
Towards Adaptive Hierarchical Scheduling of
Real-time Systems

Author:
Nima Moghaddami Khalilzad
nmi09001@student.mdh.se

Supervisor:
Moris Behnam

Examiner:
Thomas Nolte

School of Innovation, Design and Engineering (IDT)
Mälardalen University

Västerås, Sweden

April 11, 2011

Abstract

Hierarchical scheduling provides predictable timing and temporal isolation; two properties de-
sirable in real-time embedded systems. In hierarchically scheduled systems, subsystems should
receive a sufficient amount of CPU resources in order to be able to guarantee timing constraints
of its internal parts (tasks). In static systems, an exact amount of CPU resource can be allocated
to a subsystem. However, in dynamic systems, where execution times of tasks vary consider-
ably during run-time, it is desirable to give a dynamic portion of the CPU given the current
load situation. In this thesis we present a feedback control approach for adapting the amount of
CPU resource that is allocated to subsystems during run-time such that each subsystem receives
sufficient resources while keeping the number of deadline violations to a minimum. We also
show some example simulations where the controller adapts the budget of a subsystems.

If we allocate CPU only based on subsystems demand and don’t take into account the avail-
ability of the resource, timing guarantees of the lower priority subsystems (using a priority
based scheduler in the global level) will be violated in the overload situations. In such a situa-
tion the high criticality modules should be superior to the low criticality modules in receiving
resources. In this thesis, in the extension of our adaptive framework, we propose two tech-
niques for controlling the CPU distribution among modules in an overload circumstance. First
we introduce the notion of subsystem criticality and then distribute CPU portions based on the
criticality level of subsystems.

Keywords: adaptive, hierarchical scheduling, feedback control, PI controller, overload con-
trol, Times tool

Acknowledgements

I would like to thank my supervisor Moris Behnam who helped me a lot during the thesis,
especially in the control theory part of the thesis which he dedicated lots of time and effort. I
am thankful for all interesting discussions in our meetings.

In addition, I would like to express my gratitude to Thomas Nolte who suggested me this
interesting topic for my thesis, helped me throughout the thesis and supported me in publishing
scientific papers from my thesis work. He provided me with several great papers and ideas. I
am really grateful for all his feedbacks and comments on my work.

Moreover, I would like to acknowledge Mikael Åsberg who dedicated lots of his time guid-
ing me especially in the simulation part of the thesis. He recommended me to use his model
which he had developed in Times tool. It was a great solution for my simulation problem.

Finally, I am grateful to my beloved wife Arefeh for her love and endless support.

1

Contents

1 Introduction 5
1.1 Introduction . 5
1.2 Related Works . 6

1.2.1 Hierarchical Scheduling . 6
1.2.2 Feedback Scheduling . 6
1.2.3 Overload Scheduling . 6

1.3 Outline of the report . 7

2 Theoretical Background 8
2.1 The Hierarchical Scheduling Framework . 8

2.1.1 Subsystem Model . 9
2.1.2 Task Model . 9

2.2 Feedback Control . 9
2.2.1 PI Controller . 10

3 Design 12
3.1 Overview of The Adaptive Hierarchical Scheduling Framework 12
3.2 Budget Controller . 13

3.2.1 Controlled Variables . 13
3.2.2 Manipulated Variables . 14
3.2.3 Integrating loops . 14
3.2.4 Model of Plant . 15
3.2.5 Model of The Controller . 16
3.2.6 Closed-Loop System Model . 16
3.2.7 Stability Analysis . 16
3.2.8 Configurations . 17

3.3 Overload Controller . 17
3.3.1 Mode Change . 18
3.3.2 Budget Distribution Policy in the Critical Mode 18
3.3.3 Calculating the Remaining Budget . 19

4 Simulation and Examples 22
4.1 Simulation Results . 22

4.1.1 Base Simulation . 22
4.1.2 Different Configurations . 24
4.1.3 Four Subsystems . 27

2

CONTENTS CONTENTS

4.2 Overload Control Example . 28
4.2.1 Method one . 28
4.2.2 Method two . 29

4.3 Discussion . 29

5 Summary and Future Work 30
5.1 Summary and Conclusions . 30
5.2 Future Works . 30

6 Appendix A 36
6.1 Tools Used for Simulations . 36

6.1.1 Modeling HSF in Times . 36
6.1.2 Fixing the C++ Files . 36
6.1.3 Adding The Control Code to Files . 37
6.1.4 Plotting The Results . 42

3

List of Figures

2.1 Hierarchical Scheduling Framework . 8
2.2 Example of scheduling one task inside on subsystem (TS1 = 5, BS1 = 2, Tτ1 =

10, Cτ1 = 3) . 9
2.3 A computer controlled system . 10
2.4 PI controller structure . 10

3.1 Adaptive Hierarchical Scheduling Framework 12
3.2 Architecture of the M-loop . 14
3.3 Architecture of the U-loop . 14
3.4 Architecture of our HSF with PI controllers 15

4.1 Execution times, budget and controlled variables change over time 24
4.2 Execution times, budget and controlled variables change over time (Control

period = 30) . 25
4.3 Execution times, budget and controlled variables change over time (Control

period = 10) . 25
4.4 Execution times, budget and controlled variables change over time (MSet = 0.5

and USet = 1.2) . 26
4.5 Budget adaptation of four subsystems over time (Si-M and Si-U are controlled

variables of the "M-loop" and "U-loop" respectively.) 28

6.1 Global scheduler automata in Times tool . 37
6.2 Screen shot of C#.Net application . 38

4

List of Tables

4.1 Subsystems specifications . 22
4.2 Tasks specifications of S1 . 23
4.3 Execution Time Changes of τ1 . 23
4.4 Idle time and deadline misses using different budgets 24
4.5 Subsystems specifications . 27
4.6 Tasks specifications of all subsystems . 27
4.7 Subsystems specifications . 28

5

Chapter 1

Introduction

1.1 Introduction
Embedded real-time systems become increasingly more complex, making it difficult to com-
bine hard real-time guarantees with efficient use of system resources. When run-time behavior
of tasks in a complex real-time system is difficult to predict, the feedback scheduling concept
can be used as a powerful tool for adapting scheduling to the task’s requirements. For example
a decoder task of an H264 stream can experience more than five times execution time variation
depending on the video content [6]. Furthermore, the feedback scheduling is useful in systems
that tasks are added or removed dynamically during run-time. Scheduling parameters can be
adapted during run-time such that tasks get a better service in response to their request for the
shared resources. Although a variety of techniques are available based on feedback schedul-
ing, a suitable technique should be designed given the context of our Hierarchical Scheduling
Framework (HSF) [30].

The HSF provides a modular way for scheduling and guarantying timing constraints of
real-time tasks [15, 21]. The HSF can be illustrated using a tree structure in which each node is
responsible for scheduling its children using resources received from its corresponding parent
node. Each child provides the parent with parameters such as period and budget (the subsystem
interface), and parents schedule their children according to the subsystem interface parameters.
In doing so, we can achieve a component based abstraction which reduces complexity in de-
signing a compositional real-time system. Resource efficient interface variables can be found,
for example, by assuming a fixed period for subsystems and trying to find a minimum possible
value for the budget in which the system is schedulable [35]. In this thesis, a feedback mech-
anism is introduced for online control of the interface parameters in a HSF. The goal of the
presented approach is to adapt the budget of subsystems during run-time to achieve an efficient
CPU utilization in comparison with systems having pre-assigned fixed interface parameters,
especially when tasks within a subsystem experience a considerable change in their execution
time. Given a particular subsystem period, the subsystem budget should be kept to a minimum
while at the same time minimizing the number of potential deadline misses within a predeter-
mined time-interval.

While, a number of studies have been conducted on overload scheduling [10, 8, 33, 14],
scheduling of mixed criticality systems in overload situation are also investigated in [29]. Since
none of these works have been applied to hierarchical scheduling, in this thesis we study some
applicable techniques that can be applied in the context of our HSF [30].

6

1.2. RELATED WORKS CHAPTER 1. INTRODUCTION

The contributions of this thesis are the design of the feedback control system for dynamic
adaptation of resource parameters in the HSF, simulation studies investigating the performance
of our solution, and two methods for handling CPU overload in our Adaptive Hierarchical
Scheduling Framework (AHSF).

1.2 Related Works
Related works of this thesis can be categorized in three groups: hierarchical scheduling, feed-
back scheduling and overload scheduling.

1.2.1 Hierarchical Scheduling
Since Deng and Liu [15] presented a two level hierarchical scheduling framework, there has
been a growing attention for using hierarchical scheduling in complex real-time systems. Schedu-
lability analysis for the two level frameworks is presented by Kuo and Li [20]. For EDF-based
global schedulers analysis is presented by Lipari and Baruah [23, 22]. In addition, the virtual
processor model is presented in [28, 35]. Then, based on this mode schedulability analyses
under fixed priority scheduling [3, 24] and EDF [38, 35] are studied. While all of the afore-
mentioned works allocate static CPU portions to the subsystems, we introduce an adaptive HSF
which dynamically allocates CPU to the subsystems.

1.2.2 Feedback Scheduling
Feedback scheduling has been used in scheduling of control tasks for acquiring predictable
performance when execution time of tasks are subjected to sudden changes [11]. Model Pre-
dictive Controllers (MPC) are scheduled using a feedback loop [18]. In [34] feedback-based
scheduling is used in the real-time memory garbage collector. Feedback scheduling applied
to reservation-based algorithms and a complete mathematical analysis is presented in [2]. In
[13] a two level controller is proposed to share resources among a pipeline of tasks and satisfy
Quality of Service (QoS) requirements. Scheduling of tasks was investigated in the stochastic
domain and a two block controller was suggested [12]. In [1] a two-level feedback controller
in the context of a reservation technique is introduced, where application level and system level
QoS are improved based on bandwidth adaptation. In [37] optimizing techniques are used for
controlling the CPU utilization in multiprocessor systems. Stankovic et al. have applied feed-
back control techniques in distributed systems [36] and they have proposed local and global
level feedback controllers. Lu et al. introduced a Proportional Integral Derivative (PID) con-
troller which controls CPU utilization requests based on miss ratio feedback [25]. They con-
tinued their work and presented a two-feedback loop system [26]. None of the aforementioned
techniques have been applied in the context of HSF.

