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Abstract
Managing complexity is an increasing challenge in the development of embedded systems (ES). Some
of the factors contributing to the increase in complexity are the growing complexity of hardware
and software, and the increased pressure to deliver full-featured products with reduced time-to-
market. An attractive approach to manage the software complexity, reduce time-to-market and decrease
development costs lies in the adoption of component-based development that has been proven as
a successful approach in other domains. Another raising challenge, due to complexity increase, in
ES, is predictability, i.e., the ability to anticipate the behavior of a system at run-time. The particular
predictability requirements of ES call for a development framework equipped with techniques and tools
that can be applied to deal with requirements, such as timing, and resource utilization, already at early-
stage of development. Modeling and formal analysis play increasingly important roles in achieving
predictability, since they can help us to understand how systems function, validate the design and verify
some important properties.

In this thesis, we present a resource-aware framework for designing predictable component-based ES.
The proposed framework consists of (i) the formally specified ProCom component model that takes
into account the characteristics of control-intensive ES, and (ii) the resource-aware timed behavioral
language - REMES for modeling and reasoning about components’ and systems’ functional and extra-
functional behavior that includes relevant resource types for ES, associated analysis techniques for
various resource-wise properties, and a set of associated tools. To demonstrate the potential application
of our framework, we present a number of case studies, out of which one is an industrial research
prototype, where ProCom and REMES are applied.
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Abstract

Managing complexity is an increasing challenge in the development of
embedded systems (ES). Some of the factors contributing to the increase
in complexity are the growing complexity of hardware and software, and
the increased pressure to deliver full-featured products with reduced
time-to-market. An attractive approach to manage the software com-
plexity, reduce time-to-market and decrease development costs lies in
the adoption of component-based development that has been proven as
a successful approach in other domains. Another raising challenge, due
to complexity increase, in ES, is predictability, i.e., the ability to antici-
pate the behavior of a system at run-time. The particular predictability
requirements of ES call for a development framework equipped with
techniques and tools that can be applied to deal with requirements, such
as timing, and resource utilization, already at early-stage of develop-
ment. Modeling and formal analysis play increasingly important roles in
achieving predictability, since they can help us to understand how sys-
tems function, validate the design and verify some important properties.

In this thesis, we present a resource-aware framework for designing
predictable component-based ES. The proposed framework consists of (i)
the formally specified ProCom component model that takes into account
the characteristics of control-intensive ES, and (ii) the resource-aware
timed behavioral language - Remes for modeling and reasoning about
components’ and systems’ functional and extra-functional behavior that
includes relevant resource types for ES, associated analysis techniques
for various resource-wise properties, and a set of associated tools. To
demonstrate the potential application of our framework, we present a
number of case studies, out of which one is an industrial research proto-
type, where ProCom and Remes are applied.
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Rikard Land and Frank Lüders for the stimulating collaboration in the
courses Distributed Software Development and Software Engineering,
and the administrative staff at the department, in particular Hariet Ek-
wall, Monica Wasell, Monika Matevska Stier and Carola Ryttersson.

Next, I would like to thank my officemates, Séverine Sentilles, Hongyu
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Chapter 1

Introduction

Embedded systems, such as mobile phones, car engines, elevators, etc.,
are part of our daily life, and we are increasingly depending on their
reliability in operation. According to IEEE Glossary [3] ”an embedded
system is a computer system that is part of a larger system and performs
some of the requirements of that system“. Embedded systems are de-
signed to perform dedicated functions, often under real-time computing
constraints. In most cases, they are made of components that commu-
nicate with each other and the environment via sensors and actuators.

During last decades, the amount of software in embedded systems
is increasing at a breathtaking pace. For example, a modern upper-
class car holds between a dozen and nearly 100 crosslinked electronic
control units (ECU), each with a microprocessor software that amounts
to about 1MByte compiled code [42]. This is comparable to what a
typical desktop computer runs today. Reasons for this tremendous in-
crease include the demand for new functionality on the one hand, and
the availability of powerful and cheap hardware on the other hand. In
contrast to the changing nature of software, the resources that such sys-
tems use (like computation power, memory, and channel bandwidth) are
limited in capacity, expensive and usually not extensible during system’s
lifetime. The limited nature of the available resources, especially mem-
ory size and computation resources, complicates meeting the real-time
constraints and dependability requirements.

As pointed out by Henzinger and Sifakis, designing embedded sys-
tems is not a straightforward application of either hardware or software

1



2 Chapter 1. Introduction

design methods [55]. The demanding extra-functional requirements of
modern embedded systems, coupled with the increasing complexity of
the underlying software, require techniques for managing complexity
and for ensuring predictable system behavior. One of the ways to en-
sure predictable behavior of an embedded system design is to formally
check it against different requirements pertaining to various kinds of
constraints including functional, timing, safety, and resource usage con-
straints. Meeting this demanding goal resorts to a resource-aware em-
bedded system modeling and analysis perspective, that is, consider from
the start of the development the resource constraints imposed from the
underlying hardware and/or software platforms that host the embedded
system.

Designing an embedded system in a component-based manner, by
building it from pre-existing well-specified and verified components, in-
tends to lower its complexity, reduce time-to-market, introduce struc-
ture and abstraction. The underlying paradigm of component-based
development (CBD) is that individual components are designed and de-
veloped to provide functionality that is potentially reusable for future
systems. The central point of CBD has been reuse, but for embed-
ded systems the structure and abstractions introduced by components
are equally important as a basis for the construction of abstract formal
models. An essential benefit of a formal model is that it enforces a pre-
cise and unambiguous way of component and system specification, which
may reveal inconsistencies and gaps in the original informal description.
Through abstraction formal models allow software engineers to focus on
the critical issues facing them. Through logical foundations they support
predictable development already at early design time, where predictabil-
ity refers to the possibility to guarantee absence or presence of certain
properties, or to predict/guarantee quantified properties. This avoids
cost intensive redesigns of systems in late development phases [80]. In
practice, it may often be necessary to replace a component with another
one having the same functionality, yet using a more sophisticated con-
trol algorithm that requires bigger memory resources. The predictability
analysis should guide the design and selection of hardware and software
system components. The final implementation of the system should be
arrived at, as much as possible, by using automatic transformation and
synthesis from formal models describing the system behavior in order to
ensure implementations that are ”correct by construction“ [41].

In the remainder of this chapter, we describe in detail the research
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problem tackled in this thesis and list the research goals relevant to the
problem (Section 1.1). Afterwards, we point out the scientific contri-
butions of the thesis (Section 1.2), before we list the published papers
that establish the contributions of the thesis (Section 1.3). Finally, we
present the research methodology used for answering the research prob-
lem (Section 1.4), and provide an outline of the thesis (Section 1.5).

1.1 Problem Statement and Research Goals

In the previous section, we have argued that the development of em-
bedded systems is a challenging task, due to their growing complexity
and the pervasive nature of their most critical property: resource limi-
tations. Resource usage should be predicted and assessed already at the
early design phases, since access to such information at early stages of
design might help the designer to get insights into the overall system re-
source usage, which in turn could help him/her prevent resource misuse
at run-time. Moreover, early design prediction for embedded systems
is both important and feasible, since in most cases, in particular for
safety-critical systems, the embedded systems are not changed during
runtime.

Based on the above discussion, we identify our general research prob-
lem coming from the embedded systems practice as:

The need to address the complexity and resource limitations
of embedded systems in a structural way and ensure predictabil-
ity during early stages of system development.

In order to refine this general research problem, we narrow our focus
from different perspectives. Firstly, we consider that in order to achieve
predictability throughout the development of embedded systems, the
designer needs to employ a design framework equipped with analysis
methods and tools that can be applied at various levels of abstraction.
These methods and tools should provide estimations and guarantees of
relevant system properties.

Secondly, we rely on the principle that CBD introduces structure in
design, and provides means of abstraction, while enabling reusability of
various types of analysis. Hence, we assume the CBD paradigm in our
framework.
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Thirdly, in our view, formal analysis of functionality, timeliness and
resource usage is an important complement to testing. For instance,
ensuring the resource-wise feasibility of a system/component is hard to
obtain through testing. Such property can state that the composition
of the worst-case resource requirements of components stays within the
available resources provided by the implementation platform, or that
there exists an execution path that uses no more than the available
resources to behave correctly.

Taking into account these objectives, we consider that in order to be
able to synthesize a predictable embedded system from components and
compositions, a resource-aware design framework is needed. Therefore,
we specify our refined research problem as an overall research goal:

Develop a resource-aware design framework encompassing
modeling and formal analysis of component-based embedded
systems.

Research Goals

Decomposing the overall research goal, we formulate three smaller re-
search goals that we address in this thesis.

Research goal 1. (A component model formalization)

The potential benefits of CBD are as attractive in the domain of
embedded systems as they are in other areas of the software industry.
Component models are indispensable to CBD, as they define rules for
constructing individual components and for assembling them into sys-
tems. Beside component models, component technologies form another
central concept of CBD. They make use of component models in practice,
that is, a particular component technology provides tools that enable
development and deployment of systems that adhere to a correspond-
ing component model. Although there exist several component models
and technologies for the development of embedded systems (e.g., AU-
TOSAR [18], BlueArX [67], COMDES-II [66], Koala [101], Pecos [108],
Robocop [78], Rubus [52], and SaveCCM [8]), CBD is still not broadly
used in the embedded systems industry. An important reason for such
limited success is the difficulty of providing solutions that meet typical
embedded system requirements.
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Wolf [109] discusses about which domain specific requirements a com-
ponent technology targeting embedded system development should be
aware of. In the embedded systems domain, designing for predictability
requires architectures that meet both the corresponding functional re-
quirements (e.g., expected services, functionality and features), as well
as extra-functional ones (resource-feasibility, timing and/or reliability).
In order to simplify analysis and help the intuition behind the embed-
ded system’s functioning, one could create a hierarchy of models that
will alow him/her to reason about timed behavior, resource consump-
tion, etc., without going down to the instruction level. For instance,
architectural models may be used for modeling the system’s structure,
and high-level functionality, assuming different views, whereas behav-
ioral models can be associated with architectures to express much richer
semantic models, and describe internal functional and extra-functional
behavior, as well as interface behavior [46, 89]. Also, embedded system
developers must be able to verify that applications meet their functional
and extra-functional specifications. All these demands should be possi-
ble to meet when employing a particular component model. However,
the specifications of many component models are defined informally and
component models suffer from incomplete and imprecisely defined syn-
tax and semantics. A formalization of the component model is then
needed, in order to achieve an unambiguous model that can be formally
analyzed. Consequently, it is essential to associate the component model
and its constructs with a formal execution semantics to which any design
should conform. Such motivation justifies our first research goal:

Develop a formal description of a component model
for real-time embedded systems.

(RG1)

Research goal 2. (A resource-aware behavioral language)

The diversity of approaches on resource modeling and analysis exist-
ing in the literature [15,39,45,48,75–77,85,88] indicate the complexity of
handling all relevant embedded resources within the same formal model.
This calls for an innovative look on resource-aware design methods, based
on the experience gathered from the existing modeling approaches. In
order to properly specify and analyze embedded systems, the designer
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requires a modeling language that incorporates resources as primitive
types, that is, built in the model. Ideally, the language should be rich
enough to support modeling and analysis of functional and timing be-
havior too. This would allow for both separation of concerns, as well as
easier model-to-model transformations, for analysis purposes. Accord-
ingly, the second research goal can be formulated as:

Develop a behavioral language and associated tool
support for modeling and formal analysis of func-
tional, timing and resource-wise behavior of compo-
nents and their compositions.

(RG2)

Research goal 3. (Validation)

The usefulness, applicability, and scalability of embedded systems
modeling languages and analysis methods can be exercised by perform-
ing their validation against measured, quantified behavioral properties.
In order to illustrate, as well as validate the applicability of our design
framework, we must apply our proposed framework on a number of rel-
evant case-studies. Thus, our third research goal is:

Exercise the applicability of the proposed design frame-
work by modeling and analyzing example embedded
systems that are motivated by reality.

(RG3)

1.2 Contributions

In this section, we map the contributions of the thesis to the goals for-
mulated earlier.

Research goal 1. (A component model formalization)

Develop a formal description of a component model
for real-time embedded systems.

(RG1)
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RG1 has been addressed with the following contribution:

• The formally specified ProCom component model for em-
bedded systems. To address RG1, we have contributed to the
development of ProCom, the component model used in this the-
sis. ProCom is particularly designed to target control-intensive
distributed systems, which are a special class of embedded sys-
tems that can be found in many products, such as vehicles, au-
tomation systems, or distributed wireless networks. In order to
address the different concerns at different levels of granularity, Pro-
Com is structured in two distinct, but related, layers (ProSys and
ProSave). The two layers differ in terms of granularity, architec-
tural style and communication paradigm. To facilitate analysis, we
have defined the formal execution semantics of ProCom, based on
an extension of finite-state machines (FSM). The proposed FSM
language has notions of urgency, implicit timing and priorities. Its
formal semantics is expressed in terms of timed automata with
priorities [38] and urgent transitions [23]. The FSM language has
graphical appeal, making it simpler than the corresponding timed
automata model, by, e.g., abstracting from real-valued variables
and synchronization channels. We present the ProCom component
model and its formalization in Chapter 3.

Research goal 2. (A resource-aware behavioral language)

Develop a behavioral language and associated tool
support for modeling and formal analysis of func-
tional, timing and resource-wise behavior of compo-
nents and their compositions.

(RG2)

The contributions addressing RG2 are as follows:

• The Remes behavioral language. Our REsource Model for
Embedded Systems (Remes) is intended as a meaningful basis
for modeling and analysis of resource-constrained behavior of em-
bedded systems. Remes is a dense time state-based hierarchical
behavioral language that has a notion of explicit entry- and exit
points, continuous variables, flows and progress invariants, making
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it fit for component-based system modeling of timed systems. We
introduce the Remes language in Chapter 4.

• ProCom and Remes integration. In order to specify the Pro-
Com behavior via Remes, we need to integrate the two models.
The integration is done via a general attribute framework [92],
that enables a developer of a ProCom component to specify the
corresponding behavior by pointing to a Remes model. Both the
ProCom component and the associatedRemes model are seen as a
reusable unit of composition. To accomplish this, in this thesis, we
propose a way of connecting ProCom and Remes together. The
relation between the ports of the component and the variables in
the Remes model is given by a mapping between the ProCom and
Remes interfaces. This contribution we present in Chapter 5.

• Performing resource-wise analysis. To analyze the resource-
wise behavior in Remes models, we encode the total resource us-
age, as a weighted sum, in which the variables capture the accu-
mulated consumption of each resource, respectively. Assuming the
encoding, we perform three types of analysis: feasibility analysis,
optimal and worst-case resource consumption analysis, and trade-
off analysis. Feasibility analysis checks whether the accumulated
values of the resources used during all possible system behaviors
are within the available resource amounts provided by the imple-
mentation platform. Optimal resource usage analysis returns the
cost of the of the “cheapest” trace, whereas worst-case resource
consumption analysis calculates the cost of the most “expensive”
trace that will eventually reach some goal. The latter analysis may
help in resolving the possible non-determinism in a component
implementation. Trade-off analysis is an approach to balancing
trade-offs between conflicting resource requirements: memory vs.
execution time, energy vs. memory, etc. The result of this anal-
ysis is the best alternative between the conflicting requirements.
These analysis goals are encoded in Weighted Computation Tree
Logic (WCTL) [32], which is our property specification language.
In Chapter 4 we show how a number of resource analysis problems
can be formalized in the framework of priced timed automata.

• A tool-chain for the Remes language. To be able to apply our
framework, we have developed automated support, as an integrated
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tool for modeling and analysis of embedded systems. The core el-
ements of the tool-chain are as follows: (i) the Remes editor for
modeling behaviors of embedded components, (ii) the Remes sim-
ulator to test timing and resource behavior prior to formal analy-
sis, and (iii) an automated transformation from Remes into priced
timed automata, needed for formal analysis. The Remes simulator
is out of the scope of this thesis and therefore will only be shortly
described. We present the Remes tool-chain in Chapter 6.

Research goal 3. (Validation)

Exercise the applicability of the proposed design frame-
work by modeling and analyzing example embedded
systems that are motivated by reality.

(RG3)

RG3 has been addressed with the following contribution:

• Validating the resource-aware framework. ProCom and Re-

mes have been applied on simple, yet relevant “toy examples”: an
electronic stability control system (see Chapter 3), a temperature
control system (see Chapter 4 and 5) and a turntable drilling sys-
tem (see Chapter 5). In Chapter 7, we also show how to model
behavior, and verify the resulted behavioral models of an indus-
trial prototype, a component-based Ericsson Nikola Tesla proto-
type telecommunication system. In this last case, we validate our
models by using the actual values of timing, CPU, and memory
usage in our models, measured by Ericsson researchers on the pro-
totype’s source code.

Hence, all three smaller research goals have been targeted, and conse-
quently, also the overall research goal ”develop a resource-aware design
framework encompassing modeling and formal analysis of component-
based embedded systems“. Needless to say, we have provided only one
solution to the overall research problem, out of a possibly large pool of
valid solutions.

The resource-aware design framework that we present in this thesis
includes two parts:
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1. The formally specified ProCom component model that fulfills the
requirements coming from a class of embedded systems that pri-
marily perform real-time controlling tasks;

2. The Remes behavioral language for describing component’s and
system’s functional and extra-functional behavior (such as timed
behavior and resource consumption), associated analysis techniques
for various resource-wise properties, and a set of tools implement-
ing the former.

1.3 Publications

This section presents planned and published papers related to the thesis.
The publications are divided into two categories: (i) papers that are
fundamental for the thesis contributions; and (ii) papers that are related
to the thesis.

1.3.1 Description of fundamental publications

Licentiate thesis

• A Resource-Aware Component Model for Embedded Systems. Aneta
Vulgarakis. Licentiate Thesis, ISBN 978-91-86135-37-9,Mälardalen
Univerisity Press, September 2009.

Summary: In this thesis, we introduce the ProCom component
model for building embedded systems, as well as the Remes behav-
ioral language for describing the internal behavior of components.

Usage in the thesis: This doctoral thesis is a continuation of the
research work presented in the licentiate thesis. In the doctoral
thesis we extend the Remes behavioral language, introduce a set
of transformation rules that semantically translate Remes modes
into priced timed automata, show a tool for modeling and analysis
of Remes models, present an integration of ProCom and Remes,
and validate the Remes behavioral language.
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Journals

• paper A. Resource-Oriented Modeling and Formal Analysis of
Embedded Systems Behavior. Marin Orlić, Aneta Vulgarakis, Cristi-
na Seceleanu, and Paul Pettersson. To be submitted to IEEE
Transactions on Software Engineering.

Summary: This paper is based on the work presented in papers E
and G. Additionally, the paper presents an extension of the Remes

behavioral language, reveals a solution for the problem regarding
the access to shared variables of Remes modes, and presents a set
of transformation rules for translating Remes modes into priced
timed automata.

Contribution: I and Marin Orlić are the main authors of this
paper. I am responsible for addressing the problem with access to
shared variables of Remes modes. Together, Marin Orlić and I
have formally defined the automated transformation from Remes

into priced timed automata, with equal contribution. All the co-
authors have contributed with writing sections of the paper, as well
as with valuable suggestions and ideas.

Usage in the thesis: This paper is a basis for Chapter 4 and
Chapter 6. It describes the extended version of the Remes be-
havioral language, the set of transformation rules for translating
Remes modes into priced timed automata, and the Remes tool-
chain.

• paper B.A Classification Framework for Component Models. Ivica
Crnković, Séverine Sentilles, Aneta Vulgarakis, and Michel Chau-
dron. IEEE Transactions on Software Engineering. October, 2011.

Summary: This paper presents a survey of a number of compo-
nent models, described and classified with respect to a three di-
mensional classification framework, which groups different aspects
of the development process of component models. As such, this
classification framework identifies common characteristics as well
as differences between selected component models. The results of
the comparison have led to some observations which are discussed
in this paper.

Contribution: This paper was written with an equal contribution
of the first three authors. All the coauthors have contributed with
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ideas, discussions, and reviews. I was responsible mainly for the
lifecycle dimension and shared the responsibility with Séverine Sen-
tilles for collecting, analyzing and classifying in tables the included
component models. The classification framework was developed in
several iteration steps including observations and analysis. It was
discussed with several CBD and empirical software engineering re-
searchers and experts from different engineering domains.

Usage in the thesis: This paper is used in Chapter 8 for de-
scribing the state of the art of component models for embedded
systems. In addition, the knowledge gained from this paper is used
as a basis for designing the ProCom component model, presented
in Chapter 3.

Conferences and workshops

• paper C. Validation of Embedded Systems Behavioral Models on
a Component-Based Ericsson Nikola Tesla Demonstrator. Aneta
Vulgarakis, Cristina Seceleanu, Paul Pettersson, Ivan Skuliber and
Darko Huljenić. 11th International Conference on Quality Soft-
ware, IEEE, Madrid, Spain, July, 2011.

Summary: In this paper, we show how to model extra-functional
behavior, and verify the resulted behavioral models of a component-
based Ericsson Nikola Tesla prototype telecommunications system.
The models are described in our Remes language, with Priced
Timed Automata semantics that allows us to applyUppaal - based
tools for model-checking the system’s response time and compute
optimal resource usage traces. The validation of our models is en-
sured by using actual values of timing, CPU, and memory usage in
our models, measured by Ericsson researchers on the prototype’s
source code. For timing, the result of our verification is then com-
pared to the measured value.

Contribution: I was the main author of this paper. I contributed
to this paper with modeling and analyzing the ENT system. All the
coauthors have contributed with valuable discussions and reviews.
The requirements and measurements of the ENT system were given
by the last two coauthors of this paper, researchers at Ericsson,
Croatia.

Usage in the thesis: This paper is a basis for Chapter 7, and
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describes the validation of the Remes behavioral language on the
ENT system.

• paper D. Integrating Behavioral Descriptions into a Component
Model for Embedded Systems. Aneta Vulgarakis, Séverine Sentilles,
Jan Carlson, and Cristina Seceleanu. 36th Euromicro Conference
on Software Engineering and Advanced Applications, IEEE, Lille,
France, September, 2010.

Summary: In this paper, we show how the ProCom component
model can be combined with the Remes behavioral language. This
permits analysis of system properties, while also supporting reuse
of behavioral models when components are reused.

Contribution: I was the main driver of this paper. I proposed
a way of mapping the ProCom component interface onto the en-
try and exit variables of Remes modes, such that the two models
become connected. Séverine Sentilles was in particular responsi-
ble for implementing this connection through a general attribute
framework. I was also responsible for exemplifying the connection
on a turntable system. All the coauthors have contributed with
valuable discussions and reviews.

Usage in the thesis: This paper is a basis for Chapter 5 where
the integration of ProCom and Remes is presented.

• paper E. Remes Tool-chain - A Set of Integrated Tools for Behav-
ioral Modeling and Analysis of Embedded Systems. Dinko Ivanov,
Marin Orlić, Cristina Seceleanu and Aneta Vulgarakis. 25th IEEE/
ACM International Conference on Automated Software Engineer-
ing, Antwerp, Belgium, September, 2010.

Summary: In this paper, we present our Remes tool-chain that
can be employed for construction and analysis of embedded be-
havioral models. The core elements of the tool-chain are as fol-
lows: (i) the Remes editor for modeling behaviors of embedded
components, (ii) the Remes simulator to test timing and resource
behavior prior to formal analysis, and (iii) an automated transfor-
mation fromRemes into priced timed automata, needed for formal
analysis.

Contribution: I and Marin Orlić were the main authors of this
paper. I was the Remes tool-chain leader and supervisor, and
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contributed with suggesting a design of the Remes editor and the
Remes meta-model. I and Marin Orlić developed an algorithm for
transforming Remes into priced timed automata. Dinko Ivanov
developed the Remes editor and Marin Orlić developed the Remes

simulator. Cristina Seceleanu coordinated the work on the Remes

tool-chain and reviewed the paper.

Usage in the thesis: This paper is a basis for Chapter 6 where
the Remes editor and the transformation from Remes into priced
timed automata are presented.

• paper F. Formal Semantics of the ProCom Real-Time Compo-
nent Model. Aneta Vulgarakis, Jagadish Suryadevara, Jan Carlson,
Cristina Seceleanu, and Paul Pettersson. 35th Euromicro Confer-
ence on Software Engineering and Advanced Applications, IEEE,
Patras, Greece, August, 2009.

Summary: In this paper, we define the formal execution seman-
tics of the ProCom component model in a small but powerful finite
state-machine based formalism, with notions of urgency, timing,
and priorities. As such, the formalism provides an unambiguous
description of the modeling elements of ProCom, sets the ground
for formal analysis using other formalisms, and provides and intu-
itive and useful description for both practitioners and researchers.

Contribution: I was the main author of this paper. I and Ja-
gadish Suryadevara contributed with defining a formal execution
semantics of the ProCom component model and exemplifying it
on the modeling elements of ProCom. All the coauthors have con-
tributed with valuable discussions and reviews. The paper pro-
ceeded from a technical report that was written together with Ja-
gadish Suryadevara.

Usage in the thesis: This paper is used in Chapter 3 for de-
scribing the formal execution semantics of the ProCom component
model.

• paper G.Remes: A Resource Model for Embedded Systems. Cristi-
na Seceleanu, Aneta Vulgarakis, and Paul Pettersson. 14th IEEE
International Conference on Engineering of Complex Computer
Systems, IEEE, Potsdam, Germany, June, 2009.

Summary: This paper introduces the model Remes for formal
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modeling and analysis of both functional and extra-functional be-
havior of interacting embedded components. Remes is a state-
based behavioral language with support for hierarchical modeling,
resource description, continuous time, and notions of explicit en-
try and exit points that make it suitable as a semantic basis for
component-based modeling of embedded systems. The analysis of
Remes-based systems is placed around a weighted sum in which
the variables capture the accumulated consumption of resources,
respectively.

Contribution: This paper was written with equal contribution
from all the authors. I particularly worked on the classification of
the resources and specified, modeled in Remes, and analyzed in
Uppaal Cora [100] the TCS system presented as a case study in
the paper.

Usage in the thesis: This paper is a basis for Chapter 4 where
the Remes behavioral language is introduced.

• paper H. A Component Model for Control-Intensive Distributed
Embedded Systems. Séverine Sentilles, Aneta Vulgarakis, Tomáš
Bureš, Jan Carlson, and Ivica Crnković. 11th International Sym-
posium on Component Based Software Engineering, Karlsruhe,
Germany, October 2008.

Summary: In this paper, the two-layered ProCom component
model for design and development of control-intensive distributed
embedded systems is introduced. ProCom takes into account the
most important characteristics of these systems and employs the
concept of reusable components throughout the whole development
process, from early design to deployment. The two-layered model
is developed to efficiently cope with different design paradigms that
exist at different abstraction levels of embedded systems (high level
view of loosely coupled subsystems and a low-level view of control
loops controlling a particular piece of hardware). Additionally it
provides ground for analysis and predicting properties (e.g., timed
behavior and resource consumptions) in such systems.

Contribution: This paper was written with equal contribution
from all the authors, and proceeded from a technical report that
was written together with all the authors. I took part in the discus-
sions and contributed with writing and improving parts of the pa-
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per, particulary in the discussions about the semantics of the com-
ponent model, analysis and predicting properties and the related
work section. The ProCom component model that we describe in
this paper was developed in several iteration steps resulting from
the conducted discussions between the authors.

Usage in the thesis: This paper is a basis for Chapter 3 where
the ProCom component model is introduced.

• paper I. Embedded Systems Resources: Views on Modeling and
Analysis. Aneta Vulgarakis and Cristina Seceleanu. 1st IEEE In-
ternational Workshop On Component-Based Design Of Resource-
Constrained Systems, IEEE, Turku, Finland, July, 2008.

Summary: In this paper, we discuss several representative frame-
works that model and estimate resource usage of embedded sys-
tems, identifying their advantages and limitations. As such, we di-
vide the variety of approaches existing in the literature into three
distinctive categories: code-level resource modeling and analysis
of component assemblies, UML-based description of embedded re-
sources and higher-level formal approaches based on temporal log-
ics and process algebras. In the end, we present the resource-aware
development view that we are adopting throughout the rest of the
thesis.

Contribution: This paper was written with equal contribution
from both authors. I was specifically working on the code-level
and UML- based resource modeling and analysis.

Usage in the thesis: This paper is used in Chapter 8 for describ-
ing the state of the art of embedded systems resources modeling
and analysis. In addition, the knowledge gained from this paper
is used as a basis for designing the Remes behavioral language,
presented in Chapter 4.

1.3.2 Publications related to the thesis

Journals

• Applying Remes Behavioral Modeling to PLC Systems. Aneta
Vulgarakis and Aida Čaušević. Mechatronic Systems, vol 1, nr
1, p40-49, Faculty Of Electrical Engineering, University Sarajevo,
December, 2009.
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Conferences and workshops

• Classification and Survey of Component Models. Ivica Crnković,
Aneta Vulgarakis, Mario Žagar, Ana Petričić, Juraj Feljan, Luka
Lednicki, and Josip Maras. DICES workshop at the International
Conference on Software Telecommunications and Computer Net-
works, Bol, Croatia, September 2010.

• Towards Simulative Environment for Early Development of Compo-
nent-Based Embedded Systems. Marin Orlić, Aneta Vulgarakis,
and Mario Žagar. 15th International Workshop on Component-
Oriented Programming , Prague, Czech Republic, June, 2010.

• Applying Remes Behavioral Modeling to PLC Systems. Aneta Vul-
garakis and Aida Čaušević. 22nd International Symposium on In-
formation, Communication and Automation Technologies, IEEE,
Sarajevo, Bosnia Herzegovina, October 2009.

• Towards a Unified Behavioral Model for Component-Based and
Service-Oriented Systems. Aida Čaušević and Aneta Vulgarakis.
2nd IEEE International Workshop On Component-Based Design
Of Resource-Constrained Systems, IEEE, Seattle, Washington, July,
2009.

• Towards a Resource-Aware Component Model for Embedded Sys-
tems. Aneta Vulgarakis. Doctoral Symposium of 33rd Annual
IEEE International Computer Software and Applications Confer-
ence, IEEE, Seattle, Washington, July, 2009.

• A Component Model Family for Vehicular Embedded Systems. To-
máš Bureš, Jan Carlson, Séverine Sentilles, and Aneta Vulgarakis.
3rd International Conference on Software Engineering Advances,
IEEE, Sliema, Malta, October 2008.

• A Classification Framework for Component Models. Ivica Crnković,
Michel Chaudron, Séverine Sentilles, and Aneta Vulgarakis. 7th
Conference on Software Engineering and Practice in Sweden, Göte-
borg, Sweden, October 2007.

• A Model-Based Framework for Designing Embedded Real-Time Sys-
tems. Séverine Sentilles, Aneta Vulgarakis, and Ivica Crnković.
Work-In-Progress track of the 19th Euromicro Conference on Real-
Time Systems, Pisa, Italy, July 2007.
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MRTC reports

• Connecting ProCom and Remes. Aneta Vulgarakis, Séverine Sen-
tilles, Jan Carlson, and Cristina Seceleanu. MRTC report ISSN
1404-3041 ISRN MDH-MRTC-244/2010-1-SE, Mälardalen Real-
Time Research Centre, Mälardalen University, May, 2010.

