
A Simple and Flexible Timing Constraint Logic

Björn Lisper1, Johan Nordlander2

1 School of Innovation, Design, and Engineering, Mälardalen University, SE-721 23
Västerås, Sweden

2 Department of Computer Science, Electrical and Space Engineering, Luleå
University of Technology, SE-971 87 Luleå, Sweden

Abstract. Formats for describing timing behaviors range from �xed
menus of standard patterns, to fully open-ended behavioral de�nitions;
of which some may be supported by formal semantic underpinnings, while
others are better characterized as primarily informal notations. Timing
descriptions that allow �exible extension within a fully formalized frame-
work constitute a particularly interesting area in this respect.
We present a small logic for expressing timing constraints in such an
open-ended fashion, sprung out of our work with timing constraint se-
mantics in the TIMMO-2-USE project [15]. The result is a non-modal,
�rst-order logic over reals and sets of reals, which references the con-
strained objects solely in terms of event occurrences. Both �nite and
in�nite behaviors may be expressed, and a core feature of the logic is the
ability to restrict any constraint to just the �nite ranges when a certain
system mode is active.
Full syntactic and semantic de�nitions of our formula language are given,
and as an indicator of its expressiveness, we show how to express all
constraint forms currently de�ned by TIMMO-2-USE and AUTOSAR. A
separate section deals with the support for mode-dependencies that have
been proposed for both frameworks, and we demonstrate by an example
how our generic mode-restriction mechanism formalizes the details of
such an extension.

1 Introduction

Timing behavior descriptions exist in many di�erent forms. Classical real-time
scheduling theory de�nes the basic periodic and sporadic patterns to describe
task activations, along with the simple notion of relative deadlines for capturing
the desired behavior of a system's response. Digital circuits are often accompa-
nied by timing diagrams [4], where selected scenarios from an in�nitely repeat-
ing behavior are depicted graphically, speci�cally indicating the minimum and
maximum distances between key events. In the automotive domain, the model-
based development frameworks of AUTOSAR [6] and EAST-ADL [8] o�er a rich
palette of built-in timing patterns and constraints, commonly speci�ed in terms
of typical-case timing diagrams. On the theoretical side, temporal and real-time

logics concentrate on a few basic building blocks, from which more complex
timing formulae can be constructed using logical connectives.



The timing models of classical scheduling theory are well-understood, but
limited in expressiveness and essentially closed � even though they have been
successfully extended with notions such as jitter and release o�sets, every exten-
sion has to show that it also can be understood and analyzed in ways that mirror
the original theory. As a contrast, graphical timing diagrams appear inherently
open-ended, but this is primarily the consequence of a lack of rigor in this in-
formal notation. AUTOSAR and EAST-ADL can express some very complex
timing behaviors, but pay the price of being both informal as well as closed to
extension. A formal foundation for the timing constructs of both languages has
previously been de�ned by the TIMMO-2-USE project, but extensibility of this
foundation has so far not been addressed.

This paper contributes a retake on the TIMMO-2-USE formalization e�ort,
by means of a timing constraint logic that is able to express all existing con-
straints, while also acting as a toolbox for building new and open-ended forms
of well-de�ned timing behaviors. The logic, called TiCL (Timing Constraint
Logic), is similar to existing real-time logics in this respect, but di�ers in the
following important ways:

� TiCL is a logic of pure timing constraints. It does not attempt to express
any functional properties of the systems it constrains, and it only interfaces
to the latter via the notion of event occurrences. This separation of con-
cerns is central to the ability to blend with EAST-ADL and AUTOSAR,
whose complex semantics does not yet allow full formalization of functional
behavior.

� TiCL is not a modal logic. In fact, TiCL just represents a carefully chosen
selection of operators from a standard �rst-order logic over the real numbers
and real number sets.

� TiCL is not restricted to in�nite behaviors only. Finite behaviors can be
expressed with ease, and one of the strengths of TiCL is a mechanism for
restricting a generic constraint to just the �nite ranges when a certain system
mode is active.

In Section 2 we introduce introduce TADL, a language for timing constraints
that was de�ned in the TIMMO project and has in�uenced the AUTOSAR
Timing Extensions. We then de�ne the syntax and semantics of TiCL in Sec-
tion 3, establish some convenient notational short-hands (Section 4), and show
how current TADL and AUTOSAR constraints are captured (Section 5). The
mechanism for interpreting mode-dependencies is explained in Section 6. We
discuss related work in Section 7. Veri�cation and analysis issues are beyond the
scope of the current paper, but the topic will be returned to in the concluding
discussion (Section 8).

