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a  b  s  t  r  a  c  t

Software  evolvability  is  a  multifaceted  quality  attribute  that  describes  a software  system’s  ability  to eas-
ily accommodate  future  changes.  It is a  fundamental  characteristic  for the efficient  implementation  of
strategic  decisions,  and  the  increasing  economic  value  of  software.  For  long  life  systems,  there  is a  need
to address  evolvability  explicitly  during  the  entire  software  lifecycle  in order  to  prolong  the  productive
lifetime  of  software  systems.  However,  designing  and  evolving  software  architectures  are  the  challenging
task. To improve  the  ability  to understand  and  systematically  analyze  the  evolution  of  software  system
architectures,  in  this  paper,  we  describe  software  architecture  evolution  characterization,  and  propose  an
architecture  evolvability  analysis  process  that  provides  replicable  techniques  for  performing  activities  to
aim  at  understanding  and  supporting  software  architecture  evolution.  The  activities  are  embedded  in: (i)
the application  of  a  software  evolvability  model;  (ii)  a structured  qualitative  method  for  analyzing  evolv-
ability  at  the  architectural  level;  and  (iii)  a quantitative  evolvability  analysis  method  with  explicit  and
quantitative  treatment  of  stakeholders’  evolvability  concerns  and  the  impact  of potential  architectural
solutions  on  evolvability.  The  qualitative  and  quantitative  assessments  manifested  in the  evolvability
analysis  process  have  been  applied  in  two  large-scale  industrial  software  systems  at  ABB  and  Ericsson,
with  experiences  and  reflections  described.

© 2012 Elsevier Inc. All rights reserved.

1. Introduction

Change is an essential factor in software development, as soft-
ware systems must respond to evolving requirements, platforms
and other environmental pressures (Godfrey and German, 2008). It
has long been recognized that, for long life industrial software, the
greatest part of lifecycle costs is invested in the evolution of soft-
ware to meet changing requirements (Bennett, 1996). To keep up
with new business opportunities, the need to change software on a
constant basis with major enhancements within a short timescale
puts critical demands on the software system’s capability of rapid
modification and enhancement. Lehman et al. (2000) describe two
perspectives on software evolution: “what and why” versus “how”.
The “what and why” perspective studies the nature of the soft-
ware evolution phenomenon and investigates its driving factors
and impacts. The “how” perspective studies the pragmatic aspects,
i.e., the technology, methods and tools that provide the means to
control software evolution. In this research, we focus on the “how”
perspective of software evolution.
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The term evolution reflects “a process of progressive change in the
attributes of the evolving entity or that of one or more of its constituent
elements” (Madhavji et al., 2006). Specifically, software evolution
relates to how software systems change over time (Yu et al., 2008).
One of the principle challenges in software evolution is there-
fore the ability to evolve software over time to meet the changing
requirements of its stakeholders (Nehaniv and Wernick, 2007), and
to achieve cost-effective evolution. In this context, software evolv-
ability has emerged as an attribute that “bears on the ability of a
system to accommodate changes in its requirements throughout the
system’s lifespan with the least possible cost while maintaining archi-
tectural integrity” (Rowe et al., 1994).

The ever-changing world makes evolvability a strong quality
requirement for the majority of software systems (Borne et al.,
1999; Rowe and Leaney, 1997). The inability to effectively and
reliably evolve software systems means the loss of business oppor-
tunities (Bennett and Rajlich, 2000). Based on our experiences and
observations from various cases in industrial contexts (Breivold
et al., 2008b; Del Rosso and Maccari, 2007; Land and Crnkovic,
2007), we have noticed that industry starts to have serious con-
siderations with respect to evolvability beyond maintainability.
From these studies, we  also witness examples of different industrial
systems that have a lifespan of 10–30 years and are continu-
ously changing. These systems are subject to and may  undergo
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a substantial amount of evolutionary changes, e.g., software
technology changes, system migration to product line architecture,
ever-changing managerial issues such as demands for distributed
development, and ever-changing business decisions driven by mar-
ket situations. Software systems must often reflect these changes
to adequately fulfill their roles and remain relevant to stakeholders
(Mens et al., 2010a).  Evolvability was therefore identified in these
cases as a very important quality attribute that must be continu-
ously maintained during their lifecycle. In this paper, we distinguish
evolvability from maintainability, because they both exhibit their
own specific focus, e.g., type of change. Evolvability is mostly
concerned with coarse-grained, long-term, higher-level, radical
functional or structural enhancements or adaptations, whereas
maintainability is mostly concerned with fine-grained, short-term,
localized changes (Cai and Huynh, 2007; Weiderman et al., 1997).
As software evolvability is a fundamental element for the effi-
cient implementation of strategic decisions, and the increasing
economic value of software (Cai and Huynh, 2007; Weiderman
et al., 1997), for such long life systems, there is a need to address
evolvability explicitly during the entire lifecycle and thus pro-
long the productive lifespan of software systems. Surprisingly
there are rather few publications that explicitly address evolvabil-
ity characterization and evolvability assessment (Breivold et al.,
2011). A systematic evolvability assessment requires answers to
the following questions: (a) what characterizes evolvability of a
software system? and (b) how to assess evolvability of a soft-
ware system in a systematic way? In similar approaches, models
and methods (see Section 7) there is a lack of explicit addressing
of evolvability.

Our research focuses on the analysis of software evolution at
an architectural level for two reasons. Firstly, the foundation for
any software system is its architecture, which allows or precludes
most of the quality attributes of the system (Clements et al., 2002)
and provides the basis for software evolution analysis (Mens et al.,
2010b). Secondly, the architecture of a software system not only
describes its high level structure and behavior, but also includes
principles and decisions that determine the system’s development
and its evolution (Bengtsson et al., 2004). In this sense, soft-
ware architecture exposes the dimensions along which a system
is expected to evolve (Garlan, 2000) and provides the basis for soft-
ware evolution (Medvidovic et al., 1998). We  also recognize the
tight relationship between architecture, organization, business or
development processes as indicated in Larsson et al. (2007),  that a
change along one of these dimensions will require a review of the
others in the light of the proposed change. However, because the
relationship and impact between these different dimensions dur-
ing software evolution is a research topic by itself, in this research,
we study the evolution of software architecture, and investigate
ways to support this evolution.

The main objective of our research is to improve the ability to
understand and systematically analyze the evolution of software
architectures. Specifically, we state the following research ques-
tions:

(1) What software characteristics are necessary to constitute an
evolvable software system?

(2) How does one assess the evolvability of a software system in a
systematic manner when evolving the system architecture?

In this paper, we describe and make contributions to the follow-
ing aspects:

(1) Propose a software evolvability model and identify characteris-
tics that are necessary for the evolvability of a software system.

Fig. 1. Software evolvability model.

(2) Define the evolvability assessment process, and propose
qualitative and quantitative software evolvability assessment
methods.

(3) Demonstrate the application of the evolvability model and
analysis methods through two  case studies of the architecture
evolution of large-scale software systems in different industrial
settings.

The remainder of the article is structured as follows. Section 2
describes our software evolvability model which is the basis for the
proposed evolvability analysis. Section 3 presents the general soft-
ware evolvability analysis process along with detailed descriptions
of the qualitative and quantitative architecture evolvability analy-
sis methods. Section 4 presents an industrial case study in which
the qualitative method was  applied to analyze and improve the
software architecture of a complex industrial automation control
system at ABB. Section 5 presents an industrial case study in which
the quantitative method was  applied to analyze the potential evo-
lution path of the software architecture of a mobile network node
system at Ericsson. In both cases, the context of the case study in
terms of motivations for evolvability analysis, the description of
evolvability subcharacteristics from the case perspective, and the
experiences and observations we gained through the case study
are also presented. Section 6 discusses the characterization of the
qualitative and quantitative evolvability analysis methods, as well
as validity evaluation. Section 7 reviews related work and Section
8 concludes the paper.

2. Software evolvability model

To improve the ability to understand and systematically ana-
lyze software architecture evolution, we introduced in our earlier
work, a software evolvability model (Breivold et al., 2008b), which
is used to provide a basis for analyzing and evaluating software
evolvability. The model and its validation are based on the indus-
trial requirements of a long-life software-intensive system within
the automation domain. In this article, we refine the model and
use it as the basis for the architecture evolvability analysis pro-
cess (described in Section 3). Here we  give a short overview of
the model. The software evolvability model defines software evolv-
ability as a multifaceted quality attribute (Rowe et al., 1994), and
refines software evolvability into a collection of subcharacteristics
that can be measured through a number of corresponding mea-
suring attributes, as shown in Fig. 1. The idea with the model is to
further derive the identified subcharacteristics until we are able to
quantify them by defining metrics to determine relevant measur-
ing attributes for each subcharacteristic, and/or make appropriate
reasoning about the quality of service (QoS) for subcharacteristics
that are difficult to quantify (e.g., architectural integrity, described
below).

The identified evolvability subcharacteristics are based on a
survey of the literatures (Breivold et al., 2011), an analysis of
the software quality challenges and assessment (Fitzpatrick et al.,
2004), the types of change stimuli and evolution (Chapin et al.,
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2001), and the taxonomy of software change based on various
dimensions that characterize or influence the mechanisms of
change (Buckley et al., 2005). In particular, they are the results from
case studies (Breivold et al., 2008a,c), and are valid for a class of long
life industrial software-intensive systems that are often exposed
to many, in most cases evolutionary changes. For these types of
systems we have identified the following subcharacteristics, with
some examples of measuring attributes:

• Analyzability describes the capability of the software system to
enable the identification of influenced parts due to change stim-
uli; its measuring attributes include modularity, complexity, and
architectural documentation. Many measuring attributes can be
domain-dependent.

• Architectural integrity describes the non-occurrence of
improper alteration of architectural information; examples of
measuring attributes include compatibility of deployment and
communication patterns, resource allocations, programming
styles, and inclusion of architectural documentation.

• Changeability describes the capability of the software system
to enable a specified modification to be implemented and avoid
unexpected effects; its measuring attributes include complexity,
coupling, change impact, encapsulation, reuse, and modularity.

• Extensibility describes the capability of the software system
to enable the implementations of extensions to expand or
enhance the system with new features. It takes future growth
into consideration. One might argue that extensibility is a sub-
set of changeability. Due to the fact that about 55% of all
change requests are new (Pigoski, 1996), we define extensibil-
ity explicitly as one subcharacteristic of evolvability. Examples
of measuring attributes include scalability, resource constraints,
and compliance to standards.

• Portability describes the capability of the software system to be
transferred from one environment to another.

