
Virtual Communication Bus with Hardware and Software Tasks
in Real-Time System

Peter Nygren and Lennart Lindh

Mälardalens University, MRTC (Mälardalens Real Time Research Center), {peter.nygren, lennart.lindh}@mdh.se

Abstract:
The FPGA (Field Programmable Gate Array) of recent years has
opened newer design possibilities of moving software into
hardware. This paper is studied at two cases of transferring
functionality from software into hardware. The paper describes the
VCB (Virtual Communication Bus) concept and hardware tasks.
The approach with VCB is focused today on existing systems with
a main processor and slave processors or DSP (Digital Signal
Processors). The first approach is to reduce the system load from
the VCB bus and the second phase will be to eliminate the slave
processors and move them to hardware tasks implemented in
FPGA. This means that a hardware task can consist of 1000 pages
of C code. The hardware tasks will reduce the response time and
make the system more time-deterministic.

Keywords: FPGA, VCB, Task, hardware tasks, Real-Time
System

I. INTRODUCTION

Already today an FPGA have 10 million gates it will not be
long before FPGA’s have hundreds of millions of logic
gates on-chip [3]. A FPGA can be programmed by a subset
of C[1] or a hardware language such as VHDL [2]. A rule
of thumb is that about 100 pages of C code fit into 30 000
gates. The cost of a 30K device is to day under 10 US $ [3].
Compilers today translate ordinary software from code into
serial machine code. The hardware compilers translate the
source code into concurrent gates, fliplops and memories by
means of a synthesizer. The synthesizer during the last 10
years has developed from a simple state machine to
behavioral translation.
Today the designer can design in hardware design tools or
ordinary software tools. With the help of new tools as
CoWare N2C™ Design System [1] are dealing with this
problem.

The first phase will be to eliminate the operating system
(OS) load generated from the VCB bus. The system load
generated from the bus is an ordinary software task and this
functionality could be moved from software into hardware.
This will reduce the system load and make more execution
time available for application tasks.
The approach with VCB is focused today on an existing
system (see figure 1) with a main processor and slave
processors or DSP (Digital Signal Processors). The goal of
this approach is to eliminate the slave processors and move
the software functionality in to hardware tasks implemented
in FPGA. This means that a hardware task can consist
thousand pages of C code.

II. MOTIVATION AND OVERVIEW

The objective is to remove the functionality from the VCB
bus, implement this functionality in software and move it
into a hardware task. The purpose of this is to utilize the
true parallelism in the hardware and their bye making
available more execution time for the application tasks in
the system. The second phase of the project will be to
reduce the number of CPU’s in a multiprocessor system
with mixed architecture of generally micro-controllers and
signal processors. The purpose of this is to decrease the
response time of external units and to reduce the overhead
for the ordinary system to be able to handle communication
with external devices. Industry today can reduce the cost of
system architecture design if the system architecture uses
hardware task instead of CPU’s. The cost of a system could
thereby be reduced. An example of a commercial system is
shown in figure 1. In this type of system it is possible to
eliminate the slave CPU’s and move the functionality into
hardware tasks.

RAM/ROMRAM/ROM

DSP CPUDSP CPUI/O CPUI/O CPU

EXT
I/O

EXT
I/O

RAM
Application SW tasks

RAM
Application SW tasks

BUSBUS

MASTER CPUMASTER CPU

Figure 1: Logical architecture of a common system.

If we move the functionality from the CPU’s and replace
them with an FPGA and implement the functionality in
hardware tasks could we reduce the necessity of mixed
achitecture in many types of systems (see figure 2). An
advantage of using hardware instead of CPU’s is that the
external I/O can be connected directly into the FPGA. This
reduces the communication on the shared bus. The
communication possibilities on the VCB bus permit
communication between hardware and software tasks in the
system.

VCB,IRQ,SCH,...VCB,IRQ,SCH,...

RAM/ROMRAM/ROMRAM/ROMRAM/ROM

FPGA

Application HW tasksApplication HW tasks
RAM

Application SW tasks
RAM

Application SW tasks

BUSBUS

MASTER CPUMASTER CPU

EXT
I/O

EXT
I/O

Figure:2 Logical architecture of the proposed system.

Moving common software functionality into hardware tasks
results in greater predictability and increase system speed.
This new design method gives less complexity and reduces
the cost of the whole system.

III. PHASE ONE: VCB IMPLEMENTATION:

The Virtual Communication Bus is used for inter process
communication and for synchronization tasks in the system.
Communication between different tasks in a system usually
consists of some kind of message passing mechanism such
as mailboxes. The VCB bus is such a message passing
mechanism and the bus allowed task to task communication
locally on one CPU and between several different CPUs in
the system. The tasks could be either an ordinary software
task or it a hardware task, the interface for the tasks being
the same.