2 TADL

The Timing Augmented Description Language (TADL) [10] is a constraint lan-
guage for describing timing requirements and properties within the automotive



domain. It was originally de�ned in the TIMMO project, and is now being re-
vised and formalized within the TIMMO-2-USE project: TiCL is an outcome of
this work. The syntax of TADL is compliant to the AUTOSAR meta-model, but
the TADL constraints can also be understood through a textual syntax.

TADL de�nes constraints on events, which are simply (�nite or in�nite) se-
quences of strictly increasing times. The de�nition does not specify whether
times are integers or reals: the constraints have meaningful interpretations in
both cases. An element in an event is an occurrence of the event.

TADL's constraints, as de�ned in [10], can be divided into three groups:
repetition rate constraints, which concern single events, delay constraints, which
concern the timing relation between stimuli and responses, and synchronization

constraints, that require that corresponding occurrences of a group of events
appear in su�ciently tight clusters.

All repetition rate constraints can be seen as instances of a generic repetition

rate constraint. Such a constraint is speci�ed by four parameters lower , upper ,
,jitter , and span. An event 〈t1, t2, . . .〉 satis�es a generic repetition rate constraint
i� there exists an sequence of times 〈x1, x2, . . .〉 such that for all i > 1,

xi ≤ ti ≤ xi + jitter

and for all i ≥ span,

lower ≤ xi − xi−span ≤ upper

Now, a periodic repetition constraint is a generic repetition rate constraint where
span = 1, and lower = upper . A sporadic repetition constraint has span = 1,
and upper =∞. TADL also de�nes more complex pattern repetition constraints,
and arbitrary repetition constraints, see [10].

Delay constraints relate two events, called stimulus and response, by demand-
ing that each occurrence of one event is matched by at least one occurrence of
the other within some time window. Depending on whether these time windows
are achored at the stimulus or response occurrences, TADL names the delay
constraints reaction or age, respectively.

Both the reaction and age constraints are characterized by the parameters
lower , and upper . A stimulus event 〈s1, s2, . . .〉 and a response event 〈r1, r2, . . .〉
satisfy a reaction constraint with parameter lower , upper i� for all si there exists
rj such that

si + lower ≤ rj ≤ si + upper

The same events satisfy an age constraint with the same parameters, i� for all
rj there exists an si such that

rj − upper ≤ si ≤ rj − lower

Synchronization constraints were originally de�ned as rather complex con-
structs in both TADL and AUTOSAR, being syntactic (but notably not se-
mantic) extensions of the delay constraints [10]. Both language have since then
simpli�ed the notion of synchronization considerably, and the upcoming release



of TADL v2 de�nes synchronization as a constraint on a group of events S, char-
acterized by a single parameter tolerance. Such a constraint is satis�ed i� there is
a sequence of times 〈x1, x2, . . .〉 such that for all xi and all events 〈s1, s2, . . .〉 ∈ S
there exists at least one sj such that

xi ≤ sj ≤ xi + tolerance

The TADL v1 de�nition of synchronization will be further discussed at the end
of Section 5.

A common theme in the de�nitions above is that they all rely on an in�nite
number of indexed event occurrences, which excludes their use in scenarios that
span only �nite intervals (as in mode-switching systems, for example). They are
also practically closed, due to the fact that the logic in which the de�nitions are
expressed is left unspeci�ed in the current TADL. Both these de�ciencies will be
addressed by the introduction of TiCL.

3 TiCL

The basic purpose of the timing constraint language TiCL is to express truth
statements about the points in time when events occur. Points in time are in-
terpreted as real values, and since such values are totally ordered, events can
simply be understood as sets of reals (in�nite or �nite). We make the choice to
also represent time intervals as sets of time values; such sets are however always
in�nite. Three di�erent sets of variables form the basis of TiCL: one denoting
time values (Tvar), one ranging over sets (Svar), and yet another form standing
for arbitrary arithmetic values not denoting points in time (Avar). The syntax
of TiCL is given in Fig. 1.

Syntactic categories

r ∈ R (arithmetic constants)

v ∈ Avar (arithmetic variables)
X,Y ∈ Svar (set variables)
x, y ∈ Tvar (time variables)

e, f ∈ AExp (arithmetic expressions)
E,F ∈ SExp (set expressions)
c, d ∈ CExp (constraint expressions)

Abstract syntax

e → r | v | e+ f | e− f | e ∗ f | e /f | |E| | λ(E)

E → X | {x : c}

c → e ≤ f | x ≤ y | x ∈ E | c ∧ d | ¬c | ∀v : c | ∀x : c | ∀X : c

Fig. 1. TiCL syntax.



