
A UPPAAL model for timing analysis of atomic

execution in component-based multi-mode

systems

Yin Hang, Hans Hansson
Mälardalen Real-Time Research Centre

Mälardalen University
Väster̊as, Sweden

{young.hang.yin,hans.hansson}@mdh.se

April 18, 2012

Abstract

This report provides a complete UPPAAL model of the mode switch
handling of an Atomic Execution Group (AEG) in a component-based
multi-mode system (CBMMS) with pipe-and-filter architecture. The pur-
pose of this model is to analyze the worst-case latency due to the atomic
execution of this AEG during a mode switch. This worst-case latency
plays a significant role in deriving the global mode switch time of a CB-
MMS.

1 Introduction

The mode switch handling of component-based multi-mode systems (CBMMSs)
is an emerging topic. We previously developed a Mode Switch Logic (MSL) [1] [4]
to achieve the composable mode switch of CBMMSs. Our MSL was later ex-
tended by the mode mapping mechanism [2] to solve the mode incompatibility
problem between different components. Since many CBMMSs are real-time sys-
tems, it is important to ensure that a mode switch can be completed within a
bounded time. We have performed a preliminary mode switch timing analysis [3]
to determine the global mode switch time. However, we used to assume that
the execution of each component is immediately aborted due to a mode switch.
This assumption is unrealistic because in practice one or a set of components can
have atomic execution that must run to completion and cannot be aborted. We
consider them as an Atomic Execution Group (AEG), which can consist of one
or several components. When a mode switch is triggered, any ongoing execution
in an AEG must be completed first, thus the mode switch will be delayed. In
this report, we will present a UPPAAL [5] model of the mode switch handling of
an AEG to derive its worst-case latency during a mode switch. Figure 1 shows
the components and their connections in the AEG as part of a CBMMS. This
example will be used throughout this report. The system has a pipe-and-filter
architecture as it waits for the input data, processes the data and then gener-
ates the output data. Similarly, all its components follow the same repeated

1

execution pattern: waiting for inputs, processing data and producing outputs.
Different components can process different data simultaneously.

Figure 1: An Atomic Execution Group (AEG)

A component has a non-empty set of input and output ports (see the blue
texts in Figure 1). We assume that primitive components have data going
through all its input and output ports, i.e. input data has to be available at
all input ports before processing can start and output data must be sent via
all output ports. Whenever a primitive component receives new data at an
input port, the data is first queued in a corresponding input buffer. While a
primitive component is processing data, new arriving data must wait in its input
buffers and cannot be processed until the component completes its current data
processing. As opposed to a primitive component, a composite component does
not buffer its input data. Whenever it receives new data, it will simply propagate
the data to its subcomponents. Similarly, whenever it receives output data from
its subcomponents, it will immediately forward the data via its corresponding
output port(s). Figure 1 only shows activated primitive components in the AEG
in the current mode because deactivated primitive components or composite
components do not contribute to the atomic execution time of this AEG.

The data processing time of each primitive component ci in the AEG is
bounded by a timing interval [Cmin

ci ,Cmax
ci]. The incoming data rate of the

AEG is within the interval [Rmin,Rmax]. When a mode switch is triggered, all
the data within the AEG must be completely processed before the AEG can
switch mode. AE denotes the worst-case value of this data processing time.
To ensure that AE is bounded and that our calculations terminate, we will
enforce a maximum number of data elements in the AEG. Depending on the
incoming data rate and component processing times, this bound may or may
not be reached. In fact, the bound could be used as a modeling artifact, but
could also be a mechanism in the real system. The timing parameters of the
system are as follows:

• Incoming data rate R=[7,8].

• Data processing time C of components a-f : Ca=[4,5], Cb=[7,8], Cc=[6,7],
Cd=[5,6], Ce=5, Cf=[7,8].

• Maximum number of data elements in the AEG N=5.

The complete UPPAAL model includes five parts:

1. Data source: generates data at a flexible rate.

2

2. MSI source: the source that triggers a Mode Switch Instruction (MSI) at
any time. Upon receiving an MSI, a primitive component will start its
reconfiguration for the new mode and a composite component will refer
to its local mode mapping and propagate the MSI to its subcomponents
based on the mode mapping result.

