, pp. 239–272, 2007.

[17] R. I. Davis, S. Kollmann, V. Pollex, and F. Slomka, “Controller Area
Network (CAN) Schedulability Analysis with FIFO queues,” in 23rd
Euromicro Conference on Real-Time Systems (ECRTS11), July 2011.

219219

[18] S. Mubeen, J. Mäki-Turja, and M. Sjödin, “Extending schedula-
bility analysis of controller area network (CAN) for mixed (peri-
odic/sporadic) messages,” in Emerging Technologies Factory Automa-
tion (ETFA), IEEE 16th Conference on, sept. 2011.

[19] Mubeen, Saad and Mäki-Turja, Jukka and Sjödin, Mikael, “Extending
response-time analysis of controller area network (CAN) with FIFO
queues for mixed messages,” in Emerging Technologies Factory
Automation (ETFA), IEEE 16th Conference on, sept. 2011, pp. 1–4.

[20] S. Mubeen, J. Mäki-Turja, and M. Sjödin, “Implementation of Holistic
Response-Time Analysis in Rubus-ICE: Preliminary Findings, Issues
and Experiences,” in The 32nd IEEE Real-Time Systems Symposium
(RTSS), WIP Session, December 2011, pp. 9–12.

[21] “MAST–Modeling and Analysis Suite for Real-Time Applications,”
http://mast.unican.es/.

[22] “The Volcano Family,” http://www.mentor.com/products/vnd.

[23] “Volcano Network Architect (VNA). Mentor Graphics,” http://www.
mentor.com/products/vnd/communication-management/vna.

[24] A. Hamann, R. Henia, R. Racu, M. Jersak, K. Richter, and R. Ernst,
“Symta/s - symbolic timing analysis for systems,” 2004.

[25] M. Hagner and U. Goltz, “Integration of scheduling analysis into uml
based development processes through model transformation,” in Com-
puter Science and Information Technology (IMCSIT), Proceedings of
the 2010 International Multiconference on, oct. 2010, pp. 797 –804.

[26] “RAPID RMA: The Art of Modeling Real-Time Systems,”
http://www.tripac.com/rapid-rma.

[27] D. Schmidt and F. Kuhns, “An overview of the Real-Time CORBA
specification,” Computer, vol. 33, no. 6, pp. 56 –63, Jun. 2000.

[28] M. Hagner and U. Goltz, “Integration of scheduling analysis into uml
based development processes through model transformation,” in Com-
puter Science and Information Technology (IMCSIT), Proceedings of
the 2010 International Multiconference on, oct. 2010, pp. 797 –804.

[29] Mubeen, Saad and Mäki-Turja, Jukka and Sjödin, Mikael,
“Tracing event chains for holistic response-time analysis
of component-based distributed real-time systems,” SIGBED
Review, vol. 8, pp. 48–51, Sep. 2011. [Online]. Available:
http://doi.acm.org/10.1145/2038617.2038628

[30] P. Berggren, “Autonomous Cruise Control for Chalmers Vehicle Sim-
ulator,” Master’s thesis, Department of Signals and Systems, Chalmers
University of Technology, 2008.

[31] “Adaptive Cruise Control System Overview,” in Work-
shop of Software System Safety Working Group, April
2005, Anaheim, California, USA. Available at: sunny-
day.mit.edu/Adaptive Cruise Control Sys Overview.pdf.

[32] ISO 11898-1, “Road Vehicles interchange of digital information
controller area network (CAN) for high-speed communication, ISO
Standard-11898, Nov. 1993.”

[33] N. Feiertag, K. Richter, J. Nordlander, and J. Jonsson, “A Compo-
sitional Framework for End-to-End Path Delay Calculation of Auto-
motive Systems under Different Path Semantics,” in Compositional
Theory and Technology for Real-Time Embedded Systems, 2008.
CRTS 2008. Workshop on, dec. 2008.

APPENDIX A

Internal Model of Engine Control Node in RCM

The Engine Control node is modeled with four assemblies
as shown in Figure 15. The Input from Sensors assembly
contains a SWC that reads the sensor values corresponding
to the engine torque as shown in Figure 21.

Figure 21. Engine Control Node: internals of an assembly reading sensors

The Input from CAN assembly contains three ISWCs,
i.e., Vehicle Speed Msg ISWC, Engine control info Msg
ISWC and Manual brake input Msg ISWC as shown in

Figure 22. These components receive messages m6 , m4 and

m7 from CAN network respectively. The third assembly,
Output to Actuators as shown in Figure 23, contains the
SWC that produces control signals for the engine throttle
actuator. The fourth assembly, i.e., Engine Control as shown
in Figure 24, contains two SWCs: one handles and processes
the inputs from sensors and received messages while the
other computes the new position for engine throttle.

Figure 22. Engine Control Node: internals of an assembly reading CAN
messages

Figure 23. Engine Control Node: internals of an assembly producing
actuation signals

Internal Model of Brake Control Node in RCM

The Brake Control node is modeled with five assemblies
as shown in Figure 16. The Input from Sensors assembly
contains three SWCs as shown in Figure 25. These SWCs
read the sensor values that correspond to the values of
speed, rpm and manual brake sensors in the vehicle. The
Input from CAN assembly, shown in Figure 26, contains
the ISWC component Brake control info Msg ISWC that
receives a message m5 from CAN network.

Figure 25. Brake Control Node: Internals of an assembly reading sensors

Figure 26. Brake Control Node: Internals of an assembly reading CAN
messages

The third assembly, i.e., Brake Control as shown in
Figure 27, contains two SWCs: one handles and processes
the inputs from sensors and received messages while the
other computes the control signals for brake actuators.
The fourth assembly Output to CAN contains three OSWC
components as shown in Figure 28. These components
send messages m7 , m6 and m3 to CAN network. The
fifth assembly, Output to Actuators as shown in Figure 29,
contains the SWCs that produce control signals for the brake
actuators and back light controllers.

220220

Figure 24. Engine Control Node: SWCs comprising the Engine Control assembly

Figure 27. Brake Control Node: Internals of Brake Control assembly

Figure 28. Brake Control Node: Internals of an assembly sending CAN
messages

Figure 29. Brake Control Node: internals of an assembly producing
actuation signals

Internal Model of User Interface Node in RCM

The User Interface node is modeled with three assem-
blies along with two SWCs as shown in Figure 13. The
GUI Control SWC handles the input from the sensors and
messages from the CAN network. After processing the
information, it not only produces information for Graphical
User Interface (GUI), but also computes control signals for
the other nodes. The GUIdisplay SWC sends the signals
(corresponding to updated information) to GUI in the car.
The Input from Sensors assembly contains two SWCs as
shown in Figure 30. One of them reads the sensor values that
correspond to the state of the cruise control switch on the
steering wheel. The other SWC reads the sensor values that
correspond to the vehicle cruising speed set by the driver.
The Input from CAN assembly contains four ISWC compo-
nents, i.e., Vehicle Speed Msg ISWC, RPM Msg ISWC,
ACC text display Msg ISWC and Manual brake input

Msg ISWC as shown in Figure 31. These compo-
nents receive messages m6 , m3 , m2 and m7 from
CAN network respectively. The third assembly, i.e., Out-
put to CAN Periodic sends a message m1 to CAN network
via the OSWC component as shown in Figure 32.

Figure 30. User Interface Node: internals of an assembly reading sensors

Figure 31. User Interface Node: internals of an assembly reading CAN
messages

Figure 32. User Interface Node: internals of an assembly sending CAN
messages

221221