TiCL distinguishes between three kinds of terms. AExp is the set of arith-
metic expressions formed from constants, variables, arithmetic operators, as well
as the size |E|, or the measure λ(E), of a set expression E. By measure we mean
the total length of all continuous intervals in E (that is, the Lebesgue measure
of E). The set expressions SExp take the form of a set variable X, or a set
comprehension {x : c} � the set of all times x such that constraint c (which
may reference x) is true. CExp, �nally, stands for the set of boolean constraint
formulae formed from inequalities between arithmetic expressions, inequalities
between time variables, set membership (x belongs to the set of times denoted
by E), logical connectives, and quanti�cation over arithmetic, time and set vari-
ables.

true ≡ 0 ≤ 1
false ≡ 1 ≤ 0
c ∨ d ≡ ¬(¬c ∧ ¬d)

c ⇒ d ≡ ¬c ∨ d
c ⇔ d ≡ (c ⇒ d) ∧ (d ⇒ c)
e = f ≡ e ≤ f ∧ f ≤ e
e 6= f ≡ ¬(e = f)
e < f ≡ e ≤ f ∧ e 6= f

E ⊆ F ≡ ∀x : x ∈ E ⇒ x ∈ F
E = F ≡ E ⊆ F ∧ F ⊆ E
E 6= F ≡ ¬(E = F )
E ⊂ F ≡ E ⊆ F ∧ E 6= F
x /∈ E ≡ ¬(x ∈ E)

∃v : c ≡ ¬(∀v : ¬c)
∃x : c ≡ ¬(∀x : ¬c)
∃X : c ≡ ¬(∀X : ¬c)

∀x ∈ E : c ≡ ∀x : x ∈ E ⇒ c
∃x ∈ E : c ≡ ∃x : x ∈ E ∧ c
∃X = E : c ≡ ∃X : X = E ∧ c
{x ∈ E : c} ≡ {x : x ∈ E ∧ c}

E ∪ F ≡ {x : x ∈ E ∨ x ∈ F}
E ∩ F ≡ {x : x ∈ E ∧ x ∈ F}

E{ ≡ {x : x /∈ E}
E\F ≡ {x : x ∈ E ∧ x /∈ F}

Fig. 2. Standard syntactic abbreviations.

The syntax of TiCL is thus entirely standard, and should�with the possible
exception of the Tvar/Avar distinction�suggest an absolutely straightforward
�rst-order logic semantics. The reason why time variables are kept distinct from
their arithmetic counterparts is that absolute time values are never interesting in
their own right; only their relative distances are. By making it impossible to form
arithmetic expressions directly from time variables, the TiCL constraints become
independent of the arbitrary point in time a user chooses to refer to as time
"zero". This contrasts sharply to the arithmetic variables, which typically stand
for aspects such as minimum interval length, maximum number of occurrences,
etc�i.e., aspects whose absolute values are of prime interest in the de�nition of
timing constraints.

As an example TiCL formula, here follows a constraint that demands the
occurrences of event X to be no more than, and to occur no later than, the



occurrences of event Y .3

|X| ≤ |Y | ∧ ∀x : ∀y : ¬(x ∈ X ∧ y ∈ Y ∧ ¬(x ≤ y))

4 Abbreviations

For added convenience, we complement the basic syntax of TiCL with a series
of syntactic abbreviations, the �rst of which is de�ned in Fig. 2. By taking
advantage of these notational short-hands, we may choose to express the example
constraint of the previous section as follows:

|X| ≤ |Y | ∧ ∀x ∈ X : ∀y ∈ Y : x ≤ y

Sets of time values do not only represent the generally sparse points in time
where di�erent events occur, but also the notion of dense intervals � i.e., sets
that contain all time values above or below chosen endpoints. Fig. 3 de�nes some
useful interval constructors, that take either single time values, or sets of such
values, as starting points.

[x ≤] ≡ {y : x ≤ y}
[x <] ≡ {y : x < y}
[≤ x] ≡ [x <]{

[< x] ≡ [x ≤]{
[x..y] ≡ [x ≤] ∩ [< y]

[E ≤] ≡ {y : ∃x ∈ E : x ≤ y}
[E <] ≡ {y : ∀x ∈ E : x < y}
[≤ E] ≡ [E <]{

[< E] ≡ [E ≤]{
[E] ≡ [E ≤] ∩ [≤ E]

Fig. 3. Interval constructors.

Intervals are important for separating legal and illegal occurrences of events.
The following operations �lter out occurrences of an event that are either above
or below a certain point in time.

Ex< ≡ E ∩ [x <]
E<x ≡ E ∩ [< x]

The �rst of these �lters, in combination with the previous interval constructors,
allows us to express the range of time values starting at some point x and ending
right before the next occurrence of an event E.

[x..E] ≡ [x ≤] ∩ [< (Ex<)]

Generalizing the previous notation to two events E and F , we end up with an
operator that captures a set of ranges, where E contains the possible starting
points, and F the possible end-points.

[E..F ] ≡ {x : ∃y ∈ E : x ∈ [y..F ]}



X
Y
[X..Y ]

Fig. 4. Scenario illustrating the active ranges between two events.