3. The AEG : receives data from Data source, processes it and deposits the
results at its output port(s). Furthermore, it ensures that the number of
data elements n in the AEG is within the bound N . Data source is turned
off when n = N . If mode switch is not in progress, Data source is turned
on again when n decreases. When the AEG receives an MSI, Data source
will also be turned off. AE is the maximal data processing time to reach
n = 0.

4. Data forwarder : forwards data between components without the sender
having to know the identity of the receiver. This simplifies the model-
ing, since when some connections are changed, or a component is removed
or added, only component connection definitions referred to by Data for-
warder need to be updated.

5. Primitive components: modeled by a UPPAAL template for each of them.
Although the number of components could be arbitrary, we can use a
parameterized generic UPPAAL model that applies to all components.

2 The complete UPPAAL model

In this section, the UPPAAL models of all the five parts introduced in the last
section will be presented.

2.1 The global declaration

// Componen t s
const int top=1;
const int a=2;
const int b=3;
const int c=4;
const int d=5;
const int e=6;
const int f =7;

// P o r t s
const int pin=51;
const int a i1 =52;
const int ao1=53;
const int ao2=54;
const int ao3=55;
const int bi1 =56;
const int bo1=57;
const int c i 1 =58;
const int co1=59;
const int co2=60;
const int di1 =61;
const int do1=62;
const int do2=63;
const int e i 1 =64;
const int e i 2 =65;
const int e i 3 =66;
const int eo1=67;
const int f i 1 =68;
const int f i 2 =69;
const int fo1 =70;
const int fo2 =71;
const int pout1=72;
const int pout2=73;
const int pout3=74;

const int pMin=51;
const int pMax=74;
const int cMin=1;

3

const int cMax=7;

int [0 , 1 0] dataCounter=0;
bool DSstatus=true ;

//−−−−−−−−−−−−−−−−−−−−The mapp in g o f c omponen t c o n n e c t i o n
const int conPairN=12;
const int [pMin ,pMax] top from [conPairN]={pin , ao1 , ao2 , ao3 , bo1 , co1 , co2 , do1 , do2 , eo1 , fo1 , fo2 } ;
const int [pMin ,pMax] top to [conPairN]={ ai1 , bi1 , c i1 , di1 , e i1 , e i2 , f i 1 , f i 2 , pout3 , pout1 , e i3 , pout2 } ;

// G l o b a l i n p u t and o u t p u t d a t a
const int iData=2; //To s i m p l i f y t h e p r o b l em , t h e i n p u t v a l u e i s a l w a y s 2 .
// I t s v a l u e h a s n o t h i n g t o do w i t h t h e wo r s t−c a s e l a t e n c y o f t h e AEG
int [pMin ,pMax] o r i g i n ; // The d a t a s e n d e r
int [pMin ,pMax] ta rge t ; // The d a t a r e c e i v e r
int [0 , 1 5 0] data ;

broadcast chan newData ;
chan dataIn , dataOut ,MSI ;
urgent chan Go ;

2.2 Data source

The UPPAAL model of Data source is presented in Figure 2.

Figure 2: Data source

Local declaration:
c lock x ;

2.3 MSI source

The UPPAAL model of the MSI source is presented in Figure 3. It has no local
declaration.

Figure 3: MSI source

2.4 The Atomic Execution Group (AEG)

The UPPAAL model of the AEG is presented in Figure 4.
Local declaration:
c lock z ;
const int THRESHOLD=5;
const int oNumber=3;
int [pout1 , pout3] outputLis t [oNumber]={pout1 , pout2 , pout3 } ;
int [0 , 1 5 0] outputDList [oNumber]={0 ,0 ,0} ;

4

Figure 4: the AEG

int [0 ,THRESHOLD] outputNList [oNumber]={0 ,0 ,0} ;
int [0 , 2] s t a tu s =0;
bool MSIreceived=f a l s e ;

void outputData ()
{

int i ;
for (i =0; i<oNumber ; i++)
{

i f (t a rg e t==outputLis t [i])
{

outputDList [i]=data ;
}

}
}

int [0 , 2] outputNStatus ()
{

int i ;
int numberOfNonZero=0;
for (i =0; i<oNumber ; i++)
{

i f (outputNList [i] !=0)
{

numberOfNonZero++;
}

}
i f (numberOfNonZero==oNumber)
{

return 2 ; // a l l s e gm e n t s o f a d a t a can b e s e n t o u t
}
else i f (numberOfNonZero==oNumber−1)
{