“Task 1“

Software layer for VCB bus

“Task N““Task 2“

Hardware layer for VCB bus

Slot 1 Slot NSlot 2

Figure 3 Logical architecture of a system with the VCB bus

The VCB bus is divided into two layers, the upper layer
being the software implementation of the bus. In this layer
the system provides support for different types of
functionality from the bus. The other part of the bus
consists of the base primitives. These primitives are
implemented and integrated in the FPGA. When tasks want
to communicate on the VCB the task hade to allocate one
VCB-slot and their bye bee connected to the virtual bus.
The VCB connects the system and makes possible
communication in two different ways, synchronous or

asynchronous. When a task is connected to a slot it can
communicate with all the other tasks in the system.
Send and receive communication is the type of functionality
mostly frequently used in the VCB bus. Other functions the
bus could support are, for example broadcast, send and
wait, multicast, subscribe. To reduce the system load from
the OS (Operating System), the first step will be to reduce
the execution time of the subscribe function. The subscribe
function is a Server<->Client concept in which the
“Server” is the functionality which handles all mail
requests from other “Clients” in the system. The server
running each time T to decrement each individual timer T.
When the time has expired for one or more “Clients” the
“Server” sends a mail to every “Client” in the request list
(see figure 3).

Software layer for VCB bus

“Server“
Send mail to
clients every

time “t”

“Client “
Desire mail
from server

every time “t”

Mail ever
time “t”

Hardware layer for VCB bus
mail N

Figure: 4 “Server” “Client” concept for subscribe function

The mail system uses some shared memory area either
globally or locally. In some cases the local location is a
better solution because it minimizes the accesses on the
global common system bus and improves the performance
of the mail system.

IV. PHASE TWO HARDWARE TASK:

The purpose of removing CPU’s from a system is to
increase the performance and predictability of some
functionality. This type of implementation gives many
advantages. One of the biggest differences is the
performance as a hardware task runs in true parallel mode
giving higher speeds as compared with a corresponding
software implementation. Another advantage is the
predictability of the hardware, the max/min execution time
for the function being definable on the clock cycle level.
The complexity and size of the code are reduced when
hardware tasks are used. The design space increased if the
designer used hardware tasks instead of ordinary software
implementation.
Hardware tasks can reduce the numbers of CPU’s because
of the possibility of using the VCB bus for communication
and when functionality moved from the CPU into hardware
tasks. The hardware task could be one instance or it could
be divided into many small units in the same task.

When using CPU’s in the system (see figure:1) it is difficult
to handle the high frequency of the external I/O. The
overhead for the interrupts reduces the CPU performance.
The hardware task could handle the external I/O interrupts
directly from the external I/O units without any overhead
from the OS. The hardware task could also handle
concurrent processing of the information in true parallelism.
Results from the hardware tasks are sent directly to the
software task at the master CPU via VCB bus.
Device drivers for handling external I/O are not necessary

VCB bus

“Software
Task“

“Hardware
Task“

Extern
I/OT1 T2

Figure 5: Logical picture of a hardware task

Higher capacity FPGA’s give the possibility of using
memory on chip instead of common system RAM. This
gives a improved performance of the task in the FPGA.

V. ADVANTAGES WITH HARDWARE TASKS
The implementation of the same function code in hardware
is considerable different from its implementation in
software

It is easier to predict real-time behavior in hardware. Min
and max times can be verified with tools. In software it is
difficult or almost impossible. The background is that
software uses the shared resources such as CPU, ALU but
in the case of hardware the task use it’s own gates. The
hardware can use the same resource for different "tasks",
but this can be scheduled offline.
In hardware it is also easier to deal with asynchronous
events (such as interrupts). In a software solution an
interrupt interrupts the entire system, in a hardware task it
interrupts only the interrupt function in the system.

Performance of a hardware task is much higher than of a
software task, if the function can be held inside the same
chip. The parallelism in hardware is very high, in a 30000
gates FPGA it is 30000 concurrent elements.

Hardware tasks needs no overhead, such as operating
system, device drivers for interrupt. The response time from
a hardware task is much shorter than from a common
software task.

FPGA hardware gives flexible hardware architecture. For
example the number of ALU units, interrupt pins, I/O is
configurable.

In a processor there are nearly always overhead and
restriction resources. For example if you need an floating
point unit, it will be provided, or if you need more interrupt
lines there must be added. When you must access a unit
outside the CPU the response time will increase.

VI. CONCLUSION

?? New hardware design methods [1] and higher capacity
FPGA’s create new possibilities of removing CPU’s
from ordinary system design and replacing the CPU’s.

?? The integration of heavy regulates algorithms into
hardware tasks and the possibility of transparent
communication between soft and hardware tasks gives
new dimensions in this new type of architecture.

?? New FPGA types with more internal memory need less
external memory and will increase the speed of the
function. In many cases the time behavior of hardware
tasks will be much more predictable.

?? As the price of FPGA’s is reduced by 50% each 18
month, the cost of architecture the same functionality
in a system is almost the same.

VII. REFERENCE

[1] CoWare N2C Design System www.CoWare.com
[2] VHSIC Hardware Description Language VHSIC

stands for Very High Speed Integrated Circuit
[3] http://www.xilinx.com