• ProCom: Formal Semantics. Jagadish Suryadevara, Aneta Vul-
garakis, Jan Carlson, Cristina Seceleanu, and Paul Pettersson.
MRTC report ISSN 1404-3041 ISRN MDH-MRTC-234/2009-1-SE,
Mälardalen Real-Time Research Centre, Mälardalen University,
March, 2009.

• Remes: A Resource Model for Embedded Systems Cristina Sece-
leanu, Aneta Vulgarakis, and Paul Pettersson. MRTC report ISSN
1404-3041 ISRN MDH-MRTC-232/2008-1-SE, Mälardalen Real-
Time Research Centre, Mälardalen University, October, 2008.

• ProCom – the Progress Component Model Reference Manual, ver-
sion 1.0. Tomáš Bureš, Jan Carlson, Ivica Crnković, Séverine Sen-
tilles, and Aneta Vulgarakis. MRTC report ISSN 1404-3041 ISRN
MDH-MRTC-230/2008-1-SE,Mälardalen Real-Time Research Cen-
tre, Mälardalen University, June 2008.

• Towards Component Modelling of Embedded Systems in the Vehic-
ular Domain. Tomáš Bureš, Jan Carlson, Séverine Sentilles, and
Aneta Vulgarakis. MRTC report ISSN 1404-3041 ISRN MDH-
MRTC-226/2008-1-SE, Mälardalen Real-Time Research Centre,
Mälardalen University, April 2008.

• Progress Component Model Reference Manual - version 0.5. Tomáš
Bureš, Jan Carlson, Ivica Crnković, Séverine Sentilles, and Aneta
Vulgarakis. MRTC report ISSN 1404-3041 ISRN MDH-MRTC-
225/2008-1-SE, Mälardalen Real-Time Research Centre, Mälarda-
len University, April 2008.

1.4 Research Methodology

Depending on the kind of problem to solve and the context of the prob-
lem, different research methodology can be used. Research methods and
research methodology are two terms that are often interchangeably used.
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Strictly speaking, there is a slight difference between the two. Research
methods aim to find solutions to research problems and they describe
the concrete ways in which one could solve a given problem. Example
research methods are: conducting experiments, testing, surveys, inter-
views, lessons learned, critical analysis of the literature and the like. We
refer the reader to [57] for a summary of computing research methods.
On the other hand, the Merriam-Webster dictionary defines method-
ology as a ”a body of methods, rules, and postulates employed by a
discipline: a particular procedure or set of procedures“. In other words,
methodology is the general plural term for all the individual research
methods one has chosen, but there are certain types of methodologies
which encompass and use specific methods e.g., quantitative/qualitative
methodologies.

In our view, a research process describes the stages for conducting
a research; it starts with defining a problem, and ends with proposing
a solution for that problem. During the research process, one may use
one or combine several research methods in order to address a certain
research goal. The use of one or more research methods to address a
certain research goal may create several research results. The research
process that is used in this thesis is presented in Figure 1.1. It consists of
four main stages as follows: identification of a general research problem,
identification of a refined research problem, studying and addressing the
refined problem and validation. As such, the process begins with iden-
tification and formulation of a general research problem from embedded
systems practice, and the ultimate goal is to provide a solution to this
practical problem. The solution is obtained in a research setting by
refining and narrowing down the general problem, expressing the refined
problem in a form of an overall research goal, addressing the overall re-
search goal, and finally validation. Solving the research problem is not a
straightforward process but an iterative one, allowing feedbacks between
stages. First the overall goal is decomposed into smaller research goals,
which are clarified, formulated, studied, refined, and even sometimes left
aside. When the research results are mature enough, we move to the val-
idation stage that makes us examine the validity of our research results.
In using this research process, the validation of the results is crucial in
both research and industry settings. If the validation stage fails, the
research goals and results need to be revisited, improved, polished, and
if necessary discarded.

We have considered the general research problem, the need to ad-
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Figure 1.1: Overview of the applied research process.

dress the complexity and resource limitations of embedded systems in a
structural way and ensure predictability during early stages of system
development, and have transferred the problem to a research setting (see
Section 1.1). In order to understand the problem both from an industrial
and also scientific perspective, we have performed information gather-
ing and studied the state of the art and state of the practise covering
previous work done on the research problem. In scientific research, the
role of previous work is to give a background for the research problem,
and especially explicate the industrial relevance and scientific novelty of
the research. During this stage we have used the research method that
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is close to the so called critical analysis of literature [110] method. This
method is a historical one that aims to provide an exhaustive summary
of literature relevant to a research problem, by collecting and analyzing
data from published materials. The analysis part provides the opportu-
nity to draw conclusions from a broad range of approaches. We have per-
formed our literature review in several iterations, and we have discussed
the concluded results. In difference to the traditional critical analysis of
literature, we have not identified a list of databases for searching related
work, and have not classified the papers covering the related work ac-
cording to their citation indexes. The investigation of the related work
has resulted in two papers: paper B and paper I (see Section 1.3). As a
result we have studied several (embedded systems’) component models
and a number of frameworks that model and estimate resource usage of
embedded systems.

On this basis we have moved to the next stage of our research pro-
cess - studying the refined research problem. During this stage we have
used the proof of concept (also known as proof of principle) research
method [47]. It involves creating solutions, methodologies, concepts,
and techniques in an iterative manner. Note that this research method
has a lot in common with software development [79], as in software de-
velopment the goal is to create a working software system.

Our studying research stage has included several iterations where
the research results have been improved through discussions and analy-
sis. First we have conceptualized the refined research problem, expressed
it as an overall research goal. Then we have decomposed the overall re-
search goal into smaller research goals, presented in Section 1.1. After
that, we have moved to addressing the smaller research goals by de-
veloping solutions, presenting achieved research results and comparing
these research results with the research goals. In developing our so-
lutions we have drawn ideas from the related work. In papers A, D,
E, F, G and H we have presented our research results on developing
a resource-aware design framework encompassing modeling and formal
analysis of component-based embedded systems. We have proposed a
language for component-based design of control-intensive embedded sys-
tems (ProCom), and a resource-aware behavioral language for describ-
ing component’s and system’s functional and extra-functional behavior
(Remes).

The last stage of our research process is validation. Out of the many
existing validation techniques [94], in our research, we use validation
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by persuasion, analysis, and example validation. Firstly, we give an
explanation and persuade the reader that it is reasonable to use our
resource-aware framework in addressing the general research problem.
Secondly, by developing examples and performing formal analysis we
show how the research results work in practise and whether they can be
found satisfactory. According to Shaw [94] the validation described in
this thesis covers toy-, as well as slice of life examples. A toy example
presents a simplified example, which might have been motivated by re-
ality, where as a slice of life example is a system that the author has
developed. As such, our research results have been illustrated on simple
yet relevant “toy examples”, presented in papers D, G, and H. Accord-
ingly, in paper H we have exemplified the ProCom component model
on an electronic stability control system of a car. Further, in paper A
and G, we have performed a small case study demonstrating the prin-
ciples of our resource modeling and analysis approach. The case study
have been conducted on an abstracted version of the internal design of a
temperature control system for heat producing reactor. In paper D, we
have exemplified our resource-aware framework on a turntable example
system, which we modeled as a collection of ProSys components that we
have connected to their associated behavioral Remes models. Finally,
in paper C, we have showed how to model extra-functional behavior,
and verify the resulted behavioral models on a slice of life component-
based Ericsson Nikola Tesla (ENT) telecommunications system. The
salient point of our model, which enables its validation, is the fact that
we have built it by using the timing and resource values extracted from
the actual prototype implementation of the ENT system. The Remes

behavioral language and the associated analysis techniques have been
compared with the related work and have shown to be applicable for the
development and analysis of the ENT system.

1.5 Thesis Outline

The outline of the rest of the dissertation is as follows.

• Chapter 2 - Background introduces basics in the areas of compo-
nent-based development, and formal modeling and analysis of soft-
ware systems. Section 2.1 discusses concepts of components, compo-
nent-based systems and component models. Section 2.2 gives an
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overview of (priced) timed automata and model-checking, as they
will be used throughout this thesis.

• Chapter 3 - ProCom: A Component Model for Embed-
ded Systems proposes a two-layer component model for design
and development of control-intensive distributed embedded sys-
tems. The upper layer - ProSys - is presented in Section 3.3.1,
and the lower layer - ProSave - is described in Section 3.3.2. Sec-
tion 3.3.3 defines the relation between the two layers. The formal
execution semantics of ProCom (Section 3.4) is defined by using a
finite state machine (FSM) underlying formalism with notions of
urgency, timing and priority, in which the semantics of each Pro-
Com element is defined as a translation relation from ProCom to
the FSM language. The ProCom model and its formal execution
semantics are illustrated through a number of interesting examples.

• Chapter 4 - Remes: A Behavioral Model for Embedded
Systems introduces the behavioral modeling language Remes for
formal modeling and analysis of embedded resources, such as stor-
age, energy, communication, and computation (see Section 4.1).
Section 4.1.1 presents a classification of embedded resources, based
on their rate of consumption over time, and the attribute of being
referable, or not. Section 4.3 reveals the transformation rules for
translating Remes modes into priced timed automata. Section 4.2
shows how a number of important resource analysis problems can
be formalized in the framework of (multi-)priced timed automata.
Finally, Section 4.4 demonstrates the principles of Remes on a
temperature control system for a heat producing reactor.

• Chapter 5 - Integrating ProCom and Remes proposes a way
of mapping the ProCom component interface onto the entry and
exit variables of Remes modes (see Section 5.1), such that the two
models become connected. We exemplify the concepts of mapping
ProCom component interfaces and Remes modes on two exam-
ples: a temperature control system, where the architecture of the
system is modeled in ProSave (see Section 5.3), and on a turntable
drilling system, where the system architecture is modeled in ProSys
(see Section 5.4). The packaging of a ProCom component and its
Remes behavioral model together is done through a general at-
tribute framework (see Section 5.2), which will only be shortly
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described since it is out of the scope of this thesis.

• Chapter 6 - The Remes Tool-chain presents the tool-chain for
the Remes language, which can be used for the construction and
analysis of embedded system behavioral models.

• Chapter 7 - Case Study: Ericsson Nikola Tesla Demon-
strator presents a case study where Remes is applied to model
and analyze a telecommunication system by Ericsson Nikola Tesla
(see Section 7.4). The ProCom component model is used to model
the architecture of the ENT demonstrator, as shown in Section 7.3.

• Chapter 8 - Related Work gives a brief survey and relates the
contributions presented in the thesis to relevant research, subdi-
vided into two sections. Section 8.1 covers the state of the art
of component models for embedded systems. Section 8.2 glances
through several representative frameworks that model and estimate
resource usage of embedded systems, pointing out advantages and
limitations.

• Chapter 9 - Conclusion ends our dissertation with concluding
remarks, enumerates the limitations of our results and lists future
research directions.



Chapter 2

Background

This chapter introduces important technical concepts used throughout
the remainder of this thesis. It provides an introduction to component-
based development (Section 2.1) and to formal models and analysis tech-
niques (Section 2.2). For more information on component principles and
technologies, we refer to [36, 97], and for details on formal models and
analysis techniques to [20, 35, 107].

2.1 Component-Based Development

The key principle of component-based development (CBD) [36, 97] is
to build software systems by reusing existing software units, termed
components, in much the same way as standard components are used
in electronics or mechanics: integrated circuits, switches, etc. It is a
promising approach for efficient software development, facilitating well
defined software architectures and reuse.

With CBD it is possible to divide large and complex software systems
into smaller, less complex modules. These modules can be decoupled
from each other and thus be implemented in parallel by different devel-
opers, independently of each other’s work. Therefore, development time
is reduced. Virtually, reliability is increased because components which
have been tested thoroughly and worked good for one system may be
reused in another system. The extra time and effort required for select-
ing, evaluating, adapting, and integrating components is mitigated by
avoiding the much larger effort that would be required to develop such

25
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components from scratch. Another advantage is that software systems
which consist of several modules are more flexible and maintainable than
monolithic software systems.

In CBD the smallest functional building unit is a component . The
idea behind components originates from a paper published by M.D. McIl-
roy [82] at a NATO conference in Garmisch in 1968 about the idea of
mass-produced software components. However, since McIlroy’s paper,
component definitions and notions advanced in various, and in the same
time contradictory directions. Up until today there is no generally ac-
cepted definition of what a component is. An early and commonly cited
definition from Szyperski [97], which focuses on the key characteristics
of components, states that:

“A software component is a unit of composition with contrac-
tually specified interfaces and explicit context dependencies
only. A software component can be deployed independently
and is subject to composition by third parties.”

This definition implies that in order a component to be deployed
independently, a clear distinction between the environment and other
components is required. A component must have clearly specified inter-
faces and the component’s implementation must be encapsulated in the
component and not be directly reachable from the environment. The
definition inclines that components should be delivered in binary form,
and that deployment and composition should be performed at run-time.
Regardless of its generality, it was shown that Szyperski’s definition does
not fully cover a wide range of component-based technologies (e.g., those
which do not support contractually specified interface or independent
deployment). Further, embedded systems require optimal utilization of
hardware (which in many cases has limited resources), and a predica-
ble behavior, rather than flexibility at run time. A static compilation
of components into an image is proven to be more efficient and more
accurate than dynamic uploading of components. For this reason in em-
bedded systems components are usually expressed as models or source
code.

The ongoing debates about components have led to another definition
by Heineman and Councill [4]:

“A software component is a software element that conforms
to a component model and can be independently deployed and
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composed without modification according to a composition
standard.”

Here the emphasis has been shifted from a component to a compo-
nent model (a component model determines what is and what is not a
component). Heineman and Councill [4] define a component model as
follows

“A component model defines a set of standards for com-
ponent implementation, naming, interoperability, customiza-
tion, composition, evolution and deployment.”

This definition points out that a component model covers multiple
facets of the development process, dealing with: (i) rules for the con-
struction of individual components, and (ii) rules for the assembly of
these components into a system.

A more general definition of a component and a component model is
reported by Crnkovic and Chaudron in [34]:

“A software component is a software building block that con-
forms to a component model. A component model defines
standards for (i) properties that individual components must
satisfy, and (ii) methods, and possibly mechanisms for com-
posing components.”

In the above definition, the term “component properties”, is meant
to include functional and extra-functional specifications of individual
components. The term “composing components” is meant to include
mechanisms for component interaction.

Nowadays, there exist many component models. Most of them ei-
ther target general purpose desktop applications or large distributed
systems, and are based on certain technological platforms (such as Enter-
prise Java Beans, DCOM). Several component models (e.g., Koala [101],
SaveCCM [8], Pecos [108], Rubus [52], Robocop [78], BlueArX [67]) tar-
get design of embedded systems.

In general, a component-based system is a composition of compo-
nents, where the components accept inputs from the environment and
produce outputs. A component interacts with its environment through
its interface. The interface explicitly describes the services that the com-
ponent provides and the services that it requires from other components
and its execution environment. Figure 2.1 shows a component-based sys-
tem made of three components A, B and C that communicate through
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their ports i.e., interfaces defined for these ports. The behavior of a
component-based system can be inferred from the behavior of its com-
ponents and its architecture. The interface of a component is used to
access internal component behavior: when the component is activated
the behavior is started, using the values read from the input interface at
that time.

When CBD is applied in the domain of embedded systems, where ap-
plications are often safety-critical and subject to real-time constraints, it
is of significant importance that reliable predictions of a system’s func-
tional and extra-functional behavior can be derived at design-time. The
employed predictability analysis should guide the design and selection
of hardware and software system components. Ideally, the behavior of a
component should be the same regardless of the environment in which
it is deployed, i.e., the other components in the system, but this is not
straightforward to achieve for properties, such as timing, resource usage
or reliability. Although the behavior modeling and analysis of an embed-
ded system is very important it is often omitted in component models
targeting embedded system design. Thus, there is a need to include
behavioral modeling and analysis in embedded systems.

Figure 2.1: Example of a component-based system made of three com-
ponents A, B and C, which are composed by connecting port p1 to p3,
and p2 to p4.



2.2 Formal Models and Analysis Techniques 29

2.2 Formal Models and Analysis Techniques

The act of formal analysis is that of rigorously exploring the correctness
of system designs expressed as abstract mathematical models, most likely
with the assistance of a computer. In this thesis, we consider two types
of answers to formal analysis: “yes/no” answers as a result of verifying
properties that can be either satisfied or not, but cannot be measured,
and answers in form of numbers, in the sense that the formal analysis
returns a computed number that might represent, in our case, the mini-
mum/maximum value of the accumulated resource usage for reaching a
given goal expressed as a reachability property for instance.

Today the best known formal analysis methods are model-checking
and theorem-proving, both of which have sophisticated tool support and
have been applied to non-trivial systems [23, 95]. Theorem-proving em-
phasizes highest assurance (theorems can only be created by a logical
kernel, which implements the inference rules of the logic) and han-
dling infinite-state systems, the main challenge being proof automation.
Model-checking emphasizes automation, by relying on various efficient
algorithms for deciding temporal logic formulas on finite state models,
the main challenge being to reduce problems to a form in which they can
be efficiently model checked. The advantage of model-checking of pro-
viding high level input languages that do not require expert knowledge
of logics and support the modeling and checking of complex computer
systems, and the highest degree of automation, justify our choice for
model-checking as the verification paradigm.

To perform model-checking (see Figure 2.2), an automata model of
a system describing the possible system behaviors is fed into a model-
checking tool or a verifier, together with a desired property (requirement)
typically expressed in a temporal logic. The tool then automatically tra-
verses the system’s state space in an exhaustive manner. If an invariant
property is satisfied, the tool finishes the verification successfully, or if
the invariant property is violated, it reports one of the traces that vio-
lates the property as a counter-example to the model. For reachability
properties the opposite is true i.e., a trace is reported when the property
is satisfied. Even if the system’s desired behavior is satisfied, one can
refine the model and reapply model-checking.

Model-checking has achieved huge success in industry for verifying
hardware designs. Companies, such as IBM, Intel, Motorola, Siemens
are having in-house model-checking groups. Despite these successes,
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Figure 2.2: Verification methodology of model-checking [20].

formal analysis has not been widely used in the development of embedded
systems. One possible reason is the lack of expertise of design engineers
for constructing and understanding abstract models in an interactive
environment formal specifications.

Due to the real-time requirements of embedded systems and the need
to verify the models against them, the designer should be equipped with
methods and tools that support modeling of real-valued variables, and
the combination of discrete and continuous behaviors. The framework
of timed automata is an established formal framework to support such
needs. The Uppaal [2, 71] tool is one of the most popular and mature
verification tools based on timed automata, and it is also used in this
thesis. In the following, we recall the model of timed- and (multi) priced
timed automata.

2.2.1 Timed automata

Timed automata have been proposed by Alur and Dill in the 1990s [11,
14], as a model for real-time systems. Uppaal extends the standard
framework of timed automata, as it allows utilization of data variables.
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In this thesis we use timed automata, as defined in Uppaal [22–24].
A timed automaton (TA) is a timed extension of the finite-state au-

tomaton. A notion of time is introduced by a set of non-negative real
numbers, called clock variables, which are used in clock constraints to
model time-dependent behavior.

Let X be a finite set of clocks and V a finite set of all data (i.e.,
boolean, integer or array) variables. We use B(X) to stand for the set of
formulas obtained as conjunctions of atomic constraints of the form xi ⊲⊳
n or xi−xj ⊲⊳ n, where xi, xj ∈ X , n ∈ N, and ⊲⊳ ∈ {<,≤,=,≥, >}. The
elements of B(X) are called clock constraints over X . A clock constraint
is downward closed if ⊲⊳ ∈ {≤, <,=}. Similarly, we use B(V ) to stand for
the set of non-clock constraints that are conjunctive formulas of i ∼ j or
i ∼ k, where i, j ∈ V , k ∈ Z and ∼∈ {<,≤,=, 6=,≥, >}. We use B(X,V )
to denote the set of formulas that are conjunctions of clock constraints
and non-clock constraints.

TA consists of a finite set of locations, connected by edges. One of
the locations is marked as initial. All clocks in TA start at zero, evolve
continuously at the same rate, and can be tested and reset to zero. Each
edge may have a guard, an action and an assignment. A guard is a finite
conjunction over data constraints and clock constraints. An assignment
is a comma separated list of expressions with a side-effect. It is used to
reset clocks and set values of variables. We say that an edge is enabled if
the guard evaluates to true and the source location is active. Locations
are labeled with a downward closed clock constraints called invariants,
which enforce that the location is left before they are violated.

Definition 1. (Formal Definition of a Timed Automaton). A
TA A is a tuple (L, l0, X, V, I, Act, E), where:

• L is a finite set of locations,

• l0 is the initial location,

• X is a finite set of clocks,

• V is a finite set of data variables,

• I : L → B(X) assigns invariants to locations,

• Act = Σ ∪ {τ} is a finite set of actions, where Σ is a finite set
of synchronizing actions, and τ /∈ Σ denotes internal or empty
actions without synchronization.
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• E ⊆ L × B(X,V ) × Act × R × L is a finite set of edges, where
B(X,V ) denote the set of guards and R denotes the reset set i.e.,
assignments to manipulate clock- and data variables.

For an edge e = (l, g, a, r, l′) ∈ E we also write l
g,a,r
−−−→ l′. The label

g is the guard of e, r is the reset set i.e., data- or clock assignment of e,
and a is the action of e.

The semantics of TA is defined in terms of a state transition system.
A state of TA depends on its current location and on the current values
of its clocks. So, a state of a TA is a pair (l, u), where l is an active
location, and u : X → R>0 is a clock valuation for which l evaluates to
true. The initial state (l0, u0) puts the automation in its initial location
l0, where u0 maps all clocks in X to zero i.e., all clocks are zero when
entering the initial location initially. Intuitively, there are two kinds of
transitions between states:

• Delay transitions are result of passage of time and do not cause a

change of location. More formally, we have (l, u)
d
−→ (l, u ⊕ d), if

u ⊕ d′ |= I(l) for 0 ≤ d′ ≤ d. The assignment u ⊕ d is the result
obtained by incrementing all clocks of the automata with the delay
amount d.

• Discrete transitions are result of following an enabled edge in a TA.
As a result, the destination location is activated and the clocks in
the reset set are set to zero. More formally, a discrete transition

(l, u)
a
−→ (l′, u′) corresponds to taking an edge l

g,a,r
−−−→ l′ for which

the guard g evaluates to true in the source state (l, u) and clock
valuation u′ of the target state is derived from u by resetting all
clocks in the reset set, r, of that edge, such that u′ |= I(l′).

Definition 2. (Run of a Timed Automaton). A timed action is a
pair (t, a), where a ∈ Act is an action taken by the automaton A after
t ∈ R+ time units since A has started. Then a run of A with initial state
(l0, u0) over a timed trace ξ = (t1, a1)(t2, a2) . . . (tn, an) is a sequence of
alternating delays and discrete transitions

ξ = (l0, u0)
d1−→

a1−→ (l1, u1)
d2−→

a2−→ . . .
dn−→

an−−→ (ln, un)

satisfying the condition ti = ti−1 + di for all i ≥ 1.
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To model a concurrent real-time system, several TA can be composed
in an automata system. Uppaal uses the CCS parallel composition op-
erator [84] to build a system or a network of TA. CCS allows individual
components to carry out internal actions (i.e., interleaving) as well as
pairs of components to perform hand-shake synchronization.

Definition 3. (Network of Timed Automata). Let N = {1, . . . , n}
and let Ai = (Li, l0i, Xi, Vi, Ii, Acti, Ei) be a timed automaton for i ∈
N . A network of timed automata A1|| . . . ||An is defined as the parallel
composition of n TA.

For a network of timed automata, the synchronization actions play
an important role. Particular automata in the network synchronize using
channels and values can be passed between them using shared (global)
variables. A state of a network of TA is defined by the locations of all
automata in the network and the values of clocks and discrete variables.
Let S be a set of channel names and out of S, there is a subset U of
urgent channels on which timed automata should synchronize whenever
possible. Then the set of synchronization actions of the network of timed
automata is defined as Σ = {a?|a ∈ S} ∪ {a!|a ∈ S}. A discrete tran-
sition with a synchronization action a? ∈ Σ is only enabled if another
automaton in the network simultaneously can perform a complementary
action a! ∈ Σ. We use name(a) to denote the channel name of a, defined
by name(a?) = name(a!) = a. Binary channels are used to synchronize
one sender with a single receiver, and broadcast channels are used to
synchronize one sender with an arbitrary number of receivers. Urgent
channels encode synchronization that must be taken when a transition
becomes enabled, without delay. Clock guards are not allowed on edges
synchronizing over urgent channels.

To restrict the behavior of a timed automaton, Uppaal provides two
special types of locations: urgent and committed. Time is not allowed to
pass in both locations, but there is a difference between them as follows.
When a location is urgent it must take the next transition as soon as
this is possible i.e., without any delay. It does not rule out other actions
happening. On the other hand, when a committed location is active, a
transition from a committed location has to be taken immediately, and
no other transition in other automaton can be taken in between. If such
a transition does not exist or is not enabled, the system will deadlock.

The Uppaal model checker supports verification of temporal prop-
erties, including safety and liveness properties, specified in a sub-set of
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Timed Computation Tree Logic (TCTL) [12]. The simulator can be used
to visualize counter examples produced by the model checker.

Illustrative example

BrightDim

t<=10

Off

press?

t<5 press?

t>=5

press?
t:=0

Idle

press!

(b) User(a) Lamp

Figure 2.3: A timed automaton of a lamp and a user.

An example of a network of timed automata modeled in Uppaal is
shown in Figure 2.3. The network consists of an automaton of a lamp
and an automaton of a user. The behavior of the lamp depends on
when the user presses the on/off switch. The automaton of the lamp
consists of three locations Off, Dim and Bright, and one clock t. The
automaton starts at initial location Off. In case the user presses the
switch the automaton of the lamp switches to location Dim and the
clock t is reset, by the assignment t:=0. In location Dim the automaton
can remain as long as the clock is smaller or equal to 10. However, if
the user presses the switch of the lamp before 5 time units have elapsed
then the automaton of the lamp switches to location Bright, in which
it stays until the next pressing of the switch. Processes lamp and user
synchronize via synchronization actions i.e., by sending and receiving
events through channels. Sending and receiving via a channel press is
denoted by press! and press?, respectively.

2.2.2 Priced timed automata

Priced (or weighted) timed automata [21, 73] extend timed automata
with prices/costs on both locations and edges. The cost-rate for staying
in a location represents the price/cost per time-unit for staying in that
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location, whereas the cost labeling an edge represents the price/cost for
taking the edge.

Definition 4. (Formal Definition of a Priced Timed Automa-
ton). A linearly Priced Timed Automaton (PTA) is a tuple (L, l0, X, V, I,
Act, E, P ), where (L, l0, X, I, V, Act, E) is a TA and P : (L ∪E) → N is
a cost function that assigns price-rates (or cost-rates) to locations and
prices (or costs) to edges.

Every run in a PTA has a global cost, which is the accumulated cost
along the run of every delay and discrete transition. The cost is never
tested in the automaton. In delay transitions,

(l, u)
d,p
−−→ (l, u⊕ d)

the assignment u⊕ d is the result obtained by incrementing all clocks of
the automata with the delay amount d, and p = P (l) ∗ d is the cost of
performing the delay. Discrete transitions

(l, u)
a,p
−−→ (l′, u′)

correspond to taking an edge l
g,a,r
−−−→ l′. The cost p = P ((l, g, a, r, l′)) is

the cost associated with the edge.

Definition 5. (Run of a Priced Timed Automaton). A timed trace
ξ of a PTA is a sequence of transitions:

ξ = (l0, u0)
a1,p1

−−−→ (l1, u1)
a2,p2

−−−→ . . .
an,pn
−−−−→ (ln, un)

and the cost of performing ξ is
∑n

i=1 pi.

For a given state (l, u), the minimum cost of reaching (l, u) is the
infimum of the costs of the finite traces ending in (l, u). Dually, the
maximum cost of reaching (l, u) is the supremum of the costs of the
finite traces ending in (l, u).

In order to specify properties of PTA, the Weighted CTL (WCTL)
logic has been introduced [32]. WCTL extends TCTL with resets and
testing of cost variables. WCTL syntax is given by the following gram-
mar:

WCTL ∋ φ ::= true | a | ¬φ |φ ∨ φ |EφUP∼c φ |AφUP∼c φ
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where a is an atomic proposition, P is a cost function, c ranges over N,
and ∼∈ {<,≤,=,≥, >}. Here, A, and E are the universal and exis-
tential path quantifiers of WCTL, respectively, and UP∼c is the “until”
temporal modality. The temporal operators F (i.e., “eventually”) and G
(i.e., “always”) are derived in the usual way. We interpret formulas of
WCTL over labeled PTA, that is, PTA having a labeling function that
associates with every location l a subset of atomic propositions. The sat-
isfaction relation of WCTL is defined over configurations of the labeled
PTA. We refer the reader to [32] for semantic details of WCTL.

Multi Priced Timed Automata

Multi priced automata (MPTA) [32, 73] are extension to priced timed
automata in which a timed automation is augmented with more than
one cost variable. In the case of two costs associated with a PTA, the
minimal cost reachability problem corresponds to finding a set of minimal
cost pairs (p1, p2) (both p1 and p2 are minimized) reaching a goal state.
Since the costs contributed from the individual costs can be incompa-
rable, when, e.g., for the costs of two traces, say (p1, p2) and (p′1, p

′
2),

p′1 < p1 and p2 < p′2, the solution is a set of pairs, rather than a single
pair. In this setting, the minimal cost reachability problem is to find the
set of incomparable pairs with minimum cost, reaching the goal state.
Dually, the maximization cost problem is defined as finding the set of
incomparable pairs with maximal cost reaching the target location, or
to conclude (∞,∞) if the target location is avoidable in a path that is
infinite, deadlocked, or has a location in which it can make an infinite
delay. A specific problem is the optimal conditional reachability problem,
in which one of the costs should be optimized, and the other bounded
by an upper/lower bound. We refer the reader to [73] for a thorough
description of optimization problems in MPTA.

In this thesis, the framework of (multi) priced timed automata is
used for formally analyzing resource consumption in embedded systems.

Illustrative Example

Switching on a lamp and letting it burn uses energy, therefore in Fig-
ure 2.4 is depicted a priced timed automaton of the lamp elaborated
earlier. The energy consumption is modeled by using costs. A special
variable cost can be increased explicitly on an edge by an update, or
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Bright

cost’==20

Dim

t<=10&&cost’==10

Off

press?

t<5 press?

t>=5

press?
t:=0,
cost+=50

Figure 2.4: A priced timed automaton of a lamp.

implicitly by specifying a rate in a location. Guards and invariants are,
however, not allowed to refer to the cost variable. The switch of the lamp
from location Off to Dim is labeled with an update cost+=50, indicat-
ing that the cost is 50 for switching on the lamp. In locations Dim and
Bright we have the cost rates cost’== 10 and cost’== 20, respectively,
which indicate that the energy consumption is 10 and 20 units per time
unit in the respective locations. When staying in these locations, cost is
increasing linearly with time, with rate 10 and 20, respectively.