Fig. 4 shows the intuition behind this range operator in graphical form.
As an inverse of the range operator, we may also de�ne two operations that

extract the set of starting points and end-points, respectively, from a set of
disjoint intervals.

E↑ ≡ {x ∈ E : ∃y < x : y /∈ E ∧ ∀y′ : y ≤ y′ < x ⇒ y′ /∈ E}
E↓ ≡ (E{)↑

Since the length of an interval is captured by the measure operator, we may
introduce the relative distance between two time values as an arithmetic expres-
sion.

x− y ≡ λ([y..x])− λ([x..y])

Note how the use of two swapped intervals makes the distance operator capable
of returning both positive and negative results, depending on which of the times
x and y that is greater.

The distance operator allows time translation of sets to be expressed, and
the range notation to be generalized accordingly.

E � e ≡ {x : ∃y ∈ E : y − x = e}
E � e ≡ E � 0− e

[x+e..y+f ] ≡ ([x ≤]� e) ∩ ([< y]� f)

We also provide an option for indexing a set of time values from zero and
up. Since indexing must fail if the set in question contains too few elements,
or if an index falls inside a continuous interval of elements, the indexing oper-
ator is integrated into a constraint form that simply becomes false under those
circumstances.

x = E(e) ≡ x ∈ E ∧ |E<x| = e

Another useful constraint form that is de�nable in terms of intervals is the
subrange relation:

E E F ≡ ∃x : ∃y : E = F ∩ [x..y]

As a generic mechanism for open-ended extension, TiCL allows user-de�ned
constraints to be named and placed in the available abbreviation environment

3 We use a concrete syntax where quanti�ers scope as far to the right as possible, and
standard operator precedences apply.



alongside the notational short-hands introduced above. Each such constraint
de�nition is of the form

C(x,X, v) ≡ c

where C is a name drawn from some set of constraint identi�ers, c is a constraint
expression, and x, X, and v are zero or more distinct time, event, and arithmetic
variables, respectively. A named constraint can be referred to by writing

C(y,E, e)

where the number of terms in y, E, and e must match the corresponding param-
eter lists in the de�nition of C.

To constitute a valid constraint de�nition, C(x,X, v) ≡ c must ful�ll two
conditions:

1. c must not contain any other free variables than those in x, X, and v.
2. c must not refer to C, or any other constraint de�nition that directly or

indirectly refers to C.

These conditions ensure that in any context, named constraints can be removed
by simply macro-expanding their respective de�nitions.

5 Expressing TADL constraints

In this section we demonstrate the expressive power of TiCL by showing how
the various timing constraints de�ned by both TIMMO and AUTOSAR can be
captured formally. The intention is neither to explain the intuition behind these
constraints here, nor to motivate any particular design choices in the de�nitions.
In fact, some constraints are actually given multiple de�nitions, re�ecting the
alternatives that have appeared in di�erent TIMMO or AUTOSAR versions.
The focus in this section is primarily on the semantic details that distinguish
such alternatives from each other.

The basic TADL delay constraint requires that for each occurrence of a stim-
ulus event X, there must exist some occurrence of response event Y at a relative
distance determined by a lower and an upper bound (vl and vu).

delay(X,Y, vl, vu) ≡ ∀x ∈ X : ∃y ∈ Y : vl ≤ y − x ≤ vu

Two delay constraints in a symmetric fashion form a bidelay. Such a constraint
is not actually part of TADL, but we give it a name here nevertheless because
it will prove useful in the speci�cation of other TADL constraints.

bidelay(X,Y, vl, vu) ≡ delay(X,Y, vl, vu) ∧ delay(Y,X,−vu,−vl)

An alternative form of delay that will also be subsequently needed requires that
each response occurrence is unique within the speci�ed time window.

unidelay(X,Y, vl, vu) ≡ ∀x ∈ X : |Y ∩ [x+ vl..x+ vu]| = 1



Yet another useful form is the strong delay, which demands that the stimulus
and response events are related for each indexed occurrence.

strongdelay(X,Y, vl, vu) ≡ ∀i : ∃x = X(i) : ∃y = Y (i) : vl ≤ y − x ≤ vu

The di�erences between these delay forms are subtle but important. The basic
delay allows multiple responses to a single stimuli, as well as responses that
are shared by multiple stimuli. bidelay does the same, but disallows orphan
responses. The unidelay constraint rules out multiple possible responses, but still
allows the mapping of many stimuli onto a single response. strongdelay requires
the stimulus and response occurrences to appear in lock-step.