1.2.3 Overload Scheduling
de Niz et al. presented a scheme for protecting temporal isolation of high criticality tasks
in mixed criticality systems [29]. In their scheme a low criticality task cannot interfere with a
high criticality tasks. In [27] each task, in addition to a criticality value, has a mandatory and an

7

1.3. OUTLINE OF THE REPORT CHAPTER 1. INTRODUCTION

optional part. In overloaded situations a set of task parts are chosen that maximizes the overall
value of the system. In [9] authors by introducing an elastic task model, showed that how tasks
can adapted themselves to different quality of services. Their proposed approach suggests that
in overloaded situations instead of rejecting a new task by reducing the utilization of other
tasks, system lets the new task to use the CPU. In [32] a technique for dealing with overload
situation using (m, k)-firm guarantee is proposed. The approached is suggested for real-time
control tasks that can tolerate occasional deadline misses. In the (m, k)-constrained model, m
out of k consecutive jobs should meet their deadlines. For example a (1, 1)-constrained system
is a hard real-time system, however, a (3, 4)-constrained system is a soft real-time system in
which system can tolerate one deadline miss every four consecutive task instances. In this
thesis using the idea of introducing criticality levels from [29] we propose two methods for
dealing with overload scheduling.

1.3 Outline of the report
The rest of the report is organized as follows.

• Chapter 2 provides background knowledge that is used throughout this thesis. This chap-
ter after introducing the hierarchical scheduling framework provides a brief explanation
of the control theory that is used in design of the controller.

• Chapter 3 describes design process of our AHSF in detail. In this chapter the budget
controller is designed using an analytical approach. Then, two methods are suggested for
handling overload situations in AHSF.

• Chapter 4 presents simulation results and examples. We have simulated HSF and added
our budget controller in the simulation environment. In last section of this chapter we
provide an example for illustrating introduced overload handling methods.

• Chapter 5 presents summary and conclusion of this thesis. Moreover, some possible
trends of the thesis are suggested for the future work.

• In Appendix A a complete explanation of preparing simulation environment, adding con-
trol related functions and illustrating results are presented.

8

Chapter 2

Theoretical Background

2.1 The Hierarchical Scheduling Framework
In this thesis we investigate feedback scheduling in a single CPU where each CPU is modeled
as a system S. Each system consists of a set of subsystems SS ∈ S. The system is scheduled
using a two level HSF as illustraterated in Figure 2.1. During run-time, the global scheduler
chooses one of the subsystems and allocates CPU to that subsystem. Then, the subsystem’s
local scheduler shares this allocated CPU among its tasks according to its scheduling algorithm.
As it is shown in Figure 2.1 we use a fixed priority algorithm in both local and global schedulers.

Figure 2.1: Hierarchical Scheduling Framework

9

2.2. FEEDBACK CONTROL CHAPTER 2. THEORETICAL BACKGROUND

2.1.1 Subsystem Model
Each subsystem SS is represented by its timing interface parameters (TS,PS,BS,ζS) where TS,
PS, BS and ζ are subsystem period, priority, budget and criticality respectively. Each subsystem
SS also consists of a set of tasks τS and a local scheduler. The criticality of subsystems ζS is
used only in overload situations. Therefore, in modeling of not overloaded systems we ignore
this parameter. In order to guarantee timing constraints of tasks we set subsystem period to half
of its shortest task period. In each subsystem period TS the subsystem budget BS is reloaded.
Budget of subsystems should be set to a minimum otherwise subsystems will have idle time
and the resource will be wasted. Farhana et al. have proposed an algorithm for finding an exact
minimum possible budget for subsystems that are using FPS in the local scheduler [16].

2.1.2 Task Model
We assume the periodic soft real-time task model τi(Ti,Pi,Ci,Di), where Ti, Pi, Ci and Di are
task period, priority, worst-case execution time and relative deadline respectively. When a
deadline miss happens in the system, the task continues executing until it finishes. Figure 2.2
shows a simple example that a task in a subsystem is scheduled using the received budget.

Figure 2.2: Example of scheduling one task inside on subsystem (TS1 = 5, BS1 = 2, Tτ1 = 10,
Cτ1 = 3)

2.2 Feedback Control
In a closed loop system there is a plant which needs to be controlled. This control is done by
frequently sampling the plant using some sensors and manipulating it according to the control
logic. Plant manipulation is forwarded to the system using actuators. There are several con-
troller design methods such as PID, LGQ, state feedback, etc. These controllers have different
performance i.e., one may give better results than the others and also have different imple-
mentation complexity, however when designing any type of controller the mathematical model
of the plant is needed. Figure 2.3 shows a computer control system, where the controller is
implemented in a computer. Both output from plant and controller are discrete-time signals.

10

2.2. FEEDBACK CONTROL CHAPTER 2. THEORETICAL BACKGROUND

Figure 2.3: A computer controlled system

Since we use a simple PI (proportional-integral) controller in our adaptive framework, in
this section basic information about PI controllers is provided. As it is mentioned in [26] the
rationale behind not using the derivative term (D) is that this term might amplify noise when
system load experiences significant changes.

2.2.1 PI Controller
Structure of a PI controller is shown in Figure 2.4. A PI controller consists of proportional and
integral parts. Indeed, when we remove D (derivative) block from a PID controller we end up to
a PI controller. At each sampling period, the controller samples the environment and calculates
the error. The error is difference of the set point and current value of the controlled variable.
Then, the manipulated variable is calculated using the following formula:

MV (t) = Pout + Iout (2.1)

where MV (t), Pout and Iout are the manipulated variable, output of the P and I block at time t
respectively. Hence,

MV (t) = KP∆(t)+KI

∫
tw

∆(t)dt (2.2)

where KP, KI , tw and ∆ are proportional gain, integral gain, integral time window and current
error respectively.

Figure 2.4: PI controller structure

11

2.2. FEEDBACK CONTROL CHAPTER 2. THEORETICAL BACKGROUND

Since we are dealing with a discreet system, we transform the control function to the z-domain
using the z-transform. Model of the controller as well as model of the plant in z-domain is
presented in Section 3.2.

12

Chapter 3

Design

3.1 Overview of The Adaptive Hierarchical Scheduling Frame-
work

In our Adaptive Hierarchical Scheduling Framework (AHSF), each subsystem has one budget
controller which is responsible for adapting the budget of the subsystem to its internal tasks
demands. The budget controller finds a suitable budget value for its corresponding subsystem
by periodically sampling the controlled variables. The subsystem does not receive the new
budget unless it is approved by overload controller. The overload control logic only activated
in overload situations. In normal mode, subsystems can acquire their necessary budget values.
The architecture of our AHSF is illustrated in Figure 3.1.

Figure 3.1: Adaptive Hierarchical Scheduling Framework

13

3.2. BUDGET CONTROLLER CHAPTER 3. DESIGN

The budget controller uses two PI feedback loops for controlling the budget of subsystems.
These loops are called "M-loop" and "U-loop" (see Section 3.2). While the "M-loop" tries to
minimize the number of deadline misses, the "U-loop" keeps the budget of subsystems to a
minimum possible value. Design process of the budget controller and the overload controller
are described in next sections.

3.2 Budget Controller
The objective of this section is to provide detailed information about how control theory is
applied to our HSF. Figure 2.4 shows a typical PI feedback control loop that will be used to
control the budget of a subsystem. The controller changes the manipulated variables based
on the input, which is the controller error, and the controller algorithm. The controller error
is defined as the difference between controlled variable and the reference input. The first
step in designing a controller is to define the controlled and manipulated variables, which are
explained in this section. In the design of the controller we have used a similar approach as the
one presented in [26]. The significance of our work is that we apply feedback control to the
context of hierarchical scheduling.

We use two feedback loops to control the plant. The first loop is responsible for controlling
the number of deadline misses and the second loop tries to reduce amount of idle time in
the subsystems. The rationale behind using these two loops stems from basic principles of
designing real-time systems. Since in a real-time system minimizing the number of deadline
misses is of importance, we use the first loop for controlling deadline misses. On the other hand,
it is desirable to keep system utilization close to 100% so that resources are not wasted. Hence,
we use another loop for controlling idle time in the subsystems. To simplify the analyses, these
feedback loops are considered to be independent from each other. Therefore, for each loop a
set of controlled variables as well as analyses are presented seperately.

3.2.1 Controlled Variables
The first controlled variable is MS(t) which is defined as the total number of missed deadline
jobs of all tasks inside the subsystem τi ∈ SS, within one specified time window (twm) prior
to the current time t. The control loop which uses MS(t) as its controlled variable is called
"M-loop" in the rest of the report. Architecture of the M-loop is shown in Figure 3.2.

The next controlled variable is US(t) that is defined by the following formula

US(t) =
BS(t)
ES(t)

(3.1)

where BS(t) and ES(t) represent total budget of the subsystem and total measured time of CPU
usage by all tasks of the subsystem SS in the time window twu respectively. Similar to the
M-loop, we call the second control loop "U-loop" in the rest of the report. Architecture of the
U-loop is shown in Figure 3.3.

14

3.2. BUDGET CONTROLLER CHAPTER 3. DESIGN

Figure 3.2: Architecture of the M-loop

Figure 3.3: Architecture of the U-loop

3.2.2 Manipulated Variables
The budget of subsystem BS(t) is considered as the manipulated variable. The budget should
be adjusted based on the error between the controlled variable and the reference input. In each
sampling period, the controller adds budget change value DBS(t) to the previous value of the
subsystem budget.

BS(t) = BS(t−1)+DBS(t) (3.2)

Figure 3.4 shows that how a PI controller is added to the architecture of our HSF for controlling
the budget. This figure only illustrates the budget controller and the way it manipulates interface
parameters of the subsystems (servers). It is important to notice that tunable parameters of
the PI controllers are specific to each subsystem. Therefor we can assume there is a budget
controller which corresponds to each subsystem, however, for simplification purpose we have
illustrated only one control block in Figure 3.4.