return 1 ; // On l y one b r a n c h i s p e n d i n g
}
else
{

return 0 ; // N o t h i n g s p e c i a l
}

}

void dataNControl ()
{

int i ;
for (i =0; i<oNumber ; i++)
{

i f (t a rg e t==outputLis t [i])
{

outputNList [i]++;
}

}
s t a tu s=outputNStatus () ;
i f (s t a tu s==2)
{

for (i =0; i<oNumber ; i++)
{

outputNList [i]−−;
}
dataCounter−−;
s t a tu s=outputNStatus () ;
i f (dataCounter<THRESHOLD && ! MSIreceived)
{

DSstatus=true ;
}

}
}

5

void shutDS ()
{

i f (dataCounter>=THRESHOLD)
{

DSstatus=f a l s e ;
}

}

void resetDS ()
{

i f (! DSstatus)
{

DSstatus=true ;
}

}

void r e s e t ()
{

int i ;
dataCounter=0;
for (i =0; i<oNumber ; i++)
{

outputNList [i]=0;
}
s t a tu s =0;
resetDS () ;
i f (MSIreceived=true)
{

MSIreceived=f a l s e ;
}

}

2.5 Data forwarder

The UPPAAL model of Data forwarder is presented in Figure 5.

Figure 5: Data forwarder

Local declaration:
const int e r r o r=−1;

int f indNext ()
{

int i ;
for (i =0; i<conPairN ; i++)
{

i f (o r i g i n==top from [i])
{

return top to [i] ;
}

}
return e r r o r ; // S i n c e c omponen t c o n n e c t i o n i s w e l l d e f i n e d , t h e e r r o r n e v e r h a p p e n s

}

2.6 Component f

The UPPAAL model of Component f is presented in Figure 6. As the most
representative component, Component f has multiple inputs and outputs. The
model of f is generic in the sense that all the other components in the AEG
from Figure 1 can be modeled in the same way. When it is not processing any
data, it is in state nonProcessing. When it is processing data, it is in state
Processing. The invariant x<=8 and guard x>7 define the interval of its data
processing time, i.e. Cf = [7, 8]. Component f receives data through the channel
dataIn? and sends output data through the channel dataOut!. f recognizes new

6

data by the guard target==fi1||target==fi2 where fi1 and fi2 are its input ports.
When all input buffers are non-empty, the boolean variable readyToProcess is
set to true and f will switch to location Processing by the urgent channel Go!.
Data is processed by the function processData(), thus representing mode-specific
behavior of a primitive component. After processing the data, f immediately
sends its output data through all its output ports. This is modeled by the
sequential and atomic output data generation from its output ports. The two
committed states Temp1 and Temp2 guarantee its atomicity. outputCounter
records how many output ports have sent out the data. When the output data
is sent through all its output ports, f goes back to state nonProcessing and
checks its buffer status again.

When modeling another component with different number of inputs and
outputs, the model structure remains the same and only some parameters need
to be changed. If a component has only one output port, the model can be
simplified by removing state Temp2 and outputCounter.

Figure 6: Component f

Local declaration:
c lock x ;
int [0 , 1 5 0] fData ;
const int inputN=2;
const int i nputL i s t [inputN]={ f i 1 , f i 2 } ;
int [−1 ,150] bu f f e r [inputN][5]={{−1,−1,−1,−1,−1} ,{−1,−1,−1,−1,−1}};
int [0 , 5] buf ferN [inputN]={0 ,0} ;
bool readyToProcess=f a l s e ;
const int oNumber=2;
const int outputLis t [2]={ fo1 , fo2 } ;
int [0 , oNumber] outputCounter=0;

bool al lBuffersNEmpty ()
{

int i ;
int numberOfNonZero=0;
for (i =0; i<inputN ; i++)
{

i f (buf ferN [i]>0)
{

numberOfNonZero++;
}

}
i f (numberOfNonZero==inputN)
{

return t rue ;
}
else
{

return f a l s e ;
}

}

void addBufferData ()
{

int i ;

7

for (i =0; i<inputN ; i++)
{

i f (t a rg e t==inputL i s t [i])
{

i f (buf ferN [i]<5)
{

bu f f e r [i] [buf ferN [i]]= data ;
buf ferN [i]++;