• Testability describes the capability of the software system to
validate the modified software.

• Domain-specific attributes are the additional quality subchar-
acteristics that are required by specific domains. For example
in a real-time systems domain, analysis of timing properties
(response time, execution time, etc.) is important.

These evolvability subcharacteristics are the main enablers of
evolvability. However, we do not exclude the possibility that other
domains might have a slightly different set of subcharacteristics,
in particularly with domain-specific attributes. For instance, the
World Wide Web  domain requires additional quality character-
istics such as visibility, intelligibility, credibility, engagibility and
differentiation (Fitzpatrick et al., 2004). Component exchangeabil-
ity in the context of service reuse is another example within the
distributed domain, e.g., wireless computing, component-based
and service-oriented applications.

Software evolution is very often negatively influenced by archi-
tectural drift, feature creep, and progressive hardware dependence
(Parnas, 1994). However, with the identified subcharacteristics in
mind, we have a basis on which different systems can be exam-
ined in terms of evolvability. Any system design and architectural
decisions that do not explicitly address one or more of these sub-
characteristics will probably undermine the system’s ability to
be evolved. Therefore, the software evolvability model is a way
to articulate subcharacteristics for an evolvable system that an
architecture must support. It is established as a first step towards
analyzing evolvability, a base and checkpoints for evolvability eval-
uation and improvement, and is an integral part of the qualitative
and quantitative analysis of evolvability.

3. Software architecture evolvability analysis process

As evolvability and consequently the software evolvability
model are complex with respect to the measurements and identifi-
cation of subcharacteristics, the entire assessment process includes
a set of complex procedures. For this reason we have identified
a systematic assessment, the “software architecture evolvabil-
ity analysis process” (AREA), with a goal to: (a) provide quality
attribute subcharacteristics values, (b) identify the weak parts of
the system architecture related to evolvability, and (c) analyze the
quality attribute subcharacteristics of the possible evolutions of
the system. The analysis can be regarded as a systematic technical
review, and therefore can be carried out at many points during a
system’s life cycle, e.g., during the design phase to evaluate prospec-
tive candidate designs, validating the architecture before further
commencement of development, or evaluating the architecture of
a legacy system that is undergoing modification, extension, or other
significant upgrades.

The evolvability analysis can be conducted by an internal assess-
ment team or an external evaluation team. Having an internal
assessment team requires discipline as it tends to be subject to
more bias and influence, especially if the team is part of the organi-
zation that is responsible for evolving the architecture. An external
assessment team is less affected by biased opinions, though its lack
of knowledge concerning the system in focus is a weakness.

The results of the evolvability analysis process include: (i) the
prioritized architectural requirements; (ii) stakeholders’ evolvabil-
ity concerns; (iii) candidate architectural solutions; and (iv) the
impact of the architectural solutions on evolvability. It is a challeng-
ing task for an architect to choose between competing candidate
architectural solutions and ensure that the system constructed
from the architecture satisfies its stakeholders’ needs. Therefore,
the results from the evolvability analysis process are useful for an
architect to design and evolve the architecture.

We  introduced, in our earlier work, a qualitative assessment
method (Breivold et al., 2008c)  and a quantitative assessment
method (Breivold and Crnkovic, 2010) for analyzing software evolv-
ability at the architecture level, which we  refine here in a common
model with specifics in assessment activities (qualitative and quan-
titative). Note that “qualitative” and “quantitative” methods refer
to the collection of information among the stakeholders, not the
results of the provided subcharacteristics values. The overall AREA
process is shown in Fig. 2.

The related artifacts in the evolvability analysis process include:

• Change stimuli: a stimulus is a change condition that needs to
be considered from an architectural perspective. Change stim-
uli trigger an initiation of the architecture evolvability analysis
process. A change stimulus can be a concrete change, a future
change that we know will happen, or a change that we  currently
have no idea of, but belonging to a particular class of change
related to environment, organization, process, technology and
stakeholders’ needs. These change stimuli have impact on the
software system in terms of software architecture evolution and
embedded quality attributes; a change stimulus may result in a
collection of potential requirements to which the software archi-
tecture needs to adapt.

• Architectural concerns: the IEEE 1471 standard (IEEE, 2000)
defines architectural concerns as “interests which pertain to the
system’s development, its operation or any other aspects that
are critical or otherwise important to one or more stakeholders.
Concerns include system considerations such as performance,
reliability, and evolvability”. Here the concerns related to the
evolvability should be provided – they are related to the
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Fig. 2. Software architecture evolvability analysis process (AREA).

evolvability subcharacteristics and the domain-specific quality
attributes.

• Potential architectural requirements: potential architectural
requirements are requirements that influence software architec-
ture and are essential for accommodating change stimuli.

• Candidate architectural solutions: candidate architectural solu-
tions are potential solutions that reflect design decisions. The
description of an architectural solution may  include the following
information:
◦ Problem description:  the problem and disadvantages of the orig-

inal design of the architecture or fragment of the architecture.
◦ Requirements:  the new requirements that the architecture

needs to fulfill.
◦ Improvement solution: the architectural solution to design prob-

lems.
◦ Rationale and architectural consequences: the rationale of the

proposed solution and its architectural implications to evolv-
ability.

◦ Estimated workload: the estimated workload for implementa-
tion and verification.

The main activities in the evolvability analysis process include:

• Elicit architectural concerns: this activity extracts architectural
concerns with respect to evolvability subcharacteristics among
stakeholders qualitatively or quantitatively.
◦ Qualitative elicitation:  architecture workshops are conducted

so that the stakeholders discuss and identify potential
architectural requirements against which the evolvability
subcharacteristics are subsequently mapped. Thus the identi-
fied architectural requirements and their prioritization reflect
stakeholders’ architectural concerns with respect to evolvabil-
ity subcharacteristics.

◦ Quantitative elicitation:  individual interviews with respective
stakeholders are conducted so that stakeholders representing
different roles provide their views and preferences of evolv-
ability subcharacteristics through a pair-wise comparison of
subcharacteristics with respect to their relative importance.
Thus the weighting by preference of evolvability subcharacter-
istics from a stakeholder’s perspective is quantified.

• Analyze implications of change stimuli:  this activity analyzes the
architecture for evolution and understands the impact of change
stimuli on the current architecture. Accordingly, this activity

focuses on defining the problems the architecture needs to solve,
examining change stimuli and architectural concerns in order to
obtain a set of potential architectural requirements.

• Propose architectural solutions: this activity proposes architecture
solutions to accommodate a set of potential architectural require-
ments.

• Assess architectural solutions: this activity ensures that the archi-
tectural design decisions made are appropriate for software
architecture evolution. The candidate architectural solutions are
assessed against evolvability subcharacteristics, i.e., the implica-
tions of the potential architectural strategies and evolution path
of the software architecture are assessed either qualitatively or
quantitatively.
◦ Qualitative assessment: the determination of potential architec-

tural solutions is on a qualitative level in terms of their impact
(positive or negative) on evolvability subcharacteristics.

◦ Quantitative assessment: the judgment of how well each can-
didate architectural solution supports different evolvability
subcharacteristics is quantified.

A typical evolvability assessment can be carried out in three
half-day workshops, requiring the presence of architects, product
manager, key software developers, and the person who  con-
ducts the assessment. The first workshop concentrates on the
first two activities, i.e., “elicit architectural concerns” and “analyze
implications of change stimuli”. The second workshop focuses on
identifying architectural solutions, and the third workshop focuses
on the assessment of these architectural solutions. As we see from
the general evolvability analysis process, the basic architecting
activities such as analyzing implications of change stimuli and
proposing architectural solutions are the same for both the qualita-
tive and quantitative evolvability analysis. The major variation can
be observed in the different details with respect to the elicitation
and assessment of stakeholders’ architectural concerns regarding
the evolvability subcharacteristics of architectural solutions. The
following subsections lay out the steps performed in the qualitative
and quantitative evolvability analysis respectively.

3.1. Qualitative evolvability analysis method description

The qualitative evolvability analysis method starts with the
identification of the implications of change stimuli, guides archi-
tects through the analysis of potential architectural requirements
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Phase 1:  Analyze the  implica�ons  of  change  s�muli  on  so�ware  architecture

Step 1.1: Iden�fy  poten�al  
requirements on  so�ware  
architecture

Step 1.2: Priori�ze  poten�al  
requirements on  so�ware  
architecture

Phase 2:  Analyze and  prepare  so�ware  architecture   to accommodate  change
s�muli and  poten�al  future  changes

Step 2.1: Extract  
architectural constructs  
related to  the respec�ve  
iden�fied issue 

Step 2.2: Iden�fy 
refactoring components  
for each iden�fied  issue.  

Step 2.3:  Iden�fy and  
assess poten�al  
refactoring solu�ons.  

Phase 3: Finalize  the  evalua�on

Step 3.1:  Analyze  and  present  
the evalua�on  results

Fig. 3. The steps of the architecture evolvability analysis method.

that the software architecture needs to adapt to, and continues
with identification of potential architecture refactoring solutions
along with their implications. Through the analysis process, the
implications of the potential improvement proposals and evolu-
tion path of the software architecture are analyzed with respect to
evolvability subcharacteristics. The qualitative architecture evolv-
ability analysis method, as shown in Fig. 3, is divided into three
main phases.

Phase 1: Analyze the implications of change stimuli on software
architecture.

This phase analyzes the architecture for evolution and under-
stands the impact of change stimuli on the current architecture.
Software evolvability considers both business and technical issues
(Losavio et al., 2001), since the stimuli of changes come from both
perspectives concerning, for example, environment, organization,
process, technology and stakeholders’ needs. These change stimuli
have impact on the software system in terms of software architec-
ture and/or functionality. This phase includes two steps:

Step 1.1: Identify requirements on the software architecture. Any
change stimulus may  result in a collection of potential
requirements that the software architecture needs to
adapt to. The aim of this step is to extract requirements
that are essential for software architecture enhancement
so as to cost-effectively accommodate to change stimuli.
This step is conducted in the form of workshops, where
the stakeholders (e.g., product manager, and architects)
discuss and identify architecture requirements.

Step 1.2: Prioritize requirements on the software architecture. In
order to establish a basis for common understanding of
the architecture requirements among stakeholders, the
requirements identified from the previous step need to
be prioritized.

Phase 2: Analyze and prepare the software architecture to
accommodate change stimuli and potential future changes.

This phase focuses on the identification and improvement of the
components that need to be refactored. It includes three steps.