3.2.3 Integrating loops
In the presented architecture, each feedback loop has a budget change output. We choose a
budget change value which has greater absolute value (maximum operator). The reason for not
using the minimum operation is that when loops are in their saturation zone, their output is zero.
For example when the subsystem idle time is equal to the set point but there are some deadline
misses, result of the U-loop is zero but result of the M-loop is a positive number. Hence, a
logical operation for integrating results of the loops is the maximum operation.

15

3.2. BUDGET CONTROLLER CHAPTER 3. DESIGN

Figure 3.4: Architecture of our HSF with PI controllers

3.2.4 Model of Plant
In this section an approximate analytical model of the controlled system is presented. This
model is useful when we are looking for optimal values of the tunable parameters in the con-
troller. Based on the model and some analyses we find boundaries for tunable variables. Rela-
tion between the control output (DBS(t)) and controlled variables (US(t) and MS(t)) is of interest
in the plant model. For the controlled variable US(t), from the definition we have

US(t) =
BS(t)
ES(t)

. (3.3)

In order to continue analysis we use WCETS = max(ES(t)). Hence

US(t) =
BS(t)

WCETS
(3.4)

where WCETS is a total worst case execution time of all tasks in subsystem SS. After transfering
to the z domain, from the control input DB(z) to U(z) the transfer function is:

U(z) = PU(z)DB(z) (3.5)

and
PU(z) = GU/(z−1) (3.6)

16

3.2. BUDGET CONTROLLER CHAPTER 3. DESIGN

where
GU =

1
WCETS

. (3.7)

We can define MSS(t) based on USS and derive a similar model for MSS(t):

MSS(t) = MSS(t−1)+Gm(USS(t)−USS(t−1)) (3.8)

where Gm is deadline miss factor and can be found by plotting the MSS(t) curve as a function of
USS(t). For continuing the analysis we use GM as the maximum value of Gm. Similar to USS(t)
we can derive the transfer function PM(z) = GU GM/(z−1).

3.2.5 Model of The Controller
A PI controller is used to control the plant. The PI controller function is

DBS(t) = KPErorrS(t)+KI ∑
tw

ErrorS(t) (3.9)

where KP, KI , ErorrS(t) and tw are proportional gain, integral gain, error value of the subsys-
tem SS at time t and time window respectively. Gain variables are tunable parameters of the
controller and should be tuned to get a desirable performance. Each control loop has its own
controller. Therefore, introduced parameters are specific to each loop. ErorrS(t) is the differ-
ence between current value of the controlled variables and set points of the "M-loop" (MSet) or
set point of the "U-loop" (USet). After applying the z-transform we have

DBS(z) = KP +
KI

(z−1)
. (3.10)

3.2.6 Closed-Loop System Model
If we consider G = GU GM for the M-loop and G = GU for the U-loop, we can derive the
following closed-loop system model for both loops:

HS(z) =
C(z)P(z)

1+C(z)P(z)
=

GKP(z−1)+KIG
(z−1)2 +G(KP(z−1)+KI)

(3.11)

3.2.7 Stability Analysis
From (3.11) the characteristic equation is:

(z−1)2 +G(KP(z−1)+KI) = z2 +α1z+α2 (3.12)

where α1 = GKP− 2 and α2 = 1−GKP +GKI . According to Jury’s scheme [19, p. 82] the
stability conditions are:

α2 < 1 (3.13)

α2 >−1+α1 (3.14)

α2 >−1−α1. (3.15)

These conditions give us boundaries on tunable variables of the system.

17

3.3. OVERLOAD CONTROLLER CHAPTER 3. DESIGN

3.2.8 Configurations
As it is shown in Figure 3.1, there is a budget controller corresponding to each subsystem. It
means that controllers can be configured separately and they can have different periods, gain
values and set points. Therefore, according to the requirements of tasks inside each subsystem
its controller should be configured. As it is mentioned in Section 3.2.7, by applying stability
analysis we make tuning process of gain variables (KP and KI) easy. This section provides
discussions about tuning controller period and setting reference points in the feedback loops.
However, we don’t use any mathematical analysis; we provide a discussion about the rationale
behind selecting the controller period and set points.

Tuning Controller Period

In most of the simulations presented in Chapter 4 the controller period is larger than the largest
subsystem period multiplied by two. The reason for choosing such a period is to let all sub-
systems work with their new budget so that in the next sampling we can measure controlled
variables that are result of the new budget settings. The problem of choosing a larger period
is that "M-loop" cannot react to deadline misses quickly which is not desirable in some cases.
A useful option that is possible in our AHSF is that we can set a relative short control period
for the critical subsystems and a relative large period for the less critical ones. In summary, the
controller period is an application specific tunable parameter which should be tuned according
to the requirements of the subsystems.

Set Point of the M-loop

A desirable value for M is zero because in this case all subsystem tasks can meet their deadlines.
However, since this value is on the threshold of deadline miss saturation, setting the reference
point of M-loop to zero results to a very sensitive controller which in some cases conducive to
a large steady state error. Therefore, in subsystems that can tolerate some deadline misses by
choosing the M-loop reference point to one or two we can acquire a better performance.

Set Point of the U-loop

A desirable value for U is one because in this case subsystems are using all CPU portions that
they have received. Similar to the M-loop, since U = 1 is a threshold value, setting the reference
point of the U-loop to one is conducive to a large steady state error. Therefore a value between
one and two is recommended for the set point. In most of the simulations presented in Chapter
4 we set the set point of the U-loops to 1.2.

3.3 Overload Controller
In an overload situation, which we will call a critical mode, the controller cannot provide all
subsystems with enough budgets. Therefore, we suggest a mechanism for distributing the CPU
among subsystems based on their criticality value ζS. In dealing with the critical mode, the
very first issue is detecting the time which the system mode is changing from normal to critical.
Furthermore, after providing the most critical subsystem with enough budget, other subsystems

18

3.3. OVERLOAD CONTROLLER CHAPTER 3. DESIGN

should be able to use the remaining portion of the CPU resource such that they do not violate
the schedulability condition of a higher criticality subsystem.

3.3.1 Mode Change
We suggest two mechanisms for detecting the mode change time. The goal of proposing these
methods is to predict overload situations and to avoid critical deadline misses.

Both methods require conducting a schedulability analysis in global level. Since the global
scheduler schedules subsystems in a similar way as scheduling simple real-time periodic tasks,
it is possible to use the schedulability analysis methods used for scheduling periodic tasks. The
subsystem can be modeled as a periodic task where the subsystem period is equivalent to the
task period and the subsystem budget is equivalent to the task execution time.

Method one

According to offline analyses we can find a safe budget ceiling for all subsystems in which the
whole system is schedulable and completely utilized. In doing so, we need to add an additional
parameter to each subsystem in the subsystem interface which is the maximum budget value
BMax

S . Therefore, a system would be considered in its critical mode if any of its subsystems
SS ∈ S is requesting a budget more than its maximum value (BS > BMax

S). It is important to note
that changing the mode does not necessarily mean that there is no enough resources. We only
force the system to do some additional checks by changing the mode.

In this approach, BMax
S of the subsystems should be assigned to a safe value which could be

a considerable safe boundary plus the time that all tasks inside that subsystem can finish their
worst case execution time. This time duration can be calculated using the notion of real-time
virtual processor model introduced by Mok et al. [28]. In calculating BMax

S we should assume
that all other higher criticality subsystems in the system SS ∈ S are using their BMax

S and find a
sufficient value for BMax

S such that the response time of SS is less than its period TS.

Method two

Using an online schedulablity analysis in the global level, the system can detect the mode
change time. Whenever the global scheduler fails to (analytically) schedule subsystems ac-
cording to their new budget value, the system is considered to be in its critical mode.

3.3.2 Budget Distribution Policy in the Critical Mode
In the critical mode, the controller starts to share the budget among subsystems from the most
critical subsystem to the least critical one. Therefore the most critical subsystem receives the
entire budget that it requests. The amount of the budget that the lower criticality subsystems
receive is completely dependent on the new budgets of the higher criticality subsystems. If
a lower criticality subsystem asks for less than the maximum possible budget it will get it,
otherwise it will get the maximum possible value. It is an undeniable fact that in the critical
mode, less critical subsystems might completely be shut down or receive an small amount of the
budget such that their tasks start missing their deadlines which is unavoidable. The important
point to highlight here is that the criticality value of a subsystem should be assigned based on

19

3.3. OVERLOAD CONTROLLER CHAPTER 3. DESIGN

criticality of its inner tasks. In the case that a subsystem is composed of mixed criticality tasks,
one approach is to assign the average value of the tasks criticality to the subsystem criticality ζS
and use a scheduler in the local level which takes the criticality level of tasks into account. In
this approach subsystems should have a minimum budget value BMin

S which indicates how much
budget is necessary for only scheduling the high criticality tasks. Another approach is to simply
assign the maximum criticality level of tasks to the subsystem criticality value. However, by
using this approach the system discriminates between tasks that have the same criticality levels
and belong to different subsystem criticality levels.

3.3.3 Calculating the Remaining Budget
As it is mentioned, in the critical mode after assigning the budget for a higher criticality sub-
system, there would be limitation for the budget of a lower criticality subsystem. We present
two approaches for mapping the consumed budget in a high criticality subsystem to the budget
value of a low criticality subsystem. These approaches correspond to the methods presented
for detecting the mode change.

Method one

If we are using an offline analysis for detecting a mode change, then we know BMax
S for each

subsystem, and we also know that if all subsystems use their BMax
S the whole system is schedu-

lable. In this method, after detecting the mode change, BMax
S are assigned to their corresponding

BS.
For a system consisting of two subsystems Si and S j assuming ζi > ζ j and Si requests a new

budget that is α unit more than its maximum budget (Bi = BMax
i +α), the system enters to the

critical mode and we initialize the budgets with the maximum budgets BS = BMax
S . In order to

provide the high criticality subsystem with the requested budget we need to reduce the budget
of the lower criticality subsystem. Hence, B j = B j−dα

Tj
Ti
e. On the other hand, if afterwards

Si requests a budget value which is α unit less than its current budget Bi, we can transfer this
extra budget to S j using the following equation: B j = B j + dα

Tj
Ti
e. These equations are used in

implementation of the "TakeRequiredBudget(ζS, α)" and the "GiveExtraBudget(ζS, α)" func-
tions presented in Algorithm 1 which shows pseudocode of method one. In this algorithm
NewBudgeti represents the new budget value that the budget controller suggests to the current
subsystem Si. When a subsystem requests a budget value which is less than its current budget
we give the extra budget to the lower criticality subsystem using the "GiveExtraBudget(ζi +
1, α)" function. In the case that there is no other lower criticality subsystem in the sys-
tem, this function reserves the extra budget in the lowest criticality subsystem such that the
"TakeRequiredBudget(ζi, α)" function can use this spare budget.