Chapter 3

ProCom: A Component
Model for Embedded
Systems

In this chapter, we describe a component model called ProCom, intended
for development of embedded software for control-intensive distributed
systems, which are a special class of embedded systems that primarily
perform real-time controlling tasks. They can be found in many prod-
ucts, for example vehicles, automation systems, or distributed wireless
networks.

The ProCom component model [33,93,96,106] was developed as part
of the Progress project [58] that distinguishes three key activities in
the development: design, analysis and deployment. The design activity
addresses the architectural description of the system, following the com-
ponent model presented in this chapter, as well as the implementation
of individual components. Analysis is carried out to ensure that the
developed system meets its dependability requirements and constraints
in terms of timing and resource usage. In particular, an early analysis
based on models (see Chapter 4 for resource-aware behavioral analysis),
budgets and estimated properties, provides means to explore and evalu-
ate different design alternatives. The deployment activity concerns the
allocation of functionality to the physical nodes of the system, which
can have a significant impact on the overall system performance. This
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activity also includes the gradual progression from design entities to ex-
ecutable units, such as processes and tasks.

This chapter is oriented towards design, focusing on the component
model which serves as the underlying formalism for that activity. The
two supplementary activities (analysis and deployment), although out-
side the scope of this chapter, have significantly influenced many aspects
of the component model.

The remainder of the chapter is organized as follows. In Section 3.1
we identify the key concerns and requirements coming from the class of
control-intensive distributed embedded systems, and in Section 3.2 we
describe how the design choices of our ProCom component model were
influenced by these requirements. In Section 3.3 we present each element
of ProCom in detail together with its informal execution semantics. In
Section 3.4 we describe how the architectural elements of the ProCom
component model have been given a formal execution semantics.

3.1 Key Requirements for Development of

Control-Intensive Distributed Embed-
ded Systems

The class of control-intensive distributed embedded systems has specific
requirements that need to be reflected by a component model.

Motivating example

As an example demonstrating the specific concerns of control-intensive
distributed embedded systems, we consider the electronic systems of
Volvo XC90 car focusing on an anti-lock braking system (ABS) in par-
ticular. The role of an ABS is to improve the braking performance by
preventing the wheels from locking. Figure 3.1 shows the complex phys-
ical system architecture of Volvo XC90 that consists of approximately
forty computational nodes (ECUs), connected to a number of different
networks, and Figure 3.2 shows the ABS subsystem architecture. Func-
tionally, the ABS is fairly independent from other subsystems, although
it shares some information about the state of the vehicle with other sub-
systems. In its simple form the ABS includes rotation sensors physically
placed on or close to the wheels, a brake valve actuator, and an ECU that
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includes control software. Typically the ECU includes a set of software
components that together provide the service.

Figure 3.1: Overview of the electronic system architecture of Volvo
XC90.

Figure 3.2: The ABS subsystem architecture.

Component granularity

In an embedded system, components constituting big parts of the system
are different from those responsible for a small part of some low-level
control task. Components at different granularity have different needs
in terms of execution model, communication style, synchronization, etc.,
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but also with respect to the kind of information that should be associated
with the component and the type of analysis that is appropriate. Large
components (e.g., the ABS of a car) tend to be active (i.e., with their own
threads of activity), and encompassing complex functionality. Since the
communication between these components often involves communication
over a network (e.g., a CAN bus), it is typically realized by asynchronous
messaging.

On the other side of the scale there are smaller components respon-
sible for a part of some control functionality, such as computing the
deviation of a measured value from the desired value, or for communi-
cation with a single sensor or actuator. Since they represent compos-
able low-level functional blocks, they typically do not posses their own
threads. Also, the communication between them is much more tightly
synchronized since most of the communication at this level is between
components located on the same physical node.

For the component model this means that it should support differ-
ent types of components with respect to their size (i.e., granularity) and
semantics. Having these multiple levels of components it is vital to es-
tablish the relation between them, for example allowing a big component
to be built of several small components.

Coupling between the software and the target platform

The coupling between the software and the target platform is quite high
in an embedded system. The hardware is typically very restricted and
the software is tailored and optimized specifically for that particular
hardware and real-time operating system.

In our example, it is known a priori that the ABS will be distributed
over at least five physical nodes, dictated by the physical location of
the wheel speed sensors and the actuators. We would also typically be
able to make some assumptions about the nature of these nodes and
the network between them, based on experience from other systems.
However, the final choice of hardware might be made later, as well as
the decision whether the main functionality of the ABS will be allocated
to a dedicated node or if it will share a node with other subsystems.

This reality of system development being interwoven with target plat-
form specification is however in contrast to the main goals of CBD –
component reusability. Components can no longer be developed com-
pletely independently without some knowledge of where they are to be



3.2 ProCom Design Choices 43

deployed.

To address these issues, the component model should be able to take
into account the target platform, while not sacrificing the reusability of
components.

Levels of abstraction

The development of an embedded system or a subsystem typically starts
with requirements specification (in a form of use-cases), domain diagrams
and basic sketches of the system. These abstract models are then grad-
ually detailed and refined to eventually end up with an implementation.
With regard to CBD, the concept of a component throughout the whole
development spans between vague and incomplete specification to a very
concrete one. In early stages of development, a component may be seen
as a functional unit with little specification. For e.g., it may have known
behavior, but unknown inner structure. Later on, the component may
be detailed and in the end implemented.

With respect to the component model this means that it is necessary
to support coexistence of both fully implemented components having well
known inner structure, and early design components with unknown inner
structure.

3.2 ProCom Design Choices

In designing ProCom, we have aimed at addressing the requirements de-
scribed above. To handle the differences related to the granularity scale,
we distinguish two levels of granularity ProSys and ProSave, which are
addressed by different concepts in the component model. ProSys covers
the upper part of the granularity scale (i.e., the “big” units), and thus
ProSys components are active, relatively independent, and communicate
by message passing via explicit message channels. In ProSave, the lower
level of granularity, components correspond to constituents of the con-
trol functionality (i.e., the “small” units), and therefore they are passive
and more tightly coupled. As described later in this chapter, these two
component types have different semantics and are also modeled in dif-
ferent ways. Also, the two layers can not be arbitrarily mixed, but they
are still integrated since ProSave can be used to detail the internals of
an individual ProSys component.
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To address the second concern related to the coupling between the
software and the target platform, we distinguish between component-
and system development. Components define the functionality and spec-
ify their requirements on the target platform. We allow components to
express their partial assumptions about the platform (e.g., the minimum
available memory, required operating system functionality). The system
is modeled as a single top-level system component. The detailed spec-
ification of the hardware and the platform, as well as the allocation of
components to physical nodes, are given by separate models connected
with deployment- i.e., they are not part of the component specification.
Moreover, similarly to SaveCCM [8] and Robocop [78], a component is
considered as “a whole”, i.e., a collection gathering all the information
needed and/or specified at different points of time of the development
process. That means a component comprises requirements, documenta-
tion, source code, various models (e.g., behavioral and timing), predicted
and experimentally measured values (e.g., performance and memory con-
sumption), etc., thus making a component a unifying concept throughout
the development process.

ProCom covers several levels of abstractness, since components at an
early stage can be specified as black boxes, then gradually behaviorial
models can be associated with them, and finally a concrete source code
implementation can be given.

3.3 ProCom: Syntax and Informal Execu-
tion Semantics

The following Sections 3.3.1 and 3.3.2 detail the concepts and infor-
mal execution semantics of ProSys and ProSave, respectively, and Sec-
tion 3.3.3 shows the link between the two layers. The complete specifi-
cation of ProCom is available in [33].

3.3.1 ProSys - the upper layer

In ProSys, a system is modeled as a collection of communicating sub-
systems. Subsystems execute concurrently, and communicate by asyn-
chronous messages sent and received at typed output and input message
ports. The asynchronous communication style is suitable at this level
of granularity, since it allows transparent communication between sub-
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systems independently of whether they reside on the same or different
physical nodes.

Connecting subsystems

A system consists of a collection of subsystems and connections from
output to input message ports. Message ports are not connected directly,
but via message channels – explicit design entities representing data
that are of interest to more than one subsystem. Multiple message ports
(output- as well as input ports) can be connected to the same message
channel, allowing n-to-n communication (see Figure 3.3). A benefit of
these explicit message channels is that information about a message,
such as precision, format and whether it should be available to diagnostic
tools, can be associated with the message channel instead of with a port
where the message is produced or consumed. This way, it can remain
in the design even if, for example, the producer is replaced by another
subsystem. Also, since message channels can be introduced before any
producer or receiver of the message has been defined, it permits early
modeling of the run-time data managed by the system.

Figure 3.3: Three subsystems communicating via a message channel.

Primitive and composite subsystems

A subsystem can be built out of smaller subsystems, thus making ProSys
a hierarchical component model. Contrasting such composite subsystems,
a primitive subsystem is realized either directly by non-decomposable
units of implementation (such as COTS or legacy subsystems), or by
further decomposition in ProSave as described in Section 3.3.2.
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3.3.2 ProSave - the lower layer

The ProSave layer targets the detailed design of subsystems allocated
to a single physical node and interacting with the system environment
through sensors and actuators. On this level, components provide an
abstraction of tasks and control loops found in control systems.

A subsystem is constructed by hierarchically structured and intercon-
nected ProSave components. These components are encapsulated and
reusable design-time units of functionality, with clearly defined inter-
faces to the environment. As they are designed mainly to model simple
control loops and are usually not distributed, this component model is
based on the pipes-and-filters architectural style with an explicit sepa-
ration between data and control flow. The former is captured by data
ports where data of a given type can be written or read, and the latter by
trigger ports that control the activation of components. ProSave follows
the push-model for data transfers and an input data port always contain
the latest value written to it.

Services, groups and ports

A ProSave component is of a collection of services, each providing a
particular functionality. The services of a component are triggered indi-
vidually and can execute concurrently, while sharing only data. A service
consists of an input port group containing the activation trigger and the
data required to perform the service, and a set of output port groups
where the data produced by the service will be available. Figure 3.4
illustrates these concepts.

S1

S2

Figure 3.4: External view of a ProSave component with two services; S1
has two output groups and S2 has a single output group. Triangles and
boxes denote trigger- and data ports, respectively.
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ProSave components are passive, i.e., they do not contain their own
execution threads and cannot initiate activities on their own. So each
service remains in a passive (idle) state until its input trigger port has
been activated. Once activated, the data input ports are read in one
atomic operation and the service switches into an active state where it
performs internal computations and produces data on its output ports.
Note that a service may produce parts of the output at different points
in time, which is useful when the delivery of some data is more time-
critical then the rest. When each output group has been activated,
the service returns to the idle state again. The data and triggering of
an output group of a service are always produced at the same time.
Multiple activations of an output group during a single activation of the
service is not permitted.

Input data ports can receive data while the service is active, but it
would only be available the next time the service is activated. The strict
“read-execute-write” semantics of a service simplifies analysis by ensur-
ing that once a service has been activated it is functionally (although not
temporally) independent from other components executing concurrently.

In ProCom, the components, their services, ports, subcomponents,
etc., can be annotated with various functional and extra-functional char-
acteristics, represented as attributes. The attributes may be as simple as
numbers (e.g., static memory usage of a component), but also as com-
plex as intricate models. ProCom uses the Attribute Framework [92] that
provides a systematic way of managing and integrating extra-functional
properties, during the development of a component, or a system.

Primitive and composite components

The functionality of a component can either be realized by code (prim-
itive component), or by interconnected subcomponents (composite com-
ponent). For primitive components, in addition to a function called at
system startup to initialize the internal state, each service is implemented
as a single non-suspending C function. Figure 3.5 shows an example of
the header file of a primitive component.

Connecting and composing components

Turning back to the external and internal view of a ProSave component,
the internal view distinguishes between primitive and composite com-
ponents. Composite components internally consist of subcomponents,
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typedef struct {
int *speed;

float *dist;
} in_S1;

typedef struct {
int *control;

} out_S1;

void init();
void entry_S1(in_S1 *in, out_S1 *out);

Figure 3.5: A primitive component and the corresponding header file.

connections and connectors. A connection is a directed edge which con-
nects two ports (output data port to input data port of compatible types
and output trigger port to input trigger port) whereas connectors are
constructs that provide detailed control over the data- and control flow.
The existence of different types of connectors and the simple structure
of components makes it possible to explicitly specify and then analyze
the control flow, timing properties and system performance.

The set of connectors in ProSave, selected to support typical collabo-
ration patterns, is extensible and will grow over time as additional data-
and control-flow constructs prove to be needed. The initial set includes
connectors for forking and joining data or trigger connections, or select-
ing dynamically a path of the control flow depending on a condition.
Figure 3.6 shows a typical usage of the selection connector together with
or connectors.

A

B

C D

Selection

Data

or

Control

or

Figure 3.6: A typical usage of selection and or connectors. When com-
ponent A has completed executing, either B or C is executed, depending
on the value at the selection data port. In either case, component D is
executed afterwards, with the data produced by B or C as input.
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ProSave follows the push-model for data transfers and the triggered
service always uses the latest value written to each input data port.
Since ProSave components can not be distributed, the migration of data
or trigger over a connection is loss-less and atomic. However, the trigger
signals are not allowed to arrive to any port before all data have arrived
to all end destinations. This also holds in case when the data passes
through a connector. The formalization of data- and trigger connections
we describe in Section 3.4.3.

3.3.3 Integration of layers – combining ProSave and
ProSys

The integration of the two ProCom layers allows a primitive ProSys sub-
system to be further specified using ProSave. This is done similarly to
how composite ProSave components are defined internally – as a col-
lection of interconnected components and connectors – but with some
additional connector types to specify periodic activation of ProSave com-
ponents and to map between the architectural styles (message passing
in ProSys and pipes-and-filters in ProSave). Note that these additional
connectors can only appear on the topmost level inside a primitive sub-
system, i.e., they are not allowed inside composite ProSave components.

Periodic activation is provided by the clock connector, with a single
output trigger port which is repeatedly activated at a given rate. All
clocks are assumed to follow a common conceptual time, but it is not
assumed that all clocks produce their first activation simultaneously.
To achieve the mapping from message passing to trigger and data, and
vice versa, the message ports of the enclosing primitive subsystem are
treated as connectors with one trigger port and one data port, when
seen from inside the subsystem. An input message port corresponds to a
connector with output ports, and whenever a message is received by the
message port, the message data is written to the data port and the trigger
port is activated. Oppositely, an output message port corresponds to a
connector with an input trigger and input data ports. When triggered,
the current value of the data port is sent as a message.

In addition to strictly periodic activation, ProCom supports aperi-
odic activation initiated by external devices. To enable interaction of
component-based applications with hardware devices (such as sensors
and actuators) ProCom includes a new type of component named de-
vice component that has the same interface and semantics as all software
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components. In difference to typical ProCom components, device com-
ponents do not provide the ability for the developer to explicitly specify
their realization. Since this contribution is outside the scope of the the-
sis, for more information about managing hardware devices in ProCom,
we refer the reader to [74].

3.3.4 Example: An Electronic Stability Control Sys-
tem

To illustrate the ProCom component model we use as an example an elec-
tronic stability control (ESC) system of a car. The ECS handles sliding
caused by under- or oversteering, and contains an ABS subsystem (de-
scribed earlier) and a traction control (TCS) subsystem, which prevents
the wheels from spinning when braking or accelerating. If a car would be
modeled in ProCom, the ESC would be one of many subsystems at the
top level, together with subsystems for engine control, airbags, climate
control, etc. The ESC can be modeled as a composite ProSys subsys-

Figure 3.7: The ESC is a composite subsystem, internally modeled in
ProSys.
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tem, as shown in Figure 3.7. Inside we find subsystems corresponding
to specific parts of the ESC functionality (SCS, TCS and ABS). We
suppose that the TCS and ABS subsystems are reused from previous
versions of the car, while SCS has been added to cope with under- and
oversteering. These three subsystems compute responses based on their
internal sensors and the speed of individual wheels, which is provided by
a dedicated subsystem. Finally, the “Combiner” subsystem is respon-
sible for combining the output of the ABS, TCS and SCS subsystems.
The overall brakeage and throttle responses are forwarded to the “Brake
valves” subsystem to regulate the braking pressure, and delegated to
subsystems outside of the ESC, respectively. The SCS acts as a primi-
tive subsystem on the ProSys level, meaning that it can be realized either
directly by code or modeled in ProSave. We have chosen the latter –
see Figure 3.8. The SCS contains one periodic activity performed at
a frequency of 50 Hz, expressed by a clock connector. Once started, it
reads the data from yaw-, lateral- and steering wheel angle sensor. Based
on their outputs and the speed of individual wheels (obtained from the
latest “Wheels speed” message) it computes the actual direction of the
vehicle and the desired direction indicated by the steering wheel. After
both computation components have finished, the “Slide detection” com-
ponent compares their results (i.e., the actual and desired direction) and
decides whether or not stability control is required. The last component
in the chain computes the actual response of the SCS, which consists of
adjustments of brakeage and acceleration.

Figure 3.8: The SCS subsystem, modeled in ProSave.
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3.4 Formal Execution Semantics of the Pro-
Com Component Model

In this section we describe the formal execution semantics of the ProCom
layers using a higher-level formal language. The semantics description
language (see Section 3.4.1) is FSM-like i.e., presents an extension of
finite state machine (FSM) notation with necessary constructs as re-
quired for formal execution semantics of the elements of ProCom. In
Section 3.4.2 we formally define the language. Using this language in
Section 3.4.3 we present the actual formalization of selected ProCom
architectural elements.

3.4.1 Formalism and graphical notation

Definition 6. (Formal Definition of the FSM Language). Let V
be a set of variables, G a set of boolean conditions (or guards) over V , B
the set of booleans, A a set of variable updates, and I a set of intervals
of the form [n1, n2], where n1 ≤ n2 and n1, n2 are natural numbers. The
FSM language is a tuple 〈S, s0, T,D〉, where S is a set of states, s0 ∈ S
is the initial state, T ⊆ S ×G×B ×B ×A× S is the set of transitions
between states, in which B×B represent priority and urgency (described
below), and D : S → I is a partial function associating delay intervals
with states.

The FSM language relies on a graphical representation that consists
of the usual graphical elements, that is, states and transitions labeled
with guards, priority, urgency, and updates, see first two columns of
Figure 3.9. A transition can be either urgent or non-urgent, and it can
have priority or no priority. As shown in Figure 3.9, a transition may be
decorated with the non-urgency symbol *, and/or the priority symbol ↑.
Note that, a transition that is not annotated with * is urgent. A state can
be associated with a delay interval, which is graphically located within
the state circle.

Intuitively, the execution of an FSM starts in the initial state. At
a given state, an outgoing transition may be taken only if it is enabled,
i.e., its associated guard evaluates to true for the current variable values.
If from the current state, more than one outgoing transition is enabled,
one of them is taken non-deterministically, and prioritized transitions are
preferred over non-prioritized transitions. In case all enabled outgoing
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transitions of a state are non-urgent, it is possible to delay in the state.
On the other hand, if there are any outgoing urgent enabled transitions,
one of them must be taken immediately. Thus, the notions of priority and
urgency avoid unnecessary non-determinism among enabled transitions,
clarifying the modeling aspects and possibly improving the performance
of formal analysis. A state that is associated with a delay interval [n1,
n2] may be left anytime between n1 and n2 time units after it is entered.

Informal                                            FSM                                       TA

non-urgent transition
c?

a?

b?

d?

urgent transition

urgent transition with priority 

non-urgent transition with priority 

state with delay interval [n1,n2]

clki    n2

clki    n1

≤

≥clki    0=
[n1,n2]

∗

↑

∗ ↑

initial state 

state 

urgent transition with guard 

x==5 and update x=x+1
x==5              x=x+1 x==5    a?   x=x+1

Figure 3.9: The graphical notation of the FSM elements and their trans-
lation into TA.

In order to form a system, FSMs may be composed in parallel. The
semantic state of the composed system is the combined states and vari-
able values of the FSMs. The notions of urgency and priority are applied
globally, and time is assumed to progress with the same rate in all FSMs.

3.4.2 Formal semantics of the FSM language

We formally define the semantics of our FSM language using timed au-
tomata (TA) with priorities [38] and urgent transitions [23] as a seman-
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tic domain. The translation of each FSM element to TA is depicted
in Figure 3.9. The FSM language has four kinds of transitions: urgent
transition, urgent transition with priority, non-urgent transition, and
non-urgent transition with priority. In TA we introduce four channels:
a, b, c, and d. Channels a and b are urgent, and channels b and d have
higher priority than channels a and c. Accordingly we map the tran-
sitions of FSMs into TA edges labeled with the appropriate channels,
as defined in Figure 3.9. The translated TA edges need a timed au-
tomaton offering synchronization on the complementary channels (e.g.,
a! complementary to a?), depicted in Figure 3.10.

a
! b!

d!

c!

chan c,d;

urgent chan a,b;

priority a,c < b,d

Figure 3.10: The automaton used for synchronization.

Each FSM state results into a TA location. For every FSM with
delay states, a clock clki is introduced. Accordingly, an FSM state with
delay interval [n1, n2] is translated into a corresponding TA location
with invariant clk i ≤ n2. The clock is reset on all ingoing edges and the
guards of all outgoing edges are conjuncted with clk i ≥ n1.

The system represented by a composition of FSMs can be translated
into a network of TA in two steps. First, each FSM is translated into a
timed automaton and then all TA are composed into a network together
with the automaton of Figure 3.10.

3.4.3 Formal execution semantics of selected Pro-
Com architectural elements

In the formalization, each data and message port is represented by a
variable with the same type as the port. The variables are storing the
latest value written to the ports, respectively. Likewise, a trigger port
is represented by a boolean variable determining the activation of that
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port. Ports of composite components are represented by two variables,
corresponding to the port viewed from outside and from inside. Accord-
ingly, in the ProCom formalization we assume the following set of shared
variables through which the FSMs communicate:

• vdi
: variable associated with a data port di of corresponding type.

• vti : boolean variable associated with a trigger port ti indicating
whether the port is triggered, default false.

• vmi
: variable associated with a message port mi of corresponding

type.

• v′di
and v′ti : internal variables for ports of composite components,

corresponding to port variables vdi
and vti , respectively.

We let ε be the null value of any type indicating that no data is
present on a data or message port.

The complete formalization of ProCom is available in [96]. The se-
mantics of all ProCom elements is defined as a translation to the FSM
language, and the semantics of an entire ProCom system is defined by
the parallel composition of FSMs for the individual constructs.

In the following, we chose the most representative, and semantically
challenging, architectural elements of ProCom, and present their formal-
ization. The elements are: services, connections, components, clocks,
message ports and message channels.

Services

Assume a ProSave component with one service, say S1 and let S1 con-
sist of one input port group and two output port groups (Figure 3.11
(a)). The informal execution semantics of a service in ProSave we have
described in Section 3.3.2. The formal execution semantics of a service,
in this case, S1, we describe below and show in Figure 3.11 (b).

Let w1 and w2 be boolean variables corresponding to the output
port groups, respectively; the variables indicate whether the respective
group has been activated or not. By associating boolean variables with
the output port groups, we ensure that the groups are written only once
during an execution instance of a service. While being in an Execute state
a service may yield into the following error scenario:
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Figure 3.11: (a) A ProSave service S1 and (b) its formal execution se-
mantics.

• During execution, a service might try to activate an already acti-
vated output port group. This problem is captured by the state
Error.

As such, the formal execution semantics, ensures the informal execu-
tion semantics described in Section 3.3.2 i.e., the triggering and data of
a service is always produced atomically and each of the service output
groups can be activated only once before the service returns to the Idle

state.

Data and trigger connections

Let us assume the following modeling scenario: three components A, B
and C, are interconnected via a Data-Fork connector (see Figure 3.12).
The Data-Fork connector is used to split data connections, so data writ-
ten to the input data port is forwarded to the output ports. When the
component A has finished executing, the component B should start ex-
ecuting. However, since the input trigger port of the component B is



3.4 Formal Execution Semantics of the ProCom Component
Model 57

directly connected to the output trigger port of the component A, while
the data is not transferred directly, but via a connector, there is a risk
that the trigger signal may reach the component B before the data has
arrived. A scenario in which trigger might arrive before data is prohib-
ited by the formalization that we present bellow.

A

B

Data

Fork

C
...

Figure 3.12: Example of a critical modeling of data and trigger transfer
in ProCom.

DataInTransit

(b)

          

vd1=temp

               

d0 d1

(a)

↑ε

↑

temp=vd0   vd0 =  vd0 != ε

Figure 3.13: (a) A ProSave data connection and (b) its formal execution
semantics.

The formal execution semantics of ProSave connections is presented
in Figure 3.13, for data connection between two data ports d0 and d1,
and in Figure 3.14, for trigger connection between two trigger ports t0
and t1.

To ensure that data is transferred prior to trigger, and to avoid un-
desirable consequences otherwise, the transitions in the FSM formalism
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(b)

TriggerInTransit
vt1=true

vt0     

(a)

t0 t1

vt0=false

Figure 3.14: (a) A ProSave trigger connection and (b) its formal execu-
tion semantics.

(Figure 3.13) are associated with priority in the case of data connections.
This is also the case in the semantics of all connectors that forward data
(detailed in [96]).

Component hierarchy

As we have described in Section 3.3.2, the functionality of a ProSave
component can be implemented by a single C function (primitive com-
ponent) or hierarchically by inter-connected internal components (com-
posite component).

In early stages of development, a component may still be a black
box with known behavior, but unknown inner structure. Later on, the
component may be detailed and in the end implemented. However, all
components follow the same execution semantics. In an early stage of
development, when only the behavior of the component is assumed to be
known, it is the responsibility of the behavior model to signal the end of
execution, and to take care of the internal variables (data and trigger)
of a component accordingly. In a later stage of development, when the
inner structure of a composite component is known, its formalization is
handled by the inter-connected subcomponents. In this case, we assume
that there is a virtual controller in charge of signaling when the internal
trigger of a component has become false i.e., all subcomponents have
returned to the idle state. Consequently, in both cases, the internal vari-
ables are left to be modified by the behavior, code or inner realization,
but the external variables of a component are always handled by the
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semantics of a service (defined in Section 3.4.3). This emphasizes the
fact that, from an external observer’s point of view, there is no differ-
ence between early design black box components and fully implemented
components.

Linking passive and active components

By definition, ProSave components are passive and they communicate
via data exchange and triggering. As mentioned in Section 3.3.3, ProSave
components can be used to define the internals of an active ProSys sub-
system with some additional connector types: clocks (see Figure 3.15
(a)) and input- and output message ports (see Figure 3.16 (a) and Fig-
ure 3.17 (a), respectively).

A ProSave component can be activated by receiving a periodic trigger
with appropriate period. The formal execution semantics of a ProSave
clock with period P we show in Figure 3.15 (b). Thus, the formal execu-
tion semantics complies to the informal execution semantics of a clock,
described in Section 3.3.3.

vt0=true

Clock t0

(a)

[0,P] [P,P]

(b)

∗

∗

Figure 3.15: (a) A ProSave clock with period P and (b) its formal exe-
cution semantics.

Message ports bridge the gap between the two communication paradi-
gms: pipes-and-filters in ProSave and message passing in ProSys. Each
message port acts as a connector with a trigger and data port that may be
connected to other ProSave elements. Whenever a message is received,
the input message port writes this message data to the output data port,
and activates the output trigger. Similarly, whenever the trigger from
an output message port is activated, the output message port sends a
message with the data currently present on its input data port.

We assume the following:



60 Chapter 3. ProCom: A Component Model for
Embedded Systems

• todata(): is a function that translates messages into data.

• tomessage(): is a function that translates data into messages.

Given the above, the formal execution semantics of an input message
port and an output message port can be described as in Figure 3.16 (b)
and Figure 3.17 (b), respectively.

vd0=todata(vm0),

t0.t=true

(a) (b)

vm0 !=d0

m0

t0

ε

Figure 3.16: (a) A ProSave input message port and (b) its formal exe-
cution semantics.

vm0 =tomessage(vd0),

vt0=false

(a) (b)

vt0d0

m0

t0

Figure 3.17: (a) A ProSave output message port and (b) its formal
execution semantics.

Message channels

Let ch be a message channel that connects one output message port m0

and two input message ports m1 and m2 (presented in Figure 3.18 (a)),
and assume the following.

• buffi: is an unbounded buffer of messages, with operations ’insert()’
and ’remove()’.
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• A message can not be removed more than once, and only a message
that was previously inserted into the buffer can be removed from
it.

• The operation ’remove()’ removes a message from the buffer and
writes it to corresponding port variable vmi.

Then, the formal execution semantics of connecting input/output
message port(s) to a message channel we present in Figure 3.18 (b).
Note that the defined formal execution semantics represents the weakest
possible behavior of a message channel such that any further refinement
e.g., buffer as FIFO etc., must satisfy the above defined behavior. The
detailed behavior is undefined regarding individual message values (e.g.,
ordering, duration of stay in buffer etc).

(a)

m1

m2

m0 ch

vm0

vm1

vm2

buff1

buff2

buff1.insert(vm0),

buff2.insert(vm0),

vm0 =

vm0 !=

ε

ε

(b)

Figure 3.18: (a) Graphical representation of connecting message ports
to a message channel and (b) formal execution semantics.

3.5 Summary

In this chapter, we have presented ProCom, a component model for
control-intensive distributed embedded systems. The model takes into
account the most important characteristics of these systems and con-
sistently uses the concept of reusable components throughout the de-
velopment process, from early design to deployment. A characteristic
feature of the domain we consider is that the model of a system must
be able to provide both a high-level view of loosely coupled subsystems
and a low-level view of control loops controlling a particular piece of
hardware. To address this, ProCom is structured in two layers (ProSys
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and ProSave). At the upper layer, ProSys, components correspond to
complex active subsystems communicating via asynchronous message
passing. The lower layer, ProSave, serves for modelling of primitive
ProSys components. It is based on primitive components implemented
by C functions, and explicitly captures the data transfer and control
flow between components using a rich set of connectors. To illustrate
the ProCom component model we have used as an example an electronic
stability control system of a car.

In order to rigorously describe the semantics of the ProCom elements,
and to provide support for formal analysis, we have introduced a small,
but powerful FSM language. The FSM language builds on standard
FSM, enriched with finite domain integer variables, guards and assign-
ments on transitions, notions of urgency and priority, as well as time de-
lays in locations. Its formal semantics is expressed in terms of TA with
priorities and urgent transitions, as shown in Section 3.4.2. The FSM
language has graphical appeal and it is simpler than the corresponding
TA model, as it abstracts from real-valued variables and synchroniza-
tion channels. Moreover, thanks to the TA formal semantics, the FSM
models of ProCom systems can be analyzed in a dense-time underly-
ing framework, as well as in a discrete-time one, since TA has been
recently given a sampled semantics [5]. Hence, tools, such as Uppaal,
can be employed for early-stage verification of ProCom models, whereas
discrete-time model-checkers, such as DTSpin [29], could be used for
later-stage analysis, as a sampled time semantics is closer to the actual
software or hardware system with a fixed granularity of time, and can
become appealing at later stages of design.