TADL further de�nes a repetition constraint, which can be conveniently cap-
tured in two stages. First we introduce the basic notion of a repetition, which
says that any stretch of vs periods (i.e., any subrange of vs+1 event occurrences)
must have a distance between the �rst and last occurrence that is bounded by
vl and vu.

repeat(X, vl, vu, vs) ≡ ∀Y E X : |Y | = vs + 1 ⇒ vl ≤ λ([Y ]) ≤ vu

Then we add the jitter component by means of a local event and strongdelay:

repetition(X, vl, vu, vj , vs) ≡ ∃Y : repeat(Y, vl, vu, vs) ∧ strongdelay(Y,X, 0, vj)

Notice how Y here takes the role of a set of ideal points in time, from which the
actual event X may deviate by at most the jitter distance vj .

The third pillar of TADL is the synchronization constraint, which in its weak
form can be expressed as follows:

sync(X1, . . . , Xn, vj) ≡ ∃Y : bidelay(Y,X1, 0, vj) ∧ · · · ∧ bidelay(Y,Xn, 0, vj)

That is, synchronization implies that each occurrence of each event Xi is su�-
ciently close to a "cluster" point of some set Y , and each such point in turn is
su�ciently close to occurrences of all the Xi. Note that by choosing bidelay over
the other delay forms in this de�nition, TADL deliberately accepts both overlap-
ping synchronization clusters, and clusters containing more than one occurrence
of some events. A strong synchronization variant, which requires all synchronized
events to appear in a lock-step fashion akin to the strongdelay constraint, can
easily be de�ned in terms of the latter (not shown here).

TADL has recently been extended with a constraint capturing the notion
of bounded execution times, which is a bit challenging to formalize purely in
terms of events. However, if one assumes the existence of events indicating not
only the start and termination of the function of interest, but also preemption
and resumption of that function, an exectime constraint can be de�ned quite
succinctly in TiCL.

exectime(X,Y,X ′, Y ′, vl, vu) ≡ ∀x ∈ X : vl ≤ λ([x..Y ]\[X ′..Y ′]) ≤ vu

This de�nition assumes that X and Y capture the points in time when the
function of interest is started and terminated, and that preemption and resump-
tion points for that function are given by events X ′ and Y ′, respectively. The



set [X ′..Y ′] thus indicates the intervals during which the measured function is
preempted, and those points in time should be excluded from each invocation in-
terval in order to obtain an accurate execution time. The value to be constrained
is the sum of the interval fragments that remain, which is equivalently expressed
as the measure of the corresponding set. Fig. 5 shows a graphical illustration of
an exectime scenario, where x1 and x2 denote the starting points of two separate
invocations of the constrained function.

X
Y
[X..Y ]

X'
Y'
[X'..Y' ]

[x1..Y ]\[X'..Y' ]
[x2..Y ]\[X'..Y' ]

x1 x2

Fig. 5. Event scenario illustrating the exectime constraint.

sporadic(X, vl, vu, vj , vm) ≡ repetition(X, vl, vu, vj , 1)∧
minimum(X, vm)

periodic(X, vp, vj , vm) ≡ sporadic(X, vp, vp, vj , vm)
pattern(X,Y, v1, . . . , vn, vj , vm) ≡ delay(Y,X, v1, v1 + vj) ∧ · · · ∧

delay(Y,X, vn, vn + vj)∧
minimum(X, vm)

arbitrary(X, v1, . . . , vn, v
′
1, . . . , v

′
n) ≡ repeat(X, v1, v

′
1, 1) ∧ · · · ∧

repeat(X, vn, v
′
n, n)

burst(X, vl, vn, vm) ≡ repeat(X, vl,∞, vn + 1)∧
minimum(X, vm)

Fig. 6. Derived TADL constraint de�nitions.



Further TADL constraints are de�nable entirely in terms of the building
blocks introduced so far. Fig. 6 shows the de�nitions that apply to TADL v2.4

Theminimum constraint referenced in several places is just a jitter-free repetition
spanning subsequent occurrences, with in�nity as its upper bound.

minimum(X, v) ≡ repeat(X, v,∞, 1)

To further exemplify the precision that is possible to express using TiCL,
we give a few alternative de�nitions of the pattern and sync constraints above.
The pattern1 variant represents one reasonable interpretation of the correspond-
ing AUTOSAR constraint, which assumes that the underlying periodic cycle of
the pattern is automatically detected. Also, constraint sync1 captures the quite
complicated de�nition of synchronization that was a part of TADL v1, where
synchronization was not expressible without also embedding a delay from a ref-
erence event governing when synchronization must take place.

pattern1 (X, vp, vj , vm, v1, . . . , vn) ≡ ∃Y : periodic(Y, vp, 0, 0)∧
pattern(X,Y, v1, . . . , vn, vj , vm)

sync1 (Y,X1, . . . , Xn, vl, vu, vj) ≡ unidelay(Y,X1, vl, vu) ∧ · · · ∧
unidelay(Y,Xn, vl, vu)∧
∃Y ′ : strongdelay(Y, Y ′, vl, vu)∧
sync(Y ′, X1, . . . , Xn, vj)