The "TakeRequiredBudget(ζi, α)" function takes the required budget from some of the
lower criticality subsystems (depending on amount of the requested budget) in such a way
that Si can receive the maximum available budget value. Indeed, when a subsystem asks for
a budget value which is more than its current budget Bi, the controller takes this amount from
the lowest criticality subsystem. If the lowest criticality subsystem cannot afford the whole
required budget, the "TakeRequiredBudget" function gets the entire lower criticality subsystem
budget and takes the remaining requested budget from the subsystem which belongs to the one
level higher criticality (if its criticality is lower than criticality of the requested subsystem). The

20

3.3. OVERLOAD CONTROLLER CHAPTER 3. DESIGN

main purpose of exchanging budgets among subsystems in this method is to keep track of the
overall available budget.

Algorithm 1 Method one
for ζi = 0 to ζi = n−1 do

α = |Bi−NewBudgeti|;
if NewBudgeti < Bi then

GiveExtraBudget(ζi +1, α);
Bi = NewBudgeti;

end if
if NewBudgeti > Bi then

Bi = Bi + TakeRequiredBudget(n−1, α, i);
end if

end for

Algorithm 2 shows implementation of the "GiveExtraBudget" function. In this function we
check whether there exists called criticality level or not. If it does not exists we reserve the
budget in a variable, otherwise we add the extra budget to the current subsystem budget.

Algorithm 2 GiveExtraBudget(ζi, α)
if ζi > n−1 then

reservedBudget = dα Ti
Ti−1
e;

else
Bi = Bi + dα Ti

Ti−1
e;

end if

Algorithm 3 shows implementation of the "TakeRequiredBudget" function. In this function
first we try to provide required budget from the reserved budget. If it is not possible we continue
taking the required budget from the lowest criticality subsystem, and if it is not enough we move
to one level higher criticality and claim the budget from that subsystem.

Method two

In this approach, we should do a schedulability analysis after each new budget assignment. In
contrast with the global schedulability test which is done for mode change detection, in con-
ducting the schedulability analysis for the subsystem Si the algorithm assumes that all lower
criticality subsystems are shut down. In doing so, when a higher criticality subsystem requires
more budget, the algorithm punishes the lowest criticality subsystem. When the system is not
schedulable, we have to rollback the last budget assignment and assign a lower value to the bud-
get of that subsystem. Algorithm 4 shows pseudocode of method two. In this pseudocode the
"Schedulable(S,Si)" function conducts a schedulability analysis according to the new budget
values. Furthermore, the FindNewBudget(Si,Bi) function returns a new value for the budget
of subsystem Si based on the last failed value.

21

3.3. OVERLOAD CONTROLLER CHAPTER 3. DESIGN

Algorithm 3 TakeRequiredBudget(start, α, end)
if dαTstart

Tend
e ≤ reservedBudget then

reservedBudget = reservedBudget−dαTstart
Tend
e;

return;
else

α = α−dreservedBudget Tstart
Tend
e;

reservedBudget = 0;
end if
for ζi = start downto ζi = end−1 do

if dα Ti
Tend
e ≤ Bi then

Bi = Bi−dα Ti
Tend
e;

return;
else

α = α−dBi
Ti

Tend
e;

Bi = 0;
end if

end for

Algorithm 4 Method two
for ζi = 0 to ζi = n−1 do

Bi = NewBudgeti;
while Schedulable(S,Si) 6= True do

Bi = FindNewBudget(Si,Bi);
end while

end for

22

Chapter 4

Simulation and Examples

4.1 Simulation Results
The simulation environment is prepared by modeling the HSF in the Times tool and generating
C++ files from the model [7]. The generated code is extended so that it contains the designed
PI controller function. In addition, some functions are added for calculating the controlled
variables in the scheduler body. A variety of simulation examples using different systems as
well as different configurations are presented in this chapter. More information about preparing
the simulation environment is presented in Appendix A.

4.1.1 Base Simulation
In this simulation example we present an example scenario that shows budget adaptation in
situations which the execution time of a task in one subsystem varies from low to high and
vice versa. We show how the budget is changed in response to the new load condition of the
subsystem.

There are totally two subsystems in the system. In both global and local levels we use the
fixed priority algorithm for scheduling subsystems and tasks. Specifications of subsystems are
shown in Table 4.1. We assume that tasks which are inside S1 have a fixed execution time and
that using the pre-assigned budget they can meet their deadlines. In subsystem S2 there are
two tasks, and their specifications are shown in Table 4.2. We also assume that task one (τ1)
experiences some changes in its execution time during run-time. Execution time changes are
shown in Table 4.3. The execution time variation is done using a function which is responsible
for changing execution time of tasks to a predefined value at a specific clock cycle. In the
presented simulation, execution time is changed in a range such that it does not violate the
whole system schedulability condition.

Name TS BS PS
S1 19 2 1
S2 5 3 0

Table 4.1: Subsystems specifications

23

4.1. SIMULATION RESULTS CHAPTER 4. SIMULATION AND EXAMPLES

Name Ti Di Pi Ci
τ1 10 6 1 3
τ2 11 8 0 1

Table 4.2: Tasks specifications of S1

Time 0 50 200 400
Ci 3 2 3 0

Table 4.3: Execution Time Changes of τ1

The tw and controller period are considered to be 15 in this example. Hence, every 15
ticks the controller measures the controlled variables, and based on their value takes action by
changing the budget of the subsystem one S1. The controller period is experimentally tuned
by taking into consideration the trade-off between calculation overhead and the controller re-
sponse speed (see Section 3.2.8). In order to have a faster reaction to the environment changes,
we can decrease the controller period. Consequently, it can sample and actuate more frequently
which however increases the run-time overhead. After changing the controller period, tunable
variables of the controller should be tuned to acquire a better controller performance. The con-
troller is implemented inside the scheduler such that the scheduler runs the controller function
(periodically) before other parts of the code.

The system is executed for 600 ticks, and the controlled variables as well as the budget are
sampled in each controller execution, and the result is illustrated in Figure 4.1. As it is shown
in Figure 4.1, 15 ticks after the system starts execution, the controller observes one deadline
miss. It means that the pre-assigned budget is not enough for the tasks of S1 to meet their
deadlines. After observing the deadline miss, the controller increases the budget and after that
all subsystem tasks are able to finish execution before their corresponding deadline. At time 50,
when the execution time of τ1 is reduced from three to two, the controller reduces the budget
from four to two in two steps. At time 200, the execution time of τ1 is increased to three and
it causes some deadline misses. After which the controller observes the deadline misses, it
increases the budget. Finally, the last change happens at time 400, when the execution time of
τ1 is reduced to zero. In this case the U-loop experiences a huge error value which is conducive
to a sudden change of the budget from four to three and eventually to one.

The important point to highlight here is that when we move from low to high execution
time, the M-loop plays an essential role in adapting the budget. On the other hand, when the
execution time is decreased, the U-loop adapts the budget according to the current requirements
of the system.

In order to illustrate the difference between having an adaptive budget and having a pre-
assigned fixed budget, we have conducted a set of simulations using a fixed budget and we
have measured the amount of idle time and the number of deadline misses of S1 during first 600
ticks. Table 4.4 shows a comparison between using different budgets and using our adaptive
approach. Since the scheduler does not support execution of a task after its period, we couldn’t
measure values for the budget equal to one.

24

4.1. SIMULATION RESULTS CHAPTER 4. SIMULATION AND EXAMPLES

Budget 3 2 1 adaptive
Deadline misses 12 33 - 4
Idle time 197 77 - 185

Table 4.4: Idle time and deadline misses using different budgets

Figure 4.1: Execution times, budget and controlled variables change over time

4.1.2 Different Configurations
In this part we set up the same system as previous one but we change configuration and conduct
some other simulations.

Control Period = 30

In this example, we are using the same system as previous one but the only difference is the
controller period. We change the controller period to 30 and the system is executed again. As
it is shown in Figure 4.2 we can see a similar budget adaptation pattern but with some delay. In
addition, the number of deadline misses is increased to six which was four in the previous case.

Control Period = 10

In another example we set 10 to the controller period and execute the system. As it is shown
in Figure 4.3 this time the number of deadline misses is decreased. Using this configuration
system experiences two total deadline misses and the maximum number of deadline miss in
one control period is one. The earlier controller sees a deadline miss, the faster it can react.
When we are changing the controller period, we should consider the control overhead on the
scheduler.

25

4.1. SIMULATION RESULTS CHAPTER 4. SIMULATION AND EXAMPLES

Figure 4.2: Execution times, budget and controlled variables change over time (Control period
= 30)

Figure 4.3: Execution times, budget and controlled variables change over time (Control period
= 10)

Different Set points

In this example set point of the "M-loop" and "U-loop" are set to 0.5 and 1.2 respectively and
result is shown in Figure 4.4. In the previous examples the set points were 0 and 1.5. Using
this configuration system experiences 10 total deadline misses and the maximum number of
deadline miss in one control period is two. On the other hand the total idle time is 134 which

26

4.1. SIMULATION RESULTS CHAPTER 4. SIMULATION AND EXAMPLES

is fewer than the base simulation. This example shows that when a system can tolerate some
deadline misses, by configuring a value more than zero to the set point of "M-loop" and a value
close to one to the set point of "U-loop" system can achieve a high utilization.

Figure 4.4: Execution times, budget and controlled variables change over time (MSet = 0.5 and
USet = 1.2)

27

4.1. SIMULATION RESULTS CHAPTER 4. SIMULATION AND EXAMPLES

4.1.3 Four Subsystems
Assume that we have four subsystems in a system. Table 4.5 shows specification of these
subsystems. In order to show the performance of our AHSF, we scheduled this system and
plotted the budget and controlled variables over time in Figure 4.5. The fixed priority schedul-
ing algorithm is used in both local and global schedulers. Since execution time of tasks inside
subsystems are changing over time, the budgets of subsystems are adapted during run-time
to improve whole system performance. Figure 4.5 indicates the relation between controlled
variables of the two feedback loops and the budget.