}
}

}
}

void ad ju s tBu f f e r ()
{

int i ;
int j ;
for (i =0; i<inputN ; i++)
{

for (j =0; j<bufferN [i] ; j++)
{

bu f f e r [i] [j]= bu f f e r [i] [j +1] ;
}
bufferN [i]−−;

}
}

void processData ()
{

int i ;
fData=0;
for (i =0; i<inputN ; i++)
{

fData+=bu f f e r [i] [0] ;
}
ad ju s tBu f f e r () ;

}

void readyToSend (int oCounter)
{

data=fData ;
o r i g i n=outputLis t [oCounter] ;

}

2.7 Component a

The UPPAAL model of Component a is presented in Figure 7.

Figure 7: Component a

Local declaration:
c lock x ;
int [0 , 1 5 0] aData ;
const int inputN=1;
int [−1 ,150] bu f f e r [5]={−1,−1,−1,−1,−1}; //−1 means no d a t a
int [0 , 5] buf ferN=0;
bool readyToProcess=f a l s e ;
const int oNumber=3;
const int outputLis t [oNumber]={ao1 , ao2 , ao3 } ;
int [0 , oNumber] outputCounter=0;

bool al lBuffersNEmpty ()
{

int i ;

8

int numberOfNonZero=0;
for (i =0; i<inputN ; i++)
{

i f (bufferN >0)
{

numberOfNonZero++;
}

}
i f (numberOfNonZero==inputN)
{

return t rue ;
}
else
{

return f a l s e ;
}

}

void addBufferData ()
{

i f (bufferN <5)
{

bu f f e r [buf ferN]=data ;
buf ferN++;

}
/∗ e l s e
{

B u f f e r o v e r f l o w
}∗/

}

void ad ju s tBu f f e r ()
{

int i ;
for (i =0; i<bufferN ; i++)
{

bu f f e r [i]= bu f f e r [i +1] ;
}
bufferN−−;

}

void processData ()
{

aData=bu f f e r [0] ;
ad ju s tBu f f e r () ;
aData=aData+10;

}

void readyToSend (int oCounter)
{

data=aData ;
o r i g i n=outputLis t [oCounter] ;

}

2.8 Component b

The UPPAAL model of Component b is presented in Figure 8.

Figure 8: Component b

Local declaration:
c lock x ;
int [0 , 1 5 0] bData ;
const int inputN=1;
int [−1 ,150] bu f f e r [5]={−1,−1,−1,−1,−1}; //−1 means no d a t a

9

int [0 , 5] buf ferN=0;
bool readyToProcess=f a l s e ;

bool al lBuffersNEmpty ()
{

int i ;
int numberOfNonZero=0;
for (i =0; i<inputN ; i++)
{

i f (bufferN >0)
{

numberOfNonZero++;
}

}
i f (numberOfNonZero==inputN)
{

return t rue ;
}
else
{

return f a l s e ;
}

}

void addBufferData ()
{

i f (bufferN <5)
{

bu f f e r [buf ferN]=data ;
buf ferN++;

}
/∗ e l s e
{

B u f f e r o v e r f l o w
}∗/

}

void ad ju s tBu f f e r ()
{

int i ;
for (i =0; i<bufferN ; i++)
{

bu f f e r [i]= bu f f e r [i +1] ;
}
bufferN−−;

}

void processData ()
{

bData=bu f f e r [0] ;
ad ju s tBu f f e r () ;
bData=bData ∗2;

}

void readyToSend ()
{

data=bData ;
o r i g i n=bo1 ;

}

2.9 Component c

The UPPAAL model of Component c is presented in Figure 9.

Figure 9: Component c

Local declaration:

10

c lock x ;
int [0 , 1 5 0] cData ;
const int inputN=1;
int [−1 ,150] bu f f e r [5]={−1,−1,−1,−1,−1}; //−1 means no d a t a
int [0 , 5] buf ferN=0;
bool readyToProcess=f a l s e ;
const int oNumber=2;
const int outputLis t [2]={ co1 , co2 } ;
int [0 , oNumber] outputCounter=0;

bool al lBuffersNEmpty ()
{

int i ;
int numberOfNonZero=0;
for (i =0; i<inputN ; i++)
{

i f (bufferN >0)
{

numberOfNonZero++;
}

}
i f (numberOfNonZero==inputN)
{

return t rue ;
}
else
{

return f a l s e ;
}

}

void addBufferData ()
{

i f (bufferN <5)
{

bu f f e r [buf ferN]=data ;
buf ferN++;