Using the FSM language, we have described in detail how the design
constructs for services, data and trigger connections, component hierar-
chies, passive and active components, and message channels of ProCom
have been formalized in this manner. These elements we have deliber-
ately chosen, since they represent the different types of design elements
in the language, and expose the encoding techniques used in the ProCom
– FSM translation.



Chapter 4Remes: A Behavioral
Model for Embedded
Systems

We pointed out in Chapter 1 that embedded systems are not only coupled
by the physical world, but that they are also constrained by the phys-
ical capacities of their underlying hardware and/or software platforms.
Hence, these systems are typically resource constrained, and analysis of
the embedded system’s resource usage at an early design stage is ex-
tremely desirable. First, it allows for carrying out a potentially large
number of design experiments, without increasing cost. Second, it may
guide designers in making correct decisions, such as selecting the right
components from a repository, or choosing among various admissible de-
sign models. Both of these point to a need for a modeling language and
analysis techniques that will treat resources as first class entities.

In this chapter, we introduce the model Remes [91] (see Section 4.1)
for formal modeling and analysis of embedded resources, such as storage,
power, communication, and computation. The model is annotated with
both discrete and continuous resources. It is in fact a state-machine
based behavioral language with support for hierarchal modeling, con-
tinuous time, and a notion of explicit entry and exit points, making it
suitable for component-based modeling. The analysis of Remes-based
systems (see Section 4.2) is centered around a weighted sum in which

63
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the variables represent the amounts of consumed resources. We describe
a number of important resource related analysis problems, including fea-
sibility, trade-off, and optimal resource-utilization analysis. In order to
be able to formally analyze Remes compositions, in Section 4.3, we se-
mantically translate Remes models in the framework of priced timed
automata. To illustrate the approach, in Section 4.4, we describe an
example in which Remes has been applied to model resource usage of a
temperature control system.

4.1 Remes: Syntax and Execution Seman-

tics

In order to model resources at a high-level of abstraction in an effective
way, we need to understand their behavior. Hence, in this section, we
first define the resources of interest and then introduce the Remes model
intended for functional, timing, as well as resource-wise description of
embedded systems.

4.1.1 Classes of resources

We consider resources as global quantities of finite size. We refer to the
consumption of a resource c as being the accumulated resource usage
up to some point in time, whereas the derivative of c, denoted ċ, is the
rate of consumption over time. Resource consumption can be of discrete
or continuous nature, depending of how the respective resource is used
over time. Since we are aiming for a general, yet comprehensive resource
characterization, we also consider resources as being either referable or
non-referable, depending on the way they are assigned. A classical ex-
ample of referable resource is memory. Memory can be dynamically allo-
cated, deallocated, addressed, and manipulated during run-time. How-
ever, modeling and checking properties of referable memory is outside
the scope of this thesis.

Taking all these into consideration, Table 4.1 shows three identified
resource classes and their characteristics of interest. Resource consump-
tion for resources that belong to class C is continuous, contrary to the
discrete resource consumption nature for the resources from class A and
B. The consumption of the CPU can be modeled by a discrete variable,
denoting the number of accumulated clock ticks, or by a continuous vari-
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Resource Class Characteristics

A
discrete: ċ = 0

(e.g., memory) referable

B
discrete: ċ = 0

(e.g., CPU, bandwidth) non-referable

C
continuous: ċ = n, n ∈ Z

(e.g., CPU, energy, bandwidth) non-referable

Table 4.1: Resource classes/characteristics

able, which encodes the processor load (that is, the derivative describes,
e.g., how many tasks are starting execution, every time unit). Accord-
ingly, CPU may be in class B or C (same applies to bandwidth). In
our approach, any continuous resource can be assigned either discretely,
or consumed in time at some rate, whereas a discrete one can only be
allocated/deallocated by an instantaneous assignment statement. Only
the resources from class A are referable and can be dynamically manipu-
lated. Please note that we do not claim that such a resource classification
is unique, but that it rather serves our modeling purposes.

4.1.2 Introducing Remes
Our REsource Model for Embedded Systems (Remes), that we have
introduced in [91], describes the resource-wise behavior of interacting
embedded components that communicate both with one another, as well
as with the environment (e.g., through a trigerring signal). Remes is
inspired by the modeling language Charon [13], used for specifying em-
bedded systems as communicating agents. The salient point of Remes

is introducing resources as primitive types in the language, as well as ad-
ditional constructs that facilitate modeling (real-time) component-based
system behavior, and are deemed popular to system designers. There
are also other syntactic and semantic differences from Charon, which
will be apparent in the following.

In Remes, the internal behavior of a component is described by a
mode. We call a mode atomic if it does not contain any submode, and
composite if it contains a number of submodes (see Figure 4.1). In addi-
tion, there is also a special type of mode called non-lazy whose semantics
will be described in the following. The hierarchy can be of arbitrary
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depth, although in this chapter we show the implementation of a two-
level hierarchy only. Like in Charon, the data is transferred between
modes via a well-defined data interface, that is, typed global variables,
whereas the (discrete) control is passed through a well-defined control
interface consisting of entry and exit points. Observe, in Figure 4.1,
that the entry and exit points are intuitively labeled, respectively. A
mode, be it atomic or composite, has a “run-to-completion” semantics,
so it cannot be interrupted from execution, and internal loops are not
allowed as such; however, the possible interleavings between computa-
tions of one composite mode, and another’s can be controlled via history
variables, whereas iteration is possible by introducing two kinds of exit
points: Write, and Exit. Assuming an architectural model supporting the
system’s description, the Write point serves for modeling both internal
mode computations that are resumed until the Exit is reached, which sig-
nals termination, but also continuously active behaviors (corresponding
to active components), which might never terminate. A mode describing
active behavior can also be exited through the Exit point. Assuming a
composite mode that has finished one execution round by visiting the
Write point, then the history variable, can specify the submode that the
execution of that composite mode should resume from. As such, the
history variable h of a composite mode M may contain the names of the
submodes of M as values.

The variables of mode M are partitioned into local variables, (LM),
and global variables (GM). Interface variables, IM ⊆ GM, are a subset of
global variables, and model variables that are mapped to an interface
port and come from the assumed architectural system model. Vari-
ables can be of types boolean, natural, integer, float, array, string, list, clock
that specifies continuous variables evolving at rate 1, and of special type
resource, which are nonnegative real-valued variables that model contin-
uous resource behavior. Resource variables are of type: processor load
(CPU), energy (eng), bandwidth (bdw), memory (mem), and communica-
tion ports. The global variables are shared among all system modes and
are in turn partitioned into read variables, RdGM, and write variables,
WrGM, such that GM = RdGM ∪WrGM, and RdIM ⊆ RdGM, WrIM ⊆ WrGM.

Read/Write Variable Access. The local variables ofM, LM, can not
be read or written by other modes, the set WrGM, written by M can be
read by other modes, whereas the set RdGM may be written by other
modes. The sets WrGM, and RdGM, respectively, need not be disjoint;
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concurrent access to common write variables of modes can be regulated
by specifying certain synchronization protocols in the Remes model, as
described in Section 4.1.3.

CompositeMode

Figure 4.1: A Remes Composite Mode.

The atomic modes Submode 1, Submode 3, and Submode n in Fig-
ure 4.1 are annotated with their respective resource-wise continuous be-
havior, assuming that the corresponding component is consuming re-
sources (r1 : CPU, r2 : eng) belonging to class C. Such consumption is
expressed by the first derivatives of the typed resource variables, respec-
tively, that is, r1′, r2′, which give the rates at which the composite mode
consumes the resources in time, depending on the executing submode.

For a composite mode, the control flow is given by a set of directed
lines, called edges, which connect the control points of the submodes, or
of the composite mode and its submodes. For example, in Figure 4.1, the
composite mode takes the edge labeled A0, in order to enter Submode
1, after initialization, and similarly, edge labeled A1 to further enter
Submode n.
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Remes supports two types of actions, delay/timed actions and dis-
crete actions. A delay action describes the continuous behavior of the
mode, and its execution does not change the mode. The delay/timed ac-
tions are not visible in a Remes model, but they are usually constrained
by the differential equations that annotate the modes, and they represent
the solutions of such equations. Observe that Submode 2 has an urgent
flag (decorated with letter U) equal to true, meaning that such a mode
exits right-away after its activation, without any delay. Such modes are
called urgent. On the other hand, discrete actions are instantaneous ac-
tions, and they are represented as annotations of the edges. Executing
a discrete action results in a mode change, by taking the outgoing edge
starting from the mode’s exit point.

A discrete action A = (g, S) is a statement list prefixed by a boolean
expression, with g called the action guard, and S the action body, that
is, the statement (assignment, conditional statement etc.) or sequence
of statements that must be executed once the corresponding edge has
been taken. We say that a discrete action A is enabled, hence it could
be executed, if its corresponding guard g evaluates to true at some point
in time. A discrete action is called always enabled if its guard always
holds, and empty if its body does not change any of the mode variables
(in such cases, the action body can be omitted).

In addition, one needs to specify for how long a (sub)mode is ex-
ecuted, so an invariant, e.g., Inv 1,. . . , Inv n, that is, a predicate over
continuous variables, captures such a timing constraint. Once the in-
variant stops to hold, the mode is exited by taking one of the outgoing
edges. Observe, in Figure 4.1, that Submode 3 does not contain any
invariant (and has an urgent flag false) to specify how long it is allowed
to delay in that mode. Such modes, we call non-lazy modes. Time is
allowed to pass in a non-lazy mode until at least one of the guards of the
outgoing discrete actions evaluates to true, in which case that action is
executed right away. As such, in order to ensure the exit of a non-lazy
mode, the disjunction of the action guards associated to the outgoing
edges of that mode should always eventually become true.

Similar to Statecharts [53], Remes provides a conditional connector
(depicted by C in Figure 4.1), which allows the selection of an outgoing
edge, out of two or more possible ones, via the guarding boolean con-
ditions (guards g1, g2, . . . , gn) of the discrete actions that correspond to
the edges exiting the conditional connector. For a discrete action to be
possibly executed, the component must be in the right mode and the
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corresponding guard must evaluate to true. If none of the guards eval-
uates to true, then no discrete action is executed and the component
remains in its current mode, performing delay actions. If more than one
action guards are true, then one of the enabled discrete actions could be
executed non-deterministically.

Besides ordinary edges, for clarity, we distinguish for the composite
mode the init edges that connect the Init point of the composite mode
with the entry point of a submode (e.g., annotated with action A0 in Fig-
ure 4.1), and write edges that end up in the Write point (e.g., decorated
with (not gn, S

′
n)).

The control points of submodes are connected by edges, such that
the termination of the internal behavior of the composite mode is en-
sured. Internal cycles/loops are forbidden as such, yet iterative internal
computation of a mode is modeled by execution rounds that end up in
the Write exit, until termination occurs and the computation finishes by
visiting the Exit point, provided that the respective action guard holds.
Whenever an execution of a Remes composite mode would return to
an already visited submode, the composite mode is exited through its
Write point, and the control state of that mode is recorded into its local
history variable. Then the composite mode is automatically reentered,
and the control state of that mode is restored according to the value of
the history variable.

Definition 7. (Formal Definition of a Composite Mode). A mode
M is defined as a tuple:

(SM,V, In,Out,E,RC, Inv,CC),

where: SM is the set of submodes, V is the set of variables, In is the set
of entry control points, Out is the set of exit control points, E, the set
of edges, RC, the set of resource constraints that define the admissible
values for the consumption rates of the involved resources in class C,
Inv is the set of invariants, and, finally, CC is the set of conditional
connectors. For the submodes of M, the following condition should hold:

GSM ⊆ LM ∪ GM,

for a local variable of a mode to be accessible only in its submodes, and
not anywhere else.

In the particular case of the sets SM and CC being the empty set i.e.,
SM = ∅ and CC = ∅, we get the definition of an atomic mode.
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Informal Execution Semantics of a Mode. The top-level mode
(of a composite mode), which is activated when a corresponding event is
received, enters execution for the first time through the special Init entry
point, after initializing the global variables, accordingly. After that, the
mode is re-entered through control point Entry.

A mode can execute either a discrete step, by a discrete action, or
a continuous step, via a delay action, with such steps alternating as
dictated by the urgency of the mode. When executing a continuous step,
the mode follows a continuous path that satisfies the resource constraints
(RC). When the mode invariant is violated, the mode must execute an
outgoing discrete step. A discrete step of a mode is a finite sequence of
discrete steps of the submodes, that is, a sequence of executing discrete
actions. A discrete step begins in the current mode and ends either at
the entry point of a submode, or when it reaches the current mode’s exit
point, meaning that the current mode has passed control to some other
mode.

The fact that a mode can pass control is ensured by the closure
construction: each exit point of a mode is either connected to the exit
point of the composite mode, or deterministically connected to an entry
point of another mode that eventually leads to the composite mode’s
exit.

For example, in Figure 4.1, the execution of CompositeMode proceeds
as follows: after initialization, the discrete step corresponding to A0 is
executed, after which a sequence of continuous steps is executed, until
the invariant Inv 1 fails to hold; alternatively, in case A1’s guard evalu-
ates to true, the mode could take a discrete step and entry Submode n.
Next, a similar sequence follows, while the mode executes Submode n.
When Inv n does not hold anymore, the mode takes a new discrete step
corresponding to either discrete action (not gn, S

′
n) if (not gn) holds, or

to discrete action (gn, Sn) if gn holds. In case (not gn) holds, Composite-

Mode is exited through its Write point, meaning it will be automatically
reentered without waiting for an activation from the outside. In case gn
holds, CompositeMode will be exited through its Exit point, and will wait
for reactivation from the environment. The next time when the control
is passed to CompositeMode, a discrete step corresponding to AC is taken
and the selection of a possible path is made through the conditional
connector, etc.
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4.1.3 Composition of Remes models

Sequential composition

The sequential composition of modes basically reduces to passing con-
trol from the source mode to the destination mode by connecting the
exit point of the former with the entry point of the latter, as well as
transferring data and triggering information via the global, and inter-
face variables, respectively.

Parallel composition

Remes atomic modes and composite modes can be composed in parallel
with each other. The parallel modes can execute concurrently, by in-
terleaving actions, whereas the submodes can never execute in parallel;
they simply obey the strict execution order imposed by the control flow.

Like inCharon, ifM is a composite mode, and sm ∈ M is the variable
ranging over the constituent submodes, we have: LM ⊆

⋃
sm∈M Gsm, and

GM =
⋃

sm∈M Gsm − LM. The mode composition is defined as follows.

Definition 8. (Parallel composition). Assume ModeA and ModeB
are two Remes (atomic or composite) modes. Then, the composition
ModeD = ModeA ||ModeB is the mode with the set of local variables LModeD

= LModeA ∪ LModeB , the set of write variables WrModeD = WrModeA∪WrModeB ,
the set of read variables RdModeD = RdModeA ∪ RdModeB, and the top-
level mode given by (ModeA ∪ModeB). Assuming the abstract resources
CPU and bandwidth are used by both ModeA and ModeB, the follow-
ing holds for ModeD: cpuModeD = max(cpuModeA , cpuModeB) and bdwModeD

= max(bdwModeA , bdwModeB). On the other hand, for memory and energy
resources, the following is true: memModeD = memModeA +memModeB and
engModeD = engModeA + engModeB.

In Definition 8, the parallel composition of composite modes sub-
sumes the reunion of all the constituent submodes, corresponding edges
and associated actions.

Parallel composition with a synchronization protocol

Let ModeA and ModeB be two composite Remes modes that want to
update the global variables gvi and gvj, and gvi and gvk, respectively.
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When parallel composing Remes modes, one has to deal with the sce-
nario, illustrated in Figure 4.2, in whichModeA and ModeB contain edges
that might concurrently require access to the global variable gvi.

Mode A

Submode 1 Submode 2

gvi:=1, gvj:=gvj+2... ...

Mode B

Submode 1 Submode 2

gvi:=gvi+1; gvk:=3... ...

Figure 4.2: ModeA and ModeB might concurrently require access to
global variable gvi.

To solve the problem presented in Figure 4.2, we need to implement
a mutual exclusion protocol on the modeling level in Remes. Therefore,
we:

1. extend the set of global variables of Remes modes, defined in Def-
inition 7, with a set of lock variables, and

2. introduce a new parallel composition operator (sharp, ♯) that en-
sures correct access to global variables, without employing addi-
tional communication between modes.

Additionally, we replace every mode that requires access to a global
variable with its more detailed version, and we introduce controllers for
regulating access to global variables. The composition

ModeE = ModeA ♯ModeB

we call parallel composition with a synchronization protocol of ModeA
and ModeB.

Definition 9. (Parallel composition with a synchronization pro-
tocol). Given two composite Remes modes ModeA and ModeB, sets of
global variables GModeA =

⋃
i=1..n gvi and GModeB =

⋃
j=1..m gvj. Then,

the composition ModeE = ModeA♯ModeB is the parallel composition of
ModeA′ , ModeB′ , the set of controllers Controllergvi and the set of con-
trollers Controllergvj , with the set of global variables GModeE = GModeA′

∪
GModeB′

, the set of lock variables KgvModeE
= KgvMode

A′
∪ KgvMode

B′
and the

set of shared variables SModeE = GModeE ∪KgvModeE
, such that f : GModeE →

KgvModeE
is a bijection that assigns locks to global variables.
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Observe, in Figure 4.3, that ModeA′ is a more detailed version of
ModeA. Let us assume that after visiting Submode1, ModeA executes a
discrete step in which it updates the global variables gvi and gvj, and
that ModeA accesses these variables also in its Submode2. This part
of the behavior from ModeA we replace in ModeA′ with a set of modes
and edges (see the shaded parts in Figure 4.3 (b)). ModeA′ requires
access to the global variables gvi and gvj by setting the boolean vari-
ables reqgvi and reqgvj to true, and adding the name of the mode in the
waiting list waitgvi and waitgvj , respectively. Then, ModeA′ waits in the
non-lazy mode Wait until the locks for both gvi and gvj are assigned to
ModeA′ , and enters the mode CriticalSection where the values of gvi and
gvj are updated. CriticalSection is a composite mode that can consist of
one or more submodes, depending on the behavior of ModeA. It con-
tains all the submodes of ModeA that access gvi and gvj until their locks
are released. For example, if ModeA finishes accessing gvi and gvj after
visiting Submode2 then the mode CriticalSection of ModeA′ will contain
only Submode2. ModeA′ releases the locks of gvi and gvj after exiting
CriticalSection.

Mode A

Submode 1 Submode 2

gvi:=1, gvj:=gvj+2... ...

(a) ModeA before modification.

Mode A'

Submode 1 Wait

CriticalSection

req_gvi:=true,

wait_gvi.add(A'), 

wait_gvj.add(A')

req_gvj:=true, release_gvi:=true, 

release_gvj:=true
... ...

Submode 2gvi:=1, 

gvj:=gvj+2
...

Wait

CriticalSection

req_gvi:=true,

wait_gvi.add(A'), wait_gvi.add(A'), wait_gvi.add(A'), wait_gvi.add(A'), 

wait_gvj.add(A')wait_gvj.add(A')

req_gvj:=true,req_gvj:=true, release_gvi:=true, 

release_gvj:=true

Submode 2gvi:=1, 

gvj:=gvj+2
...

wait_gvj.add(A')wait_gvj.add(A')wait_gvj.add(A')wait_gvj.add(A')

wait_gvi.add(A'), wait_gvi.add(A'), 

kgvi=A' and kgvj=A'

(b) ModeA′ presents a more detailed version of ModeA.

Figure 4.3: ModeA and ModeA′ .

Figure 4.4 depicts the Remes mode modeling the behavior of a con-
troller that regulates the access to the global variable gvi. Controllergvi
can be executed when their is a mode that requires access to the variable
gvi (i.e., when reqgvi evaluates to true). When the list of modes requiring
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Controller gvi

WaitCS

release_gvi

wait_gvi.remove(0), release_gvi:=false
kgvi :=wait_gvi(0)

 

 kgvi:=null, req_gvi:=falselength(wait_gvi)=0

length(wait_gvi)>0req_gvi

Figure 4.4: A controller mode for the global variable gvi that regulates
synchronous access to gvi.

access to gvi is not empty, Controllergvi assigns kgvi to the first mode in
the list waiting to gain access to the variable gvi. Note that the way
the locks are assigned in Controllergvi is first-come-first-served. However,
other lock assignment protocols can be modeled, if needed (such as pri-
ority locking). After assigning the lock to a certain mode Controllergvi
waits in the non-lazy mode WaitCS until the lock is released. When the
lock gets released (i.e., releasegvi becomes true) the mode that used the
lock is removed from the waiting list waitgvi and Controllergvi is exited.
Controllergvi sets reqgvi to false when the list waitgvi is empty i.e., when
there is no longer mode requiring access to gvi.

4.2 Formal Analysis of Remes Models

4.2.1 Analysis model for Remes
Assume a set of resources R1, . . . , Rn that a set of Remes modes have
access to. Our main goal is to analyze various scenarios of the system’s
resource usage, and be able to compute, e.g., the maximum or mini-
mum amounts of needed resources for guaranteeing correct resource-wise
system behavior. Intuitively, this problem reduces to a scalar problem
if one constructs a weighted sum of all resource consumptions, which
should then be minimized, maximized, or manipulated in order to com-
pute trade-offs. Consequently, we propose the following function as the
analysis model for Remes:

rtot
def
= w1 × r1 + w2 × r2 + . . .+ wn × rn,
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where variable rtot represents the total consumption of resources R1, . . . ,
Rn, and variables r1, . . . , rn denote the accumulated consumption of
R1, . . . , Rn, respectively. The constants, w1, . . . , wn (weights), repre-
sent the relative importance of r1, . . . , rn. The values of the weights

1 are
a subjective matter; the way they are chosen depends both on the ap-
plication and on the analysis goals. For example, in designing a heavily
resource-constrained soft real-time embedded system that might toler-
ate lateness at the expense of quality of service, in order to determine
trade-offs between memory consumption and (execution) time, one can
assign higher weight to memory than to time.

In order to be able to analyzeRemes compositions, formally, we need
a semantic translation of the model. If we consider resource consump-
tions r1, . . . , rn as cost variables c1, . . . , cn, we can use the framework of
Priced Timed Automata (PTA) as the underlying sem antic representa-
tion.

Informally, in its simplest form, transforming parallel composition of
Remes modes into a network of PTA is quite straightforward: the syn-
tactic Remes element of an edge corresponds to an edge in PTA, whereas
the Remes semantic discrete step is a discrete transition in PTA’s se-
mantics. An atomic submode represents a PTA location, conditional
connectors are removed in the transformation, and global variables of
top-level modes are added to the set of global variables of the network of
priced timed automata. The formal translation of two-level hierarchical
Remes modes into a network of PTA, we introduce in Section 4.3. In
the rest of this section, we formalize some of the main analysis goals that
we are interested in.

4.2.2 Feasibility analysis

Component-based feasibility analysis reduces to checking whether the
accumulated values of the resources consumed/used during all possible
system behaviors are within the available resource amounts provided
by the implementation platform. For resources like non-referable mem-
ory and energy, the composition of individual resource consumptions of
Remes components is additive.

If one considers the PTA model of Definition 4 as the semantic trans-
lation of a Remes model, feasibility goals can then be formalized as the

1Actual values for resource weight constants w1, . . . , wn are defined in a model
separate from Remes, explained in Appendix C.
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following WCTL properties that the PTA model can be checked against:

AFcost≤n v (4.1)

AG (q ⇒ AFcost≤n v) (4.2)

E Fcost≤n v (4.3)

AG (q ⇒ E Fcost≤n v) (4.4)

where G and F are the WCTL temporal operators “always” and “even-
tually”, respectively [32].

The above properties are in fact liveness properties (4.1), (4.2), (4.4),
and a reachability property (4.3), indexed by cost constraints. The first
two properties specify strong feasibility: property (4.1) requires that for
all execution paths, the target location v is eventually reached within a
total cost of n that can model the available resources provided by the
platform; property (4.2) states that, for all paths, it is always the case
that, once q, the cost of eventually reaching v will be no more than
n, regardless of how v is reached. We say that property (4.3) models
weak feasibility: the target location v may be reached within a total cost
of n. Finally, property (4.4) states that for all paths, it is always the
case that once a location q is reached, there exists a way by which v
will be eventually reached within cost n. We call this last property live
feasibility. However, model-checking WCTL formulae is decidable just
for one-clock priced automata [31]. For other PTA, one can only verify
reachability properties of the form given by (4.3).

Assuming that the cost function equates to cost = w1 × c1 + . . . +
wn × cn, and c1, . . . , cn are constants, the feasibility checks of the above
properties involve a single cost variable that represents the accumulated
resource consumption of all resources of interest, regardless of the class
they belong to. Hence, semantically, the various resources become undis-
tinguishable in these cases.

4.2.3 Optimal and worst-case resource consumption

Optimal and worst-case resource consumption analysis require (sym-
bolic) algorithms on PTA, which compute the cost of the “cheapest”,
and/or most “expensive” trace that will eventually reach some goal.
The optimal/worst-case resource consumption problem reduces to mini-
mizing/maximizing the one-cost function cost = w1 × c1+ . . .+wn× cn,
such that a given reachability, or liveness property is satisfied.
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Finding the optimal/worst-case resource consumption values to at-
tain such goals calls for synthesis algorithms of minimal/maximal reach-
ability costs for PTA, which have been proposed by Larsen and Ras-
mussen [73]. Similar to the feasibility case, only optimal/worst-case
reachability costs can be synthesized by a model-checker. Later, we
show how such a cost-optimal trace can be actually computed in the
examples of Sections 5.3 and 7.4.

A considerable verification challenge arises in case some of the edge
prices are negative, so that cost becomes a non-monotonically increasing
cost function. In such situations, the usual branch-and-bound symbolic
reachability algorithms, for PTA, cannot be applied as such anymore,
since minimal/maximal reachability analysis requires a monotonically
increasing cost function. The optimal- and worst-case-cost reachability
problems have been theoretically solved even when negative costs are
involved [30].

The tool used for verifying optimal resource consumption properties
is Uppaal Cora, where one could check, e.g., the relevant reachability
property, E F v, while the tool calculates the minimum cost, in terms of
resource exemption, “paid” to satisfy the property.

4.2.4 Trade-off analysis

Minimization of memory usage plays a major role in the design of embed-
ded systems. Limited memory is one of the dominating constraints for
many advanced embedded systems. However, while trying to minimize
memory consumption, one might be forced to increase the execution time
of real-time components beyond acceptable limits, that is, limits that, if
exceeded, would make the set unschedulable.

As such, for a given Remes model, we may have more than one
property to satisfy simultaneously, and we want to know whether it
is possible to satisfy all of them, although they might be subjected to
apparently conflicting constraints. In such cases, there should be possible
to compute a trade-off between the considered resource consumptions.

Computing a trade-off between memory and execution time, or be-
tween any resource belonging to classes A and B, or A and C, or B and C
of Table 4.1, could be done in PTA, by employing a single-cost function.
The trade-off could then be achieved by varying the weights w1, . . . , wn,
accordingly.

In some other cases, e.g., when one needs to compute trade-offs
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between consumption of resources belonging to class C, the function
cost = w1 × c1 + . . . + wn × cn becomes a multi-cost function that lets
one distinguish between various types of resources (e.g., between energy
and CPU). This forces one to carry out the analysis on MPTA, rather
than on PTA.

Assuming energy and CPU as the resources of interest, we want to
determine which are the simultaneously achievable pairs of costs (weng×
ceng, wcpu×ccpu) such that energy consumption is minimized, while CPU
consumption remains bounded from above. Such synthesis of cost pairs,
which can be seen as a variant of trade-off analysis, can be achieved
by applying optimal conditional reachability algorithms on MPTA [72],
while considering ceng as the primary cost and ccpu as the secondary cost.
Larsen and Rasmussen have proved that such problems are decidable for
MPTA [72].

Alternatively, one could perform a feasibility-like check, by requiring
that the following WCTL property is satisfied:

E F(weng×ceng)≤n (v ∧ (wcpu × ccpu) ≤ m)

The formula states that the accumulated weighted CPU usage will not
be more thanm ticks at location v, while v may be reached by consuming
no more than n weighted energy units.

4.3 Transforming Remes Modes into a Net-
work of (Priced) Timed Automata

In this section we introduce all the rules that describe the way in which
we transform Remes modes into priced timed automata. Note that the
current transformation rules cover two-level hierarchy only.

The terminology used in this section is as follows. We call a mode
atomic mode if it is a stand-alone mode, and atomic submode if it is
part of a composite mode. The transformation differs when transform-
ing an atomic Remes mode, and when transforming an atomic Remes

submode, which will be clarified in the following.
We divide this section into three parts. Firstly, we define how to

transform an atomic mode into a priced timed automaton. Secondly,
we define how to transform a composite Remes mode that contains a
number of atomic submodes into a priced timed automaton. Thirdly,
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we introduce the definition for transforming a parallel composition of
Remes modes, be they atomic or composite, into a network of priced
timed automata.

Transforming an atomic mode into a priced timed automaton.
To demonstrate the difference between transforming an atomic mode
into a priced timed automaton, and transforming an atomic submode,
we present the result of the transformation in Figure 4.5. When trans-
forming an atomic mode (see Figure 4.5(a)), the transformation will
create an automaton augmented with an additional initial location Start
and two edges – one representing the system startup activated on trig-

ger a1 (Start
a1?−−→ AtomicMode), and one to reactivate the mode once it

has been exited and to synchronize with another mode on its exit, i.e.,

via trigger a2 (AtomicMode
a2!−−−→
x:=0

AtomicMode). This synchronization

information comes from the system architecture, and will be discussed
later.

AtomicMode

invariant

Start

a
2
!

x:=0

a
1
?

(a)

AtomicSubMode

invariant

(b)

Figure 4.5: Transforming a Remes atomic mode and a Remes atomic
submode into a priced timed automaton: (a) for an atomic mode, (b)
for an atomic submode.

Figure 4.5(b) shows the transformation result of an atomic submode
– the atomic submode is mapped to a location in a priced timed au-
tomaton corresponding to the composite mode, and the exit edges of
the atomic submode are mapped to edges originating from this location
in the automaton. The invariant of this location is in fact the invari-
ant of the submode. The assigned cost of the delay in that location
represents the resource consumption of the submode (expressed as a
differential equation annotating the atomic submode). For an illustra-
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tion, observe Figures 4.6(a) and 4.6(b). The submode SubMode2 has
an invariant x ≤ C X and resource consumption rate res2′ = 10, and
the corresponding location SubMode2 in Figure 4.6(b) is annotated with
an invariant x ≤ C X and with a cost-rate for delaying in that location
cost′ = wres2 ∗ 10.

Definition 10. (Transforming an atomic mode into a priced
timed automaton). Let M = (Vm, In,Out,Em,RC, Inv) be a Remes

atomic mode, and T = (L, l0,X,Vt, I,Act,Et,P) be a priced timed au-
tomaton corresponding to M. We assume that the mode M contains only
one clock x, and accordingly the corresponding set of clocks in the au-
tomaton T is X = {x}. We assume as well that the set of data variables
of type integer, boolean or array of the mode2 M is Vdm, where Vdm ⊆ Vm.