Name TS Initial BS PS Number of tasks
S1 23 1 1 4
S2 20 2 0 2
S3 20 2 2 2
S4 31 1 3 1

Table 4.5: Subsystems specifications

Tasks specifications of all subsystems are presented in Table 4.6. Budget adaptation in this
example is because of two reasons. First of all, initial budget values are not enough for some
subsystems. In addition, execution time of some tasks change at time 200 and 300.

Subsystem Name Ti Di Pi Ci
S1 τ1 48 30 0 1
S1 τ2 48 40 1 1
S2 τ1 40 32 0 1
S2 τ2 40 30 1 1
S3 τ1 40 35 0 1
S3 τ2 42 40 1 1
S3 τ3 44 34 2 1
S3 τ4 48 19 3 0
S4 τ1 60 30 0 2

Table 4.6: Tasks specifications of all subsystems

In the illustrated example execution time of tasks in subsystems vary in a range such that
the whole system remains schedulable. Therefore, the overload controller is not active and
Figure 4.5 only shows performance of the budget controllers. The presented overload control
techniques in Section 3.3 will be implemented in the same prepared simulation environment.

28

4.2. OVERLOAD CONTROL EXAMPLE CHAPTER 4. SIMULATION AND EXAMPLES

Figure 4.5: Budget adaptation of four subsystems over time (Si-M and Si-U are controlled
variables of the "M-loop" and "U-loop" respectively.)

4.2 Overload Control Example
Assume a system with the specifications presented in Table 4.7. In order to illustrate the in-
troduced approaches, we present a scenario and show how we can apply these two methods to
schedule the example system in the critical mode.

Name TS Initial BS BMax
S PS ζS

S1 20 1 2 1 1
S2 22 3 4 2 2
S3 18 2 2 0 (highest) 3
S4 19 8 8 3 0 (highest)

Table 4.7: Subsystems specifications

Assume that S1 has current budget B1 = 2 and that it requires two additional units of budget,
and also assume that this will cause a mode change from normal to critical mode. The other
subsystems have their initial budget values and they want to keep their budgets unchanged. If
we want to schedule the system without considering their criticality, the timing constraints of
S1 are guaranteed only if the remaining budget after using S3 is sufficient for S1. However,
since ζ1 > ζ3, in interfering of S1 by S3 we want S1 to use the CPU.

4.2.1 Method one
By using method one, the following events will happen after the request of S1:

29

4.3. DISCUSSION CHAPTER 4. SIMULATION AND EXAMPLES

• Since B1 >BMax
1 the system mode will change to the critical mode and BS =BMax

S (B1 = 2,
B2 = 4, B3 = 2 and B4 = 8).

• B4 = 8 and S4 asks for 8 budget units. Therefore, the budget of S4 remains unchanged.

• TakeRequiredBudget(3, 2, 1) will take two units of budget from S3 and will give it to S1.
Hence, B1 = 4 and B3 = 0.

• Since S2 asks for a budget less than its current budget, the "GiveExtraBudget(3, 1)" will
change B3 = 1 and B2 = 3.

• B3 = 1 and S3 asks for 2. Since there is no other lower criticality subsystem and no re-
served budget the "TakeRequiredBudget" function returns 0 and B3 remains unchanged.

• After the overload controller finishes its job, the budget values will be: B1 = 4, B2 = 3,
B3 = 1 and B4 = 8.

4.2.2 Method two
By using method two, the following events will happen after request of S1:

• The global schedulability check will fail (assumption) and it will cause a mode change.

• The budget of S4 will change B4 = 8 and the schedulability analysis assuming B1 = B2 =
B3 = 0 will be successfully done.

• The budget of S1 will change B1 = 4 and the schedulability analysis assuming B2 = B3 =
0 will be successfully done.

• The budget of S2 will be set B2 = 3 and a schedulability test assuming B3 = 0 will be
done. Since the system is schedulable the algorithm will move to the next step.

• The budget of S3 will be set B3 = 2 and a schedulability test will be done. Since the
system is not schedulable it will assign B3 = 1 and perform the schedulability test again.
Since this time the system is schedulable the algorithm will move to the next step.

4.3 Discussion
In this section we have investigated different systems with different parameters. Simulation
results show that a relative short controller period is desirable in systems that cannot tolerate
deadline misses. In such a system we can reduce number of deadline misses by imposing more
overhead to the scheduler. On the other hand, in the systems that high utilization is the most
important issue, we can assign set points of the M and U control loops to a value more than
zero and a value around 1.5 respectively.

Introduced overload methods seems to have a similar performance. However, the offline
method seems to have slightly lower overhead because some parts of the calculations are done
offline.

30

Chapter 5

Summary and Future Work

5.1 Summary and Conclusions
In this thesis we have used feedback control techniques in the context of a hierarchical schedul-
ing framework for adapting the budgets of subsystems during run-time. Using a mathematical
modeling approach, we have designed a PI controller which by sampling the number of dead-
lines and the duration of idle time in subsystems takes an action and manipulates the budget.

Simulation results show that the controller is able to adapt the budget when execution times
of tasks are changed. When the system is not overloaded, manipulating the budget of one sub-
system either lets more subsystem tasks to meet their deadlines or it decreases the response
time of the tasks that are inside the other subsystems in the same node. For simulation exam-
ples, we have designed a scenario in which subsystem task experiences both execution time
increase and decrease. We have investigated different control frequencies and set points on the
same example scenario and results are shown in Chapter 4. Finally, a system consisting of four
subsystems is simulated in which some subsystems are demanding more budget and others do
not use their budget. The controller successfully adapted the budget according to subsystem
demands.

In addition, we propose one online and one offline method for controlling the budget adap-
tation in the critical mode. Although we have not implemented the overload controller in our
simulation environment, using an example we have illustrated our overload control methods.
When it comes to implementation, different approaches can be used for implementing these
methods. For instance, the schedulability test can be done using either the utilization based test,
the response time analysis or an approximation approach such as the one presented in [17].

In compositional real-time systems where execution time of tasks are not fixed in run-time
or even in systems where task execution times are not known before run-time, our adaptive
hierarchical scheduling framework provides the system developer with an applicable solution
for scheduling real-time tasks. Our AHSF makes it possible to adaptively schedule mixed
criticality subsystems on a single node by allowing different configurations for subsystems
budget controllers.

5.2 Future Works
The work presented in this thesis can be extended in different aspects.

31

5.2. FUTURE WORKS CHAPTER 5. SUMMARY AND FUTURE WORK

1. Multi-mode real-time systems [31] can be investigated and integrated with hierarchical
scheduling. When a system is experiencing a mode shift, interface variables can be
adapted in a similar approach as we do in our AHSF.

2. Situations that by changing the budget of a subsystem, the system becomes not schedu-
lable can be studied using our simulation environment. We have suggested two methods
in this thesis which can be studied using simulation examples.

3. A set of experiments for comparing the response time of tasks in AHSF and HSF can be
conducted. Benefit of using AHSF can be judged by comparing response time of tasks in
HSF and AHSF.

4. Overhead of the controller can be investigated by implementing the presented controller
and conducting some experiments on hardware. Overhead of the scheduler with con-
troller and scheduler without the controller can be compared. Then, we can realize how
much the cost of having an adaptive framework is.

5. The presented budget control approach can be investigated on hierarchical scheduling
frameworks that have more than two levels.

6. We have studied systems with fixed priority algorithms in both local and global lev-
els. Investigating other algorithm such as EDF in schedulers is another option for future
works.

7. Investigating and applying feedback techniques in multicore HSFs is another trend for
the future works.

8. Finally, another trend of our work is to study other types of controllers instead of the PI
budget controller and investigate pros and cons of using different types of controllers in
the context of adaptive hierarchical scheduling.

32

References

[1] Luca Abeni and Giorgio Buttazzo. Hierarchical QoS management for time sensitive ap-
plications. In Proceedings of the 7th Real-Time Technology and Applications Symposium
(RTAS ’01), pages 63 –72, May 2001.

[2] Luca Abeni, Luigi Palopoli, Giuseppe Lipari, and Jonathan Walpole. Analysis of a
reservation-based feedback scheduler. In Proceedings of the 23rd IEEE Real-Time Sys-
tems Symposium (RTSS ’02), pages 71–80, December 2002.

[3] Luis Almeida and Paulo Pedreiras. Scheduling within temporal partitions: response-time
analysis and server design. In Proceedings of the 4th ACM International Conference on
Embedded Software (EMSOFT ’04), pages 95–103, September 2004.

[4] Tobias Amnell, Elena Fersman, Leonid Mokrushin, Paul Pettersson, and Wang Yi. Times
- a tool for modelling and implementation of embedded systems. In Proceedings of the
8th International Conference on Tools and Algorithms for the Construction and Analysis
of Systems (TACAS ’02), pages 460–464, April 2002.

[5] Bo Lincoln Johan Eker Karl-Erik Arzen Anton Cervin, Dan Henriksson. How does con-
trol timing affect performance? analysis and simulation of timing using jitterbug and
truetime. Control Systems Magazine, 23:16–30, 2003.

[6] Mikael Åsberg, Thomas Nolte, Clara M. Otero Perez, and Shinpei Kato. Execution
time monitoring in linux. In Proceedings of the Work-In-Progress (WIP) session of
14th IEEE International Conference on Emerging Techonologies and Factory Automa-
tion (ETFA’09), September 2009.

[7] Mikael Åsberg, Paul Pettersson, and Thomas Nolte. Modelling, verification and synthesis
of two-tier hierarchical fixed-priority preemptive scheduling. In Proceedings of the 23rd
EUROMICRO Conference on Real-Time Systems (ECRTS’11), March 2011.

[8] S.R. Biyabani, J.A. Stankovic, and K. Ramamritham. The integration of deadline and crit-
icalness in hard real-time scheduling. In Proceedings of 7th the IEEE Real-Time Systems
Symposium (RTSS ’88), pages 152 –160, December 1988.