Step 2.1: Extract architectural constructs related to the respective
identified issue. In this step, we mainly focus on the identi-
fications of architectural constructs (i.e., subsystems and
components) that are related to each identified require-
ment.

Step 2.2: Identify refactoring components for each identified issue. In
this step, we identify the components that need refactor-
ing in order to fulfill the prioritized requirements.

Step 2.3: Identify and assess potential refactoring solutions from tech-
nical and business perspectives. Refactoring solutions are
identified and design decisions are taken in order to ful-
fill the requirements derived from the first phase. As part
of this step, an assessment is made of the compatibil-
ity of the refactoring solutions and rationale with regard
to design decisions made previously. The purpose of this
assessment is to ensure architectural integrity.

Phase 3: Finalize the evaluation.
In this phase, the previous results are incorporated and struc-

tured into a collection of documents. This phase includes one step.

Step 3.1: Present evaluation results.  The collected information from
the evolvability assessment is summarized and presented
to the stakeholders. This presentation can take the form of
slides and might, in addition, be accompanied by a more
complete written report. In this presentation, the person
leading the evolvability evaluation recapitulates the steps
of the assessment and all the information collected in the
steps of the method, including: (i) the identified and pri-
oritized requirements on the software architecture; (ii)
the identified components/modules that need to be refac-
tored for enhancement or adaptation; and (iii) refactoring
investigation documentation which describes the current
situation and solutions to each identified candidate com-
ponent that need to be refactored, including estimated
workload. These outputs are all uncovered, captured, and
cataloged during the evaluation.
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Fig. 4. Multiple-attribute decision making process.

3.2. Quantitative evolvability analysis method description

As architecture is influenced by stakeholders representing dif-
ferent concerns and goals, the business and technical decisions that
articulate the architecture tend to exhibit tradeoffs and need to be
negotiated and resolved. In circumstances when there is a lack of
a shared view among stakeholders of prioritizations of evolvability
subcharacteristics, to avoid the intuitive selection of architectural
solutions, the quantitative evolvability analysis provides support
to the decision making process and helps to avoid intuitive prior-
itization of evolvability subcharacteristics and intuitive choice of
architectural solutions (Breivold and Crnkovic, 2010).

Our proposed approach focuses on two constituent steps of the
qualitative evolvability analysis method in which tradeoff anal-
ysis is concerned, they are: step 1.2 – Prioritize requirements on
the software architecture in phase 1, and step 2.3 – Identify and
assess potential refactoring solutions in phase 2. These two steps
entail subjective judgments with regard to preferences of evolvabil-
ity subcharacteristics, as well as choice of architectural solutions.
These subjective judgments constitute accordingly a multiple-
attribute decision making process when architecting for evolvable
software systems, as illustrated in Fig. 4. The stakeholders’ pref-
erences on evolvability subcharacteristics are determined by their
different viewpoints, and the choice of architectural alternatives
exhibits their respective impacts on evolvability. Moreover, the
choice for an architectural solution is constrained by the stakehold-
ers’ preference information on evolvability subcharacteristics.

The quantitative evolvability assessment method is based on the
Analytic Hierarchy Process (AHP) (Saaty, 1980), which is a multiple-
attribute decision making method that enables quantification of
subjective judgments. The qualitative method is extended with
quantitative information that is needed for choosing among archi-
tectural solutions. The quantitative assessment method is divided
into three main phases:

Phase 1: Analyze the implications of change stimuli on software
architecture.

This phase elicits the architectural concerns among stakeholders
and analyzes the architecture for evolution in order to accommo-
date change stimuli.

Step 1.1: Elicit stakeholders’ views on evolvability subcharacteris-
tics.  In this step, individual interviews are conducted
with respective stakeholders in order to elicit their
views on evolvability subcharacteristics. Domain-specific
attributes are identified as well. In addition, the inter-
pretation of evolvability subcharacteristics in the specific
context is discussed.

Step 1.2: Extract stakeholders’ prioritization and preferences of
evolvability subcharacteristics.  In this step, stakeholders
representing different roles provide their preferences of

Table 1
Scale for pair-wise comparison.

Scale Explanation

1 Variable i and j are of equal importance
3 Variable i is slightly more important than j
5 Variable i is highly more important than j
7 Variable i is very highly more important than j
9 Variable i is extremely more important than j
2, 4, 6, 8 Intermediate values for compromising between

the numbers above

evolvability subcharacteristics through a pair-wise com-
parison of subcharacteristics (Qi, Qj) with respect to their
relative importance. The AHP weighting scale shown in
Table 1 is used to determine the relative importance of
each evolvability subcharacteristic pair.

Note that the domain-specific attributes might comprise sev-
eral additional quality characteristics that are required by a specific
domain. Therefore, each of these domain-specific quality attributes
is also included for pair-wise comparison together with the other
evolvability subcharacteristics. The pair-wise comparison is con-
ducted for all pairs, hence, n(n − 1)/2 comparisons are made by each
stakeholder. Afterwards, for each stakeholder, the AHP method is
used to create a priority vector signifying the relative preference of
evolvability subcharacteristics. As different stakeholder roles might
have diversified preferences of evolvability subcharacteristics, for
each evolvability subcharacteristic, we  obtain a normalized prefer-
ence by dividing the sum of the preference of each stakeholder role
by the number of roles.

The description below lays out the calculation procedure,
describing the calculation of preferences of subcharacteristics
aggregated from stakeholders’ perspectives. A matrix of pair-wise
comparison is shown below, in which S1 represents one stakeholder
role, Q1 and Q2 and Qk are evolvability subcharacteristics, and Iij
represents pair-wise comparison in terms of relative importance
based on Table 1 (note: Iij = 1 if i = j).

S1 Q1 Q2 … Qk 

Q1 I11 I12 … I1k 

Q2 I21 I22  I2k 

…

Qk Ik1 Ik2  Ikk 

By applying AHP, we get the normalized preference weight
information of subcharacteristic Qi from the perspective of stake-
holder S1, as shown in Eq. (1):

PQis1 =
∑k

j=1(mij)

k
(i  is an integral and 1 ≤ i ≤ k) (1)

Likewise, the values indicating the preference weights of sub-
characteristics (Q1, Q2, . . . , Qk) from the perspective of stakeholder
S2 are calculated. We  designate them as PQ1s2, PQ2s2, . . . , PQks2. The
same pattern applies to all the other stakeholder roles.

Given that the preference consistency is correct, the overall
stakeholders’ preference weight on subcharacteristic Qi is calcu-
lated by aggregating the preferences from n number of stakeholders
as shown in Eq. (2):

PQi =
∑n

j=1(PQisj)

n
(i  is an integral and 1 ≤ i ≤ n) (2)

Phase 2: Analyze and prepare the software architecture to
accommodate change stimuli.
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This phase focuses on the identification of candidate architec-
tural solutions to accommodate change stimuli.

Step 2.1: Identify candidate architectural solutions. In this step, can-
didate architectural solutions are identified along with
their benefits and drawbacks.

Step 2.2: Assess the impact of candidate architectural solutions on
evolvability subcharacteristics.  In this step, system archi-
tects or the main technical responsible persons provide
their judgment on how well each architectural alternative
supports different evolvability subcharacteristics. This is
done firstly through a pair-wise comparison of the archi-
tectural alternatives (Alti, Altj) with respect to a certain
evolvability subcharacteristic, using the weighting scale
in Table 1. Next, for each evolvability subcharacteristic,
the AHP method is used to create a priority vector signify-
ing the relative weight of how well different architectural
alternatives support a specific evolvability subcharac-
teristic. Afterwards, recalling the overall weights, i.e.,
the stakeholders’ preference weight of evolvability sub-
characteristics and the weight of how well different
architectural alternatives support a specific evolvabil-
ity subcharacteristic, we can obtain a normalized value,
designating the overall weight for each architectural
alternative’s support for evolvability in general.

The calculation procedure is carried out in a similar manner
to the calculation of the subcharacteristics (see the description
of phase 1 in the previous section) resulting in normalized sup-
port rates of the respective architectural alternative with respect
to Q1, in which PAltiq1 indicates the impact of the alternative Alti on
subcharacteristic Q1, i.e., how well each architectural alternative
supports Q1.

PAltiq1 =
∑k

j=1mij

k
(i  is an integral and 1 ≤ i ≤ k)

Likewise, the values indicating how well the alternatives sup-
port other subcharacteristics (Q2, . . . , Qk) are calculated following
the same pattern.

Given that the judgment of the support of architectural alterna-
tives for subcharacteristics is consistent, the overall weights of an
alternative’s support for evolvability is calculated by aggregating
the preferences of subcharacteristics from the previous quantita-
tive analysis (i.e., PQ1, PQ2, . . . , PQk in the previous subsection) as
expressed in Eq. (3):

WAltm =
k∑

i=1

(PQi × PAltmqi) (m is an integral and 1 ≤ m ≤ k) (3)

Phase 3: Finalize the evaluation.
In this phase, the previous results are incorporated and summa-

rized.

Step 3.1: Present evaluation results.  The evaluation results include
(i) the identified evolvability subcharacteristics including
domain-specific attributes; (ii) a quantified prioritization
of evolvability subcharacteristics by respective stake-
holders involved; (iii) a common understanding of the
contexts of evolvability subcharacteristics; (iv) the archi-
tectural solution candidates identified as able to cope
with change stimuli; and (v) a quantified prioritization
of the impacts of each architectural candidate on evolv-
ability subcharacteristics.
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Fig. 5. A conceptual view of the original software architecture.

4. Case study I. Qualitative software evolvability analysis

This section describes the case study in which we applied the
qualitative software evolvability analysis method. The system that
we investigated is an automation control system at ABB.

4.1. Context of the case study

The case study was based on a large automation control system
at ABB. During the long history of product development, several
generations of automation controllers have been developed as well
as a family of software products, ranging from programming tools
to a variety of application software. The case study focused on the
latest generation of the robot controller.

The robot controller software consists of more than three million
lines of code written in C/C++, and uses a complex threading model,
with support for a variety of different applications and devices. It
has grown in size and complexity as new features and solutions
have been added to enhance functionality and to support new hard-
ware, such as devices, I/O boards and production equipment. Such
a complex system is challenging to evolve. Our particular system is
delivered as a single monolithic software package, which consists
of various software applications developed by distributed devel-
opment teams. These applications are aimed at specific tasks in
painting, welding, gluing, machine tending, palletizing, etc. In order
to keep the integration and delivery process efficient, the initial
architectural decision was to keep the deployment artifact mono-
lithic; the complete set of functionality and services was present in
every product even though specific products did not require every-
thing. As the system grew, it became more difficult to ensure that
modifications to specific application software would not affect the
quality of other parts of the software system.