6 Modes

Mode dependency is a design pattern that is used frequently in many AUTOSAR
and EAST-ADL models, and which naturally also has an impact on the notion
of timing correctness of such models. Simply put, a mode is an abstraction over
the state of a system, such that at each point in time, the mode is either active
or inactive. Modes are typically used to guard di�erent functional behaviors,
emphasizing orderly distributed mode transitions over distributed behavior in
general. A mode-dependent timing constraint is then understood as a constraint
that only has to hold while the referenced mode is active; outside those active
intervals, the constraint should count as being vacuously true.

However, while the basic intuition behind modes is relatively simple, its ap-
plication to timing correctness presents some interesting design problems. The
fundamental challenge is that timing constraints express properties that gen-
erally involve multiple points in time, and a mode change that occurs in the
middle of such an interval may very well render a mode-dependent constraint

4 TADL v2 also includes a group of delay and synchronization constraints that use
an externally provided causality relation to �lter out the event occurences that that
a particular delay or synchronization window should contain. TiCL can easily be
complemented with the machinery necessary to express this extension, but we do
not show it here in the interest of notational brevity.



ambiguous. A delay constraint serves as a simple illustration. Should an absent
response be tolerated if a mode deactivation intervenes? Should a stray response
be accepted if it could have been caused by a stimulus outside the current mode
interval?

Examination of real world scenarios has led us to believe that the generic
answer should be yes to all such questions. A mode-dependent constraint should
be considered satis�ed if it holds for the event occurrences within each active
interval, plus some hypothetic and optimally chosen occurrence pattern outside
each interval. If this idea is formalized correctly, it should be possible to put a
mode-restriction on an arbitrary constraint and obtain a meaningful semantics,
even if the constraint has not been de�ned with the speci�c challenges of mode-
switching in mind.

The approach we have taken is to model modes as sets of time values, just
like we do for events and arbitrary intervals. To make the mode intuition clear,
however, we introduce a distinct class of variables to range over modes:

M ∈ Svar (mode identi�ers)

Semantically, a mode identi�er M stands for some set of time values, just like
an X or a Y . In particular, if X and Y are events indicating the activation
and deactivation of some mode M , a natural way to express this formally is to
introduce M in some scope c as follows:

∃M = [X..Y ] : c

Alternatively, a mode M can be de�ned as some combination of other modes
using union, disjunction, or any other de�ned operator on general sets.

We now introduce a syntax for mode-restricted constraints, by means of a
decoration to the application of a named constraint macro.

C(y,E1, . . . , En, e)%M

The core of our mode-restriction mechanism is the semantics given to this con-
straint form. As before, we proceed in terms of a translation of the syntax form,
that results in a constraint term where the new syntax is absent. We begin with
the simple case where C takes only one event argument.

C(y,E, e)%M ≡ ∀x ∈M↑ : ∃Y = [x..M↓] : ∃X ⊆ Y { : C(y, (E∩Y )∪X, e)
The de�nition should be read as follows. For the given mode M , its activation
and deactivation points (M↑ and M↓) are identi�ed. Then, for each activation
point x in M↑, a freely chosen X, subset of the possible time values outside the
current activation interval Y , is added to the subrange of event parameter E
that falls within Y . That is, the translated, mode-independent application of C
takes E∩Y ∪X as an argument in place of E, which captures the intuition that
a mode both ignores and assumes the best about occurrences that fall outside
its active intervals. Generalized to n event arguments, the translation becomes

C(y,E1, . . . , En, e)%M ≡ ∀x ∈M↑ : ∃Y = [x..M↓] :

∃X1 ⊆ Y { : . . . : ∃Xn ⊆ Y { :
C(y, (E1∩Y )∪X1, . . . , (En∩Y )∪Xn, e)



M↑

M↓

M

E

E ∩[x1..M↓ ] ∪X1

[x1..M↓ ]C

[x2..M↓ ]C

x1 x2

E ∩[x2..M↓ ] ∪X2

...

...

...

...

...

Fig. 7. Event scenario involving a mode-restricted constraint cyclic(E, v)%M .

To illustrate the power of this interpretation of mode-dependencies, we de�ne
a somewhat contrived, but still perfectly sound, variant of a repetition constraint:

cyclic(X, v) ≡ delay(X,X, v, v)

This constraint is special because it only holds for in�nitely repeating events.
The top of Fig. 7 shows the initial trace of an event E that certainly does

not satisfy cyclic(E, v) for any v. However, the intent is now that the constraint
only has to hold while mode M is active; i.e., cyclic(E, v)%M must be true.
While it is clear that E is repetitive during the activity intervals, just limiting
E to those intervals would not work�all such E subsets would be �nite. But
by interpreting mode-restriction as a constraint on mode-limited event subsets
extended with arbitrarily chosen points outside the mode interval, even in�nitely
demanding constraints like cyclic become possible to apply in �nite contexts.