The result of the transformation is a priced timed automaton T with a
set of clocks X = {x}, a set of data variables Vt = Vdm, an initial location
l0 = Start, and a location AtomicMode representing the mode M. Hence
L = {Start,AtomicMode}. The set of automaton’s edges is Et = {einit,
eloop}, where einit is an initialization edge connecting locations Start and
AtomicMode (see Figure 4.5(a)), and eloop is a loop edge, as follows:

einit = (Start, true, a1?, ∅,AtomicMode),

eloop = (AtomicTopMode, true, a2!, x := 0,AtomicMode).

The action a1? of the edge einit ensures synchronization with the ini-
tialization automaton that we explain in Definition 15. The action a2!
is defined by the architecture (might correspond to, e.g., a triggering sig-
nal) and is responsible for the activation of the modes triggered by M.
Accordingly, the set of actions of T is Act = {a1?, a2!}.

The invariant of the mode M is transformed into the invariant of the
location AtomicMode, such that I(AtomicMode) = Inv.

The resource consumption rate RC of the mode M is transformed
into the cost-rate of the location AtomicMode, given by the cost function
P i.e.,

P(AtomicMode) = RC.

2Since Uppaal does not support dynamically growing data structures, when trans-
formingRemes into priced timed automata, we transform lists into arrays with a fixed
upper bound. We map arrays of strings to integer arrays, and the Remes mode names
of type string are mapped to integer constants in Uppaal.
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Note that in Definition 10 we assume an atomic mode that models an
active component, which has no input triggers but only generates output
triggers. Such a component activates other components when started on
system startup. The Clock connector from ProCom is an example of a
such component, and we show how to model its behavior in Sections 4.4
and 5.3.2. In the Clock automaton (see Section 5.3.3), the guard of the
loop edge has been added after the transformation. If the component
has input triggers, it should be modeled as a composite mode.

Steps for transforming a composite mode into a priced timed
automaton. The transformation of a composite mode into a priced
timed automaton is more complex than the transformation of an atomic
mode. It consists of two steps as follows:

• removing conditional connectors in a composite mode (see Defini-
tion 11), and

• transforming atomic submodes into locations of a priced timed
automaton (see Definitions 12 and 13).

Figure 4.6(a) shows a Remes composite mode with two atomic sub-
modes, while Figure 4.6(b) depicts the corresponding priced timed au-
tomaton generated by the transformation. Similar to the transformation
of an atomic mode, when transforming a composite mode additional lo-
cations Start, Init, Entry, Write and Exit are added to the automaton.
The priced timed automaton waits in the initial location Start for the
system startup, triggered by a1. The locations Init, Entry, Write and Exit
are created from the Init, Entry, Write and Exit points of a given compos-
ite mode. Note that the locations Write and Exit are marked as urgent
to prohibit the automaton to stay in these locations, as mandated by
the Remes “run-to-completion” semantics.

The edge connecting the location Init with the location SubMode2
originates from the composite mode’s init edge. If a composite mode
does not contain init edges, then the transformed automaton will not
have a location Init and corresponding edges, and instead there will be
an edge directly from Start to Entry (marked in Figure 4.6(b) with a
dashed line). The edge from Entry to SubMode1 corresponds to the entry
edge connecting the composite mode’s Entry point and the submode
Submode1. The return edge from Write to Submode1 ensures the internal
execution rounds of the mode until the guard of the write edge holds.
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Figure 4.6: A Remes composite mode CompositeMode consisting of two
atomic submodes SubMode1 and SubMode2 (see Figure (a)), and a priced
timed automaton resulted from the transformation of CompositeMode
(see Figure (b)).
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This cyclic behavior can not be interrupted from the outside. When the
guard of the write edge does not hold anymore the mode can be exited
only through the Exit point. In case a composite mode does not contain
write edges, the transformed automaton will not have a location Write.
The return edge from Exit to Entry depicts the fact that a composite
mode has finished execution, and is ready to be reactivated from the
outside.

Observe that in Figure 4.6(b) the a2? synchronization on the edge
between the locations Entry and Submode1 comes from the system archi-
tecture, and represents, e.g., the synchronization on component entrance
when modeling component interactions. This is also the case with the
return edge from Exit to Entry, where the a3! marking represents, e.g.,
synchronization on component exit. A special case occurs when a com-
ponent does not synchronize with any other component on its exit, i.e.,
does not trigger other components. In that case the return edge from
Exit to Entry does not contain any synchronization channel.

Conditional connectors are removed during the transformation. Edges
entering a conditional connector are combined with the edges exiting the
conditional connector in all permutations, to retain the functionality in
the resulting automaton. Definition 11 describes the removal of condi-
tional connectors.

Definition 11. (Removing conditional connectors in a compos-
ite mode). Let CM = (SM,Vm, In,Out,Em,RC, Inv,CC) be a compos-
ite mode, where CC is the set of conditional connectors and Em the set
of edges of the composite mode, and let T = (L, l0,X,Vt, I,Act,Et,P)
be a priced timed automaton corresponding to CM. Let cc = (Ein,Eout),
cc ∈ CC be a conditional connector contained within mode CM, with a
set of n input edges Ein ⊂ Em, and a set of m output edges Eout ⊂ Em.
Let e = (Mf,A,Mt), e ∈ Em denote an edge from submode Mf ∈ SM to
submode Mt ∈ SM with a corresponding action A = (g, S) consisting of
a guard g and a set of statements S.

The conditional connector cc is replaced with a set of edges Ecc =
n⋃

i=1

m⋃

j=1

eij. Each edge eij is constructed from the guards and statements of

ei = (Mfi, (gi, Si),Mti), ei ∈ Ein and ej = (Mfj, (gj, Sj),Mtj), ej ∈ Eout, such
that eij = (Mfi, (gi ∧ gj, (Si, Sj)),Mtj).

This simple method to remove conditional connectors does not guar-
antee correctness if a model contains chain connections of two or more
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conditional connectors. To illustrate, take two conditional connectors
cc1 and cc2. Let us assume that an entry edge to cc1 contains state-
ments that affect variables referenced in guards of an exit edge from cc2.
According to Definition 11, the guards g1 and g2 of both edges will be
combined to form g = g1 ∧ g2, and the set of statements S1 and S2 will
be combined to form S = (S1, S2). The resulting guard g will refer to
the the variables’ values at the time of evaluation of g1. However, this
is incorrect for g2 since the variables’ values have changed as a result
of the statements in S1. A similar situation may occur with guards and
statements of entry- and exit edges of a single conditional connector, but
in this case the error is easier to find. We consider chaining conditional
connectors to be a poor modeling practice, because of the possible side-
effects of statements to the guards. In this case it is a better choice to
use urgent submodes that guarantee atomicity of actions and have no
side-effects.

The transformation of an atomic Remes submode is described in
Definition 12, and depicted on Figure 4.5(b).

Definition 12. (Transforming an atomic submode into a loca-
tion of a priced timed automaton). Let CM = (SM,Vm, In,Out,Em,
RC, Inv,CC) be a Remes composite mode, and let T = (L, l0,X,Vt, I,Act,
Et,P) be a priced timed automaton corresponding to CM. Let M =
(Vs, Ins,Outs,Es,RCs, Invs) ∈ SM be an atomic submode, and e = (M,A,
Mt), e ∈ Em be an exit edge from the atomic submode M to the atomic
submode Mt ∈ SM with a corresponding action A.

The result of the transformation of M extends the priced timed au-
tomaton T as follows. The set of locations L is extended with a lo-
cation representing the submode M, e.g., L = L ∪ {AtomicSubMode}.
The set of edges Et is extended with all exit edges of M, such that
Et = Et ∪ {e = (Mf,A,Mt), e ∈ Em | Mf = M}. The set of actions
Act is extended with an empty action, i.e., Act = Act ∪ τ .

The invariant of the submode M is transformed into the invariant of
the location AtomicSubMode, such that I(AtomicSubMode) = Invs.

The resource consumption rate RCs of the submode M is transformed
into the cost-rate of the location AtomicSubMode, given by the cost func-
tion P i.e., P(AtomicSubMode) = RCs. In case M is a non-lazy submode
then it is transformed according to Definition 13.

Urgent Remes atomic submodes are transformed into urgent loca-
tions of the priced timed automaton. A non-lazy atomicRemes submode



4.3 Transforming Remes Modes into a Network of (Priced)
Timed Automata 85

is a special case of the previous definition, as additional synchronization
is needed to assure non-laziness of the mode. Definition 13 describes this
special case.

Definition 13. (Transforming a non-lazy atomic submode into
two locations of a priced timed automaton). Let CM = (SM,Vm, In,
Out,Em,RC, Inv,CC) be a Remes composite mode, and let T = (L, l0,X,
Vt, I,Act,Et,P) be a priced timed automaton corresponding to CM. The
priced timed automaton T is a member of the network of priced timed au-
tomata NT created as a result of the transformation of all Remes modes,
T ∈ NT, which we explain in Definition 15.

Let M = (Vm, Ins,Outs,Es,RCs, Invs) be an atomic non-lazy submode,

M ∈ SM, such that Invs
def
= true. Let ei = (M, (gi, Si),Mt), ei ∈ Em be

one of n exit edges from the atomic non-lazy submode M to the atomic
submode Mt ∈ SM with a corresponding action comprised of a guard gi
and a set of statements Si.

The result of the transformation of M extends the priced timed au-
tomaton T and the network NT as follows. The set of locations L is
extended with a location representing the submode M, e.g., NonLazySub-
Mode, and an additional committed location NonLazySubModeSynci for
each edge ei, so that L = L∪ {NonLazySubMode,NonLazySubModeSync1,
. . . ,NonLazySubModeSyncn}.

The set of edges Et is extended with all exit edges of M, where each exit
edge ei is split in two parts – ei1 from NonLazySubMode to NonLazySubMo-

deSynci, and ei2 from NonLazySubModeSynci to Mt i.e., Et = Et∪
n⋃

i=1

{ei1,

ei2}. Assuming that τ denotes an empty action, each exit edge ei is then
split to:

ei1 = (NonLazySubMode, gi, nlSync?, ∅,NonLazySubModeSynci),

ei2 = (NonLazySubModeSynci, true, τ, Si,Mt),

Act = Act ∪ {nlSync?, τ}

An additional priced timed automaton Tnl = (L′, l′0,X
′,V′

t, I
′,Act′,E′

t,
P′) is added to the network NT, with one NonLazySubModeSyncEnd ini-
tial location, and a loop edge used for synchronization:



86 Chapter 4. Remes: A Behavioral Model for Embedded
Systems

L′ = {NonLazySubModeSyncEnd},

l′0 = NonLazySubModeSyncEnd,

X′ = ∅,

V′
t = ∅,

I′ = true,

Act′ = Act′ ∪ {nlSync!},

E′
t = {(NonLazySubModeSyncEnd, true, nlSync!,

∅,NonLazySubModeSyncEnd)},

P′ = 0.

Actions nlSync! and nlSync? are synchronization actions over urgent
channel nlSync. The resource consumption rate RCs of the submode M
is transformed into the cost-rate of the location NonLazySubMode, given
by the cost function P i.e., P(NonLazySubMode) = RCs.

Definition 13 introduces one non-lazy synchronization automaton Tnl

per each non-lazy Remes mode, which can be further optimized to have
a single automaton for the entire system. In this case, there will be
one synchronization edge triggering the urgent synchronization channel
nlSync per each composite mode CM having non-lazy submodes, as only
one submode can be active at a time. Figure 4.7 gives an example of this,
where the automaton in Figure 4.7(c) synchronizes with non-lazy modes
from composite modes C1, C2, and C3, using urgent synchronization
channels c1nlSync, c2nlSync, and c3nlSync, respectively. We exemplify
the transformation of non-lazy modes in Section 5.4. Finally, we define
the transformation of a composite mode consisting of atomic submodes
into a priced timed automaton.

Definition 14. (Transforming a composite mode into a priced
timed automaton). Let CM = (SM,Vm, In,Out,Em,RC, Inv,CC) be a
Remes composite mode. Let T = (L, l0,X,Vt, I,Act,Et,P) be a priced
timed automaton corresponding to CM. The set of input control points
of the mode contains the Init and Entry control points, In = {Init,Entry},
and the set of output control points of the mode contains the Write and
Exit control points, Out = {Exit,Write}. The set of data variables of type
integer, boolean or array of the mode CM is Vdm, where Vdm ⊆ Vm.

Conditional connectors, cc ∈ CC are removed and the resulting edges
are added to set Em, as per Definition 11.
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C1Sub1SyncC1Sub1

c1nlSync?

(b)

c1nlSync!

NonLazySubModeSyncEnd

c3nlSync!c2nlSync!

(c)

Figure 4.7: Transforming a non-lazy Remes atomic submode into two
locations of a priced timed automaton. Figure (a) shows a Remes model
of a composite mode C1 containing a non-lazy submode C1Sub1. Fig-
ure (b) shows locations of the priced timed automaton corresponding to
the composite mode C1 created to model the non-lazy submode C1Sub1.
Figure (c) shows an additional automaton used to trigger the edge be-
tween C1Sub1 and C1Sub2 once guard becomes true.
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The result of the transformation is a priced timed automaton T de-
fined as follows. The set of locations L consists of an initial start loca-
tion l0 = Start, locations for all input and output control points of the
composite mode, and locations resulting from the transformations of all
submodes: SM → SM′. Hence L = {Start, In,Out}

⋃
SM′. The locations

Exit and Write, representing the exit- and write point of the composite
mode, respectively, are marked as urgent. The set of submodes SM is
transformed into corresponding locations as per Definition 12 and Defi-
nition 13.

The set of automaton’s edges is Et = {einit, eloop} ∪ E′
m ∪ Ewrite, where

einit and eloop are initialization and loop edges:

einit = (Start, true, a1?, ∅, Init),

eloop = (Exit, true, a3!, ∅,Entry).

The action a1? of the edge einit ensures synchronization with the ini-
tialization automaton. The action a3! is defined by the architecture and
is responsible for the activation of the modes activated by CM. Synchro-
nization on edges einit and eloop can be omitted, depending on the system
architecture.

We denote by E′
m the set of internal edges obtained during the trans-

formation of the submodes. The set of write edges Ewrite is obtained by
copying all edges of the mode originating in the mode’s entry point and
modifying them to originate from the mode’s write point. For an edge
e = (Mf,A,Mt) ∈ Em, we define the function that modifies the source lo-
cation of an edge to Write as copyToWrite((Mf,A,Mt)) = (Write,A,Mt).
The resulting set of write edges is then Ewrite =

⋃
copyToWrite(e), e ∈

Em : Mf = Entry. The set of actions of T is Act = Act∪{a1?, a3!}. Vari-
ables from the mode are transformed into the set of automaton’s variables
Vt : Vt = Vdm.

Transforming a parallel composition of Remes modes into a
network of priced timed automata. The transformation of the be-
havior of a system modeled in Remes into a network of priced timed
automata starts from the parallel composition of all Remes modes, rep-
resenting the system’s behavior.

If we assume that NM is the set of all modes that are part of the com-
position, we can then formally define the transformation into a network
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of priced timed automata in Definition 15.

Definition 15. (Transforming a parallel composition of Remes
modes into a network of priced timed automata). Let NM be the
set of all atomic and composite modes of the parallel composition. If
we take M to be a mode from the set NM, M ∈ NM, then the model-

to-model transformation r2t
def
= NM → NT transforms the set of Remes

modes into a network of priced timed automata. The transformation r2t
of a set NM is performed by transforming all individual modes M ∈ NM

into corresponding automata am ∈ AM, with the addition of a set of
automata AT, where NT = AM ∪ AT.

The set of predefined automata AT comes from the system architec-
ture. The temperature control system that we introduce in Section 4.4,
and the transformation of its Remes model into priced timed automata,
presented in Section 5.3, will exemplify the use of an initialization au-
tomaton that has been added as a result of the transformation. Ad-
ditional automata may be added for synchronization, or to implement
various connectors defined in the architectural model.

We expect that the transformation results are reviewed by a verifi-
cation expert to check whether the transformation needs adjusting. For
example, in case the guard on an exit edge of a non-lazy atomic submode
is a predicate with more than one term (conjunction of predicates) the
predicate might not be directly translated to a guard, and there might
be a need of adding additional locations. Therefore, the locations of
the resulting automaton corresponding to non-lazy atomic submodes are
marked so that the verification expert pays special attention to them.
Additionally, transforming an urgent Remes atomic submode into an
urgent location may not be correct in all cases, and deadlocks may oc-
cur when outgoing edges of urgent locations contain synchronization. In
such cases, urgent atomic submodes may be instead transformed into
committed locations.

4.4 Example: A Temperature Control Sys-

tem

We demonstrate the modeling and analysis concepts of Remes on a
temperature control system (TCS) for a heat producing reactor. The
example system is taken from a case study analyzed by Alur et al. [10].
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The TCS uses two independent rods that can be inserted into the
core of the reactor, to control the coolant temperature in the core. If in-
serted into the core, the control roads absorb neutrons and consequently
the reaction is slowed down, so the temperature inside the core starts
decreasing. If they are pulled out, the reaction speeds up again, which in
turn increases the core temperature. The goal is to maintain the temper-
ature in the reactor core between its minimum value θmin and maximum
value θmax. Whenever the temperature core reaches θmax, a rod must
be selected and inserted into the core. For safety reasons, a rod can be
inserted again in the core only if T time units have elapsed since its last
usage.

We model the resource usage behavior of the TCS with three Remes

modes Clock, HCController, and RodSelector depicted in Figures 4.8(a),
4.8(b), and 4.8(c), respectively. The modes communicate data through
the global variables temp and tempROD. The way in which the modes
are activated is determined by the architecture of the system that we
present in Chapter 5. Here, we assume that Clock activates HCController
every P time units, and that when HCController has finished executing
it activates RodSelector.

In the TCS model, we make use of three resources: processor load
(CPU), bandwidth (bdw) and memory (mem). We assume mem as a dis-
crete resource belonging to class A, bdw as a discrete resource belonging
to class B, and we treat CPU as a continuous resource belonging to class
C of Table 4.1. We assume that bandwidth presents the width of the
pipe through which the data is being sent. We treat static memory and
simple dynamic memory that is allocated when a mode is entered and
released as soon as the same mode is exited, without memory manage-
ment.

The Clock mode is an atomic Remes mode with an invariant x ≤ P.
The HCController mode contains two atomic Remes modes: Idle and
Heat Cool. The execution of HCController consumes 80 units of static
memory. HCController starts executing by entering the Idle mode, which
is an urgent mode that is exited instantaneously. HCController stays
in mode Heat Cool for C HC time units. The difference (temp HC −
tempROD), where temp HC is the heating produced by the reactor, and
tempROD is the cooling rate of a selected rod, is used to update the
reactor temperature.

The RodSelector mode is made of a conditional connector, three ur-
gent atomic modes Heat, Cool1 and Cool2, and edges. The selected rod
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(a)

(b)

(c)

Figure 4.8: The Clock, HCController, and RodSelector modes of the TCS
depicted in Figures (a), (b), and (c), respectively.
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id is saved in the rod variable, where the value 0 denotes that no rod has
been selected. From Heat, based on the temperature of the core, temp,
and the time since a rod has been last used for cooling the core (i.e., x1
and x2 for rod1 and rod2, respectively), an available rod is selected, and,
consequently, RodSelector enters modes Cool1 or Cool2, or alternatively
finishes executing and exits, provided that no rod needs to be used. Note
that in RodSelector we make selection of rods when there is an available
mode for cooling and temp ≥ (theta max − margin) evaluates to true,
where margin is a safety margin that assures the reactor core will not
overheat. R1 and R2 present the rates of cooling of the first and second
rod, respectively.

We can analyze the Remes–based TCS by transforming it into a net-
work of PTA models, in Uppaal Cora. In order to easily follow the
transformation rules presented in Section 4.3, for modeling the architec-
ture of the system we can use any architectural language that has a clear
separation between data- and control flow (such as ProCom, AADL [44],
SaveCCM [8], or Rubus [52]). In the next chapter we present the ProSave
architectural model of the TCS system, the integration between ProCom
and Remes, and the transformation into priced timed automata.

4.5 Summary

In this chapter, we have introduced Remes – a language for resource
modeling and analysis of embedded systems. The essence of Remes

is that it provides support for reasoning about discrete and continuous
abstract resources characterized further by the way in which they are
consumed and released, and by whether they can be referred to, or not.
The abstract resources, in our case, memory, CPU, energy, bandwidth,
have a dedicated type in the language, that is, mem, CPU, eng, bdw,
respectively. In order to express resource usage in a system, Remes has
a graphical behavioral language influenced by Charon [13], timed and
hybrid automata, and Statecharts. The language supports hierarchical
modeling and has notions of explicit entry- and exit points that make
it suitable as a semantic basis in component-based development frame-
works. Remes has notions of continuous variables, flows, and progress
constraints (invariants), which fit modeling timed behaviors in embedded
systems.

In this setting, we have defined three important resource analysis
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problems: feasibility analysis, trade-off analysis, and optimal/worst-case
resource analysis. All these problems rely on weighted sums of consumed
amounts of resources and their given weights. In this way, the analysis
can result in optimizing the overall resource usage of a system, with re-
spect to parameters, such as criticality or costs of the available resources.
To be able to formally analyze Remes models we have provided a set
of transformation rules that semantically translate Remes modes into
priced timed automata. The concepts of Remes we have illustrated on
a study example of a temperature control system that consumes CPU,
bandwidth, and memory resources.





Chapter 5

Integrating ProCom andRemes
ProCom has been developed to facilitate the modeling and analysis of
functional and extra-functional properties, but does not, per se, pro-
vide any means to actually model them. It needs to be complemented
with formalisms, complying with the component-based approach, which
enable early formal analysis of relevant concerns. One step towards
this support for formal analysis is the integration of Remes, by which
functional behavior, resource consumption and timing can be addressed
within a single modeling language. To accomplish this, in this chapter,
and in paper [105], we propose a way of mapping a ProCom component
interface to a Remes interface (see Section 5.1). Further, in Section 5.2,
we show how to pack a ProCom component, annotated with attributes,
such as required resources, with its associated Remes behavioral model.
Then, both the interface and internal models of component behavior are
seen as the actual reusable unit of composition, which can be employed
as such, without modification, in adequate design contexts. We exem-
plify the concepts of connecting and packaging a ProCom component
with its Remes behavioral model on two examples: a temperature con-
trol system, where the architecture of the system is modeled in ProSave
(see Section 5.3), and on a turntable drilling system, where the system
architecture is modeled in ProSys (see Section 5.4).

95
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5.1 Connecting Component Interfaces andRemes Modes

The connection between ProCom and Remes is done differently for
ProSave and ProSys. Hence, in this section, we first define the connec-
tion between ProSave and Remes, and then we define the connection
between ProSys and Remes.

5.1.1 Connecting ProSave and Remes
The connection between ProSave and Remes is done by mapping a
ProSave- to a Remes interface as follows. The input- and output trig-
ger ports from a ProSave component are mapped to interface read- and
interface write variables of type boolean in a Remes mode, respectively.
However, since we assume that the ProSave architectural model is in
charge of signaling when the modes should be entered, we choose to omit
such signals from the Remes modes. Similarly, we map the ProSave
input- and output- data ports to interface read- and interface write-
Remes variables, respectively. Note that a Remes mode should be as-
sociated with each service of a ProSave component, since services can
be triggered independently and may run concurrently. This is due to
the Remes “run-to-completion” semantics, where only one submode at
a time can be active.

Definition 16. (Formal Definition of Connecting the ProSave
and Remes interfaces). Let P be the set of data ports of a ProSave
component C made of one service. Each data port pi∈[1...n] ∈ P is a tuple
(Name,Kind,Type,Value), where: Name is the data port identifier, Kind
is a tag denoting the kind of a data port, possible tag values are input data
or output data, Type encodes the port’s data type, and Value denotes a
literal data value compatible with some type. Further, let M be a Remes

mode that depicts the behavior of the component C, and V the set of
all variables of mode M that correspond to the data ports of C. Each
variable vj∈[1...n] ∈ V is a tuple (Name,Kind,Type,Value), where: Name
is an identifier of the variable, Kind distinguishes between interface read-
(variable of the mode coming from the ProSave component’s interface
that may be written by other modes) and interface write- (variable of
the mode coming from the ProSave component’s interface that may be
read by other modes) variables, Type encodes the variable’s data type,
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and Value stores the actual variable value. The connection between mode
M and the interface of a ProSave component C is given by a mapping
function µ : P → V that maps component data ports to Remes mode
variables. Assuming a data port pi the mapping is done as follows

µ(pi) = vi

such that the following boolean condition holds:

Name(vi) = Name(pi)

∧

((Kind(pi) = inputdata∧ Kind(vi) = interface read

∧Type(vi) = Type(pi) ∧ Value(vi) = Value(pi))

∨

((Kind(pi) = outputdata∧ Kind(vi) = interface write

∧Type(vi) = Type(pi) ∧ Value(vi) = Value(pi))

ProSys port Remes variables
d0 interface read int d0

t0 omitted from the Remes mode

d1 interface write float d1

t1 omitted from the Remes mode

Figure 5.1: Example of how ProSave ports are mapped to Remes vari-
ables.

The parallel composition of theRemesmodes associated to all ProSa-
ve components in the given system, together with representations of the
ProSave connectors and connections, describe the whole system’s be-
havior. Figure 5.1 exemplifies the mechanism of connecting the ProSave
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and Remes interfaces. Component A receives a trigger via trigger port
t0 and a data of type int via input data port d0, and it sends a trigger
via trigger port t1 and a data of type float through data port d1.

5.1.2 Connecting ProSys and Remes
The connection between a Remes mode and the interface of a ProSys
component is established in the following way. An input message of
a component is mapped to two interface read variables of its mode,
whereas an output message of a component is mapped to two interface
write variables of its mode. In each case, one of the variables is a boolean
that signals the receiving/sending of the message, respectively, while the
other variable keeps the value of the message. If the message is empty,
only the boolean variable is used.

ProSys port Remes variables
B0 interface read boolean B0 and float B0 value

B1 interface read boolean B1

B2 interface write boolean B2 and int B2 value

Figure 5.2: Example of how ProSys ports are mapped to Remes vari-
ables.

Definition 17. (Formal Definition of Connecting the ProSys
and Remes interfaces). Let P be the set of message ports of a ProSys
component C. Each port pi∈[1...n] ∈ P is a tuple (Name,Kind,Type,Value),
where: Name is the port identifier, Kind models the input/output feature
of the message port, Type encodes the port’s data type, and Value stores
the port’s actual data value. Further, let M be a Remes mode that de-
picts the behavior of the component C, and V the set of all variables of
mode M that correspond to the ports of C. Each variable vi∈[1...n] ∈ V
is a tuple (Name,Kind,Type,Value), where: Name is an identifier of the
variable, Kind distinguishes between interface read- and interface write
variables, Type encodes the variable’s data type, and Value stores the ac-
tual variable value. The connection between mode M and the interface of
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a ProSys component C is given by a mapping function µ : P → V that
maps component ports to Remes mode variables. Assuming non-empty
messages (Value(pi) 6= NULL), the mapping is defined as follows:

µ(pi) = vi, vi = (vi1 , vi2),

such that the following boolean condition holds:

Name(vi1 ) = Name(pi) ∧ Name(vi2 ) = Name(pi) + “ value
′′

∧

((Kind(pi) = input ∧ Kind(vi1 ) = interface read ∧ Type(vi1 ) = boolean

∧Value(vi1 ) = false ∧ Kind(vi2 ) = interface read

∧Type(vi2 ) = Type(pi) ∧ Value(vi2) = Value(pi))

∨

(Kind(pi) = output ∧ Kind(vi1 ) = interface write ∧ Type(vi1 ) = boolean

∧Value(vi1 ) = false ∧ Kind(vi2 ) = interface write

∧Type(vi2 ) = Type(pi) ∧ Value(vi2) = Value(pi)))

In case an empty message is received/sent (Value(pi) = NULL), the map-
ping function returns vi = (vi1 ,NULL).

The parallel composition of theRemesmodes associated to all ProSys
components in the given system, together with representations of the
ProSys message channels and connections, describe the whole system’s
behavior. Figure 5.2 exemplifies the mechanism of connecting the ProSys
and Remes interfaces. Component B receives a message of type float
via input port B0 and an empty message via input port B1, and it sends
a message of integer type through output port B2.

5.2 Packaging ProCom Components and Re-mes Modes Together

The packaging of ProCom components and theirRemes behavioral mod-
els is managed by the Attribute Framework [92], in which extra-functional
properties are represented by attributes consisting of an attribute type
and one or more attribute values. The attribute type specifies how a given
extra-functional property is represented, i.e., what data type is required
for its values and how they should be manipulated. The complete list of
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the attribute types that are available during the development is stored
in an attribute registry together with the specification of each attribute,
that is (i) the list of entities to which this attribute can be attached
(i.e., attributables), and (ii) the valid storage format i.e., data format
for its values (e.g., integer, interval, external models, complex types).
Providing that it is authorized by its specification, an attribute can be
associated with any entity of a component model, such as a component,
a message port, a connection or even a component instance.

Table 5.1 gives some examples of possible attribute specifications. For
instance, one of the attributes captures static memory usage, represented
by a single integer. This property makes sense for a component or a
subsystem, but not for instance a single message port, and thus the
specification states that it can only be attached to those two entity types.
The packaging of ProCom and Remes is achieved by defining a new
attribute type attached to a ProCom component or a ProSave service in
the attribute registry, which has a complex attribute value consisting of
(i) a reference to the Remes model file in the component structure and
(ii) a reference to the mapping file specifying the relation between the
ports of the component and the variables of the Remes model, as we
described in Sections 5.1.1 and 5.1.2.

TypeID Attributable(s) Data format Documentation (short)

Static
memory

Component Int The amount of memory (in
kB) statically allocated by
the ProSave component or
the ProSys subsystem.

Average
delay

Channel Int The average delay (in ms)
for communication over the
channel.

Remes

model
Component,
Service

<modelFilePath;
mappingFilePath>

A reference to a Remes

model, and to the mapping
file between ProCom com-
ponent’s ports and the vari-
ables used in the Remes

model.

Table 5.1: Examples of attributes.
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5.3 Example Revisited: A Temperature Con-

trol System

In Chapter 4, we have introduced the temperature control system (TCS)
example, and we have modeled its behavior with three Remes modes:
Clock, HCController and RodSelector. Here, we first model the software
architecture of the TCS in ProSave. Then, we exemplify the connection
between ProSave and Remes on the TCS, and next, formally analyze
the TCS.

5.3.1 Architecting the TCS in ProSave

The TCS system can be modeled in ProSave with two components
HCController and RodSelector, and one clock connector Clock (see Fig-
ure 5.3). The Clock connector periodically generates the trigger activate
that activates the HCController component. HCController is responsi-
ble for activating the heating/cooling process in the core by sending
heat cool trigger to RodSelector. When activated, RodSelector uses the
temperature data of the core conveyed through data port temp to decide
whether the core should continue to heat, or if a road should be inserted
into the core to decrease the temperature. Finally, the temp value in the
HCController is updated by the reading of the latest value of the variable
tempROD that is assigned to the cooling effect of the rods within the
RodSelector component.