The original coarse-grained architecture of the controller is
depicted in Fig. 5. The lower layer provides an interface to the upper
layer, and allows the source code of the upper layer to be compiled
and used on different hardware platforms and operating systems.
The complete set of interdependencies between subsystems within
each layer is not captured in the figure.

The main problem with this software architecture was the exis-
tence of tight coupling among some components that reside in
different layers. This led to additional work required at a lower
level to modify some existing functionality and add support for
new functionality in various applications. To continue exploiting
the substantial software investment made and to continuously
improve the system for a longer productive lifespan, it became
essential to explicitly address evolvability. We  want to emphasize
here that the problem raised is not a problem of maintainability.
The major problems arose when brand new (very different) fea-
tures, different development paradigms, or shifting business and
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organizational goals were introduced; therefore the problems were
related to software evolvability.

4.2. Evolvability subcharacteristics from the case perspective

We provide the rationale for each evolvability subcharacteristic
in conjunction with the case study context:

• Analyzability: the release frequency of the controller software
was twice a year, with around 40 major new requirements that
needed to be implemented with each release. These require-
ments may  have an impact on different attributes of the system,
and the possible impact must be analyzed effectively before the
implementation of the requirements. Furthermore, analyzability
includes the following requirements: the implemented changes
should be easily isolated and tested; the resource utilization
(memory and communication capacity) should be analyzable.

• Architectural integrity: a strategy for communicating architec-
tural decisions that we discovered during this case study was to
appoint members of the core architecture team as technical lead-
ers in respective development projects. However, this strategy,
although helpful to certain extent, did not completely prevent
developers from insufficient understanding and/or misunder-
standing of the initial architectural decisions, resulting in the
unconscious violation of architectural conformance. The require-
ments related to architectural integrity include documentation
of architectural decision rationale, tool support for checking the
deployment and communication patterns, and isolation of archi-
tectural layers.

• Changeability:  due to the monolithic characteristic of the con-
troller software, modifications in certain parts of the software
package led to some ripple effects, and required the recompiling,
reintegrating and retesting of the whole system. This resulted
in inflexibility of patching, and customers had to wait for a new
release even in the case of corrective maintenance and config-
uration changes. Requirements related to changeability include
improved component cohesion using a standardized interface
pattern, localization of functions, and the use of standard patterns
for adding new services.

• Portability: the current controller software supports VxWorks and
Microsoft Windows NT. In the meantime, there is also a need for
openness in choosing between different operating system (OS)
vendors, e.g., Linux and Windows CE, and possibly new OS’s in
the future.

• Extensibility: the current controller software supports around 20
different applications that are developed by several distributed
development centers around the world. To adapt to the increased
customer focus on specific applications and to enable the estab-
lishment of new market segments, it was decided that the
controller must constantly raise its service level by supporting
more functionality and providing more features, while keeping
important non-functional properties.

• Testability: the controller software exposed a huge number of
public interfaces which resulted in a tremendous amount of time
spent on interface testing alone. Therefore, it was decided to
reduce the number of public interfaces to around 10% of the orig-
inal quantity. Besides that, due to the monolithic characteristic
of the software, error corrections in one part of the software
sometimes required retesting of the whole system. One decision
taken was therefore to investigate the feasibility of testing only
modified parts.

• Domain-specific attributes:  the most important domain-specific
attributes are related to real-time and potential problems with
execution time. The critical real-time calculation demands of the

controller software required reduced code size of the base soft-
ware and runtime footprint.

4.3. Applying the qualitative evolvability analysis method

The main focus of our case study was  to assess how well the
architecture would support forthcoming requirements and under-
stand their impact. The forthcoming requirements emerged due
to the change stimuli brought about by the company’s business
strategy:

• Time-to-market requirements, such as building new products for
dedicated market within short time.

• Increased ease and flexibility of the distributed development of
diverse application variants.

The identification and analysis of the architectural requirements
was  performed by the core architecture assessment team which
consisted of 6–7 people. It was  a continuous maturation process
from the first vision to concrete activities that will be described
below. 2–3 people from the core architecture team identified the
refactoring solution proposals for some components in the Base
System subsystem. Workshops were conducted to discuss priori-
tization of architectural requirements and potential architectural
solutions. The intention of the workshops is to reach a consen-
sus among the stakeholders regarding the potential architectural
requirements to focus on, as well as potential architectural solu-
tions. The first author of the article worked within the architecture
assessment core team, and proposed potential architectural solu-
tions that would facilitate the implementation of the identified
architectural requirements. These proposals were discussed with
the main technical persons responsible and with the architects.
The choice of architectural solutions was based on discussions with
the system architects and prototyping through the whole archi-
tecture assessment process. All the architectural solutions were
documented and transferred on to the implementation teams.

4.3.1. Phase 1 – step 1.1: identify requirements of the software
architecture

Due to the change stimuli mentioned earlier, the main require-
ments of the software architecture and the refined activities for
each requirement were proposed by the core assessment team, and
are listed below:

R1. Modular architecture

• Enable the separation of layers within the controller software: (i)
a kernel which comprises of components that must be included
by all application variants; (ii) common extensions which are
available to and can be selected by all application variants, and
(iii) application extensions which are only available to specific
application variants.

• Investigate dependencies between the existing extensions.

R2. Reduced architecture complexity

• Define system interfaces between subsystems and reduce the
number of public interface calls.

• Add support for real-time task isolation management.
• Introduce a new scripting language to improve support for appli-

cation development, since some modern scripting languages are
flexible, productive and reduce the need to recompile.

R3. Enable distributed development of extensions with min-
imum dependency
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Table  2
Mapping between evolvability subcharacteristics and architecture requirements.

Subcharacteristics Requirements

Analyzability R1. Modular architecture
R2. Reduced architecture complexity

Changeability R1. Modular architecture
R2. Reduced architecture complexity

Extensibility R3. Enable distributed development of
extensions with minimum dependency

Portability R4. Portability

Testability R2. Reduced architecture complexity
R5. Impact on product development process

Domain-specific attribute R6. Minimized software code size and runtime
footprint

• Build the application-specific extensions on top of the base soft-
ware (kernel and common extensions) without the need to access
and modify the internal base source code.

• Package the base software into a Software Development Kit
(SDK), which provides necessary interfaces, tools and documen-
tation to support distributed application development.

R4. Portability

• Investigate portability across target operating system platforms.
• Investigate portability across hardware platforms.

R5. Impact on the product development process

• Investigate the implications of restructuring the automation con-
troller software, with respect to product integration, verification
and testing.

R6. Minimized software code size and runtime footprint

• Investigate enabling mechanisms, e.g., properly partitioning
functionality.

These requirements were then checked against the evolvabil-
ity subcharacteristics to justify whether the realization of each
requirement would lead to an improvement of the subcharac-
teristics (or possibly a deterioration, which would then require
a tradeoff decision). Table 2 summarizes how the identified
architectural requirements are related to the evolvability subchar-
acteristics.

It may  be noted that architectural integrity is omitted from
this table. This is because, in the case study, architectural integrity
was handled by documenting the architectural choices for han-
dling potential architectural requirements, and the rationales for
the choice of architectural solutions along with their impacts on
evolvability subcharacteristics. This will be detailed later.

4.3.2. Phase 1 – step 1.2: prioritize requirements on the software
architecture

With the consideration of not disrupting ongoing development
projects, the criteria for requirement prioritization were: (i) enable
the building of existing types of extensions after refactoring and
architecture restructuring; (ii) enable new extensions, and simplify
interfaces that are difficult to understand and/or may  have negative
effects on implementing new extensions. Based on these criteria,
R1–R3 were prioritized architectural requirements.

Fig. 6. A revised conceptual view of the software architecture.

4.3.3. Phase 2 – step 2.1: extract architectural constructs related
to the respective identified issues

We  demonstrate the use of the method by exemplifying with
R3 (enable distributed development of extensions with minimum
dependency). To enable distributed application development, there
is a need to transform the existing system into reusable compo-
nents that can form the core of the product line infrastructure,
and separate application-specific extensions from the base soft-
ware. Accordingly, we  extracted architectural constructs that were
related to the realization of distributed development. Details on
how we go further with the extracted architectural constructs are
described below in steps 2.2 and 2.3.

4.3.4. Phase 2 – step 2.2: identify refactoring components for
each identified issue

To enable distributed development of extensions with mini-
mum  dependency, the strategy of separate concerns was applied
to isolate the effect of changes to parts of the system (Breivold
et al., 2008c),  i.e., separate the general system functions from
the hardware, and separate application-specific functions from
generic and basic functions. Based on the extracted cross-cutting
concerns, the refactoring was  conducted by merging subsys-
tems/components, re-grouping of components, breaking down
components and re-structuring them into new subsystems. Thus,
the original architecture shown in Fig. 5 was proposed to be
changed to the architecture shown in Fig. 6. Consequently, some
subsystems and components need to be adapted and reorganized
to enable the architecture restructuring. For instance, the PC Appli-
cations and Man  Machine Interaction in the original architecture
become Application-specific Extensions,  whereas the OS & Hardware
Abstraction in the original architecture becomes a subsystem in the
kernel in the new architecture. We also identified a collection of
components that needed refactoring. Some of them were the com-
ponents within the low-level basic services subsystem for resource
allocations, e.g., the semaphore ID management component, and
the memory allocation management component. These components
needed to be adapted because functionality needed to be sepa-
rated from resource management, in order to achieve the build- and
development-independency between the kernel and extensions.

4.3.5. Phase 2 – step 2.3: identify and assess potential refactoring
solutions from technical and business perspectives

The complete assessment of components cannot be presented
due to space limitations and company confidentiality. Therefore,
we select a subset, and exemplify with one component example
that needed to be refactored. We  will focus on the technical per-
spective and discuss in terms of the following views: (i) problem
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Fig. 7. The inter-communication component after refactoring.

description: the problem and disadvantages of the original design
of the component; (ii) requirements: the new requirements that
the component needs to fulfill; (iii) improvement solution: the
architectural solution to design problems; and (iv) architectural
consequences: the architectural implications of the deployment of
the component on evolvability subcharacteristics.

Component example: inter-process communication
This component belongs to the basic services subsystem and

it includes mechanisms that allow communication between pro-
cesses, such as remote procedure calls, message passing and shared
data.