[9] G. Buttazzo, G. Lipari, and L. Abeni. Elastic task model for adaptive rate control. In
Proceedings of the 19th IEEE Real-Time Systems Symposium (RTSS ’98), pages 286 –
295, December 1998.

[10] G. Buttazzo, M. Spuri, and F. Sensini. Value vs. deadline scheduling in overload condi-
tions. In Proceedings of the 16th IEEE Real-Time Systems Symposium (RTSS ’95), pages
90–99, December 1995.

33

REFERENCES REFERENCES

[11] A. Cervin and J. Eker. Feedback scheduling of control tasks. In Proceedings of the 39th
IEEE Conference on Decision and Control, volume 5, pages 4871 –4876 vol.5, December
2000.

[12] T. Cucinotta, L. Palopoli, and L. Marzario. Stochastic feedback-based control of QoS
in soft real-time systems. In Proceedings of the 43rd IEEE Conference on Decision and
Control, pages 3533 – 3538 Vol.4, December 2004.

[13] Tommaso Cucinotta and Luigi Palopoli. Feedback scheduling for pipelines of tasks. In
Proceedings of the 10th international conference on Hybrid systems: computation and
control (HSCC’07), pages 131–144, April 2007.

[14] G. de A Lima and A. Burns. An optimal fixed-priority assignment algorithm for support-
ing fault-tolerant hard real-time systems. Computers, IEEE Transactions on, pages 1332
– 1346, October 2003.

[15] Z. Deng and J. W.-S. Liu. Scheduling real-time applications in an open environment.
In Proceedings of the 18th IEEE Real-Time Systems Symposium (RTSS ’97), pages 308
–319, December 1997.

[16] Farhana Dewan and Nathan Fisher. Approximate bandwidth allocation for fixed-priority-
scheduled periodic resources. Technical Report, Department of Computer Science Wayne
State University Detroit, MI USA, March 2011.

[17] Nathan Fisher and Sanjoy Baruah. A fully polynomial-time approximation scheme for
feasibility analysis in static-priority systems with bounded relative deadlines. Journal of
Embedded Computing, 2:291–299, December 2006.

[18] D. Henriksson, A. Cervin, J. Akesson, and K.-E. Arzen. Feedback scheduling of model
predictive controllers. In Proceedings of the 8th IEEE Real-Time and Embedded Technol-
ogy and Applications Symposium (RTAS ’02), pages 207 – 216, September 2002.

[19] Bjorn Wittenmark Karl Johan Astrom. Computer-Controlled Systems: Theory and Design
(3rd Edition). Prentice Hall, 1996.

[20] Tei-Wei Kuo and Ching-Hui Li. A fixed-priority-driven open environment for real-time
applications. In Proceedings of the 20th IEEE Real-Time Systems Symposium (RTSS ’99),
December 1999.

[21] G. Lipari and S. Baruah. A hierarchical extension to the constant bandwidth server frame-
work. In Proceedings of the 7th IEEE Real-Time Technology and Applications Symposium
(RTAS ’01), pages 26 –35, May 2001.

[22] G. Lipari, J. Carpenter, and S. Baruah. A framework for achieving inter-application isola-
tion in multiprogrammed, hard real-time environments. In Proceedings of the 21st IEEE
Real-time Systems Symposium (RTSS’00), pages 217–226, November 2000.

[23] Giuseppe Lipari and Sanjoy K. Baruah. Efficient scheduling of real-time multi-task ap-
plications in dynamic systems. In Proceedings of the 6th IEEE Real Time Technology and
Applications Symposium (RTAS ’00), pages 166 –175, May 2000.

34

REFERENCES REFERENCES

[24] Giuseppe Lipari and Enrico Bini. Resource partitioning among real-time applications.
In Proceedings of the Euromicro Conference on Real-Time Systems (ECRTSŠ03), pages
151–158, July 2003.

[25] C. Lu, J.A. Stankovic, G. Tao, and S.H. Son. Design and evaluation of a feedback control
edf scheduling algorithm. In Proceedings of the 20th IEEE Real-Time Systems Symposium
(RTSS ’99), pages 56 –67, December 1999.

[26] Chenyang Lu, John A. Stankovic, Sang H. Son, and Gang Tao. Feedback control real-time
scheduling: Framework, modeling, and algorithms. Real-Time Systems, pages 85–126,
2002.

[27] Pedro Mejía-Alvarez, Rami Melhem, and Daniel Mossé. An incremental approach to
scheduling during overloads in real-time systems. In Proceedings of the 21st IEEE Real-
time Systems Symposium (RTSS’00), pages 283–293, November 2000.

[28] A.K. Mok, X. Feng, and Deji Chen. Resource partition for real-time systems. In Pro-
ceedings of the 7th Real-Time Technology and Applications Symposium (RTAS ’01), pages
75–84, May 2001.

[29] Dionisio de Niz, Karthik Lakshmanan, and Ragunathan Rajkumar. On the scheduling of
mixed-criticality real-time task sets. In Proceedings of the 30th IEEE Real-Time Systems
Symposium (RTSS ’09), pages 291–300, December 2009.

[30] Thomas Nolte, Moris Behnam, Mikael Åsberg, Reinder J. Bril, and Insik Shin. Hierar-
chical scheduling of complex embedded real-time systems. In Ecole d’Ete Temps-Reel
(ETR’09), pages 129–142, August 2009.

[31] Linh T. X. Phan, Insup Lee, and Oleg Sokolsky. Compositional analysis of multi-
mode systems. In Proceedings of the 22nd Euromicro Conference on Real-Time Systems
(ECRTS ’10), pages 197–206, July 2010.

[32] P. Ramanathan. Overload management in real-time control applications using (m, k)-firm
guarantee. Parallel and Distributed Systems, IEEE Transactions on, 10(6):549 –559, June
1999.

[33] S. Ramos-Thuel and J.K. Strosnider. The transient server approach to scheduling time-
critical recovery operations. In Proceedings of the 12th IEEE Real-Time Systems Sympo-
sium (RTSS ’91), pages 286 –295, December 1991.

[34] S.G. Robertz, D. Henriksson, and A. Cervin. Memory-aware feedback scheduling of
control tasks. In Proceedings of the IEEE Conference on Emerging Technologies and
Factory Automation (ETFA ’06), pages 70 –77, September 2006.

[35] Insik Shin and Insup Lee. Periodic resource model for compositional real-time guarantees.
In Proceedings of the 24th IEEE Real-Time Systems Symposium, (RTSS ’03), pages 2 –
13, 2003.

35

REFERENCES REFERENCES

[36] John A. Stankovic, Tian He, Tarek Abdelzaher, Mike Marley, Gang Tao, Sang Son, and
Cenyan Lu. Feedback control scheduling in distributed real-time systems. In Proceedings
of the 22nd IEEE Real-Time Systems Symposium (RTSS ’01), pages 59 – 70, December
2001.

[37] Jianguo Yao, Xue Liu, Zonghua Gu, Xiaorui Wang, and Jian Li. Online adaptive utiliza-
tion control for real-time embedded multiprocessor systems. Journal of Systems Archi-
tecture, pages 463 – 473, 2010.

[38] Fengxiang Zhang and Alan Burns. Analysis of hierarchical edf pre-emptive scheduling.
In Proceedings of the 28th IEEE International Real-Time Systems Symposium (RTSS ’07),
pages 423–434, December 2007.

36

Chapter 6

Appendix A

6.1 Tools Used for Simulations
In this appendix we explain tools that are used for simulating the proposed feedback control
technique. In early phases of the thesis we investigated TrueTime simulation tool [5] and tried
to conduct our simulation using this tool. Unfortunately, since the hierarchical scheduling is
not supported by this tool we couldn’t use it. Otherwise it is a powerful simulation tool for
simulating control task.

6.1.1 Modeling HSF in Times
Modeling real-time schedulers in Times1 tool is a useful approach which is proposed by Mikael
Åsberg [7]. During this thesis different sample models that were available from his work are
used for simulating the budget controller performance. Figure 6.1 shows the global scheduler
automata that are modeled in Times tool. This example is used in four subsystems simulation
that is presented in Chapter 4.

Using the Times tool we can generate C++ code from the automata model. In order to add
the designed budget controller, we used this code synthesis tool which is provided in Times tool.
Among available options in Times tool code generator we choose simulated kernel. Unfortu-
nately, the generated code is not functioning properly and there are some bugs in it. Therefor,
a C#.Net application is developed for fixing the bugs in generated C++ files.

6.1.2 Fixing the C++ Files
Times tool generates 12 C++ files from the model. From these 12 files four files are buggy and
need to be fixed. Using the C#.Net application we should select "HierSched.c" file and then the
program will look for other three files in the same folder. In addition XML file which contains
the model should be in the same path. The application fixes files using information provided in
the XML file and replacing some expressions. A new folder will be created and all necessary

1Times is a tool for modeling and implementation of embedded systems [4]. Since Times supports task au-
tomata (timed automata with tasks), it is used for modeling, verification and code synthesis purposes.

37

6.1. TOOLS USED FOR SIMULATIONS CHAPTER 6. APPENDIX A

Figure 6.1: Global scheduler automata in Times tool

files would be in that folder. Then we need to compile and run "noos_kernel.c". Figure 6.2
shows a screen shot from the "C++ code fixer" application.

6.1.3 Adding The Control Code to Files
Among all generated files, two files need to be changed for adding the controller. The first file
is "HierSched.c" which we should add some definitions and some functions. Following code
is part of the HierSched.c file which contains control related declarations and functions. This
code is used in the four subsystems simulation example in Section 4.1.3.