RodSelectorHCController

Clock
activate heat_cool

temp

tempROD

Figure 5.3: ProSave design of the temperature control system.
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5.3.2 Behavioral modeling of the TCS in Remes
The connection between the ProSave HCController and RodSelector com-
ponents, and the Remes modes describing their behavior, is done as
described in Section 5.1.1. The input- and output data ports of the com-
ponents are mapped to interface read- and interface write Remes vari-
ables of same type as the port’s data type, respectively. As such, we have
mapped the input data port tempROD from the HCController component
to the interface read variable tempROD in the HCController Remes mode
(see Figure 5.4(b)). On the other hand, we have mapped the output data
port tempROD from the RodSelector to the interface write variable tem-
pROD in the RodSelector Remes mode (see Figure 5.4(c)). Similarly,
we have mapped the output data port temp from the HCController com-
ponent to the interface write variable temp in the HCController Remes

mode, and we have mapped the input data port temp of the RodSelector
to the interface read variable temp in the RodSelector Remes mode.

5.3.3 PTA formal modeling and analysis of the TCS

We have analyzed the Remes–based TCS, as a network of PTA mod-
els, in Uppaal Cora. We have obtained the PTA models presented in
Figure 5.5 by applying the transformation rules stated in Section 4.3, au-
tomatically, by using the Remes tool-chain introduced in Chapter 6. We
have transformed the Remes modes Clock, HCController and RodSelector
into PTA models depicted in Figures 5.5(b), 5.5(c) and 5.5(d), respec-
tively. The Init automaton shown in Figure 5.5(a) serves for the system
startup of the TCS. It has been added to the PTA model of the TCS as
a result of the transformation from Remes into PTA. Note that we have
used component triggering information from the ProSave TCS model, to
insert appropriate synchronization channels into the resulting PTA. We
have mapped the trigger ports activate and heat cool into synchroniza-
tion channels activate and heat cool, respectively. For example, in the
HCController automaton the synchronization channel activate has been
added on the edge connecting the locations Init and Idle. This channel is
used for synchronization between the automata Clock and HCController.
The interface read variable tempROD from the HCController mode and
the interface write variable tempROD from the RodSelector mode are to-
gether mapped to one global variable tempROD in the PTA model of the
TCS. Similarly, the interface write variable temp from the HCController
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(a)

(b)

(c)

Figure 5.4: The Clock, HCController, and RodSelector modes of the TCS
depicted in Figures (a), (b), and (c), respectively.
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ExitStart start!

(a) (b)

(c)

InitStart

Cool1

Exit

Cool2

HeatEntry

rod==0

heat_cool? cost+=wmem*40

rod==2

heat_cool?
cost+=wmem*40

rod==1

heat_cool? cost+=wmem*40

start?

rod==1

heat_cool? temp>(theta_min+margin)
tempROD:=R1,
cost+=wbdw*10

temp<=(theta_min+margin)

tempROD:=0, rod:=0, x1:=0,
cost+=wbdw*10-wmem*2

x1>=T and temp>=(theta_max-margin)

rod:=1,
run(),
cost+=wbdw*30+wmem*2

temp<=(theta_min+margin)

tempROD:=0, rod:=0, x2:=0,
cost+=wbdw*25-wmem*7

temp>(theta_min+margin)

tempROD:=R2,
cost+=wbdw*25

x2>=T and temp>=(theta_max-margin)

rod:=2,
run(),
cost+=wbdw*30+wmem*7

rod==2

heat_cool?

not((x1>=T and temp>=(theta_max-margin)) or (x2>=T and temp>=(theta_max-margin)))

x1:=(x1==T?x1:x1+1),
x2:=(x2==T?x2:x2+1),
cost+=wbdw*30

rod==0 heat_cool?

(d)

Figure 5.5: The TCS modeled with four PTA: (a) Automaton for ini-
tialization of the TCS system, added as a result of the automatic trans-
formation from Remes into PTA, (b) The Clock connector as a PTA,
(c) The HCController component as a PTA, and (d) The RodSelector as
a PTA.
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mode and the interface read variable temp from the RodSelector mode
are together mapped to one global variable temp in the PTA model of
the TCS. The TCS declared variables and their initial values are shown
in Table 5.2.

Scope Declarations

Global

const int wbdw = 2, wcpu = 5, wmem = 1;
int temp = 7, tempROD = 0;
chan heat cool, activate;
broadcast chan start;

Clock
const int P = 100;
clock x;

HC controller
const int C HC = 25, temp HC=3
clock x;

Rod selector

const int T = 3, theta max = 25;
const int theta min = 6;
const int margin = 5, R1 = 5, R2 = 6;
int rod = 0, count = 0, trace[3];
int x1 = 3, x2 = 3;

Table 5.2: Declarations of the TCS PTA model.

Clock, HCController and RodSelector wait in location Start for the
system startup. The locations Init, Entry and Exit have been created
from the init-, entry- and exit points of the HCController and RodSelector
composite modes. The return edge from Exit to Entry location ensures
the cyclic behavior of the HCController and RodSelector automata. The
conditional connector from the RodSelector mode has been removed in
the transformation, and the edges entering the conditional connector
have been combined with the edges exiting the conditional connector.
As a result there are three outgoing edges from the Init and Exit locations
of the RodSelector automaton (see Figure 5.5(d)).

For analysis purposes, we have added the TCS model with the func-
tion run() (see Figure 5.5(d)) that merely stores the first few selections
of rods, in an array of integers.

In the weighted cost function that represents the analysis model for
Remes, we have encoded the relative importance of the resources CPU,
bdw and mem. We consider CPU to be the most critical resource followed
by bdw and mem, so we give the highest weight to CPU in the cost
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function. The cost of resource usage is influenced by the individual
weights of each resource, and the consumed (utilized) resource on each
edge or location. Currently, Uppaal Cora can only model-check PTA
models where the cost function is monotonically increasing. Therefore,
in order to keep the cost monotonically increasing we had to fine-tune
the weights of the resources.

The analysis model of the TCS system is the following cost function:

ctot = wcpu× ccpu + wbdw× cbdw + wmem× cmem

where wcpu = 5, wbdw = 2 and wmem = 1, and ccpu, cbdw and cmem are
the accumulated used amounts of CPU, bdw and mem, respectively.

Before embarking upon formal analysis of the TCS, we check the
absence of deadlocks, property specified in Uppaal as follows:

AG¬ deadlock (5.1)

We have also checked the model against the following safety prop-
erties, that basically capture the requirements set on the temperature,
with respect to its upper and lower bounds:

AG (temp ≤ thetamax) (5.2)

AG (temp ≥ thetamin) (5.3)

After verifying the above properties on the PTA model of the TCS,
by model-checking it with Uppaal Cora, we proceed to studying the
minimum cost reachability problem, that is, to compute a model execu-
tion trace having the lowest possible resource cost. In our case, we have
been interested in finding an execution order of the system (a cheapest
sequence of rod insertions) that results in the lowest possible total re-
source cost, that is, to minimize ctot. Such information extracted from
the analysis could be used in the implementation stages of the TCS sys-
tem, by resolving existing non-determinism in such a way that a specific
execution trace, the cheapest with respect to total resource usage, is
enforced.

For illustration, let us assume that both rods are available for cooling,
and check for an optimal trace in which rods are inserted into the reactor
three times, expressed as the following reachability property:
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E F (count == 3) (5.4)

Uppaal Cora has found that the second rod should be inserted two
times in a row, followed by the first one, the third time. Table 5.3 shows
the cost of this best trace, and also the cost of two other more expensive
traces. Note that in our model the availability of both rods is always
ensured by the chosen model parameters, presented in Table 5.2. We
have noticed that, for the chosen parameters, it is always cheaper that
the second rod is inserted in the core, even though the cost for selecting
the second rod (trace Heat → Cool2 → Exit) is higher than the one for
the first rod (trace Heat → Cool1 → Exit). This fact is a consequence of
the higher cooling rate of the second rod as compared to the one for the
first rod.

Scenario Order of execution Cost
1 P2-P2-P1 15157
2 P1-P2-P1 16357
3 P1-P1-P2 17562

Table 5.3: Cost of execution for different rod insertion scenarios.

Discussion. For the TCS, we could only partially tackle the trade-
off resource analysis problem, by giving the highest weight to the most
critical resource, the CPU. We have also, by hand, conducted optimal
conditional reachability resource usage analysis, by minimizing the mem
consumption, while imposing upper bounds on the CPU consumption,
in the TCS. For instance, for assuming three sequential insertions of the
rods in the reactor’s core, it might happen that it is necessary to insert
the second rod three times in a row, in order to satisfy all constraints,
even though the total cost is higher for such a trace than for the best
execution trace.

5.4 Example: A Turntable Drilling System

As our second example, we consider the turntable drilling system previ-
ously described by, e.g., Bos and Kleijn [28] and Bortnik et al. [27]. The
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system, depicted in Figure 5.6, consists of a rotating table that moves
products between processing stations where they are drilled and tested,
and then removed from the table once they pass the test.

Figure 5.6: The turntable system (load and unload stations are not
shown).

The load station places new products on the table (1), after which
they are moved to the drill station (2) by rotating the turntable 90◦.
Drilling requires that the product is securely held in place by a clamp
mechanism. After drilling, the product is moved to the testing station
(3) where the depth of the drilled hole is measured. Finally, the unload
station (4) removes the product from the table, provided that it passed
the test. If not, it remains on the table to be drilled and tested again.
The turntable has four slots, each capable of holding one product. Thus,
the stations can operate in parallel, so that while the first piece is being
tested, a second piece can be drilled, and a third piece loaded, etc.

5.4.1 Architecting the turntable in ProSys

Wemodel the turntable drilling system in the ProCom component model,
with five ProSys subsystems – Loader, Unloader, Turntable, Driller and
Tester – as depicted in Figure 5.7. We assume that the Loader, Unloader
and Turntable components can be reused from a previous project. In
order to ensure the synchronization between the stations and the table,
e.g., guaranteeing that the table turns only when no processing station is
operating, an additional subsystem is needed: the Controller component.
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Figure 5.7: ProCom design of the turntable system.

The latter keeps track of the current status of the four slots, and activates
the four stations and the turntable accordingly, by sending messages and
receiving messages back once they are done.

The Tester and Driller components have similar interfaces; an incom-
ing message telling the station to start processing, and an outgoing mes-
sage indicating that it has finished. The output message of Tester also
contains a boolean value representing if the test has succeeded or not.

It is possible to further decompose each of these ProSys components
into either smaller ProSys components or into ProSave components ac-
cording to the level of complexity of the functionality, and the potential
for distribution. Before doing that, however, the developer may want to
validate the feasibility of the design so far. Some properties can be ana-
lyzed from the ProCom design alone, for example that connected ports
and channels match. However, in order to reason about properties, such
as functional correctness, timing and resource consumption, we need to
model the behavior of the components identified so far.

5.4.2 Behavioral modeling of the turntable in Remes
We model the functional, timing and resource usage behavior of the
turntable components in Remes. Since the Loader, the Unloader and the
Turntable components are reused, they already have behavioral models
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in an assumed repository, whereas the remaining components await for
Remes behavioral descriptions. In the following we present the Remes

models of the Driller, the Tester and the Controller components, depicted
in Figures 5.8, 5.9, 5.10, respectively.

The Driller component is responsible for moving the drill up and
down, and for locking ad unlocking the clamp. In order to do this,
it reads values from the drill and clamp sensors, modeled by boolean
variables sdu (drill in upmost position), sdd (drill in downmost position),
scl (clamp fully locked) and scu (clamp fully unlocked). We assume that
these values are set or reset by hardware devices, whose behavior we do
not model. We also assume that the Driller component contains three
actuators modeled by variables drill power (can be in states on or off),
drill position (can be in states down or idling), and drill clamp (can be in
states lock or unlock). Neither of the two message ports of Driller carries
values, and thus they are mapped to two boolean variables Drill and
Drilled, as described in Section 5.1.2.

The Driller remains in the non-lazy mode Idle until receiving a Drill
message. When this happens, the component goes through a sequence
of submodes: Clamp locking, Driller moving down, Driller moving up and
Clamp unlocking. Each of these submodes is exited as the result of a
sensor value turning true. When exiting the last submode, a Drilled
message is sent, indicating that the operation is finished.

This Remes model also models Driller subsystem’s energy consump-
tion. We assume the following: powering the Driller consumes eng pow
units of energy per time unit, locking or unlocking the clamp consumes
eng clamp units of energy per time unit, and drilling consumes eng drill
units of energy per time unit. Moreover, we assume that the time of
each Driller operation cycle is bounded to the interval [tdrill1, tdrill2].

The Tester component is responsible for testing the quality of the
drilled products. In order to do this, it reads values from the testing
sensors, modeled by two boolean variables stu (tester is in up position)
and std (tester is in down position). The input message port of the
Tester does not carry a value, so we map it to a boolean variable Test.
On the other hand, the output message port of the Tester carries a
value of type boolean, so we map it to two boolean variables Tested
and Tested value. The Tester component remains in the non-lazy mode
Idle until receiving a Test message. When this happens, Tester moves
to mode Moving down and starts testing the quality of a given product.
We assume that the time spent in the mode Moving down in bounded to
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Figure 5.8: The behavior of the Driller component modeled in Remes.

the interval [move down, timeout]. If the product is not properly drilled
the testing finishes unsuccessfully. In that case the Moving up1 mode is
visited and when this mode is exited, a boolean message with a value false
is sent via the message port Tested. If the testing finishes successfully
(i.e., std and stu become true) a boolean message with a value true is
sent to the Controller through the message port Tested.

The Controller component, depicted in Figure 5.10, keeps track of
the states of the four slots and operates the stations and the turntable
accordingly by exchanging messages with all of them. The behavior
defined by the Remes mode consists of two main submodes, one in which
the controller waits for messages from the stations, and one waiting for
the turntable to finish turning.

The submode Wait for turning is exited when the Turned message
arrives. Depending on the current state of the four slots, messages are
sent out to the respective station. This is managed by the four urgent
modes and the guards Case9, . . . ,Case17. For example, the Load message
is only sent if the first slot is empty, and the Drill message is only send
if the second slot is occupied. The local variables, signal loader etc., are
used to keep track of what messages have been sent. When all messages
are sent, the history variable h is assigned to the value Wait for stations,
and the Write point is visited. Thus, the Controller will be immediately
reentered in the submode Wait for stations.

In submode Wait for stations, the Controller waits until it receives a
reply to one of the messages sent. Since this is a non-lazy mode, it must
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Figure 5.9: The behavior of the Tester component modeled in Remes.

be exited as soon as the guard of one of the outgoing discrete actions
Case1, . . . ,Case7 is satisfied. If the message carries a value (which is the
case for Loaded and Tested), it is used to update the state of the corre-
sponding slot. When all messages have been received, the message Turn
is sent to the Turnable, and the history variable is set to Wait for turning
before exiting through the Write point, meaning that the execution will
be immediately resumed in that submode.

5.4.3 PTA formal modeling and analysis of the turn-
table system

We have analyzed the model of the turntable system, transformed into
a network of PTA models, in Uppaal Cora. The semantic translation
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Figure 5.10: The behavior of the Controller component modeled in
Remes.
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Figure 5.11: The Controller Remes mode translated to PTA.
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from Remes to PTA is done by applying the transformation rules stated
in Section 4.3. In the following, we present the transformed PTA model
of the Controller mode, shown in Figure 5.11. The locations Init, Entry
and Write have been created from the init-, entry- and write points of
the Controller mode. The Exit location has been omitted from the model
since there is no edge in the Controller mode that is connected with the
exit point. Note that since Controller models a behavior of a ProSys
component that does not wait for an activation from the environment,
we have marked the Init and Entry locations as urgent ones . The re-
turn edge from Write to Entry location ensures the active behavior of the
Controller component. The conditional connectors from the Controller
mode have been removed in the transformation, and the edges entering
a conditional connector have been combined with the edges exiting the
same conditional connector. Every non-lazy submode has been trans-
lated to two locations: one location representing the submode and one
additional committed location for each outgoing edge from the non-lazy
submode. Observe, in Figures 5.10 and 5.11, that the Wait for turning
mode has been translated in PTA into two locations: Wait for turning
and Wait for TurningSync. The execution of Controller stays in the lo-
cation Wait for turning until the guard Turned becomes true. This is
ensured with the synchronization action controllernlSync? with an addi-
tional dummy PTA automaton (see Figure 5.10) over the urgent channel
controllernlSync.

turntablenlSync!

testernlSync!

loadernlSync!

unloadernlSync!

drillernlSync!

controllernlSync!

Figure 5.12: An additional automaton that ensures the semantics of the
non-lazy modes in the turntable system.

For analysis purposes, we have added the sccmController PTA model
with the functions runprocessed() and runfailed() (see Figure 5.12), which
store the number of processed- and failed products, respectively.



116 Chapter 5. Integrating ProCom and Remes
After having provided Uppaal Cora with the PTA model of the

turntable system, the last step before actually verifying the system de-
sign, is to formulate the desired system requirements as temporal logic
formulas. Table 5.4 lists a few representative system requirements to-
gether with their temporal logic formulas. All properties are satisfied.
Property 1 is a generic safety property, specifying the absence of a sys-
tem deadlock, i.e., the system cannot reach a state from which it cannot
continue operating. The turntable system is verified to be deadlock free.
The next step is to verify that it satisfies the functional system require-
ments, here represented by properties 2 and 3. Properties 4 and 5 are
examples of extra-functional properties, addressing time and resource
usage, respectively. Uppaal Cora has calculated that the minimum
energy consumption for processing five products is 1370 units.

♯ System property Temporal logic formula

1 The system should be
free from deadlocks.

AG¬ deadlock

2 A product must be
clamped when drilled.

AG (Driller.Driller moving down ⇒

Driller.drill clamp == locked)

3 The table should never
turn when one of the
stations is operating.

AG (Turntable.Turn1 ∨ Turntable.Turn2
⇒ (Loader.Idle ∨ Loader.Write)
∧ (Unloader.Idle ∨ Unloader.Write)
∧ (Tester.Idle ∨ Tester.Write)
∧ (Driller.Idle ∨Driller.Write))

4 Processing five prod-
ucts should never take
more than 50 seconds
(assuming at most one
failed drilling).

AG (¬ loaded failed ∧ time > 50∧
failed products ≤ 1 ⇒ processed products ≥ 5)

5 What is the minimum
energy consumption
for processing five
products?

E F (processed products == 5)

Table 5.4: System properties of the turntable system.

Ideally, any analysis result of a component analyzed in isolation
should be stored as an attribute of that component, as we have de-
scribed in Section 5.2. In the turntable case, the second property in
Table 5.4 holds for the Driller subsystem regardless of how the rest of the
system behaves. The property could be packaged as a reusable attribute
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of the Driller subsystem. However, the details of how such attributes are
specified are outside of the scope of this thesis.

5.5 Summary

In this chapter, we have shown how the ProCom component model,
specifically intended for architectural modeling of control-intensive em-
bedded systems, can be combined with the Remes behavioral modeling
language, in which functionality, timing and resource usage can be ad-
dressed together. In turn, this permits analysis of system level proper-
ties, while also supporting reuse of behavioral models when components
are reused. To accomplish this, we have proposed a way of mapping
the ProCom component interface onto the variables of Remes modes,
such that the two models become connected. By packaging ProCom
components together with their Remes behavioral models via a gen-
eral attribute framework, we have addressed the important problem of
model reuse. Transformations of Remes models into timed automata or
priced timed automata, according to the transformation rules described
in Chapter 4, allow for model-checking various properties, performed lo-
cally or at system level. We have demonstrated the connection between
ProCom components andRemesmodes on two examples: a temperature
control system and a turntable drilling system. The relation between
Remes models and other, simpler attributes should be investigated fur-
ther, as well as the relation between the Remes model of a composite
component and those associated with its subcomponents.





Chapter 6

The Remes Tool-chain

Based on the concepts described in Chapter 4, we have developed the
Remes tool-chain [62, 87] that presents an Integrated Development En-
vironment for construction and analysis of embedded systems behavior,
modeled in the Remes language. It is built on the Eclipse Platform [98],
which provides a common, familiar user interface. Our goal during the
implementation of the tool-chain was to integrate it with the existing
development environment concepts, and to reduce the learning effort.
The Remes tool-chain consists of basic elements, such as meta-models,
graphical editors, model transformations, and behavior testing support.
This chapter gives an overview of the Remes tool-chain architecture and
the main tools consisting the tool-chain (see Section 6.1), and presents
the tool-chain workflow that can be used for modeling and analysis of
Remes-based systems (see Section 6.2).

6.1 Overview of the Remes Tool-chain

The Remes tool-chain provides two sets of tools: (i) behavioral modeling
tools for defining platform profiles (i.e., platform profile editor) and for
building complex Remes models (i.e., Remes editor) and priced timed
automata models (i.e., ULite editor), and (ii) analysis tools for simu-
lating Remes models and integration with Uppaal and Uppaal Cora

tools to visually inspect transformed (priced) timed automata models
and verify model properties. The tool-chain can be integrated with other
architectural modeling- and external tools. Figure 6.1 shows the over-
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all tool-chain structure. Most of the tools in the Remes tool-chain are
integrated with the Eclipse environment and presented as actions and
wizards to the user, e.g., wizards to run transformations. Some inter-
vention is required to run certain tools, as the user interface is not yet
fully developed.
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Figure 6.1: Overview of the Remes tool-chain.

6.1.1 Behavior Modeling Tools

The Remes tool-chain includes three editors: the Remes editor for mod-
eling Remes behaviors, the ULite editor for examining the generated
priced timed automata (PTA) from theRemes into PTA transformation,
and the platform profile text editor where the resources of the platform
can be declared. The three editors are based on the Eclipse Graphi-
cal Modeling Framework (GMF) and the Eclipse Modeling Framework
(EMF). The Remes andULite graphical modeling editors are presented
in Figure 6.2, marked with ❶ and ❷, respectively.

Meta-models

We have used EMF to define the meta-models of Remes, ULite and the
platform profile. From the meta-models we have partially generated the
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implementation code of the editors. We have specified two variants of
the Uppaal meta-model – the lightweight meta-model (ULite) is used
internally within the tool-chain, and the full Uppaal meta-model is used
to export models for verification inUppaal. ULite is a subset of the full
Uppaal meta-model and includes just the timed automata model, with-
out the diagram layout information presented in the full meta-model.
ULite contains resource cost declarations, which are transformed dif-
ferently into models for Uppaal and Uppaal Cora. The two model
variants, Uppaal and Uppaal Cora, share the same syntax, but Up-

paal Cora models include cost specification, which is not allowed in
“plain” Uppaal models. The Remes and ULite meta-models can be
found in Appendix A and B, respectively. Details about the platform
profile specification can be found in Appendix C.

Figure 6.2: Remes ❶ and timed automata ❷ editors, simulator console
output ❹ and simulator variable trace ❸.

The Remes editor

The Remes editor allows the user to easily create Remes artifacts, such
as atomic and composite modes, edges or conditional connectors. Sub-
modes and conditional connectors can be nested inside composite modes.



122 Chapter 6. The Remes Tool-chain

The user defines the control flow by creating edges between diagram el-
ements. The action guards of the edges are defined by in-place editing
in the diagram. The user can define typed variables, constants and re-
sources in separate sections within the modes. The Remes diagram
editor integrates with the Eclipse properties view, which displays and
edits context sensitive information for the currently selected diagram
element. Filters can be applied over the Remes diagram to outline a
particular aspect of the Remes model – behavior, timing or resource
usage. When the user saves a Remes diagram to a file, the guard and
action expressions are parsed and checked for errors. The expression
parser was built with the help of ANTLR [16] parser generator. Parsed
expressions are stored with the model, ready to be used by other tools.

6.1.2 Analysis Tools

After modeling the behavior of a given system in the Remes editor, the
Remes tool-chain can be used for analysis of that system behavior. The
Remes tool-chain supports two types of analysis: simulation of Remes

behaviors by using the Remes simulator, and formal analysis of Remes-
based systems.

The Remes simulator

Simulating and testing system behaviors as they are being designed can
provide valuable input to the system designer. Remes models can be
tested with the Remes simulator (marked with ❹ in Figure 6.2), a stan-
dalone Java application integrated with the tool-chain using the Eclipse
Platform Debug [99]. One of the steps of launching the simulator is to
generate Java code used to represent the model within the simulator.
Java code generation is performed with Acceleo [6]. When launching a
Remes behavior in the Remes simulator, the system designer can spec-
ify the platform profile to be used (if not specified, a default profile will
be applied). The system designer can then run the simulator which up-
dates mode variables and resources in each simulation round, based on
passed time. The system designer can visualize the mode transitions,
the clock- and variable changes in the simulator output. In addition,
the simulator can be configured to record changes of model variables
to the trace database that can be visualized on a simple chart or used
for later analysis. Figure 6.2 illustrates the user interface of the Remes
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tool-chain. The screen-shot shows graphical editors for Remes ❶ and
ULite models ❷, the Remes simulator output in a console ❹ and vari-
able value traces recorded from a previous simulator run ❸. Figure 6.3
shows the simulation started in debug mode when a behavior is executed
step-by-step. Mode hierarchy ❺ displays active modes (highlighted in a
model editor ❻), and variable values for a selected mode ❼. Since the
Remes simulator is outside the scope of the thesis, for more information
we refer the reader to [86, 87].

Figure 6.3: Remes testing interface, mode hierarchy ❺ and simulator
console output ❹, mode highlight ❻ and variable inspector ❼.

Transforming Remes into priced timed automata

By following the transformation rules presented in Section 4.3 Remes

diagrams can be transformed into ULite diagrams to prepare for formal
analysis. Model transformations, implemented with the ATL Transfor-
mation Language (ATL) [17, 64], transform models between different
meta-models. We provide transformations between Remes and ULite

models, and betweenULitemodels andUppaal orUppaal Coramod-
els. A given verification expert can inspect and tune the timed automata
obtained from the transformation in the ULite graphical editor. Once
the model is ready for formal analysis, it can be exported to an Uppaal

model format, with the provided transformation actions. The verifica-
tion engine distributed with Uppaal can be started directly from the
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tool-chain, with verification queries specified part of the Eclipse launch
configuration. Simulation of the model, similar to the one in Uppaal is
also integrated, using the Java API for Uppaal. Simulation traces are
visualized and can be executed in steps, shown in Figure 6.4. Figure 6.4
displays part of the Uppaal integration in the Remes tool-chain. Up-

paal simulator trace is shown as a list of state transitions ❽, and as
a graphical trace ❿. Values of Uppaal variables can also be inspected
in ❾. The example model shown in the figure comes from a validation
case-study that we describe in Chapter 7. We envision that the informa-
tion about the relative importance of the resources of the platform (i.e.,
their weights) in the Remes into PTA transformation will be provided
by the platform profile. However, this process is not yet automated,
and currently we expect that the verification expert manually enters the
information about the weights in the transformed Uppaal priced timed
automata model.

Figure 6.4: Uppaal integration, showing a simulation trace with enabled
transitions ❽ and variables ❾, and a graphical simulation trace ❿.

6.1.3 Integration between ProCom and Remes
Finally, we have integrated the Remes tools with the ProCom Integrated
Development Environment (Pride) [26], which provides component trig-
gering information from ProCom architectural models that can be used
to insert appropriate synchronization channels in the transformed priced
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timed automata models. The integration between the ProCom compo-
nent model and the Remes behavioral language we have done via the
Attribute Framework [92] and the QVT [40] transformation language,
as we have described in Chapter 5. We had as goals to provide map-
ping between a ProCom component and a Remes model, defining the
component’s behavior, and to provide generation of a template Remes

model out of the ProCom component. Therefore, in Pride we have used
QVT model-to-model transformation to create blank Remes templates
for ProCom components. Each template contains one empty compos-
ite mode with pre-created variables matching the ProCom component
ports, resulting from the mapping by convention. The generated Remes

model acts as a stub, which is later edited by a system designer or a ver-
ification expert. We refer the reader to [61] for a thorough description
of the integration of the Remes tool-chain in Pride.

6.2 Workflow of the Remes Tool-chain

The Remes tool-chain implements a workflow based on two user roles:
a system designer role, and a verification expert role. The system de-
signer uses the Remes tool-chain for modeling and simulating Remes

behaviors. As such, this role is similar to that of a software model-
er/developer, and is focused on defining behavior models in Remes and
simulating/testing these behaviors. The responsibility of the verification
expert role is to use the Remes tool-chain for formal analysis of Remes

behaviors. Note that the two roles are not necessarily always represented
by different users. However, we envision that the verification expert role
is dedicated to persons that have deeper knowledge in formal analysis.

Figure 6.5 shows the workflow of the tool-chain, split in four steps:
when the tool-chain is used by the system designer for simulating/testing
Remes behaviors, and when the tool-chain is used by the verification
expert for formal analysis of Remes behaviors. We envision that the
tool-chain will be first used for simulation of Remes behaviors to see
whether they perform as expected, and once they perform correctly they
will be transformed into PTA for formal analysis.

For illustration, suppose that the system designer works on defining
a system’s behavior. The system modeling starts with the specification
of the system architecture, using an architectural language (such as the
ProCom component model). The system designer specifies the archi-
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Figure 6.5: Workflow of the Remes tool-chain.

tectural elements of the system, and assigns a Remes behavioral model
to each element. She models behaviors in the Remes graphical editor
(Step 1). Once the behaviors are defined, the system designer can start
the behavior similar to launching a program written in a programming
language – either in run or in debug mode of the Remes simulator.
Launching a behavior prepares the model for simulation and generates
the code that implements the behavior in the simulator with a model-
to-text transformation (M2T) (Step 2 for the designer). The Remes

simulator starts the behavior in run or debug mode, and displays mode
transitions in a text form (Step 3 for the designer). During debugging,
a hierarchy of active modes is shown in the debugger interface, and the
system designer can inspect mode variables (e.g., resources and clocks),
execute a behavior step-by-step and track active modes in Remes dia-
grams. Finally, after each test run of the model, the system designer can
conclude if the model performs as expected and correct it accordingly
(Step 4 for the designer).

Now let us present the part of the workflow when the Remes tool-
chain is used by the verification expert. The verification expert starts by
modeling the behavior of every component of the system in the Remes

editor (Step 1). Once the system model is complete (Step 1), the
verification expert can select to transform the Remes behavior into a
network of priced timed automata using an automated model-to-model
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(M2M) transformation. The verification expert then reviews the result
of the transformation and modifies it if necessary, in the ULite graph-
ical editor (Step 2 for the verifier). Once custom changes are made,
the verification expert proceeds with generation of the final Uppaal file.
The transformation into Uppaal Cora is an extended version of the
ULite into Uppaal transformation, where the costs are inserted in the
generated Uppaal file. Resulting model files can be submitted for ver-
ification to the Uppaal verification engine directly from the tool-chain
(Step 3 for the verifier). The Uppaal verifier integration allows the ver-
ification expert to start the verification using the familiar Eclipse launch
mechanism, specify verification queries, and inspect the automata trace
within the tool-chain in an interface similar to the one implemented in
Uppaal. Verification results can either confirm that the model conforms
to the system requirements, or produce a counter-example to correct the
model (Step 4 for the verifier).