Problem description:  all the slot names and slot IDs that are used
by the kernel and extensions are defined in a C header file in the
system. The developers have to edit this file to register their slot
name and slot ID, and recompile. Afterwards, both the slot name
and slot ID are specified in the startup command file for thread
creation. There is no dynamic allocation of connection slot.
Requirements: the refactoring of this component is directly related
to R3; it should be possible to define and use IPC slots in common
extensions and application extensions without the need to edit the
source code of the base software and recompile. The mechanism
for using IPC from extensions must also be available in the kernel,
to facilitate movement of components from kernel to extensions
in the future.
Improvement solution: the slot ID for extension clients should
not be booked in the header file. Extensions should not hook a
static slot ID in the startup command file. The command attribute
dynamic slot ID should be used instead. The IPC connection for
extension clients will be established dynamically through the
ipc connect function as shown in Fig. 7. It will return a connec-
tion slot ID when no predefined slot ID is given. An internal error
will be logged at startup if a duplicate slot name is used.
Architectural consequences: the revised IPC component provides
efficient resource booking for inter-process communication and
enables encapsulation of IPC facilities. Accordingly, distributed
development of extensions utilizing IPC functionality is enabled.
The use of dynamic inter-process communication connections
addressed resource limitations for IPC connection. In this way,
limited IPC resources are used only when the processes are com-
municating. However, the use of IPC mechanisms dynamically
requires resources, which are limited due to real-time require-
ments. This may  require additional analysis including a trade-off
analysis of possible solutions.

4.3.6. Phase 3 – step 3.1: present evaluation results
Until this step, key architectural requirements were identi-

fied; components that needed to be refactored were identified;
the stakeholders established a common understanding of poten-
tial improvement strategies and the evolution path for the software

Table 3
Implications of the component examples on evolvability subcharacteristics (+, pos-
itive impact; −, negative impact).

IPC component refactoring

Analyzability − Due to less possibility of static analysis since
definitions are defined dynamically

Architectural Integrity + Due to documentation of specific requirements,
architectural solutions and consequences

Changeability + Due to the dynamism which makes it easier to
introduce and deploy new slots

Portability + Due to improved abstraction of Application
Programming Interfaces (APIs) for IPC

Extensibility + Due to encapsulation of IPC facilities and
dynamic deployment

Testability No impact

Domain-specific
attributes

+  Resource limitation issue is handled through
dynamic IPC connection
− Due to introduced dynamism, the system
performance could be slightly reduced

architecture. In Table 3, we summarize the implications of the refac-
tored component example on evolvability subcharacteristics.

4.4. Qualitative evolvability analysis: lessons learned

In the qualitative evolvability analysis method, the architecture
tradeoff analysis is reflected in two  constituent steps: (i) dur-
ing architecture workshops, the stakeholders prioritize potential
architectural requirements, which are mapped against evolvabil-
ity subcharacteristics. By prioritizing the potential architectural
requirements based on pre-defined criteria, evolvability subchar-
acteristics are implicitly prioritized by stakeholders; (ii) after the
workshop, the identified architectural choices are qualitatively
analyzed with respect to their impacts and support for evolvabil-
ity subcharacteristics. Therefore, we see two  aspects which we can
further explore and make more explicit.

1. Explicit stakeholders’ views on prioritization and preferences of
evolvability subcharacteristics.

Rationale: depending on their roles in the development and
evolution of a software system, the stakeholders usually have
different concerns, i.e., interests which pertain to the sys-
tem’s development, its operation or evolution. Consequently,
architecting for an evolvable software system implies that an
architect needs to balance numerous stakeholders’ concerns
that are reflected in their prioritization and preferences of
evolvability subcharacteristics. When the prioritization and
preferences of evolvability subcharacteristics are not explic-
itly expressed by involved stakeholders, it becomes difficult to
determine the dimensions along which a system is expected
to evolve.
Related activities performed in the qualitative evolvability anal-
ysis method: this aspect was treated implicitly in the step
Prioritize requirements in the first phase, in which the
potential architectural requirements were mapped against
evolvability subcharacteristics, and were then prioritized
based on predefined criteria. As a result, the choice of pri-
oritized architectural requirements implicitly sets priority
ranking on evolvability subcharacteristics.

2. Quantification of the impact of architectural solution alterna-
tives on evolvability subcharacteristics.

Rationale: choosing an architectural solution that satisfies
evolvability requirements is vital to the evolution and success
of a software system. Nonetheless, each solution candidate
is associated with multiple attributes, as the choice of any
solution alternatives may  probably cause varied tradeoffs
among evolvability subcharacteristics. Hence, it is important
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to understand how an architectural alternative supports dif-
ferent evolvability subcharacteristics, especially when there
are several alternatives to choose from, each of which exhibits
varied support for evolvability subcharacteristics. Conse-
quently, these alternatives need to be ranked, and at the same
time, reflect stakeholders’ preference information on evolv-
ability subcharacteristics.
Related activities performed in the qualitative evolvability anal-
ysis method: the determination of potential architectural
solutions along with their impact on evolvability subchar-
acteristics was qualitatively handled in the step Identify and
assess refactoring solutions in the second phase, by examining
the rationale of a solution proposal along with its architectural
implications (positive or negative impact) of the deployment
of the component on evolvability subcharacteristics.

5. Case study II. Quantitative software evolvability analysis

This section describes the case study in which we applied the
quantitative software evolvability analysis method. The system
that we investigated is a mobile network node software architec-
ture at Ericsson.

5.1. Context of the case study

The case study was based on an assessment of the mobile net-
work architecture with respect to the evolvability of a logical node
at Ericsson. The main purpose of the logical node is to handle con-
trol signaling for and keep track of user equipment such as mobiles
using a certain type of radio access. This is a mature system that was
introduced about ten years ago and has been refined since then. The
system is expected to remain on the market for years to come, and
thus, needs to be easy to maintain and evolve.

The system software1 is divided into two levels: (i) the platform
level which consists of operating systems, a distributed processing
environment and application support; and (ii) the application level,
which comprises of a control system and a transmission system.
The control system is designed to process high-level protocols and
control user traffic data flow in the transmission system. The trans-
mission system is responsible for transport, routing and processing
of user traffic.

The case study focused on one of the challenges that the system
needs to meet, i.e., In-Service Software Upgrade (ISSU). The sys-
tem downtime is divided into planned and unplanned downtime.
Planned downtime is imposed by maintenance routines, such as
correction package loading. Unplanned downtime is imposed by
automatic recovery mechanisms in the system and manual restarts
of the system due to a system failure. The actual downtime for
a network is largely dependent on the frequency of the planned
downtime events. There are two scenarios connected with planned
downtime.

• Update of a release: the corrections to a release include either
correction packages that are distributed to all customers or single
corrections that are made for specific customers only, and may
be later included in the correction packages. These corrections
are planned patches, and can be updated at runtime. During the
update of a release, no configuration data needs to be changed or
updated.

• Upgrade of a release: a release is upgraded to a new release with
changed characteristics of the network node, e.g., changes in node

1 For reasons of confidentiality, no more details about the system are presented
here.

configuration parameters, major changes in software and hard-
ware. At present, this causes downtime of the node. During an
upgrade, when the new software has been installed, the node is
restarted (automatically or manually), and the local configura-
tion that a customer maintains is converted to a new format if
needed.

A main driver of the design and evolution of the system is the
achievement of non-stop operation with minimum service impact.
Therefore the focus of our study is the second scenario which is
the main cause of node downtime, because the node restart, being
part of each upgrade, causes service interruption for 5–10 min. The
architecture must support this emerging requirement of In-Service
Software Upgrade in order to evolve. The evolvability analysis in
the case study focused on understanding the impact on the current
architecture and investigating its potential evolution path, taking
the emerging software upgrade requirement into consideration.

5.2. Evolvability subcharacteristics from the case perspective

We describe below each evolvability subcharacteristic in con-
junction with the case study context.

Analyzability: the release frequency of the system in the case
study is twice a year, with various new customer requirements,
strategic functionality and characteristics implemented in each
release. In addition, the software development organization is
feature-oriented, i.e., software developers are not grouped based
on subsystems; instead, they are grouped to implement a certain
feature, and therefore often need to work across various subsys-
tems. This requires that the software system needs to be easily
understood and have the capability to be analyzed in terms of the
impact on the software caused by the introduction of a change.
From the ISSU perspective, it was decided that an ISSU solution
should be easy to understand for the development organization.
Architectural integrity: in the development of the network and
node system, several architectural design patterns, guidelines as
well as design rules with respect to conformity, modeling and
style guides have been articulated in an architectural specifica-
tion document. All these fundamental principles (strategies and
guidelines) govern the design and evolution of the system, and
therefore are clearly defined and communicated. In addition to
the strategies that guide software developers in order to fulfill
requirements (features of direct value for a user), system strategies
are also defined to fulfill non-functional attributes of high priority.
From the ISSU perspective, to enable ISSU implementation, it was
decided that ISSU rules should be followed. It was also decided that
it was necessary to check whether a potential ISSU architectural
design has any violations against these general design rules. If any
ISSU component must break the rules, it is essential to record the
rationale for such design decision and strategy.
Changeability:  from the ISSU perspective, four aspects were con-
cerned: (i) how well can other architectural changes fit into the
ISSU solution; (ii) many kinds of application changes shall be
possible without special upgrade code, e.g., backward-compatible
interfaces; (iii) it shall be as easy as possible to write special
upgrade code if needed, and (iv) how easy is it to change the ISSU
solution itself once it is used?
Extensibility: the system must constantly raise the level of ser-
vice by extending existing features or adding new ones. From the
ISSU perspective, one concern was  to identify if there were any
limitations when introducing the ISSU solution.
Portability: the current node software supports VxWorks and Linux
on a number of hardware variants. In the future, a possible scenario
could be to change the operating system or support new hardware.
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Testability:  the system has a number of variants based on the selec-
tion of the hardware configuration and the capacity level of the
node. Therefore, an important concern is the ease of testing and
debugging parts of the system individually, and extracting test
data from the system. From the ISSU perspective, three aspects
were concerned: (i) would ISSU influence the number of vari-
ants? (ii) would it be possible to conduct component tests? and
(iii) would it be possible to reproduce test cases?
Domain-specific attributes:  two domain-specific attributes were
identified:
• Capacity is an attribute that describes the subscriber and

throughput capacity with various radio access types. It depends
on the traffic pattern and dimensioning of the operator net-
work. A logical node is dimensioned for a specific load capacity.
The admission control functions and limits given by capac-
ity licenses would limit the number of subscribers allowed to
enter the node and the number of resources occupied by these
subscribers. Besides this, overload protection mechanisms are
implemented in case of internal failure within a node, network
failure, reconfiguration or incorrect node dimensioning. From
the ISSU perspective, three aspects were concerned: (i) ISSU total
time; (ii) capacity impact during ISSU, and (iii) capacity impact
during normal execution.