What Fig. 7 depicts below the trace of E is the assumed activity intervals
of mode M , its activation and deactivation points, the complements of the �rst
and second activity intervals of M (i.e., the sets from which suitable subsets X
may be drawn), and the resulting, purely cyclic patterns that result when the
relevant subsets of E are suitably extended.

7 Related Work

TiCL shares its main objective with the various real-time (timed/temporal) log-
ics that have been proposed in the context of model-checking and veri�cation of
timed automata: to o�er a comprehensive formalism for specifying the timing
behavior of a system in a logically robust way [3, 7, 13, 12, 1, 9]. This line of re-
search is uniformly dealing withmodal logics; i.e., logics whose semantics is based



on sequences of system states and atomic predicates on these. Such generality
allows the integration of timing aspects into arbitrary speci�cations of functional
behavior, as would be expected by the model-checking approach. TiCL exhibits
a much weaker connection between timing properties and their underlying sys-
tems, by only allowing relations on the occurrences of abstract events as its
atomic formulas. This makes TiCL unsuitable as a general model-checking spec-
i�cation language, although it also makes for a very clean identi�cation of the
properties that are purely concerned with timing.

At the same time, TiCL is fundamentally more expressive than the modal
approaches in being a �rst-order logic. The additional power stems primarily
from the universally (and existentially) quanti�ed variables of TiCL, which may
range over both points in time as well as sets of such values. Temporal logics
allow only a limited form of quanti�cation through temporal operators, whose
closest counterparts in TiCL would be quanti�ers introducing variables used
just as event indices. A mode-dependency operator like ours, which critically
depends on the ability to quantify over sets, appears very di�cult to express in
a temporal logic style, if at all possible. It should also be noted that the core
TiCL operators and quanti�ers are entirely standard in the logic �eld, whereas
the various temporal and real-time logics are to a large extent identi�ed by the
custom operators they provide. Of course, TiCL pays a price for this generality
by being undecidable, but its intended role as a disambiguation tool for humans is
more dependent on a standard semantics and a carefully delimited syntax than
on decidability issues. Moreover, there are reasons to believe that practically
signi�cant fragments of TiCL are indeed decidable, analogous to the case for
�rst-order logics in general.

Amon et al. [4] de�ne a speci�cation language for capturing the logic of tim-
ing diagrams in a form that resembles our constraint language minus the event
variables and with restricted integer arithmetic (no division operator, multipli-
cation by literals only). This sublanguage corresponds to Presburger formulas,
for which automatic and e�cient veri�cation procedures exist. It remains to be
seen to what extent the approach allows extension towards the full TiCL syntax
(one particular sub-case that appears particularly benign is top-level quanti�-
cation over real-valued sets, which should imply little more than just iterated
veri�cation).

CCSL [5] is a language for specifying timing constraints in the UML pro�le
MARTE [14] for modeling and analysis of real-time systems. CCSL can specify
clocks, which correspond to events, and relations between them. Relations include
various sub- and precedence constraints. It seems that TiCL quite readily could
express counterparts to CCSL clock constraints on events.

Timed automata [2] are automata extended with various clock variables,
which can be used to model real-time systems. Model checking can be performed
over timed automata to verify that the models have certain properties. The
properties, which typically are reachability properties, are then speci�ed in some
temporal logic. UPPAAL [11] is a well-known tool for modeling and veri�cation
using timed automata.



Transitions in timed automata can be guarded by constraints on the clocks:
thus, timed automata can to some extent include timing constraints in the mod-
els. However, the style is state-oriented rather than event-oriented and thus
quite di�erent from TiCL. Also, timed automata and their temporal logics are
usually designed to be decidable, allowing e�cient procedures for model check-
ing whereas TiCL favours expressiveness. An interesting question, of course, is
whether some nontrivial fragment of TiCL can be translated into timed automata
as it would allow automatic veri�cation of that fragment.

8 Conclusions and Further Research

We have presented TiCL, a simple logic for expressing timing constraints on
events. TiCL came out of the work with TADL, a language for specifying timing
requirements and -properties that is intended to be used with AUTOSAR and
EAST-ADL in the automotive domain. TiCL o�ers a rich syntax, on top of
a simple kernel language, for de�ning constraints on events de�ned as sets of
times. We showed how to express TADL's timing constraints in TiCL, as well as
some other timing constraints that seem natural and useful. We also introduced
mode-dependent TiCL constraints, with a special mode restriction operator, and
gave the operator a semantics by translation into TiCL without this operator.