6.3 Summary

We have presented the Remes tool-chain, a set of tools that can be
employed for construction and analysis of embedded system behavioral
models. The core elements of the tool-chain are as follows: (i) the Remes

editor for modeling behaviors of embedded components, (ii) the Remes

simulator to test timing and resource behaviors prior to formal analysis,
and (iii) an automated transformation from Remes into priced timed
automata, needed for formal analysis. Our ongoing work on the Remes

tool-chain includes adding deeper validation with helping tips, adding
more strict variables declaration and usage, and improvements on the
transformation rules implemented in the tool. The concrete usage sce-
narios in the practice might outline new requirements, where the trans-
formed models might be enriched in order to decrease the user manual
efforts.





Chapter 7

Case Study: Ericsson
Nikola Tesla
Demonstrator

The accuracy and effectiveness of modeling languages and analysis meth-
ods can be exercised by performing their validation against real-world
application measurements. Validation loosely refers to the process of
determining if a design is correct with respect to implementation re-
quirements [41]. For model-based system design, validation establishes
that the models capture the intended system behaviors accurately, and
the analysis methods are effective if compared to measured system values
(that is, their predictions match experimental/measured data). The two
most usual model validation procedures are simulation, which traverses
a subset of the system’s behaviors, and formal analysis .

In this chapter we describe the modeling and formal analysis of a pro-
totype industrial telecommunications system, a demonstrator developed
by Ericsson Nikola Tesla, in Croatia [104, 111]. We present the applied
verification and validation process in Section 7.1.

The Ericsson Nikola Tesla demonstrator is a proof-of-concept solu-
tion, intended to evaluate the horizontal system development paradigm.
Hence, it has been developed by applying the component-based design
paradigm, and by adding a newly developed authentication, authoriza-
tion, and accounting service to a complex basic service telecom system.
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The new service, called extension service, consists of several existing and
reused components, such as the open-source load balancer called Pen,
a number of servers, as well as standard communication protocols like,
e.g., Diameter (see Figure 7.2). More precisely, the ENT demonstra-
tor uses the basic service to issue call requests, to which the extension
service delivers the authentication functionality on a request basis. The
resulting system is a telecom system that must adhere to the charac-
teristics of existing telecom legacy systems. Thus, two requirements are
imposed on the demonstrator: capacity and optimal resource usage. We
describe the demonstrator in Section 7.2.

Our validation effort consists of analyzing the above properties on
a system model that uses code-measured values for its parameters, and
compare the verification result to the one obtained directly on the code.
The analysis effort is driven by both an academic, as well as an industrial
interest. The former targets exercising the industrial applicability and
validation of our Remes behavioral modeling language, and its under-
lying formal model in terms of priced timed automata networks. The
industrial interest focuses on being able to use a virtual experimental
“lab”, in which various types of extra-functional analysis of the demon-
strator are carried out, which could provide valuable feedback on the
demonstrator’s performance, and resource-usage, assuming various set-
tings, respectively, prior to an actual implementation of the respective
settings.

In Section 7.3, we model the demonstrator in a component-based
fashion, by using the ProCom component model, whereas in Section 7.4.1
we model the functional, timing, and resource-wise behavior of the key
components of the system in the Remes language. We build our model
by using the timing and resource values extracted from the actual pro-
totype implementation of the demonstrator, and provided by Ericsson
researchers.

Regarding the system analysis, we consider, next to function and
timing, a weighted sum of the resources CPU and memory, in which CPU
is considered a more critical resource than memory (twice the relative
weight of memory). Under this assumption, we derive an optimal system
trace, the minimum time, and the minimal total accumulated weighted
resource cost for processing a given number of system requests. We
describe the results in Section 7.4.3.
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7.1 Overview of the Verification and Vali-

dation Process

The verification and validation process that we have used in our case
study is iterative, allowing feedback between steps. It consists of four
steps (see Figure 7.1) as follows.

Figure 7.1: The system verification and validation process.

• Step 1. Based on the system functional requirements the system
designer builds the ProCom architectural model of the system.
Similarly, the verification expert uses both the functional- and re-
source requirements (such as timing, memory, etc.) to develop the
Remes behavioral model of the system. In the ENT particular
case, the timing constraints and resource usage information that
we have annotated the Remes models with are those measured
directly on the prototype implementation.
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• Step 2. During this step an interface mapping between the Pro-
Com architectural- and the Remes behavioral model is performed,
as we have described in Chapter 5.

• Step 3. The ProCom architectural- and the Remes behavioral
model are together transformed into a priced timed automata (PTA)
model for formal analysis. The architectural model gives informa-
tion about the order of execution of the Remes modes modeling
the behavior of the components. The transformation is done by
following the transformation rules presented in Section 4.3. After
all needed transformation rules have been applied, one can visual-
ize the transformation result and do eventual adjustments in the
PTA model, if so needed.

• Step 4. In this step, we assume some hardware abstraction in the
form of provided resources (e.g., memory budget, CPU load, band-
width of the communication network, etc.). To perform model-
checking, a PTA model of the system is fed into Uppaal Cora,
together with the hardware abstraction and a desired property
(requirement) expressed in WCTL. Uppaal Cora then verifies
whether the property is satisfied or not, as we have described in
Section 2.2. Out of the verification process we get timing infor-
mation in the form of total time needed to handle a burst of calls,
which is then compared to the measured value. This completes the
validation process.

7.2 Description of the Demonstrator

Ericsson Nikola Tesla’s (ENT) demonstrator is a prototype of a telecom-
munications system. It is designed according to current telecommunica-
tions industry’s trends of adapting horizontal development (systems built
from reusable components) methodologies instead of traditionally used
vertical ones (systems built from ground-up in-house, now called legacy
systems). The organization of the demonstrator is shown in Figure 7.2
from the perspective of its deployment architecture.

In the demonstrator, a new telecommunications service is created
with horizontal development. This new service is added to the existing
basic service that has been created over the years through vertical de-
velopment. The basic service performs typical call control functionality:
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Figure 7.2: The deployment architecture of the demonstrator.

decoding of address information and routing calls from one end-point
to another. When a special kind of processing is needed, the basic ser-
vice generates events that result in requests (messages) that are being
redirected into the extension service. The extension service processes
messages generated by the basic service by performing an AAA (au-
thentication, authorization and accounting) functionality that conforms
to the widely accepted Internet standard called Diameter [81]. The
result of the processing are also messages that are sent back to the basic
service.

The extension service is realized by the clients- and servers clusters,
which communicate via Diameter protocol. They should ensure high
levels of performance through round-robin load balancing, and availabil-
ity through redundancy. The implementation of high availability and
reliability is facilitated by the use of an OpenSAF middleware. Previous
experiments performed by Ericsson researchers show negligible impact of
OpenSAF on the overall performance of the demonstrator [111]. Thus,
we omit OpenSAF from experiments shown in this case-study.

Pen is a third-party open-source load balancer customized for balanc-
ing the load of stateful AAA protocol between the basic service and the
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extension service. Pen maintains the information (e.g., IP addresses and
ports) of which call control node is communicating with which Diame-

ter client and uses round-robin method for choosing which client will
serve a given request. Diameter client receives AAA requests through
the AAA protocol between the basic service and the extension service,
transforms them into Diameter-based AAA requests and sends the lat-
ter to the Diameter servers cluster.

Diameter relay is a Diameter protocol functionality that is used
for balancing the load among Diameter servers. Similar to Pen, it uses
the round-robin method to choose which server will serve a given re-
quest. Since each Diameter message contains full address information
about communicating peers, it just transmits the response received from
a Diameter server to the corresponding Diameter client that origi-
nated the initial request. Diameter server receives Diameter-based
AAA requests sent by Diameter clients. It processes these requests and
returns the results to the relay. Since the original request contains the
information about which client has created it, the relay knows to which
client the response must be sent to.

7.3 The ProCom Architecture of the Demon-
strator

In this section, we describe the ENT demonstrator’s software architec-
ture, which complies to the ProCom component model. The architecture
of the ENT demonstrator consists of two subsystems: Basic Service and
Extension Service, as depicted in Figure 7.3. The interfaces of the sub-
systems are expressed in terms of message ports.

Basic Service
Diameter clients

cluster
Diameter servers

cluster

AAA

requests

AAA

responses

Extension Service DIAMETER

requests

DIAMETER

responses

Figure 7.3: The ProSys model of the ENT demonstrator.
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Basic Service is an existing legacy ProSys component. Extension Ser-
vice is a subsystem composed of two smaller ProSys components: Diam-
eter clients cluster and Diameter servers cluster. We consider that there
are four clients, and four servers in Diameter clients cluster, and Diame-
ter servers cluster, respectively. Each of these ProSys components may
be further decomposed into either smaller ProSys components, or into
ProSave components, depending on the level of complexity of the func-
tionality, and the possibility for distribution. Accordingly, the Diameter
clients cluster component can be internally modeled with a Pen ProSave
component and four Client ProSave components. Similarly, the Diameter
servers cluster component can be modeled with a Relay ProSave compo-
nent and four Server ProSave components.

The communication between the components obeys the scheme that
we have described in the previous section. The component Basic Service
sends AAA requests to Extension Service. These requests are forwarded
to Diameter clients cluster component. Inside this cluster, the Pen com-
ponent forwards these messages in a round-robin fashion to each of the
four clients. Inside Diameter clients cluster component AAA requests are
transformed into Diameter requests and are forwarded to the Diameter
servers cluster component. Relay, similarly to Pen, forwards the Diam-

eter requests messages in a round-robin manner to each of the four
servers. The servers process these requests and return Diameter re-
sponses to Relay that forwards them to Diameter clients cluster. In the
end, Diameter clients cluster component transforms Diameter responses
into AAA responses and sends them back to Basic Service.

Note that depending on the timing characteristics of the Pen compo-
nent we can model it in two ways as follows.

• As a ProSave component with two services Pen Input and Pen Out-
put, as we have described in Section 3.3.2. In this case, Pen Input
and Pen Output can be triggered independently and they can run
in parallel.

• As a ProSave composite component with one service that is inter-
nally built of two components Pen Input and Pen Output, and a
selection connector that activates either Pen Input or Pen Output
depending on the source of the input data. If a request has been
sent from the Basic Service component then the Pen Input is acti-
vated. On the other hand, the Pen Output component is activated
when one of the four Client components sends a response to the
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Pen component.

Similar discussion applies for the Relay and Client components.

7.4 Remes Modeling and Formal Analysis

of the Demonstrator

7.4.1 The Remes model of the ENT demonstrator

We model the functional, timing and resource usage behavior of the
ENT components as Remes modes. In Figures 7.4, 7.5, and 7.6 we
present the Remes models of the Pen component, one of the clients
from Diameter clients cluster and one of the servers from Diameter servers
cluster, respectively. The Relay component has a similar behavior to the
Pen component.

When modeling the behavior of the ENT demonstrator, we have
made a number of assumptions within the model, which we have dis-
cussed with the researchers at Ericsson and we have agreed upon. As
such, we consider instantaneous reads for IP client addresses and other
information by the Pen component. We also make an assumption on
the linear response time increase per burst of requests (500) that lets us
compute the total response time, hence the extension service capacity,
once we have predicted the response time of an individual request. In the
ENT demonstrator, we consider two resources in our analysis: memory
and CPU. We assume CPU as a continuous resource, and we treat mem-
ory as a discrete resource. The timing constraints and resource usage
information that we have annotated the Remes models with are those
measured directly on the prototype implementation. Note that in the
current version of the demonstrator the clients and the servers are ho-
mogenous, that is, the processing time is the same for each request, on
any of them. Since the clients and the servers are homogenous, the Re-
lay’s round-robin load balancing protocol always sends messages coming
from the first-, second-, third- and fourth- client to the first-, second-,
third- and fourth server, respectively. From the measurements performed
on the source code, we have concluded that Relay is the slowest compo-
nent in the ENT demonstrator and the one that consumes the most
resources.

The timing measurements performed on the source code of the ENT
system have showed that the Pen component cannot receive requests and
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Figure 7.4: The Pen component modeled in Remes.
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Figure 7.5: The Client1 component modeled in Remes.

send responses concurrently. Therefore, we have modeled the Pen mode
as a composite mode containing two composite submodes: Pen Input and
Pen Output. Pen starts executing by entering the Pen Input mode and its
atomic submode Receive IP, where it reads instantaneously the addresses
of the clients. Pen may be reentered in case the Basic Service component
sends a new request (depicted with the boolean variable req) or in case
one of the clients is ready to send a response (i.e., clients to pen evaluates
to true). Basic Service may send requests to Pen only when Pen is free
(captured by the boolean variable penfree).
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The Pen Input mode is responsible for sending requests to the clients
in a round-robin fashion. We use the variable counter to ensure the
round-robin principle. For example, Pen is ready to send a message to
Client1 when the guard client1prio and (counter mod 4==0) evaluates
to true. The Pen Output mode receives responses from the clients and
forwards them to Basic Service.

Figure 7.6: The Server1 component modeled in Remes.

The Client1 mode is a composite mode made of two atomic modes
Client1 Relay and Client1 Pen. When send c1 becomes true Client1 re-
ceives requests from Pen, processes them in the mode Client1 to Relay,
and forwards the processed requests to Relay. Later, when relay to c1
evaluates to true, Relay sends responses to the requests back to Client1.
Client1 sends the responses to Pen. Client1 stays in the Client1 to Relay
or the Client1 to Pen modes as long as their invariants hold ( i.e., until
t ≤ 25 and t ≤ 103, respectively). Note that Client1 can process only one
request at a time. The fact that Client1 has to send back the response
to Pen before receiving a new request is encoded by the boolean variable
client1prio.

The Server1 mode receives requests from Relay, processes them, and
sends them back to Relay. Server1 is entered when send c1 becomes true.
The Server1 mode is exited after 68 time units.
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7.4.2 Formal analysis goals

The most important requirement imposed on the demonstrator is to en-
sure an acceptable performance of the extension service, that is, handling
100 calls per second. For this to happen, and assuming a linear timing
behavior per bursts of requests, the end-to-end response time of, say, 500
AAA requests should be less or at most 5 seconds.

To verify this, and, at the same time, validate the abstract descrip-
tions, we have considered in our behavioral models (Remes and the cor-
responding PTA) the actual source code measured values of the autho-
rization request, and authorization answer response times, respectively,
as well as their respective CPU load, and memory usage, for each com-
ponent of the demonstrator: Pen, Diameter client, Diameter relay,
and Diameter server.

Before embarking upon formal validation, we have checked the ab-
sence of deadlocks, property specified in Uppaal as follows:

AG¬ deadlock

By using the measured values of the demonstrator’s extra-functional
attributes, we aim at:

• model-checking the Remes system model’s capacity (number of
handled requests per second), as well as

• computing an optimal execution trace for the overall usage of re-
sources (CPU and memory).

Verifying the demonstrator’s capacity is a crucial performance require-
ment of the system, and we will next show that we actually deliver a
performance guarantee, since model-checking is an exhaustive verifica-
tion technique. To accomplish the response time verification, we define a
global clock variable that stores the elapsed time from the start time of
sending the authorization request to the Pen, until the request is served
and returns to the call controller in the basic service. Computing opti-
mal resource-aware traces relies on a weighted sum representation of the
resource function, which accounts for both types of resources simultane-
ously, allowing the designer to set the level of criticality for each resource
(identical weights meaning equal importance).
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7.4.3 PTAmodel of the ENT demonstrator and anal-
ysis results

We have analyzed theRemes-based ENT demonstrator inUppaal Cora,
by semantically translating it into a network of PTAmodels. TheRemes

to PTA transformation rules described in Section 4.3 cover a two-level hi-
erarchy only, therefore we have carried out the translation of the Remes-
based ENT demonstrator into PTA in three iterations. We have first
flattened the hierarchical composite modes Pen and Relay into subcom-
posite modes made of atomic submodes. Then we have translated each
of the subcomposite modes into PTA models, according to the rules in-
troduced in Section 4.3. For instance, the composite mode Pen has been
translated into two PTA models Pen Input and Pen Output. Finally, in
the third iteration, we have compared the transformed PTA models with
the respective Remes models, and performed some adjustments where
necessary. Here, we present only the PTA models of the Pen Input sub-
mode, the Pen Output submode, the Client1 mode, and the Server1 mode
shown in Figures 7.7, 7.8, 7.9, and 7.10, respectively. In the PTA model
of the ENT system we have also added PTA models of different ProSave
connectors. One such Control Or connector that forwards each incoming
trigger from the clients to the Pen component is depicted in Figure 7.11.

The PTA of Pen Input has nine locations: Start, Init, Entry, Exit, Re-
ceive IP, Pen to Client1, Pen to Client2, Pen to Client3 and Pen to Client4.
The synchronization between Basic Service and Pen Input is modeled
with the channel req. Similarly, the synchronization between Pen Input
and the four Client PTAmodels is modeled with the channel pen to clients.
The selection of the clients is controlled by the variables client1prio, . . . ,
client4prio, and counter.

The PTA of Pen Output has seven locations: Start, Entry, Exit, Pen1 to
BasicService, Pen2 to BasicService, Pen3 to BasicService and Pen4 to Ba-
sicService. The synchronization between the four clients and Pen Output
is modeled with the channel clients to pen. The synchronization between
Pen Output and Basic Service, when a response has come from the Client
components is modeled with the channel processed.

The PTA of Client1 consists of five locations: Start, Entry, Exit,
Client1 to Pen and Client1 to Relay. The Control Or PTA, presented in
Figure 7.11, is in charge of forwarding the trigger signal c1 sending
from Client1 to Pen Output. The synchronization between the automata
Client1 and Relay is modeled by using two channels: client1 to relay (mod-
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Figure 7.7: PTA model of the Pen Input submode.
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Figure 7.8: PTA model of the Pen Output submode.

els requests sent from Client1 to Relaywhen boolean variable send relay c1
is true), and relay to clients (models responses sent from Relay to Client1
when boolean variable relay to c1 is true).

The PTA of Server1 consists of four locations: Start, Entry, Exit and
Server1 to Relay. The synchronization between Server1 and Relay is mod-
eled by using two channels: relay to servers (for receiving requests from
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Figure 7.10: PTA model of the Server1 mode.
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Figure 7.11: PTA model of the Control Or connector that forwards each
incoming trigger from the clients to the Pen component.

Relay) and server1 to relay (for sending responses back to Relay).

In our analysis model, we consider CPU to be a more critical resource
than memory. The cost model that we use is derived from the measure-
ments carried out on the actual source code. The resource-usage cost is
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influenced by the weights of CPU and memory, and the consumed re-
sources of all edges and locations. In the ENT demonstrator, we consider
the following total cost function

ctot = wcpu× ccpu + wmem× cmem

where wcpu = 2 and wmem = 1, and ccpu and cmem are the accumulated
consumed amounts of CPU and memory, respectively.

After providing Uppaal Cora with the PTA model of the ENT
demonstrator, we were able to study the minimum cost reachability prob-
lem i.e., to find an execution trace of the system that uses the minimum
possible total resource cost. For illustration, let’s check for an optimal
trace satisfying the reachability property:

EF(processed messages[3] == 4),

that is, a trace in which four requests are eventually processed by the
ENT demonstrator. The cost of this best trace is 34628. We use the
value 781 ms (from code measurements) as the time value needed for the
basic service to process 500 requests.

From our analysis model we were also able to determine the time
needed for processing a certain number of requests. For response time
only, we have performed the analysis in Uppaal (in order to get the
corresponding TA system model we have removed the costs from the
PTA model). Uppaal has calculated that the time needed for handling
1 request is 3,42 time units (ms). If we consider that the processing time
grows linearly, then for processing 500 requests our Uppaal model of the
ENT demonstrator needs 1710 time units. This number is just slightly
higher than the source code measured value, that is, 1690 ms. The ver-
ification result shows that the capacity of the demonstrator (extension
service alone) is actually greater than the required 100 requests per sec-
ond. Also, this result concludes our behavioral model formal validation,
regarding the end-to-end response time, which has been a central design
issue of the demonstrator.

7.5 Summary

In this chapter, we have presented a case study where our behavioral
language Remes is applied to model and analyze a new telecommuni-
cation system by Ericsson Nikola Tesla. The new system is horizontally
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developed by adding a newly developed authentication, authorization,
and accounting service to a complex basic service telecom system con-
sisting of several existing and reused components, such as a Diameter

standard protocol, an open-source Pen load balancer, and a number of
servers.

On the modeling front, we have shown how the system has been mod-
eled in a component-based fashion using the ProCom architectural mod-
eling language, and how the functional, timing, and resource-wise behav-
ior of the key components of the system have been modeled in Remes.
We have also shown how the combined model is semantically translated
into a network of (priced) timed automata to enable model-checking in
the tools Uppaal and Uppaal Cora.

On the system analysis front, we have, in addition to function and
timing, considered a weighted sum of resources CPU and memory, for
which designers have chosen to consider CPU as the most critical re-
source (twice the relative weight of memory). In this setting, we have
computed an optimal system trace, with respect to the total accumulated
resources, needed for processing a given number of system requests. In
addition, we have also computed, by model-checking the TA models, the
time needed for the extended ENT system to process 500 call requests,
hence showing that the capacity requirement of the system is fulfilled.
Allowing the system designers to gain deeper understanding in the sys-
tem’s resource behavior might prove valuable to further optimization
steps, as well as in adjusting the resources provided by the underlying
implementation platform, accordingly. Last but not least, the work and
results described in this chapter have served as our framework valida-
tion basis, since most of our methods and tools have been exercised on
a real-world industrial case-study.





Chapter 8

Related Work

This chapter relates the contributions presented in this thesis to relevant
research and practice areas, subdivided into two sections. Our research
work published in papers [37] and [103] contains extensive related work
and state of the art so here we give only a short summary.

8.1 Component Models for Embedded Sys-

tems

Nowadays many component models exist, either general purpose or ded-
icated to a specific domain. Still, only a few component models target
the development of embedded systems and most of them are dedicated to
specific sub domains only. In these component models, component im-
plementations are mostly given in C programming language and compo-
nents are composed before compilation. The C-language provides more
and easier access to details of operating system and underlying hardware
platforms facilitating optimizations. Many component models targeting
embedded systems use ports as the interface elements to exchange data.
In port-based interfaces, input and output interfaces consist of ports that
receive and send data, respectively (often designated as sink and source),
hence corresponding to the concepts of provided and required interface.
Often the component models for embedded systems are intended for ap-
plications of an algorithmic nature and these applications are commonly
modeled as data- or signal-driven block diagrams. Another name for

147
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this is pipe-and-filter architecture. Most component models targeting
embedded systems focus primarily on “small” granularity components.
Although they provide techniques for handling extra-functional prop-
erties there is still need for further research to improve the theories of
specifying, modeling and analyzing extra-functional properties of compo-
nents and composed systems, and to develop tool support. In this section
we survey some component models that have been developed specifically
for application in the embedded system domain and compare them with
the ProCom component model proposed in this thesis. Special atten-
tion is dedicated to the capability of these component models to model
and analyze extra-functional properties, in particular resource-related
properties.

AUTOSAR (AUTomotive Open System ARchitecture) [18] compo-
nent model has resulted from the cooperative research of a number of
automotive manufactures and suppliers. The goal of AUTOSAR is to
define a standardized platform for automotive systems facilitating the ex-
change of “elements” between different vehicle platforms and subsystem
manufacturers. The main focus of AUTSOAR is the architecture, not
the component model itself. Although some similarities with ProCom
exist, such as the transparent communication between subsystems and
components with the use of standardized interfaces, distribution of the
functionalities provided by each subsystem across several nodes, some
essential differences can also be noticed. In AUTOSAR, components
are runtime entities whereas in ProCom they are considered at design
time. In AUTOSAR subsystems are unaware of the characteristics of
the underlying platform and not so much emphasis is put on analysis of
the developed elements. The recent AUTOSAR 4.0 [19] release, influ-
enced by the TIMMO project [1, 70], contains a meta-model extension
for specifying timing properties and constraints of software components.
As such, it allows expressing timing constraints, such as maximum de-
lays, repetitions rates, synchronization, and data ages, by adding timing
information to events and event chains.

BlueArX [67,68] is a component model developed and used by Bosch
for automotive systems, such as engine control systems or chassis sys-
tems. Each component consists of specification, documentation and im-
plementation and has interfaces, which are divided into two types import
and export interfaces where import interface are required and export
interfaces are provided by the component. There is also a special type
of an interface, called analytic interface, which is used to store compo-
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nents’s extra-functional properties (such as worst-case execution times,
code memory, stack memory, and data memory). Input to the analytic
interface is the current semantic context, such as hardware dependencies,
tool chains and the setting of constants and/or calibration parameters in
which the component should be applied. Properties are specified in the
service level of each component and the context information is specified
for each property. Semantic context information is also specified by re-
ferring to the modes (such as initialization mode, cyclic executive mode
or shut-down mode). Bosch uses static analysis tool aiT [7] to analyze
object code and to extract the worst-case execution time of a component,
and SymTA/S [54] tool as a reasoning framework that aids analysis and
prediction of timing properties. The BlueArX concepts are close to to
the ProSave layer of the ProCom component model, however ProCom
uses an attribute management framework to associate extra-functional
properties to components and others entities of the component model
(component services, message ports, communication channels and com-
ponent instances).

COMDES-II (COMponent-based design of software for Distributed
Embedded Systems) [66] is a two-layered component model similar to
ProCom, developed at University of Southern Denmark. At the system
(first) layer, a distributed system is modeled as a network of commu-
nicating actors, and at the second level the functionality of individual
actors is further specified by interconnected function blocks. COMDES-
II supports modeling architectural and behavioral aspects of systems
with a goal to analyze and verify system behavior at high abstraction
level and to enable automatic code generation. In difference to ProCom,
the timing behavior in COMDES-II is separated from the functional
behavior. The timing behavior is verified by schedulability analysis,
whereas functional properties are formally verified. Ke et al. [65] show
how a COMDES-II system can be equivalently transformed into Uppaal

timed automata, and verified with preservation of system operational se-
mantics.

IEC 61499 [60] is developed by the International Electrotechnical
Commission (IEC) to support the development of automation and con-
trol systems. It has evolved from IEC 61131-3 [59] standard that is
widely used in the development of software for PLCs. IEC 61499 compo-
nents are called function blocks that have a set of in- and out ports, and
a hidden internal implementation. Similar to ProSave, the data between
the blocks is transferred using pipe-and-filter paradigm and the execu-
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tion of the function blocks is event driven. In comparison to ProCom,
there is no support for specifying or reasoning about extra-functional
properties.

Koala [101] presents a component model that is designed and used by
Philips for the development of software in consumer electronics (such as
TVs, VCRs, and DVDs). Components are connected via provided and
required interfaces that depict a small set of semantically related func-
tions. The Koala component model is hierarchical, so, compound com-
ponents may be defined. For Koala compositions, the extra-functional
information is exposed at the component’s interface. The prediction of
extra-functional properties is carried out by measurements and simula-
tions at the application level. In contrast, the ProCom semantics sets
the ground for achieving predictability via formal verification (by trans-
lating FSMs into timed automata), prior to implementation. Moreover,
compared to ProCom, Koala is geared towards less safety-critical appli-
cations.

PECOS [108] is a component model developed conjointly by ABB
Corporate Research and academia for development of small reactive em-
bedded systems in automation applications (such as industrial field de-
vices). The PECOS component model supports hierarchical component
composition. Similarly to ProSave level, components interact via data
ports, and the communication between them is based on the pipe-and-
filter paradigm. A PECOS component can be active, passive or an event.
Active and event components have their own thread of execution, and
passive components cannot control their execution and are used as part
of the behavior of another component being executed synchronously.
Besides data ports, PECOS components have also interfaces to express
extra-functional properties and constraints. In PECOS, as in ProCom,
a strong importance is given to extra-functional properties, and there is
possibility to specify component’s meta-data, such as worst-case execu-
tion times and memory usage, but the techniques differ. The behavior
of the components can be modeled with Petri nets.

Pin [56] component model is developed at Carnegie-Mellon Univer-
sity. Its purpose is to be used as a basis for PECTs (Prediction-Enabled
Component Technologies), which provide predictability principles for the
run-time behavior of assemblies of software components, such as perfor-
mance, safety and security. In order to attain predictability of a given
property PECT offers a reasoning framework that includes a component
technology powered by analytical interfaces and analysis theory. Ana-
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lytical interfaces are used for specification of the properties, which are
n-tuples consisting of a name, value and additional property-specific in-
formation (e.g., confidence interval of the property value). Analysis the-
ories are used to predict properties of component compositions. At this
time PECT supports three reasoning frameworks: λABA - for predicting
average latency in assemblies with periodic tasks, λss - for predicting
average latency in stochastic tasks managed by a sporadic server and
ComFoRT - for formal verification of temporal safety and liveness. Con-
trary to ProCom, Pin is not distributed, does not support hierarchical
component nesting and does not have support for high-level design.

Robocop [78] component model is a successor of the Koala compo-
nent model, and is developed out of the collaboration between Philips
and Eindhoven Technical University. Similar to ProCom, a component
is considered as “a whole”, i.e., a collection of models gathering all the
information needed and/or specified at different points of time of the de-
velopment process (e.g., documentation, source code, functional model,
resource model, simulation model and execution model). Models may be
used as well for depicting extra-functional properties of Robocop com-
ponents. These extra-functional models can include timeliness, resource
consumption, reliability, safety and security. The resource model is based
on resource predictions, which can not provide 100% guarantees if com-
pared to formal methods. Therefore, it is not suitable for safety-critical
systems. The functionality offered by a component is logically modeled
as a set of “services”. Similar to Koala, Robocop is dealing only with
static resource consumption, since it is assumed that consumption of
resources stays constant per operation of a service.

Rubus [52] is a component model developed in collaboration between
Arcticus Systems AB and Mälardalen University, and is intended for
development of distributed, resource-constrained, embedded control sys-
tems, with a mix of hard-, soft- and non real-time system requirements.
Rubus components are called software circuits and each of these circuits
is defined by its behavior, internal state, and interface. An interface
is a set of input- and output ports. ProCom has been influenced by
Rubus time- and event-triggering features and the ability to perform
real-time analysis. In Rubus it is possible to specify timing proper-
ties and there is is a tool for schedulability analysis. Similar to ProSave,
Rubus has data- and trigger ports, which capture data- and control flow,
respectively. However, Rubus does not provide support for distributed
implementation nor high-level design.
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ProCom’s precursor, SaveCCM [9], is also a component model for
real-time systems. ProCom has inherited some concepts from SaveCCM,
in particular in the ProSave layer, such as the emphasis on reusability, a
strong degree of analyzability of component behavior wrt to timing be-
havior and safety due to the strong restrictions in the proposed syntax
and semantics, and the decoupling of data- and control-flows. A new
feature of ProSave, compared to SaveCCM, is that ports can be grouped
into services, they are part of the component and allow external entities
to make use of the component functionality. Services are triggered inde-
pendently and can run concurrently. In SaveCCM, component behavior
modeling is done using timed automata extended with tasks, a formalism
that explicitly models timing and real-time task scheduling. The timed
automata models of SaveCCM can be cluttered with variables whose in-
terpretation is not necessarily intuitive, which makes the formal models
less amenable to changes. In addition, ProCom has a clearer concept of
composite components, and addresses distribution and extra-functional
properties more systematically.