• Availability is an attribute that describes the ability to keep the
node in service, i.e., to keep the downtime to a minimum. It is
also called In-Service Performance (ISP) by the domain experts
that we interviewed. The system needs to be tolerant against
both hardware- and software-related failures so that the ser-
vices provided by the node are always available. The recovery
functions aim to provide a non-stop mode of operation of the
system, i.e., to recover from both software and hardware failures
with minimal inconvenience to the attached subscribers. From
the ISSU perspective, three aspects were concerned: (i) redun-
dancy of critical components during ISSU; (ii) impact of ISSU
solution’s complexity, and (iii) impact of software or hardware
failures during upgrade.

5.3. Applying the quantitative evolvability analysis method

The main focus in our case study was to identify, with respect
to the system function In-Service Software Upgrade (ISSU), which
among a set of architecture candidates has the most potential for
fulfilling the quality requirements of the system.

5.3.1. Phase 1 – step 1.1: elicit stakeholders’ views on evolvability
subcharacteristics

The change stimuli to the evolution of the node architecture in
the case study came from the ever-growing stringent requirement
for “In-Service-Performance”. Based on the identified change stim-
uli, the main architectural requirements were defined in order to
evaluate potential architectural solution alternatives:

• The atomic component for which an upgrade is performed must
have backward compatible interfaces during the upgrade.

• The old configuration data (including node-internal replicate
data) format must be available during the whole upgrade.

• The replicated subscriber data format must be available in its old
format until the upgrade is finished.

• It must be known on which software version each atomic com-
ponent executes.

• There must be a component which controls the upgrade and is
aware of the progress.

To elicit stakeholders’ views on evolvability subcharacteristics,
we performed interviews with key personnel and software design-
ers to understand architectural challenges over the years in general,

as well as the challenges that the architecture is facing due to
various emerging requirements, e.g., distributed development, and
increased productivity required due to including more features in
each product release. In addition, we  interviewed the following
relevant stakeholders to elicit their views on evolvability subchar-
acteristics:

• Three system architects.
• Two  software designers involved in the logical node’s develop-

ment.
• The system owner.

These stakeholders possess a wide range of expertise, cov-
ering platform development, communication protocol, node
configuration, monitoring and upgrade. The evolvability analysis
methodology was presented to the stakeholders being interviewed
in order to give them a clear idea of the entire process, and the value
of their contribution. The interviews were conducted separately
for each stakeholder with the intension that his/her preference
judgment should not be influenced by other people. The inter-
views were semi-structured, and the interviewees were free to
discuss their main concerns about evolvability subcharacteristics
from their perspective. We  also extracted the stakeholders’ view
on important domain-specific attributes (which were identified
during the interviews), i.e., capacity and availability.

5.3.2. Phase 1 – step 1.2: extract stakeholders’ prioritization and
preferences of evolvability subcharacteristics

We  extracted the information on the stakeholders’ preferences
after we  had gone through the list of evolvability subcharacteristics,
and clarified the definition of each subcharacteristic in the stake-
holders’ specific context. This was  to ensure that each stakeholder’s
prioritization of subcharacteristics was  built upon the same ground.
We  asked each stakeholder to provide us with preferences of evolv-
ability subcharacteristics from his/her own perspective. Table 4
shows a system architect’s preferences of evolvability subcharac-
teristics.

The other system architects’ preferences on evolvability sub-
characteristics were collected and calculated in the same manner.
Table 5 summarizes all the system architects’ preferences on
evolvability subcharacteristics, along with their aggregated priori-
tizations based on Eq. (2),  as described in Section 3.2.

After the process of extracting system architects’ preferences on
evolvability subcharacteristics, it was interesting to note that the
three system architects shared almost the same view of prioritiza-
tion of subcharacteristics. They had a shared order of prioritization
(starting from high to low priority) – availability, capacity, testa-
bility, changeability, extensibility, and analyzability. This is a good
indication of the alignment of preferences among architects.

In the same way, we also gathered quality preferences for the
other stakeholder roles, and realized that different stakeholder
roles have different preferences of evolvability subcharacteristics.
A summary of different stakeholder preferences is presented in
Table 6.

The reason why  we  aggregate preferences per stakeholder role
is that each role represents its respective viewpoint and needs,
and thus, we assume that the primary preference differentiation
lies between the different stakeholder roles. During the process
of extracting stakeholders’ views on evolvability subcharacteris-
tics, we also performed a consistency check for each stakeholder’s
comparisons based on AHP (Saaty, 1980). Table 7 summarizes the
consistency ratio scores for each stakeholder.

The research in Saaty (1980) suggested that if the consistency
ratio is smaller than 0.10, a participant’ comparisons are consis-
tent enough to be useful, and the AHP method can yield meaningful
results. It is also pointed out in Saaty (1980) that, in practice, higher
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Table  4
Preferences of evolvability subcharacteristics provided by a software architect.

Analyzability Integrity Changeability Extensibility Portability Testability Availability Capacity

Analyzability 1 3 1/3 1/3 5 1 1/4 1/3
Integrity 1/3 1 1/6 1/6 2 1/3 1/8 1/7
Changeability 3 6 1 2 5 1/3 1/2 1/2
Extensibility 3 6 1/2 1 3 1/3 1/2 1/2
Portability 1/5 1/2 1/5 1/3 1 1/7 1/9 1/8
Testability 1 3 3 3 7 1 1/3 1/2
Availability 4 8 2 2 9 3 1 1
Capacity 3 7 2 2 8 2 1 1

Table 5
Aggregated subcharacteristics.

Architects Analyzability Integrity Changeability Extensibility Portability Testability Availability Capacity

Architect A 0.077 0.030 0.135 0.110 0.023 0.158 0.249 0.219
Architect B 0.059 0.047 0.084 0.064 0.057 0.105 0.407 0.176
Architect C 0.082 0.036 0.096 0.096 0.038 0.123 0.309 0.220

Aggregated 0.073 0.038 0.105 0.090 0.039 0.128 0.322 0.205

Table 6
Preferences of evolvability subcharacteristics provided by respective stakeholder roles.

Stakeholders Analyzability Integrity Changeability Extensibility Portability Testability Availability Capacity

Architects 0.073 0.038 0.105 0.090 0.039 0.128 0.322 0.205
Designers 0.105 0.125 0.103 0.108 0.042 0.154 0.322 0.041
System owner 0.061 0.189 0.111 0.108 0.023 0.112 0.350 0.046

Aggregated 0.080 0.117 0.106 0.102 0.035 0.131 0.331 0.098

Table 7
Consistency ratios for stakeholders.

Stakeholders Architect A Architect B Architect C Designers System owner

Consistency ratio 0.061 0.109 0.039 0.088 0.046

values are often obtained, which indicates that 0.10 may  be too
low a limit. But it is an indication of the approximate value of the
expected consistency ratio. As we see from Table 7, only architect
B’s value (0.109) is slightly more than 0.10. However, the value
is still acceptable considering that 0.10 is a tough limit for the
degree of consistency. Consequently, all the data we obtained from
the stakeholders are trustworthy. The aggregated values of all the
involved stakeholder roles, as shown in Table 6, indicate that avail-
ability has the highest priority, followed by testability, architectural
integrity, changeability, extensibility, capacity, analyzability, and
portability.

5.3.3. Phase 2 – step 2.1: identify candidate architectural
solutions

Two architectural alternatives were developed for the In-Service
Software Upgrade requirement in our study. For reasons of con-
fidentiality we cannot give full descriptions of the candidate
architectural solutions, but the architectural alternatives describe
two variations of how to handle execution resource management.
Two types of computing resource (processors) management are
used to fulfill the capacity and In-Service Performance (ISP) require-
ments: (i) application processors that are optimized for node
control and traffic control logic, and (ii) device processors that are
optimized for communication/protocol logic to handle time-critical
traffic data flow and control signaling termination. Specifically, the
two candidate architectural solutions are:

• Alt1 – slot by slot concept: the overall idea is to take one board
after another out of service for upgrade to a new release. During

the In-Service Software Upgrade, the boards running with old
software will coexist and interact with the boards running with
new software.

• Alt2  – zone concept: the overall idea is to divide the node into two
zones, i.e., in one zone, all components run old software, and in
the other zone, components run new software.

Both solutions have their respective benefits and drawbacks.
For instance, the slot by slot concept has the benefit of having board
redundancy under control during ISSU and that the existing mech-
anisms in the architecture facilitate the potential implementations
of ISSU. On the other hand, the zone concept has the benefit that
backward compatibility is not needed for application and device
processors. But both solutions face several drawbacks such as time
required for ISSU, interface changes, and others. Therefore, it was
not an easy task to directly decide which alternative would be more
optimal than the other.

5.3.4. Phase 2 – step 2.2: assess the impact of candidate
architectural solutions on evolvability subcharacteristics

To assess the impact of ISSU candidate architectural solutions
on evolvability subcharacteristics, we  actively cooperated with
the system architects at Ericsson. The two  candidate architectural
solutions were rated with respect to how well they support each
evolvability subcharacteristic. This information was provided by
the three system architects because they possess the whole sys-
tem perspective and technical knowledge. The values indicating the
support weights of the two alternatives with respect to evolvability
subcharacteristics are summarized in Table 8.
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Table  8
Prioritization of the two architectural alternatives.

Alt1 – slot by slot Alt2 – zone

Analyzability 0.667 0.333
Integrity 0.500 0.500
Changeability 0.250 0.750
Extensibility 0.333 0.667
Portability 0.500 0.500
Testability 0.333 0.667
Availability 0.750 0.250
Capacity 0.800 0.200

5.3.5. Phase 3 – step 3.1: present evaluation results
Until this step, key domain-specific attributes and candidate

architectural solutions were identified; stakeholders’ preferences
of evolvability subcharacteristics as well as each candidate solu-
tion’s support of evolvability subcharacteristics were quantified.

Consequently, considering the prioritization weights of evolv-
ability subcharacteristics in Table 6, together with the values
indicating each alternative’s support of evolvability subcharacteris-
tics shown in Table 8, the overall weight for Alt1 is calculated based
on Eq. (3) as:

WAlt1 = 0.080 × 0.667 + 0.117 × 0.500 + 0.106 × 0.250

+ 0.102 × 0.333 + 0.035 × 0.500 + 0.131 × 0.333

+ 0.331 × 0.750 + 0.098 × 0.800 = 0.560

Similarly, WAlt2 = 0.440, which indicates that, Alt1 slot by slot
concept is the preferred solution supporting evolvability.