}
/∗ e l s e
{

B u f f e r o v e r f l o w
}∗/

}

void ad ju s tBu f f e r ()
{

int i ;
for (i =0; i<bufferN ; i++)
{

bu f f e r [i]= bu f f e r [i +1] ;
}
bufferN−−;

}

void processData ()
{

cData=bu f f e r [0] ;
ad ju s tBu f f e r () ;
cData=cData+10;

}

void readyToSend (int oCounter)
{

data=cData ;
o r i g i n=outputLis t [oCounter] ;

}

2.10 Component d

The UPPAAL model of Component d is presented in Figure 10.
Local declaration:
c lock x ;
int [0 , 1 5 0] dData ;
const int inputN=1;
int [−1 ,150] bu f f e r [5]={−1,−1,−1,−1,−1}; //−1 means no d a t a
int [0 , 5] buf ferN=0;
bool readyToProcess=f a l s e ;
const int oNumber=2;
const int outputLis t [2]={do1 , do2 } ;
int [0 , oNumber] outputCounter=0;

bool al lBuffersNEmpty ()
{

int i ;
int numberOfNonZero=0;
for (i =0; i<inputN ; i++)
{

i f (bufferN >0)
{

numberOfNonZero++;
}

}

11

Figure 10: Component d

i f (numberOfNonZero==inputN)
{

return t rue ;
}
else
{

return f a l s e ;
}

}

void addBufferData ()
{

i f (bufferN <5)
{

bu f f e r [buf ferN]=data ;
buf ferN++;

}
/∗ e l s e
{

B u f f e r o v e r f l o w
}∗/

}

void ad ju s tBu f f e r ()
{

int i ;
for (i =0; i<bufferN ; i++)
{

bu f f e r [i]= bu f f e r [i +1] ;
}
bufferN−−;

}

void processData ()
{

dData=bu f f e r [0] ;
ad ju s tBu f f e r () ;
dData=dData+10;

}

void readyToSend (int oCounter)
{

data=dData ;
o r i g i n=outputLis t [oCounter] ;

}

2.11 Component e

The UPPAAL model of Component e is presented in Figure 11.
Local declaration:
c lock x ;
int [0 , 1 5 0] eData ;
const int inputN=3;
const int i nputL i s t [inputN]={ ei1 , e i2 , e i 3 } ;
int [−1 ,150] bu f f e r [inputN][5]={{−1,−1,−1,−1,−1} ,{−1,−1,−1,−1,−1} ,{−1,−1,−1,−1,−1}};
int [0 , 5] buf ferN [inputN]={0 ,0 ,0} ;
bool readyToProcess=f a l s e ;

bool al lBuffersNEmpty ()
{

int i ;
int numberOfNonZero=0;
for (i =0; i<inputN ; i++)

12

Figure 11: Component e

{
i f (buf ferN [i]>0)
{

numberOfNonZero++;
}

}
i f (numberOfNonZero==inputN)
{

return t rue ;
}
else
{

return f a l s e ;
}

}

void addBufferData ()
{

int i ;
for (i =0; i<inputN ; i++)
{

i f (t a rg e t==inputL i s t [i])
{

i f (buf ferN [i]<5)
{

bu f f e r [i] [buf ferN [i]]= data ;
buf ferN [i]++;

}
}

}
}

void ad ju s tBu f f e r ()
{

int i ;
int j ;
for (i =0; i<inputN ; i++)
{

for (j =0; j<bufferN [i] ; j++)
{

bu f f e r [i] [j]= bu f f e r [i] [j +1] ;
}
bufferN [i]−−;

}
}

void processData ()
{

int i ;
eData=0;
for (i =0; i<inputN ; i++)
{

eData+=bu f f e r [i] [0] ;
}
ad ju s tBu f f e r () ;

}

void readyToSend ()
{

data=eData ;
o r i g i n=eo1 ;

}

13

3 Verification

Some interesting results including AE can be obtained by verifying the following
properties of the UPPAAL model:

• A[] not deadlock : no deadlock will occur in the model.