Expressing timing constraints by translation into a logic like TiCL has several
advantages. One advantage is that the semantics of timing constraints becomes
well-de�ned and unambiguous, since TiCL itself has a very clear, standard se-
mantics. In particular this is true for mode-dependent constraints, since they
have hitherto never been given a stringent semantics although they are present
in both AUTOSAR, EAST-ADL, and TADL. We believe that we have found the
�right� de�nition of mode dependency, and the semantics of this de�nition can
be used to give a well-de�ned semantics for mode dependency in, say, TADL as
well.

Another advantage is that tools for validating or verifying timing constraints
can work by translation into TiCL. Tools that check the validity of event traces
vis-a-vis some timing constraints, or that simulate systems based on timing prop-
erties expressed in, say, TADL, can work on TiCL rather than TADL. Since
TiCL is simple, with a clear semantics, such tools will be easier to implement
for TiCL. This is similar to compilers, where programs are �rst translated into
some intermediate format that is easier to work on.

TiCL also o�ers a way to express timing constraints in situations where the
�xed format constraints of languages like TADL turn out not to be applicable. A
�power user� can easily de�ne new timing constraints in TiCL that are tailored
to special needs. Similarly, if later versions of AUTOSAR or TADL will have
a modi�ed set of timing constraints, then these will most likely be expressible
in TiCL as well. Once a translation to TiCL is established the new constraints
will have a well-de�ned semantics, and tools that are based on TiCL will work
immediately.



Finally, TiCL opens a possible route for formal veri�cation of timing con-
straints. Although TiCL itself is not a decidable logic, it does not seem unlikely
that there are nontrivial fragments that are decidable. Timing constraints that
can be expressed within such fragments will then be possible to verify formally
by an automated decision procedure.

References

1. Abadi, M., Lamport, L., Taylor, R.W.: An old-fashioned recipe for real time. In:
ACM Transactions on Programming Languages and Systems. pp. 1�27. Springer-
Verlag (1992)

2. Alur, R., Courcoubetis, C., Dill, D.: Model-checking for real-time systems. In: Proc.
Logic in Computer Science. pp. 414�425. IEEE (Jun 1990)

3. Alur, R., Henzinger, T.A.: A really temporal logic. J. ACM 41(1), 181�203 (Jan
1994)

4. Amon, T., Borriello, G., Hu, T., Liu, J.: Symbolic timing veri�cation of timing
diagrams using Presburger formulas. In: Proc. 34th annual Design Automation
Conference. pp. 226�231. ACM, New York, NY, USA (1997)

5. André, C., Mallet, F.: Clock constraints in UML/MARTE CCSL. Research report,
INRIA (May 2008)

6. Homepage of the AUTOSAR project (2009), www.autosar.org
7. Chaochen, Z., Hoare, C.A.R., Ravn, A.P.: A calculus of durations. Inf. Process.

Lett. 40(5), 269�276 (1991)
8. Cuenot, P., Frey, P., Johansson, R., Lönn, H., Papadopoulos, Y., Reiser, M.O.,

Sandberg, A., Servat, D., Kolagari, R.T., Törngren, M., Weber, M.: The EAST-
ADL architecture description language for automotive embedded software. In:
Giese, H., Karsai, G., Lee, E., Rumpe, B., Schätz, B. (eds.) Model-Based En-
gineering of Embedded Real-Time Systems. Lecture Notes in Comput. Sci., vol.
6100, pp. 297�308. Springer-Verlag, Schloss Dagstuhl, Germany (Nov 2007)

9. Grüninger, M., Menzel, C.: The process speci�cation language (PSL) theory and
applications. AI Mag. 24(3), 63�74 (Sep 2003)

10. Johansson, R., Frey, P., Jonsson, J., Nordlander, J., Pathan, R.M., Feiertag, N.,
Schlager, M., Espinoza, H., Richter, K., Kuntz, S., Lönn, H., Kolagari, R.T., Blom,
H.: TADL: Timing augmented description language, version 2. Technical report
(Oct 2009)

11. Larsen, K.G., Pettersson, P., Yi, W.: UPPAAL in a nutshell. Int. Journal on Soft-
ware Tools for Technology Transfer 1, 134�152 (1997)

12. Mattolini, R., Nesi, P.: An interval logic for real-time system speci�cation. IEEE
Trans. Softw. Eng. 27(3), 208�227 (Mar 2001)

13. Moszkowski, B.: A temporal logic for multilevel reasoning about hardware. Com-
puter 18, 10�19 (1985)

14. UML pro�le for MARTE: Modeling and analysis of real-time embedded systems.
Tech. rep., OMG (Nov 2009), www.omg.org/spec/MARTE/1.0

15. Homepage of the TIMMO-2-USE project (2012), www.timmo-2-use.org