8.2 Resource-Aware Modeling and Analy-
sis for Embedded Systems

Although, one may think of numerous extra-functional properties cru-
cial for embedded systems, in practice, they often reduce to timing,
memory, performance or throughput, and dependability/reliability-re-
lated aspects. These aspects may be addressed differently depending on
the context or the application domain (e.g., timing aspects have to be
more precise for safety-critical systems than for home-appliances). Thus,
depending on the context, extra-functional properties can be modeled or
built-in at different levels of formality, such as: informal level, which de-
scribes extra-functional aspects in natural language; semi-formal, which
uses notations, such as the UML [49] or even more formal, which de-
scribes extra-functional aspects by using much more formal notations,
such as temporal logics or process algebras. Using to a great extent the
work we have presented in paper [103], this section summarizes the re-
lated work on modeling and analyzing resources in embedded systems
and compares them with the Remes behavioral model proposed in this
thesis. The related approaches we have classified into three categories
as follows.
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The first category of related work covers approaches that address pre-
dicting code-level resource consumption of component assemblies. Es-
kenazi et al. [43] and Fioukov et al. [45] present compositional ways of
estimating static memory consumption of Koala-based embedded sys-
tems [101], in which the instantiated components of a composition are
known prior to run-time. In the mentioned approached, the memory con-
sumption demands of each component are exposed through a special type
of component’s interface, called IResource. The implementation of IRe-
source contains a formula for estimating the memory size of each type of
memory. The approach supports budgeting i.e., it is possible to take into
account the estimates of memory demands for the components that are
not implemented yet. Jonge et al. [39] introduce a scenario-based predic-
tion of run-time memory consumption in component-based applications,
this time for the Robocop component model [78]. Resource consumption
in this approach, is specified for all operations implemented by the ser-
vices of an executable component. Similar to Koala, this method is also
dealing with static resource consumption, since it is assumed that re-
source claims and releases are constant per operation, whereas they typ-
ically depend on parameters passed to operations. Both of the aforemen-
tioned approaches have been mainly dealing with low-level, code-driven
estimation of static memory usage, which can only be used in cases when
the components implementations are avaialble. However, more abstract
descriptions of expected resource usage may be needed for not-yet imple-
mented components, or for selecting components from repositories, and
adapting them to fit the design. In such cases, the designer can first use
Remes for early resource usage modeling and analysis, and then apply
the approaches described earlier.

The second category is represented by the software modeling lan-
guages and profiles attempts (e.g., UML/SPT [48] and MARTE [85]) to
tackle the modeling and analysis of embedded resources. Amar et al. [15]
model resources in UML-based simulative environment. They extend the
UML notation with new stereotypes for resources types. In one capsule
diagram are gathered the software architecture and the resources that
the software components require. As such, the capsule diagram is spilt
in two parts: the software side and the resource side. The resource
side is composed by a Main Dispatcher, which is in charge of receiving
resource requests from the software side and a set of resource types. In-
ternally every resource type capsule contains an Internal Dispatcher and
a set of actual resource instances. The UML profile for Schedulability,
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Performance and Time (UML/SPT) [48] is a framework for modeling
concurrency, resources and timing concepts, which eventually produces
models for schedulability and performance analysis. The core of the
profile represents the General Resource Modeling framework, which de-
scribes resource types (hardware or software) and their management.
The UML/SPT profile provides set of stereotypes and tag values that
can be used for annotation of the model elements and for performing
analysis. The recent profile, MARTE (Modeling and Analysis of Real-
Time and Embedded systems) [85], which emerged from the UML/SPT
profile is dedicated to complement UML with the required extensions
for supporting modeling and analysis of extra-functional properties of
embedded real-time systems, such as memory and power consumption.
It provides a basic framework for platform-based modeling and a high
level concepts for specifying resource usage. This all is done through
the Generic Resource Modeling (GRM) sub-profile that is based on a
clear design pattern considering platforms as a set of resources contain-
ing possible sub-resources in hierarchical manner and offering at least
one service. GRM is refined in Software Resource Model and Hardware
Resource Model dedicated to describe software and hardware computing
platforms, respectively. MARTE has a complex structure and it is tightly
connected to UML. Hagner et al. [50] present a UML profile, called Power
Consumption Analysis View Profile, for annotating power/energy con-
sumption relevant parameters to a UML development model and a simple
algorithm to analyze power consumption of that model. For the power
consumption analysis of a system the power consumption of each task
is calculated to find out the power consumption of a CPU. Although
graphical and intuitive, the previously listed UML-based approaches are
not precise and rigorous, and lack formally founded semantics. They can
not entirely guarantee the feasibility of the architecture, but rather give
partial answer. In contrast, Remes provides both a graphical behavioral
notation, as well as a rigorous underlying framework for formal analysis.

The third category is mainly represented by the higher-level formal
approaches [76, 77], proposed by Lee et al. They propose a family of
process-algebraic formalisms, that rely on an algebra of communicat-
ing shared resources (ACSR), developed to unify formal modeling and
analysis of embedded systems resources. Like Remes, their formalisms
can theoretically account for various resource types and a resource is
considered as a generic, first-class modeling entity. A resource may be
characterized by a set of attributes, such as timing parameters, proba-
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bility of failure, priority, power consumption, etc., which capture the re-
source’s behavior. The authors take into account sets of resource classes
important for embedded real-time systems: serially reusable shared re-
sources, used to model processor units, communication resources, used
to model synchronous and asynchronous communication channels, and
multi-capacity resources that naturally correspond to memory modules.
An important restriction of the ACSR framework is the assumption that
every action lasts exactly one time unit, and that only one process may
use a given resource during a time step. Although the ACSR frame-
work is theoretically rich, however it is not intuitive, and the tool sup-
port is not equally mature. Kim et al. [69] have recently presented
an extension of statecharts, called Timed and Resource-oriented Stat-
echarts (TRoS), that provides the notation of timed action, adopted
from ACSR. In TRoS each action is labeled with its consumption of
resources. In contrast to ACSR, in TRoS it is assumed that an exe-
cution of a timed action takes one or more timed units in respect of
a global clock. The system is modeled as a set of TRoSs that run in
parallel and share limited resources. Similar like in ACSR, a situation
where two or more processes with the same priority access to same re-
source is not permitted in TRoS. Ouimet et al. [88] use timed abstract
state machines as a unified formalism to specify functional and extra-
functional properties of embedded systems. The resources are described
as simple annotations, in the form of real-valued variable assignments.
Consequently, the framework can not support trade-off analysis of pos-
sibly conflicting resource requirements, which is supported by Remes.
Schlatte et al. [90] describe an enhancement for the object oriented mod-
eling language Creol [63] for supporting resource constraints modeling,
specifically memory consumption, call stack depth and restrictions on
parallelism. For modeling resource constraints, they assign each method
an amount of required resources (through attribute RNeed), and each
class an amount of provided resources (such as memory/processing ca-
pacity via attribute RLimit). Creol deals with modeling systems on a
lower level of abstraction than Remes.





Chapter 9

Conclusion

Embedded systems are challenging to design since they must meet spe-
cial type of constraints beyond those that apply for general-purpose
computers, such as low cost, timeliness, resource usage efficiency, short
time-to-market, etc. The demanding requirements of modern embed-
ded systems coupled with the increasing complexity of the underlying
software, demand techniques for managing complexity and for ensuring
critical system properties. The thesis concerned the modeling and analy-
sis of embedded systems, and argued that resource requirements need to
be considered from the initial design stages of embedded systems. This
chapter provides some concluding remarks on the presented work, and
presents a number of directions in which this work could be extended in
the future.

9.1 Summary and Contributions

The thesis proposes a resource-aware framework for designing predictable
component-based embedded systems. The proposed framework consists
of (i) the formally specified two-layered component model - ProCom (ii)
the resource-aware behavioral modeling language - Remes (REsource
Model for Embedded Systems), associated analysis techniques for vari-
ous resource-wise properties, and a set of tools implementing the former.

The ProCom component model, introduced in Chapter 3, is specif-
ically developed to target control-intensive embedded systems. The
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model takes into account the most important characteristics of these sys-
tems and consistently uses the concept of reusable components through-
out the development process, from early design to deployment. Reusing
a component means reusing not only its concrete realization, but the
whole collection of artifacts needed or produced during the development
of this system element, such as source code, early design models, test re-
sults, architectural models, behavioral models and analysis results. At an
early stage of the system design process, a new component could consist
of just the interface specification, maybe with a rough behavior model.
Additional information is then added gradually, e.g., internal structure
or source code, detailed models, analysis results and documentation, and
in the final development stage the components are synthesized together
into an executable system.

Another characteristic feature of ProCom is that it is structured in
two layers (ProSys and ProSave), to address the different concerns that
arise when modeling on one hand a large distributed system, and on
the other hand the detailed control functionality of each individual sub-
system. These layers differ from each other in terms of communication
style, execution model, synchronization etc., but also in kind of analysis
which are suitable. The ProCom language constructs include services,
data and trigger ports, passive or active components, connections and
connectors, hierarchies of components, etc. All of these constructs have
a precise execution semantics that we formally define.

Clearly, a formalization of the ProCom language needs to deal with
all concepts of the modeling language. It has been our goal to make
the formalization as intuitive as possible, so that it can serve as a ba-
sis both for engineers using ProCom, as well as researchers developing
analysis techniques, model-transformations tools, etc., within the Pro-
Com framework. In order to meet these sometimes contradicting goals,
we have used a small but powerful finite-state machine (FSM) language,
in which the semantics of each ProCom element we have defined as a
translation relation from ProCom to the FSM language. The FSM lan-
guage is essentially standard FSM, enriched with finite domain integer
variables, guards and assignments on transitions, notions of urgency and
priority, as well as time delays in locations. Hence, it can obviously be
analyzed in a number of theoretical and tool frameworks including e.g.,
the Uppaal tool.

The possibly complex extra-functional behavior of ProCom compo-
nents we model in Remes, a dense-time, state-based hierarchical lan-
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guage. Remes, presented in Chapter 4, is suited for modeling timing
and resource-wise behaviors of embedded system components described
by modes. A mode can be either atomic or composite depending on
whether it contains number of submodes or not. The crux of Remes

is introducing resources as first-class modeling entities that are charac-
terized by their discrete (e.g., memory, access to external devices) or
continuous (like energy) nature. Each mode has a well-defined data in-
terface consisting of typed global variables that is used for data transfer
between modes, and also a well-defined control interface in terms of en-
try and exit points through which discrete control enters and exists the
mode. Each mode may declare its own set of local variables that is
hidden outside the mode, but accessible to its submodes. To analyze
various scenarios of system’s resource usage, in Remes models, we en-
code the resource-wise analysis problem as a weighted sum of consumed
amounts of resources and their given weights. Assuming the encoding,
we define three important resource analysis problems: feasibility analy-
sis, trade-off analysis, and optimal/worst-case resource analysis. To be
able to formally analyze Remes compositions we have provided a set
of transformation rules that semantically translate Remes modes into
priced timed automata.

By connecting Remes behavioral models to individual ProCom com-
ponents, via a general attribute framework [92], in Chapter 5, we have
addressed the important problem of model reuse. The packaging of Pro-
Com and Remes is achieved by defining a new attribute type attached
to a ProCom component in the attribute registry, which has a complex
attribute value consisting of (i) a relative path to the Remes model
file in the component structure and (ii) a relative path to the mapping
file specifying the relation between the ports of a ProCom component
and the variables of its associate Remes model. The connection be-
tween ProCom and Remes is done differently for ProSave and ProSys.
The concepts of connecting and packaging a ProCom component with
its Remes behavioral model we present on two examples: a tempera-
ture control system, when the architecture of the system is modeled in
ProSave, and a turntable drilling system, when the architecture of the
system is modeled in ProSys.

Based on the Remes language, in Chapter 6 we have presented the
Remes tool-chain supporting construction and analysis of embedded sys-
tems behaviors. The core elements of the tool chain are: (i) the Remes

editor for modeling behaviors of embedded components, (ii) the Remes



160 Chapter 9. Conclusion

simulator to test timing and resource behavior prior to formal analysis,
and (iii) an automated transformation from Remes into priced timed
automata, following the transformation rules presented in Chapter 4,
needed for formal analysis. The transformation rules applied to Remes

diagrams result in ULite models representing the same behavior. A
graphical editor for ULite models is provided, as a tool to visually
inspect transformation results. Model files for both Uppaal (timed au-
tomata) andUppaal Cora (priced timed automata) can be exported for
formal analysis. When using the Remes tool-chain within Pride, an en-
vironment for ProCom component-based architecture development [26],
the transformation uses component triggering information from ProSave
components, to insert appropriate synchronization channels into the re-
sulting priced timed automata. Remes models were integrated in Pride

via the Attribute Framework [92]. We provide QVT model-to-model
transformation that creates blank Remes templates for ProCom com-
ponents. Each template contains pre-created variables matching the
ProCom component ports, as we have described in Chapter 5.

Finally, in Chapter 7, we have demonstrated the applicability, and
we have exercised the modeling and formal analysis concepts of our
resource-aware framework on an industrial research prototype of an Eric-
sson Nikola Tesla telecommunication system. As such, we have modeled
the system in a component-based fashion using the ProCom component
model, whereas the functional, timing, and resource-wise behavior of the
key components of the system we have modeled in Remes. We have also
shown how the combined model (ProCom and Remes) can be seman-
tically translated into a network of (priced) timed automata to enable
model-checking in the tools Uppaal and Uppaal Cora which verifi-
cation engine can be started directly from the Remes tool-chain. The
validation of our models is ensured by the cost model that we use –
derived from the measurements of timing, CPU, and memory usage –
measured by Ericsson researchers on the prototype’s source code.

9.2 Limitations and Future work

The current version of the ProCom component model focusses on the
design of a class of embedded systems that primarily perform real-time
controlling tasks. In the future ProCom might be extended to other
types of embedded systems. In addition, the list of ProSave connec-



9.2 Limitations and Future work 161

tors is presumably incomplete and may grow over time as additional
data-/control-flow constructs prove to be needed. The semantics of Pro-
Com, in future, will be extended with the formalization of actuators
and sensors. Although the ProCom finite-state machine formalization
sets the ground for formal analysis, the semantic descriptions focus only
on formalizing the correct execution semantics of ProCom architectural
elements, without consideration for efficiency in formal analysis of the re-
sulted models. As future work we may develop support for model-based
analysis techniques, such as model-checking, based on the formalization
of the ProCom component model. In particular, it could be interesting
and helpful to integrate our modeling language Remes with the formal
execution semantics of ProCom.

Our Remes behavioral language can be used for modeling the in-
ternal behavior of interacting embedded components, not necessarily
modeled in the ProCom component model. As such, Remes comple-
ments architectural description languages (ADLs) [83], which describe
the software system’s conceptual architecture as a collection of compo-
nents, connectors and architectural configurations, by adding component
behavior. If one attaches semantics to the connection points of the ar-
chitectural elements of a system, Remes can then be used for modeling
the behavior of a generic embedded system. Moreover, it was our inten-
tion to make Remes as simple as possible, so that it can be utilized by
both formalists and engineers with different backgrounds, as an inter-
mediate layer between abstract architectural modeling and very detailed
behavioral modeling (e.g., by priced timed automata).

In the current version of the Remes language, top-level modes follow
a “run-to-completion” semantics, where only one submode can be active
at a time. Since services of a ProSave component can be triggered/ac-
tivated independently and may run concurrently, we associate a Remes

mode to each service. In future, we could extend the Remes language
with new types of constructs (such as modes or connectors) that will
allow several submodes of a Remes top-level mode to be simultaneous
active. In turn, this will allow that only one Remes mode is associated
to a ProSave component made of more than one service. It is worth
pointing out that Remes has already been extended with new kind of
AND and OR modes [102], which still have a “run-to-completion” seman-
tics. For AND modes all services are entered at the same time, whereas
in OR modes one or all constituent services are entered when the mode
is activated. This type of modes are needed for describing the behavior
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of service-oriented systems, where it is often the case that services need
to synchronize their behaviors. Depending on the required synchroniza-
tion type and starting time of the constituent services execution, both
AND and OR modes can be employed when either “and” synchroniza-
tion (both services should finish execution at the same time), or “max”
synchronization (the composite mode finishes when the slowest service
finishes) is required. In addition, the relation between the Remes model
of a composite component and those associated with its subcomponents
should be studied.

As future work, we plan to apply the results of Bouyer et al. [30],
in order to tackle the feasibility analysis problem for systems in which
the global cost function is non-monotonically increasing. In such situa-
tions, the usual branch-and-bound symbolic reachability algorithms, for
priced timed automata, cannot be applied as such anymore, since min-
imal/maximal reachability analysis requires a monotonically increasing
cost function. In addition, all of the resource-wise verification algorithms
presented in this thesis need to be implemented in Uppaal Cora.

The cost analysis model proposed in Section 4.2.1 is platform-aware.
Hence, as future work, our simplistic platform profile (described in Ap-
pendix C) could benefit from including abstractions of platform specific
tools, such as the associated compiler, linker etc. We consider that the
cost model can be derived from the results provided by static analysis
tools, which could be applied on already implemented components. A
possible solution is presented by Bonenfant et al. [25]. In order to ob-
tain provably correct static analysis results, the authors propose a formal
source-level cost model, enriched with rules for deriving the execution
cost of a subset of expressions belonging to the system-oriented language
Hume. We also underline the fact that the selection of the weights in
our resource model depends mostly on the designer’s experience and de-
cisions. However, by analyzing the results of model checking the chosen
cost models, one could adjust the weights accordingly.

The concrete transformation rules for translating Remes integrated
with ProCom into priced timed automata are subject of future improve-
ments. The usage scenarios in the practise might outline new require-
ments, where the transformed models might be enriched in order to
save the verification expert’s manual effort. The transformation rules
for transforming Remes into priced timed automata, presented in Sec-
tion 4.3, cover two-levelRemes mode hierarchy only. As future work, we
plan to extend the transformation rules to cover hierarchy of arbitrary
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depth. Another limitation of the transformation rules is that they do
not handle different types of ProSave connectors.

Concerning the Remes tool-chain, note that all the theoretical con-
tributions have not yet been implemented. For e.g., the rules for trans-
forming non-lazy modes into priced timed automata are still not imple-
mented. Also, the current version of the Remes editor does not support
nesting of composite modes.

Throughout this thesis we have discussed and proposed solutions for
modeling and formal analysis of component-based embedded systems.
Unfortunately, the relatively small case-studies that we have performed
can not answer questions about size and complexity of our methods
when applied to large real-world systems. Scalability is clearly not exer-
cised within this context. We can just hope that the presented examples
have added some merit to the theoretical results. As future work we
could as well exercise the scalability of Remes and associated analysis
techniques. We also plan to look into compositional reasoning in the
Remes language i.e., separately analyzing each component of the sys-
tem and allowing global properties to be deduced for the entire system.
This certainly will leave us obligation of proving that the component
specifications in turn apply the specification of the whole system. In-
stead of generating a priced timed automata model of the entire system,
compositional reasoning could be used to prove global system properties
out of individual subsystems, or subsystem clusters properties. Another
approach will envision developing specialized model checking optimiza-
tions, which exploit the topology of the architectural- and behavioral
model, similar to the work on Uppaal Port [51]. In order to perform
compositional reasoning of Remes, we could first give a trace semantics
of a Remes mode. This would allow us to compute the set of traces of a
composition of Remes modes from the traces of the constituent modes.

Another opportunity for future work is to investigate further the
ENT demonstrator by modeling and verifying other telecommunication
protocols for serving requests. By checking possible performance in such
other cases (like the first-in-first-out protocol), we could feed Ericsson re-
searchers with important insights on the systems behavior, which might
save unnecessary implementation time. We can also consider the case of
heterogeneous servers, that is, processing the same request takes differ-
ent time on each server, respectively.





Appendix ARemes Meta-model

The meta-model is a feature of the Remes behavioral language. It mod-
els its concepts as classes and shows the relations among them. The
complete Remes meta-model is depicted in Figure A.1. For readability,
in Figures A.2, A.3 and A.5 we focus on particular parts of the Remes

meta-model.

The root element of the Remes meta-model is the class RemesDia-
gram (see Figure A.2), which contains zero or more (usually one) ele-
ments modes from type Mode. The class Mode is an abstract class that
has to be replaced by either CompositeMode or SubMode. The internal
of a composite mode can be modeled by submodes, conditional connec-
tors, init-, write-, composite entry- and composite exit point. SubMode
has attributes invariant (specifies for how long a mode can be executed)
and isUrgent (when isUrgent is set to true the mode is exited right-away).
Modes and conditional connectors represent a control path of execution
(class ControlPath).

Four types of points (class Point) exist in the meta-model: InitPoint,
EntryPoint, WritePoint and ExitPoint (see Figure A.3). An edge (class
Edge) connects an exit- to an entry point, and has attributes actionGuard
and actionBody. When the action guard of an edge is evaluated to true,
the action body (i.e., a statement or a sequence of statements) is exe-
cuted. ControlPath contains an entry- and an exit point, which are used
to enter and exit modes or conditional connectors, respectively. In addi-
tion, a composite mode contains an init point (class InitPoint) through
which the mode is entered for the first time of its execution, and a write
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Figure A.1: The Remes meta-model for describing a Remes diagram.
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Figure A.2: Excerpt of the Remes meta-model for describing a Remes

diagram.

point (class WritePoint), which is a local exit of the mode. An init edge
(class InitEdge) connects an init- and an entry point, and a write edge
(class WriteEdge) connects an exit- to a write point.

The composite entry- and exit point of a composite mode deserve a
closer look. A composite mode is entered via its regular entry point. In
model semantics it is not possible to connect this entry point to another
entry point, for example of a submode. An edge only connects an exit-
to an entry point. This imposed the need to introduce ”intermediate“
points in the Remes meta-model — composite entry point (class Com-
positeEntryPoint) and composite exit point ( class CompositeExitPoint).
Note, in Figure A.3, that the class CompositeEntryPoint extends ExitPoint
to be used as a source of an edge. Similar applies for CompositeExitPoint
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Figure A.3: Excerpt of the Remes meta-model that shows control point
entities.

— it extends EntryPoint, so that it can be used as a target of an edge.
Figure A.4 helps to get a better understanding how these parts of the
meta-model map to a model instance.

The referable interface (class Referable) of a mode contains a single
attribute name, and is extended by Variable, Resource and Constant (see
Figure A.5). Variables are of primitive type. Attribute vectorSize is
grater than zero if the variable is an array. The interface flag denotes a
global variable mapped to an interface port (data, trigger or message)
coming from the ProCom architectural model, as we have described in
Chapter 5. The readable and writable flags determine whether a given
Remes mode variable represents an input or output data or message
port. Resources have type and expression attribute. If a certain resource
is continuous, then the expression property defines the rate at which the
resource is being consumed. The rate is defined by the first derivative
of the resource.



Figure A.4: Control points legend in Remes.

Figure A.5: Excerpt of the Remes meta-model that shows referable
entities.





Appendix BULite Meta-model

The diagram in Figure B.1 depicts the main entities in the ULite meta-
model and their relationships. The ULite meta-model is a subset of
the Uppaal meta-model targeted for the transformation from Remes

models into (priced) timed automata. When using the Remes tool-chain
within the ProCom Integrated Development Environment (Pride) [26]
the transformation uses component triggering information from ProCom
architectural models, to insert appropriate synchronization channels into
the resulting priced timed automata.

The root model entity is the diagram (class UppaalDiagram). It has
declaration attribute, which carries the global variables declaration. The
latter contains integer constants that determine the relative importance
of different resources. Every UppaalDiagram presents a composition of
timed automata. A timed automaton is represented with the element
Template. It contains an attribute declaration for declaring the local
variables. Each automaton is made of locations (class Location) with a
set of transitions (class Transition) connecting the locations. Location
has the following attributes: name, id, invariant, cost, initial, urgent and
committed. Transition contains the following attributes: source location,
target location, guard, assignment, sync (contains synchronization channel
information) and cost for taking the transition.

Note that the ULite meta-model can be used for description of both
timed automata and priced timed automata. In case of priced timed
automata the cost for staying in a certain location is written in the ex-
tended invariant of a location (attribute invariant from class Location).
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Similarly, the cost for taking a transition is written as part of the tran-
sition assignment (attribute assignment from class Transition).

UppaalDiagram

declaration : EString

Template

name : EString

declaration : EString

Location

name : EString

urgent : EBoolean

commited : EBoolean

initial : EBoolean

id : EString

invariant : EString

Transition

sync : EString

assignment : EString

guard : EString

templates

0..*

locations

0..*

transitions0..*

template

1

source

1

target

1

template

1

Figure B.1: The ULite meta-model.



Appendix C

Platform profile

Platform profiles can be used to distinguish between different software/hard-
ware platforms, and different limitations they impose. In the Remes

tool-chain a platform profile consists of resource- and constraint decla-
rations, as in the following example:

profile Board1 {

resources {

proc: cpu @ 5,

mem: memory @ 1,

batt: energy @ 10

}

constraints {

max(proc’) <= 200,

max(mem) <= 10240,

max(batt) <= 150000,

min(batt’) >= 5, max(batt’) <= 100

}

}

In the above example, we declare a profile of a platform with three re-
sources, proc, mem, and batt. Relative weights of resources are marked
after the symbol @, with cpu having five times the weight of mem in
our example platform. Constraints over these resources can be specified
on resource consumption rates or on resource consumptions directly:
max(proc′) <= 200 constraints maximum rate of the resource proc to re-
main under 200, while max(mem) <= 10240 restricts the total consump-
tion of the resource mem to 10240. For the resource batt, we restrict
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the consumption rate between 5 and 100, and the total consumption to
150000.

This is a simplistic model of platform resources suitable for high-
level analysis. The presented platform profile is not directly related to
Remes, but to the implementation of the tool-chain. Relative weights
of the resources defined in the profile are used to construct a weighted
sum of resource consumptions during analysis, described in Section 4.2.
The constraints described in the platform profile are similar to resource
usage definitions of the Generic Resource Modeling package introduced
in the MARTE profile [85].
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an Environment for Component-based Development of Distributed
Real-time Embedded Systems. Proceedings of the 9th Working
IEEE/IFIP Conference on Software Architecture, June 2011.

http://www.autosar.org/download/R4.0/AUTOSAR_TPS_TimingExtensions.pdf


178 Bibliography

[27] Elena M. Bortnik, Nikola Trčka, Anton Wijs, Bas Luttik, J. M.
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[86] Marin Orlić. Predvidjanje uporabe resursa u sustavima temeljenim
na programskim komponentima (in Croatian). Doctoral disserta-
tion, 2010.
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Errata

Page 64. The description of the CPU consumption should read “The
consumption of the CPU can be modeled by a discrete variable, denot-
ing the number of accumulated clock ticks, or processor load, or by a
continuous variable, which represents the CPU usage in computerized
systems.”

Page 65. Table 4.1 should read

Resource Class Characteristics

A
discrete: ċ = 0 or ċ =∞

(e.g. memory) referable

B
discrete: ċ = 0 or ċ =∞

(e.g. CPU, bandwidth) non-referable

C
continuous: ċ = n, n ∈ Z− {−∞,+∞}

(e.g. CPU, energy) non-referable

Table 1: Resource classes/characteristics.

Page 71. In Definition 8 max should read sum.


	1 Introduction
	1.1 Problem Statement and Research Goals
	1.2 Contributions
	1.3 Publications
	1.3.1 Description of fundamental publications
	1.3.2 Publications related to the thesis

	1.4 Research Methodology
	1.5 Thesis Outline

	2 Background
	2.1 Component-Based Development
	2.2 Formal Models and Analysis Techniques
	2.2.1 Timed automata
	2.2.2 Priced timed automata


	3 ProCom: A Component Model for Embedded Systems
	3.1 Key Requirements for Development of Control-Intensive Distributed Embedded Systems
	3.2 ProCom Design Choices
	3.3 ProCom: Syntax and Informal Execution Semantics
	3.3.1 ProSys - the upper layer
	3.3.2 ProSave - the lower layer
	3.3.3 Integration of layers – combining ProSave and ProSys
	3.3.4 Example: An Electronic Stability Control System

	3.4 Formal Execution Semantics of the ProCom Component Model
	3.4.1 Formalism and graphical notation
	3.4.2 Formal semantics of the FSM language
	3.4.3 Formal execution semantics of selected ProCom elements

	3.5 Summary

	4 Remes: A Behavioral Model for Embedded Systems
	4.1 Remes: Syntax and Execution Semantics
	4.1.1 Classes of resources
	4.1.2 Introducing Remes
	4.1.3 Composition of Remes models

	4.2 Formal Analysis of Remes Models
	4.2.1 Analysis model for Remes
	4.2.2 Feasibility analysis
	4.2.3 Optimal and worst-case resource consumption
	4.2.4 Trade-off analysis

	4.3 Transforming Remes Modes into a Network of (Priced) Timed Automata
	4.4 Example: A Temperature Control System
	4.5 Summary

	5 Integrating ProCom and Remes
	5.1 Connecting Component Interfaces and Remes Modes
	5.1.1 Connecting ProSave and Remes
	5.1.2 Connecting ProSys and Remes

	5.2 Packaging ProCom Components and Remes Modes together
	5.3 Example Revisited: A Temperature Control System
	5.3.1 Architecting the TCS in ProSave
	5.3.2 Behavioral modeling of the TCS in Remes
	5.3.3 PTA formal modeling and analysis of the TCS

	5.4 Example: A Turntable Drilling System
	5.4.1 Architecting the turntable in ProSys
	5.4.2 Behavioral modeling of the turntable in Remes
	5.4.3 PTA formal modeling and analysis of the turntable system

	5.5 Summary

	6 The Remes Tool-chain
	6.1 Overview of the Remes Tool-chain
	6.1.1 Behavior Modeling Tools
	6.1.2 Analysis Tools
	6.1.3 Integration between ProCom and Remes

	6.2 Workflow of the Remes Tool-chain
	6.3 Summary

	7 Case Study: Ericsson Nikola Tesla Demonstrator
	7.1 Overview of the Verification and Validation Process
	7.2 Description of the Demonstrator
	7.3 The ProCom Architecture of the Demonstrator
	7.4  Remes Modeling and Formal Analysis of the Demonstrator
	7.4.1 The Remes model of the ENT demonstrator
	7.4.2 Formal analysis goals
	7.4.3 PTA model of the ENT demonstrator and analysis results

	7.5 Summary

	8 Related Work
	8.1 Component Models for Embedded Systems
	8.2 Resource-Aware Modeling and Analysis for Embedded Systems

	9 Conclusion
	9.1 Summary and Contributions
	9.2 Limitations and Future work

	A Remes Meta-model
	B ULite Meta-model
	C Platform profile
	Bibliography
	Index