• sup{AEG.Processing}: AEG.z : returns the maximal value of the clock z
of AEG in state Processing. This equals AE.

• E<> AEG.Processing && AEG.z==AE: there is a scenario in which
the clock z reaches AE when AEG is in state Processing. Once AE
is derived, this property searches the worst-case scenario, and using the
”Diagnostic Trace” function of UPPAAL, the worst-case scenario can be
displayed as an execution trace.

• sup: dataCounter : returns the maximal number of data items that can
be simultaneously processed in the AEG. If N is only a modeling artifact,
then for the validity of the calculated AE, this value must be less than N .
In other cases, validity requires a mechanism in the deployed system that
keeps n within the bound N .

• sup: Component.bufferN[Index] : returns the maximal number of elements
in one buffer of a component.

Using UPPAAL, all properties have been verified and satisfied. Figure 12
shows the verification result. When properties with the ”sup” operator are suc-
cessfully verified, the corresponding result will be obtained in a pop-up window.
When R=[7,8], the maximal number (i.e. n) of data items in the AEG is 5,
meaning that the threshold N can be reached. In the worst-case, AE = 40.

Figure 12: Verification result for R=[7,8]

Moreover, the verification results show that the data rate and component
data processing time have substantial influence on the property verification time.
The differences are related to variations in the number and length of executions
leading up to the worst-case scenario. We repeated the verification of the same
set of properties for different data rates and summarized the most important
results in Table 11.

1Verification is performed on MacBook Pro, with 2.66GHz Intel Core 2 Duo CPU and 8GB
1067 MHz DDR3 memory.

14

An interesting side effect of our modeling is that we can use the last prop-
erty above to obtain the maximal buffer usage (i.e. required buffer sizes) for
the component input buffers. These values are for the considered data rates
presented in Table 2.

Apart from R, verification time also depends on the number of components
in the AEG, the number of connections and output ports of the AEG, the
threshold N and the data processing time of each component. Regardless of the
verification time, the way that we model the system does not change.

Property/Value R = [6, 8] R = [7, 8] R = [8, 10] R = [10, 12]

No deadlock 28.64s 5.617s 0.139s 0.108s
Maximal n 5 5 4 3

Deriving AE 45.667s 4.36s 0.1s 0.069s
AE 40 40 25 25

Worst-case
36.716s 4.576s 0.013s 0.016s

scenario

Table 1: Property verification results for different data rates

Buffer Index R = [6, 8] R = [7, 8] R = [8, 10] R = [10, 12]

ai1 1 1 1 1
bi1 3 3 1 1
ci1 2 1 1 1
di1 1 1 1 1
ei1 3 3 2 1
ei2 4 4 2 1
ei3 3 3 1 1
fi1 3 3 1 1
fi2 3 3 1 1

Table 2: Maximal buffer usage for different data rates

4 Conclusion

In this report, a UPPAAL model is described and explained in detail for obtain-
ing the worst-case latency due to the atomic execution of an Atomic Execution
Group (AEG) in a component-based multi-mode system (CBMMS) during a
mode switch. Although this model is only based on a simple example, our UP-
PAAL models are generic. We conjecture that for any AEG that is in line with
our system and component models, we are able to make transformation rules,
based on which corresponding UPPAAL models can be automatically generated
and verified.

15

References

[1] Y. Hang, E. Borde, and H. Hansson. Composable mode switch for
component-based systems. In APRES ’11: Third International Workshop
on Adaptive and Reconfigurable Embedded Systems, pages 19–22, 2011.

[2] Y. Hang and H. Hansson. A mode mapping mechanism for component-
based multi-mode systems. In 4th Workshop on Compositional Theory and
Technology for Real-Time Embedded Systems, pages 38–45, 2011.

[3] Y. Hang and H. Hansson. Timing analysis for a composable mode switch.
In The Work-in-Progress session of the 23rd Euromicro Conference on Real-
Time Systems, pages 15–18, 2011.

[4] Y. Hang and H. Hansson. A mode switch logic for component-based multi-
mode systems. Technical Report 261/2012, Mälardalen Real-Time Research
Centre Mälardalen University, Jan 2012.

[5] Kim Larsen, Paul Pettersson, and Wang Yi. UPPAAL in a nutshell.
STTT-International Journal on Software Tools for Technology Transfer, 1(1-
2):134–152, 1997.

16