5.4. Quantitative evolvability analysis: lessons learned

This section summarizes our main experiences and lessons
learned through applying the quantitative analysis method during
the case study.

5.4.1. Experiences
By applying the quantitative analysis method, we  have

improved the ability to explicitly extract stakeholders’ views on
evolvability subcharacteristics and the quantification of the sup-
port of candidate architectural solutions for evolvability. Thus,
intuitive choices of architectural solutions are avoided during soft-
ware evolution. We  list below two tangible benefits that were
perceived and reported by the organization’s stakeholders who
were involved in the study.

Quantification of stakeholders’ preferences of evolvability sub-
characteristics: in this case study, different stakeholder roles
had different concerns relative to the software system. For
instance, the software designers mentioned three main aspects
that were considered important from their perspective, i.e.,
functionality, ease of understanding, and source code level per-
formance; whereas the system owner focused on domain-specific
attributes (availability and capacity), functionality, and time-to-
market/time-to-customer. These concerns are critical from specific
stakeholders’ perspectives, and will thus influence how they prior-
itize evolvability subcharacteristics. According to the stakeholders
we interviewed, thinking in terms of “subcharacteristics”, was  not
new for them. But previously they had not been able to quantify
the importance of the various -abilities for their system. The quan-
titative evolvability analysis method provided a structured way
to extract and quantify the opinions of the stakeholders of vari-
ous roles who are involved in the software architecture decision
process through individual discussions and interviews. In addition,
the quantification results served as a communication vehicle for

discussions of development concerns among various stakehold-
ers when individual preferences were quantitatively identified and
highlighted.

Quantification of the impact of architectural alternatives on evolv-
ability: in this case study, recalling the stakeholders’ preference
weight of evolvability subcharacteristics and the weight of how
well different alternatives support a specific evolvability subchar-
acteristic, we obtained a normalized value, designating the overall
weight for each alternative’s support for evolvability, and indi-
cating which was  the preferred candidate architectural solution.
In addition, we also interviewed the system architects after the
execution of the method in the form of a discussion meeting to
collect their opinions on whether the method had produced rele-
vant results. According to them, these results can definitely serve
as a basis for further discussions on the choice of architectural solu-
tion. Most importantly, the systematic analysis approach, including
documentation of the reasoning in each step, was  most valuable,
as it provided them an active countermeasure against arbitrarily
making some design decisions that were otherwise often based on
intuition because of personal experience and available expertise.

5.4.2. Lessons learned
In the case study, we  conducted a series of informal interviews

with the stakeholders that participated in the evolvability analy-
sis. During the interviews, we asked questions that were designed
to extract and clarify the stakeholders’ perception of evolvability
subcharacteristics. In this process, cost was not explicitly consid-
ered. Cost involves development cost, maintenance and evolution
cost, and concerns time-to-market. In the case study, we put cost
into consideration when candidate architectural solutions had been
identified as it became more concrete to estimate the workload for
each solution. On the other hand, in order to carry out software evo-
lution efficiently, the cost aspect could also be considered upfront
and explicitly evaluated together with the evolvability subcharac-
teristics.

6. Discussion

In this section, we summarize the characteristics of the qual-
itative and quantitative analysis methods, and discuss validity
evaluation.

6.1. Characterization of the two methods

Both qualitative and quantitative methods can be used as an
integral part of the software development and evolution process
to assess software architectures for evolution. They share the com-
mon  themes of (i) systematically addressing quality requirements
driven by change stimuli, and (ii) assisting architects in analyzing
the impact of potential architectural solutions on evolvability sub-
characteristics before determining the potential evolution path for
the software architecture. There are also variations between the
two methods as detailed below and summarized in Table 9.

Application contexts:

• Stakeholders’ perception of quality attributes. Software architec-
ture is influenced by system stakeholders (Bass et al., 2003).
In circumstances when there are numerous stakeholder roles,
representing different and sometimes contradictory concerns
and goals, an explicit quantitative assessment of stakeholders’
preferences of evolvability subcharacteristics will strengthen
qualitative data, and assist architects in making architectural
design decisions, especially when there is not a clear view within
an organization on important quality attributes and their priori-
tization.
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Table  9
Characterizations of the qualitative and quantitative evolvability analysis methods.

Application contexts Approaches used Analysis output

Qualitative evolvability analysis Common perception of important
quality attributes and their
prioritization within organization

Architecture workshops with all
involved stakeholders to discuss
prioritization of potential architectural
requirements

Identified and prioritized potential
architectural requirements

A  preferred architectural solution can
be  decided based on the qualitative
impact data

Architecture workshops with
architects to discuss architectural
solutions and qualitative impacts on
evolvability

Qualitative analysis of impact of
architectural solutions on
evolvability subcharacteristics

Quantitative evolvability analysis Numerous stakeholder roles
representing different concerns

Interviews with individual
stakeholders to discuss preferences of
evolvability subcharacteristics

Quantified stakeholders’
preferences of evolvability
subcharacteristics to make
stakeholders’ evolvability concerns
explicit

Unclear perception and prioritization
of important quality attributes.

Architecture workshops with
architects to discuss architectural
solutions and quantitative impacts on
evolvability.

Quantified prioritization of impact
of candidate architectural solutions
on evolvability

Difficult to decide the preferred
architectural solution based on
qualitative data

Analytic Hierarchical Process method

• Impact of candidate architectural solutions on evolvability. Archi-
tects must often make architectural design decisions and give
preference to a certain architectural solution. In circumstances
when there are multiple architectural alternatives to choose
among, each of which exhibits divergent impacts on evolvabil-
ity subcharacteristics, a quantitative assessment of the impact
of candidate architectural solutions on evolvability subcharac-
teristics will guide and support architects in avoiding intuitive
decisions in software architecture evolution, especially when the
qualitative data is not sufficient for determining a preferred can-
didate architectural solution.

Approaches used in the analysis process:
The qualitative evolvability analysis is mainly conducted

through (i) architecture workshops in which all involved stake-
holders participate to identify and prioritize potential architectural
requirements, and (ii) architecture workshops in which the archi-
tects discuss potential architectural solutions along with their
qualitative impacts on evolvability. The quantitative evolvability
analysis is based on AHP (Saaty, 1980) and conducted through
(i) interviews with respective stakeholder to extract individual
stakeholder’s preference of evolvability subcharacteristics; and (ii)
architecture workshops in which the architects discuss potential
architectural solutions along with their quantitative impacts on
evolvability.

Analysis output:
The main output of the qualitative evolvability analysis method

includes the identified and prioritized potential architectural
requirements, identified components that need to be refactored,
candidate architectural solutions along with their qualitative evolv-
ability impact analysis data, as well as test scenarios. The main
output of the quantitative evolvability analysis method includes
quantified prioritization of evolvability subcharacteristics among
stakeholders, and identified candidate architectural solutions along
with their quantitative evolvability impact data.

The evolvability assessment methods explicitly address evolv-
ability subcharacteristics and analyze potential architectural
solutions’ impact on these subcharacteristics. These assessments
result in suggested architectural solutions and a potential evolution
path of the software architecture. Some quality attributes can be
quantified, and they affect the evolution of a system. Based on our
experiences in industrial settings, the domain-specific attributes
address a lot of these quality attributes, such as performance, capac-
ity and availability in the second case study. As the evolvability

analysis is done before the actual architecture transformation, it
is difficult to measure/quantify the quality attributes (e.g., per-
formance) of the architecture before it is actually implemented.
Therefore, these quality attributes are quantified using AHP, based
on subjective judgments of how well the potential architecture
choice would support the specific quality attributes.

The choice of which analysis method to use is based on the spe-
cific application contexts and the expected analysis output. The
following questions are related to application contexts, and can be
used as checkpoints (answered with ‘Yes’ or ‘No’) for determining
when to use which analysis method:

• Are there numerous stakeholder roles with divergent concerns
and goals? (Y/N).

• Are the important quality attributes that concern the evolution
of the system in focus clear within the software development
organization? (Y/N).

• Is it difficult to determine a preferred candidate architectural
solution among the multiple architectural alternatives due to
their various impacts on evolvability subcharacteristics? (Y/N).

Fig. 8 illustrates the decision diagram for choosing the appro-
priate analysis method based the answers to the questions. The
first two  checkpoints concern the stakeholders’ perception of qual-
ity attributes, and are related to the first phase of both qualitative
and quantitative analysis. The third checkpoint concerns selecting a
preferred architectural solution, and relates to the second phase of
the two  methods. It is therefore possible to combine the qualitative
and quantitative analysis methods, e.g., starting with a qualitative
analysis and complement with quantitative data by using AHP, or
vice versa. Depending on the answers to the questions, the corre-
sponding phase of either the qualitative or quantitative analysis
can be selected.

6.2. Validity

Our software architecture evolution research is based on empiri-
cal studies. The formulation of the evolvability model was originally
built upon our observations and experiences of working with many
different types of industrial systems from different domains, sev-
eral workshop discussions (Breivold and Crnkovic, 2010; Breivold
et al., 2008b,c), and the involvement of practitioners in the
discussions. To further confirm the proposed evolvability sub-
characteristics, we performed a systematic review of software
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Fig. 8. A decision diagram for choosing between the qualitative and quantitative methods.

architecture evolution research (Breivold et al., 2011). This sys-
tematic literature review was based on a formalized and repeatable
process to document relevant knowledge on architecting for evolv-
ability. We  searched in seven scientific databases that provide
important and high-impact full text journals and conference pro-
ceedings, covering software evolution related areas with a broad
range of topics, such as software quality models, process models,
software quality metrics, and software architecture evaluation. To
further ensure the strength of inferences, we defined quality cri-
teria that indicate the credibility of an individual study. Based on
a pre-defined search strategy and a multi-step selection process,
we identified, from the initial 3349 papers, 82 primary studies for
further analysis of quality attributes related to evolvability. The
citation status and publication sources, along with their impact
factor also represent the high quality level of the studied litera-
ture. Moreover, the model and the analysis methods were applied
in two large-scale industrial software systems in different domains.

These case studies are in essence based on action research
(Argyris et al., 1985), i.e., the researchers participate in the pro-
cess and perform empirical observations. We  discusses below the
validity evaluations of performing the cases based on Yin (2002).