1 i n t S _ d e a d l i n e M i s s [NrOfSe rve r s] ;
2 i n t S_ id l eT ime [NrOfSe rve r s] ;
3 i n t i d l e T i m e ;
4 i n t t o t a l B u d g e t [NrOfSe rve r s] = { 1 , 3 , 6 , 2 } ;
5 i n t tmp = 0 ;
6 c h a r r e s = 0 ;
7 i n t S1_Dead l ine [Server1_S1_NrOfTasks] = { 3 0 , 4 0 , 1 0 0 0 } ;
8 i n t S2_Dead l ine [Server2_S2_NrOfTasks] = { 3 2 , 3 0 , 1 0 0 0 } ;
9 i n t S3_Dead l ine [Server3_S3_NrOfTasks] = { 3 5 , 4 0 , 3 4 , 1 9 , 1 0 0 0 } ;

10 i n t S4_Dead l ine [Server4_S4_NrOfTasks] = { 3 0 , 1 0 0 0 } ;

38

6.1. TOOLS USED FOR SIMULATIONS CHAPTER 6. APPENDIX A

Figure 6.2: Screen shot of C#.Net application

11 / / F u n c t i o n s
12 f l o a t UFunct ion (i n t i) ;
13 vo id ChangeExecTime (i n t i) ;
14 vo id P r i n t (c h a r i n p u t [] , i n t i) ;
15 f l o a t PI (f l o a t r e f , f l o a t va lue , f l o a t KP , f l o a t KI , f l o a t ∗ P r e v i o u s E r r o r) ;
16 vo id C o n t r o l l e r (vo id) ;
17 vo id s e r v e r R e l e a s e ()
18 {
19 / / R e l o d i n g t h e bu dg e t
20 t o t a l B u d g e t [S_ReleaseQIndex [0]] = t o t a l B u d g e t [S_ReleaseQIndex [0]] +

S_Budget [S_ReleaseQIndex [0]] ;
21 }
22 vo id t a s k F i n i s h (i n t i)
23 {
24 / / C a l l e d i n t a s k f i n i s h t r a n s i t i o n
25 i n t a c t i v e T a s k ;
26 s w i t c h (i)
27 {
28 c a s e 0 :
29 tmp = S1_Dead l ine [S e r v e r 1 _ S 1 _ A c t i v e] ;
30 a c t i v e T a s k = S e r v e r 1 _ S 1 _ A c t i v e +1;
31 S1_Dead l ine [S e r v e r 1 _ S 1 _ A c t i v e] += S e r v e r 1 _ S 1 _ P e r i o d [

S e r v e r 1 _ S 1 _ A c t i v e] ;
32 b r e a k ;
33 c a s e 1 :
34 tmp = S2_Dead l ine [S e r v e r 2 _ S 2 _ A c t i v e] ;
35 a c t i v e T a s k = S e r v e r 2 _ S 2 _ A c t i v e +1;
36 S2_Dead l ine [S e r v e r 2 _ S 2 _ A c t i v e] += S e r v e r 2 _ S 2 _ P e r i o d [

S e r v e r 2 _ S 2 _ A c t i v e] ;
37 b r e a k ;
38 c a s e 2 :
39 tmp = S3_Dead l ine [S e r v e r 3 _ S 3 _ A c t i v e] ;
40 a c t i v e T a s k = S e r v e r 3 _ S 3 _ A c t i v e +1;
41 S3_Dead l ine [S e r v e r 3 _ S 3 _ A c t i v e] += S e r v e r 3 _ S 3 _ P e r i o d [

S e r v e r 3 _ S 3 _ A c t i v e] ;
42 b r e a k ;
43 c a s e 3 :
44 tmp = S4_Dead l ine [S e r v e r 4 _ S 4 _ A c t i v e] ;
45 a c t i v e T a s k = S e r v e r 4 _ S 4 _ A c t i v e +1;
46 S4_Dead l ine [S e r v e r 4 _ S 4 _ A c t i v e] += S e r v e r 4 _ S 4 _ P e r i o d [

S e r v e r 4 _ S 4 _ A c t i v e] ;

39

6.1. TOOLS USED FOR SIMULATIONS CHAPTER 6. APPENDIX A

47 b r e a k ;
48 }
49 i f (tmp > (i n t) s y s _ t i m e)
50 r e s = ’N’ ;
51 e l s e
52 {
53 r e s = ’Y’ ;
54 S _ d e a d l i n e M i s s [i] + + ;
55 }
56 }
57 vo id ChangeExecTime (i n t i)
58 {
59 / / Used f o r s i m u l a t i n g e x e c u t i o n t i m e change o f t a s k s
60 i f (s y s _ t i m e >= 100 && s y s _ t i m e < 150)
61 {
62 Server3_S3_ExecTime [1] = 0 ;
63 Server1_S1_ExecTime [0] = 5 ;
64 Server2_S2_ExecTime [0] = 3 ;
65 }
66 i f (s y s _ t i m e >= 200 && s y s _ t i m e < 250)
67 {
68 Server2_S2_ExecTime [1] = 5 ;
69 Server3_S3_ExecTime [2] = 0 ;
70 Server3_S3_ExecTime [0] = 0 ;
71 }
72
73 i f (s y s _ t i m e >= 300 && s y s _ t i m e < 350)
74 {
75 Server1_S1_ExecTime [1] = 2 ;
76 }
77 r e t u r n ;
78 }

These declared functions should be called from appropriate places in code. For example
taskFinish function is called from transitions (code lines that are corresponding to automata
model transitions) that a subsystem task is finished. For instance the following code shows
taskFinish function call of subsystem S3. This code is used in the four subsystems simulation
example in Section 4.1.3.

1 c a s e 143 :
2 S e r v e r 3 _ S 3 _ E x e c L i s t [S e r v e r 3 _ S 3 _ A c t i v e]= Server3_S3_ExecTime [

S e r v e r 3 _ S 3 _ A c t i v e] ;
3 S e r v e r 3 _ i =0 ;
4 t a s k F i n i s h (2) ; / / C a l l t o t a s k F i n i s h f u n c t i o n from s u b s y s t e m 3
5 b r e a k ;

The second file which we should manipulate is "noos_hw_sim.c". This file contains im-
plementation of the PI controller and budget adaptation. Following code should be added to
noos_hw_sim.c. Following code is part of the noos_hw_sim.c that is used in the four subsys-
tems simulation example in Section 4.1.3.

1 / / D e c l e r a t i o n s
2 f l o a t E r r o r , U _ P r e v i o u s E r r o r , M_Prev iousEr ro r , Budget , U_KP = 0 . 3 , U_KI =

0 . 1 , M_KP = 0 . 7 , M_KI = 0 . 2 ;
3

40

6.1. TOOLS USED FOR SIMULATIONS CHAPTER 6. APPENDIX A

4 f l o a t rndup (f l o a t n)
5 {
6 / / Used f o r bu dg e t a d a p t a t i o n
7 f l o a t t ;
8 t =n−f l o o r (n) ;
9 i f (t > = 0 . 5)

10 n = c e i l (n) ;
11 e l s e
12 n = f l o o r (n) ;
13 r e t u r n n ;
14 }
15 f l o a t PI (f l o a t r e f , f l o a t va lue , f l o a t KP , f l o a t KI , f l o a t ∗ P r e v i o u s E r r o r)
16 {
17 / / I m p l e m e n t a t i o n o f t h e PI c o n t r o l l e r
18 f l o a t D;
19 E r r o r = r e f − v a l u e ;
20 D = E r r o r ∗ KP + ∗ P r e v i o u s E r r o r ∗ KI ;
21 ∗ P r e v i o u s E r r o r = E r r o r ;
22 r e t u r n D;
23 }
24 vo id R e s e t S e r v e r I d l e T i m e (i n t i)
25 {
26 / / R e s e t s i d l e t i m e o f s e r v e r i
27 i n t d e f a u l t I d l e = 1000 ;
28 s w i t c h (i)
29 {
30 c a s e 0 :
31 S e r v e r 1 _ S 1 _ E x e c L i s t [Server1_S1_NrOfTasks −1] = d e f a u l t I d l e ; b r e a k ;
32 c a s e 1 :
33 S e r v e r 2 _ S 2 _ E x e c L i s t [Server2_S2_NrOfTasks −1] = d e f a u l t I d l e ; b r e a k ;
34 c a s e 2 :
35 S e r v e r 3 _ S 3 _ E x e c L i s t [Server3_S3_NrOfTasks −1] = d e f a u l t I d l e ; b r e a k ;
36 c a s e 3 :
37 S e r v e r 4 _ S 4 _ E x e c L i s t [Server4_S4_NrOfTasks −1] = d e f a u l t I d l e ; b r e a k ;
38 }
39 r e t u r n ;
40
41 }
42 vo id C o n t r o l l e r ()
43 {
44 / / T h i s f u n c t i o n i s c a l l e d e v e r y c o n t r o l p e r i o d
45 f l o a t D1 , D2 ;
46 i n t i ;
47 f o r (i =0 ; i < NrOfSe rve r s ; i ++)
48 {
49 Budget = S_Budget [i] ;
50 D1 = PI (1 . 5 , UFunct ion (i) , U_KP , U_KI , &U _ P r e v i o u s E r r o r) ;
51 D2 = −PI (0 , S _ d e a d l i n e M i s s [i] , M_KP, M_KI , &M_Prev iousEr ro r) ;
52 i f (f a b s (D1) > f a b s (D2))
53 Budget += D1 ;
54 e l s e
55 Budget += D2 ;
56 P r i n t (" C o n t r o l " , i) ;
57 Budget = rndup (Budget) ;

41

6.1. TOOLS USED FOR SIMULATIONS CHAPTER 6. APPENDIX A

58 / / l i m i t bu dg e t so i t does n o t v i o l a t e s c h e d u l a b l i t y c o n d i t i o n o f t h e
o t h e r s u b s y s t e m s

59 i f (Budget > 6)
60 Budget = 6 ;
61 i f (Budget < 1)
62 Budget = 0 ;
63 / / D i s a b l e C o n t r o l l e r
64 / / C lear h i s t o r y
65 t o t a l B u d g e t [i] = (S_Budget [i] − G l o b a l S c h e d u l e r _ S _ B u d g e t L i s t [i]) ;
66 R e s e t S e r v e r I d l e T i m e (i) ;
67 S _ d e a d l i n e M i s s [i] = 0 ;
68
69 / / S e t new bu dg e t
70 S_Budget [i] = Budget ;
71 }
72 r e t u r n ;
73 }
74 i n t S e r v e r I d l e T i m e (i n t i)
75 {
76 / / r e t u r n s i d e l t i m e o f s e r v e r i
77 i n t i d l e ;
78 s w i t c h (i)
79 {
80 c a s e 0 :
81 i d l e = S e r v e r 1 _ S 1 _ E x e c L i s t [Server1_S1_NrOfTasks −1]; b r e a k ;
82 c a s e 1 :
83 i d l e = S e r v e r 2 _ S 2 _ E x e c L i s t [Server2_S2_NrOfTasks −1]; b r e a k ;
84 c a s e 2 :
85 i d l e = S e r v e r 3 _ S 3 _ E x e c L i s t [Server3_S3_NrOfTasks −1]; b r e a k ;
86 c a s e 3 :
87 i d l e = S e r v e r 4 _ S 4 _ E x e c L i s t [Server4_S4_NrOfTasks −1]; b r e a k ;
88 }
89 r e t u r n 1000 − i d l e ;
90
91 }
92 f l o a t UFunct ion (i n t i)
93 {
94 / / C a l c u l a t e s U (The c o n t r o l l e d v a r i a b l e)
95 f l o a t U;
96 i n t l o c a l T o t a l B u d g e t = t o t a l B u d g e t [i] − (S_Budget [i] −

G l o b a l S c h e d u l e r _ S _ B u d g e t L i s t [i]) ;
97 i f (l o c a l T o t a l B u d g e t < S e r v e r I d l e T i m e (i))
98 l o c a l T o t a l B u d g e t = S e r v e r I d l e T i m e (i) ; / / because o f l a t e up da t e o f

e x e c L i s t (a f t e r t a s k s w i t c h)
99 i f ((f l o a t) (l o c a l T o t a l B u d g e t − S e r v e r I d l e T i m e (i)) == 0)

100 {
101 r e t u r n 5 ;
102 }
103 U = (f l o a t) l o c a l T o t a l B u d g e t / (f l o a t) (l o c a l T o t a l B u d g e t − S e r v e r I d l e T i m e (i

)) ;
104 r e t u r n U;
105 }
106 vo id P r i n t (c h a r i n p u t [] , i n t i)
107 {
108 / / used f o r p l o t t i n g r e s u l t s

42

6.1. TOOLS USED FOR SIMULATIONS CHAPTER 6. APPENDIX A

109 p r i n t f ("S%d−%s Budget= %d M= %d i d l e = %d t o t a l B = %d U= %3.1 f E1= %d E2= %
d %d \ n " , i +1 , i n p u t , S_Budget [i] , S _ d e a d l i n e M i s s [i] , S e r v e r I d l e T i m e (i)
, t o t a l B u d g e t [i] − (S_Budget [i] − G l o b a l S c h e d u l e r _ S _ B u d g e t L i s t [i
]) , UFunct ion (i) , Server4_S4_ExecTime [0] , Server2_S2_ExecTime [1] , (
i n t) s y s _ t i m e) ;

110 }

6.1.4 Plotting The Results
In each control period, before adapting the budgets we call Print function which prints all con-
trolled variables, current budgets and execution time of some tasks to screen. Then we redirect
these outputs to a text file and using a MATLAB script we plot results. The following code is
the MATLAB script that is used in the four subsystems simulation example in Section 4.1.3.

1 f u n c t i o n [I n p u t s , Outpu t] = F e t c h D a t a ()
2 j = 1 ;
3 [S e r v e r B Budget D M I I d l e t o t a l B TB T U E1 Exec1 E2 Exec2 Time] =

t e x t r e a d (’ o u t p u t . t x t ’ , ’%s %s %d %s %d %s %d %s %d %s %f %s %d %s %d %d ’)
;

4 s = sum (I d l e)
5 s2 = sum (M)
6 S1_j = 1 ;
7 S2_j = 1 ;
8 S3_j = 1 ;
9 S4_j = 1 ;

10 f o r i =1 : l e n g t h (S e r v e r)
11 temp = (S e r v e r { i }) ;
12 s w i t c h temp
13 c a s e ’S1−C o n t r o l ’
14 S1_Budget (S1_j) = Budget (i) ;
15 S1_M(S1_j) = M(i) ;
16 S1_U (S1_j) = U(i) ;
17 S1_Time (S1_j) = Time (i) ;
18 S1_j = S1_j +1;
19 c a s e ’S2−C o n t r o l ’
20 S2_Budget (S2_j) = Budget (i) ;
21 S2_M(S2_j) = M(i) ;
22 S2_U (S2_j) = U(i) ;
23 S2_Time (S2_j) = Time (i) ;
24 S2_j = S2_j +1;
25 c a s e ’S3−C o n t r o l ’
26 S3_Budget (S3_j) = Budget (i) ;
27 S3_M(S3_j) = M(i) ;
28 S3_U (S3_j) = U(i) ;
29 S3_Time (S3_j) = Time (i) ;
30 S3_j = S3_j +1;
31 c a s e ’S4−C o n t r o l ’
32 S4_Budget (S4_j) = Budget (i) ;
33 S4_M(S4_j) = M(i) ;
34 S4_U (S4_j) = U(i) ;
35 S4_Time (S4_j) = Time (i) ;
36 S4_j = S4_j +1;
37
38 end

43

6.1. TOOLS USED FOR SIMULATIONS CHAPTER 6. APPENDIX A

39 end
40 s u b p l o t (4 , 1 , 1) ;
41
42 p1 = p l o t (S1_Time , S1_Budget , ’−−k∗ ’ , ’ LineWidth ’ , 1 , ’ MarkerEdgeColor ’ , ’ k ’ , ’

MarkerFaceColo r ’ , ’ k ’ , ’ Marke rS ize ’ , 2 0) ;
43 ho ld on
44 p2 = p l o t (S1_Time , S1_M , ’−−r s ’ , ’ LineWidth ’ , 1 , ’ MarkerEdgeColor ’ , ’ r ’ , ’

MarkerFaceColo r ’ , ’ r ’ , ’ Marke rS ize ’ , 1 0) ;
45 ho ld on
46 p3 = p l o t (S1_Time , S1_U , ’−−bs ’ , ’ LineWidth ’ , 1 , ’ MarkerEdgeColor ’ , ’ g ’ , ’

MarkerFaceColo r ’ , ’ g ’ , ’ Marke rS ize ’ , 1 0) ;
47 ho ld o f f
48 x l a b e l (’ Time ’) ;
49 y l a b e l (’ Budget /M/U’) ;
50 l e g e n d ([p1 p2 p3] , ’S1−Budget ’ , ’S1−M’ , ’S1−U’) ;
51
52 s u b p l o t (4 , 1 , 2) ;
53
54 p1 = p l o t (S2_Time , S2_Budget , ’−−k∗ ’ , ’ LineWidth ’ , 1 , ’ MarkerEdgeColor ’ , ’ k ’ , ’

MarkerFaceColo r ’ , ’ k ’ , ’ Marke rS ize ’ , 2 0) ;
55 ho ld on
56 p2 = p l o t (S2_Time , S2_M , ’−−r s ’ , ’ LineWidth ’ , 1 , ’ MarkerEdgeColor ’ , ’ r ’ , ’

MarkerFaceColo r ’ , ’ r ’ , ’ Marke rS ize ’ , 1 0) ;
57 ho ld on
58 p3 = p l o t (S2_Time , S2_U , ’−−bs ’ , ’ LineWidth ’ , 1 , ’ MarkerEdgeColor ’ , ’ g ’ , ’

MarkerFaceColo r ’ , ’ g ’ , ’ Marke rS ize ’ , 1 0) ;
59 ho ld o f f
60 x l a b e l (’ Time ’) ;
61 y l a b e l (’ Budget /M/U’) ;
62 l e g e n d ([p1 p2 p3] , ’S2−Budget ’ , ’S2−M’ , ’S2−U’) ;
63
64 s u b p l o t (4 , 1 , 3) ;
65
66 p1 = p l o t (S3_Time , S3_Budget , ’−−k∗ ’ , ’ LineWidth ’ , 1 , ’ MarkerEdgeColor ’ , ’ k ’ , ’

MarkerFaceColo r ’ , ’ k ’ , ’ Marke rS ize ’ , 2 0) ;
67 ho ld on
68 p2 = p l o t (S3_Time , S3_M , ’−−r s ’ , ’ LineWidth ’ , 1 , ’ MarkerEdgeColor ’ , ’ r ’ , ’

MarkerFaceColo r ’ , ’ r ’ , ’ Marke rS ize ’ , 1 0) ;
69 ho ld on
70 p3 = p l o t (S3_Time , S3_U , ’−−bs ’ , ’ LineWidth ’ , 1 , ’ MarkerEdgeColor ’ , ’ g ’ , ’

MarkerFaceColo r ’ , ’ g ’ , ’ Marke rS ize ’ , 1 0) ;
71 ho ld o f f
72 x l a b e l (’ Time ’) ;
73 y l a b e l (’ Budget /M/U’) ;
74 l e g e n d ([p1 p2 p3] , ’S3−Budget ’ , ’S3−M’ , ’S3−U’) ;
75
76 s u b p l o t (4 , 1 , 4) ;
77
78 p1 = p l o t (S4_Time , S4_Budget , ’−−k∗ ’ , ’ LineWidth ’ , 1 , ’ MarkerEdgeColor ’ , ’ k ’ , ’

MarkerFaceColo r ’ , ’ k ’ , ’ Marke rS ize ’ , 2 0) ;
79 ho ld on
80 p2 = p l o t (S4_Time , S4_M , ’−−r s ’ , ’ LineWidth ’ , 1 , ’ MarkerEdgeColor ’ , ’ r ’ , ’

MarkerFaceColo r ’ , ’ r ’ , ’ Marke rS ize ’ , 1 0) ;
81 ho ld on

44

6.1. TOOLS USED FOR SIMULATIONS CHAPTER 6. APPENDIX A

82 p3 = p l o t (S4_Time , S4_U , ’−−bs ’ , ’ LineWidth ’ , 1 , ’ MarkerEdgeColor ’ , ’ g ’ , ’
MarkerFaceColo r ’ , ’ g ’ , ’ Marke rS ize ’ , 1 0) ;

83 ho ld o f f
84 x l a b e l (’ Time ’) ;
85 y l a b e l (’ Budget /M/U’) ;
86 l e g e n d ([p1 p2 p3] , ’S4−Budget ’ , ’S4−M’ , ’S4−U’) ;

45