Conclusion validity: Conclusion validity (Yin, 2002) is concerned
with the relationship between the treat-
ment and the outcome. In the qualitative
evolvability analysis, conclusion validity is
addressed through: (i) architecture work-
shops with stakeholders to extract potential

architectural requirements; (ii) the involve-
ment of software architects and senior
software developers in the analysis process
to discuss the impact of candidate architec-
tural solutions on evolvability, and (iii) the
researchers’ experiences and involvement in
the software product development.

In the quantitative evolvability analysis, as the answers to how
important the evolvability subcharacteristics relate to each other
is in the form of a subjective judgment, the answers tend not to
be exactly the same for all participants, especially among stake-
holders representing different roles. This was noticed in the case
study, in which the preferences among stakeholder roles differed
whereas the architects had a shared preference view on evolvability
subcharacteristics. We  saw this as a positive indication that there
was  an organizational alignment among architects. On the other
hand, even the same participant might not provide exactly the
same answer in terms of pair-wise comparison weights should the
study be repeated. Therefore, the interviews were centered on ask-
ing a series of questions that were open-ended, i.e., conversational
responses, to gain information about respective stakeholder’s view
and interpretations of evolvability subcharacteristics. This was to
ensure that the stakeholders had a well-elaborated and clarified
understanding of evolvability subcharacteristics in their specific
domain context before providing meaningful pair-wise comparison
weights for evolvability subcharacteristics and impacts of archi-
tectural alternatives on evolvability. Moreover, the calculation of
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consistency ratio in the AHP method also helped to check the con-
sistency level of the individuals’ answers.

The first author took part in the evolvability analysis in
both cases. All experiences are thus first-hand. The evolvabil-
ity assessments followed the structured process, which reduced
the influence of the authors’ participation. In addition, other par-
ticipants in the cases provided us with material to make the
conclusions (e.g., lessons learned, and experiences) less subjective.
The risk of bias has been further decreased through the involvement
of other researchers (co-authors) in the analysis of the experiences.

Internal validity: Internal validity (Yin, 2002) concerns the con-
nection between the observed behavior and the
proposed explanation for the behavior. In the
quantitative evolvability analysis case, during
the process of extracting stakeholders’ prefer-
ences of evolvability subcharacteristics, a remark
from the software designers was  that a designer
may  have different valuation of evolvability
subcharacteristics depending on the different
subsystems that he/she has previously worked
with. This is because different subsystems may
have different quality attribute requirements in
focus. Although we encouraged them to try to
think at the system level, it may  still become
a threat to the study when extracting software
designers’ preferences of evolvability subchar-
acteristics. However, in the qualitative analysis
process, this threat was addressed through
the architecture workshops in which all the
stakeholders could discuss their perception and
prioritization of architectural requirements, and
thus, could reach a consensus.

Construct validity: Construct validity (Yin, 2002) is concerned with
the relation between theory and observation. In
both the qualitative and quantitative analysis
cases, we informed the participants about the
evolvability analysis process so that they became
aware of the purpose and the intended results of
the studies. Furthermore, we set the context and
expectations for the remainder of the evaluation
activities. One threat that exists, however, is in
the qualitative analysis case, during the archi-
tecture workshops, when all the stakeholders
discuss potential architectural requirements and
their prioritization. Some people might not tell
their true opinions if they deviate from those of
the others. But, this type of threat was  addressed
in the quantitative analysis process in which
separate interviews were conducted individu-
ally with respective stakeholders.

External validity: External validity (Yin, 2002) is concerned with
generalization. In both the qualitative and quan-
titative cases, the participants represented the
different roles of stakeholders that are involved
in software development. Therefore, there is
no threat in the selection of participants. In
addition, based on our experiences in both
case studies, although the systems belong to
different domains – automation and telecommu-
nication domains, the analysis methods seemed
to be generally applicable. However, one threat
to external validity is that there are some
similarities between the two cases, such as
large, complex, long-lived software-intensive
systems with strong requirements for backward

compatibility and no evolution breaks. Another
threat is that both companies are large interna-
tional ones located in Sweden, and thus might
impose some social and cultural behavior on
people, especially during interviews and work-
shops.

7. Related work

A comprehensive description of the related work can be found in
our systematic review of software architecture evolution research
(Breivold et al., 2011). The discussion of related work in this sec-
tion concerns three topics: quality models, qualitative architecture
analysis, and quantitative architecture analysis. Their common
characteristics are that they either do not consider evolvability, or
they do not provide any method to assess evolvability, and can only
be partially used in the evolvability assessment process.

7.1. Quality models

In quality models, quality attributes are decomposed into var-
ious factors, leading to various quality factor hierarchies. Some
well-known quality models are McCall et al. (1977),  Dromey (1996),
Boehm et al. (1978), ISO 9126 and FURPS (Grady and Caswell, 1987).
In summary, none of these existing quality models is dedicated
to evolvability analysis. Certain evolvability subcharacteristics are
disregarded or not explicitly addressed in these models. Although
we can enrich respective quality model through integrating the
missing elements, it is still difficult to extend/adapt each quality
model for the purpose of software evolvability analysis for two rea-
sons: (i) the existing quality models are intended to evaluate the
quality of software in general; (ii) most of the quality models are
more driven towards the final coded software product, and do not
explicitly take into account the analysis and design stage (Losavio
et al., 2001), which is an essential part in the proposed evolvability
assessment process.

7.2. Qualitative architecture analysis

There are many approaches to how to perform qualitative archi-
tecture analysis. For instance, the attribute-based architectural style
(ABAS) (Klein et al., 1999) associates architectural styles with rea-
soning frameworks that are based on quality-attribute-specific
models for particular quality attributes. With this approach, in
order to determine potential evolution paths of an architecture,
the preferences and tradeoffs among evolvability subcharacteris-
tics must be considered.

Another example is the lightweight sanity check for implemented
architectures (LiSCIA) method (Bouwers and van Deursen, 2010),
that focuses on maintainability and reveals potential problems as a
software system evolves. The limitations of LiSCIA are: (i) it depends
heavily on the evaluator’s opinion; (ii) it only aims to discover
potential risks related to maintainability; and (iii) the use of only
a single viewpoint (module view-type) sets a limit on covering all
potential risks.

The knowledge-based assessment approach (Del Rosso and
Maccari, 2007) evaluates the evolution path of software architec-
ture during its lifecycle based on the knowledge of the stakeholders
involved in the software development organizations. The out-
comes of the assessment are current architecture overview, main
issues found, and optionally, recommendations for their resolu-
tions. Although this approach addresses evolvability, there is no
description of the authors’ perception of evolvability, and a lack
of explicit consideration of the multifaceted feature of software
evolvability.
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7.3. Quantitative architecture analysis

There are several quantitative analysis methods and a few that
are representative for related work are Architecture Level Modifi-
ability Analysis (ALMA) (Bengtsson et al., 2004), Decision support
method (Svahnberg, 2004) and Cost Benefit Analysis Method (CBAM)
(Kazman et al., 2006). For a deeper description see our systematic
review (Breivold et al., 2011).

Architecture Level Modifiability Analysis (ALMA) (Bengtsson et al.,
2004) analyzes modifiability based on scenarios that capture future
events a system needs to adapt to in its lifecycle. Depending on
the goal of the analysis, the output from an ALMA evaluation varies
between: (i) maintenance prediction to estimate required effort for
system modification to accommodate future changes; (ii) architec-
ture comparison for optimal candidate architecture, and (iii) risk
assessment to expose the boundaries of software architecture by
explicitly considering environment and using complex change sce-
narios that the system shows inability to adapt to. ALMA does not
cover all the evolvability subcharacteristics, which is a shortcoming
that we address with our work.

Decision support method (Svahnberg, 2004) quantitatively mea-
sures stakeholders’ views on the benefits and liabilities of software
architecture candidates and relevant quality attributes. The method
is used to understand and choose optimal candidate architec-
ture from among software architecture alternatives. Although
the primary data collection is comprised of subjective judg-
ments, influenced by the knowledge, experiences and opinions
of stakeholders, the data collection of stakeholders’ subjec-
tive opinions is quantifiable. Thus, any disagreements between
the participating stakeholders can be highlighted for further
discussions.

One way to quantitatively analyze architecture is to address eco-
nomic valuation perspective and estimate the required effort for
system modification to accommodate future changes. Cost Benefit
Analysis Method (CBAM) (Kazman et al., 2006) is an architecture-
centric economic modeling approach that can address long-term
benefits of a change along with its implications on the complete
product lifecycle. This method quantifies design decisions in terms
of cost and benefits analysis, and prioritizes changes to architec-
ture based on perceived difficulty and utility. Compared with these
approaches, the economic evaluation is not one of the major out-
puts from our evolvability analysis methods, in which we only
make estimates of the required implementation workload of the
architectural solution candidates.

8. Conclusions

Motivated by the need to understand software architecture evo-
lution and to investigate ways to analyze software evolvability to
support this evolution, the central theme of this paper focuses on
two particular aspects: (i) identify software characteristics that
are necessary to constitute an evolvable software system, and (ii)
assess evolvability in a systematic manner. We  have proposed and
described the software architecture evolvability analysis process
(AREA), which provides several repeatable techniques for support-
ing software architecture evolution:

• Software evolvability model refines evolvability into a collection of
subcharacteristics, and is established as a first step towards ana-
lyzing and quantifying evolvability; This model provides a basis
for analyzing and evaluating software evolvability, and a check
point for evolvability evaluation and improvement.

• Qualitative evolvability analysis method focuses on improving the
ability to systematically understand and analyze the impact of
change stimuli on software architecture evolution.

• Quantitative evolvability analysis method provides quantifications
of stakeholders’ evolvability concerns and the impact of potential
architectural solutions on evolvability.

These techniques have been applied in two industrial projects
driven by the need to improve software evolvability. Based on
our experiences, both the qualitative and quantitative analy-
sis methods can be used as an integral part of the software
development and evolution process. Throughout the process of
evolvability analysis at ABB, the architecture requirements and
the rationale of the choice of an architectural solution for archi-
tecture transition became more explicit, and better founded and
documented. The analysis results were well accepted by the stake-
holders involved in the analysis process, and became a blueprint for
further implementation improvement. Throughout the process of
evolvability analysis at Ericsson, the importance of various quality
attributes perceived among different stakeholders was quantified
and became more explicit. This quantification also served as a com-
munication vehicle for further discussions among stakeholders. In
both cases, by analyzing architectural improvement proposals with
respect to their implications on evolvability subcharacteristics, we
further avoided an ad hoc choice of potential evolution paths of
software architecture. Our plans are to further complement the
quantitative analysis method with a cost aspect to better support
design decisions, and validate on additional, independent cases.
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