
Bandwidth Measurement using Performance
Counters for Predictable Multicore Software*

Rafia Inam†, Mikael Sjödin†, Marcus Jägemar#†

†Mälardalen Real-Time Research Centre, Mälardalen University, Sweden
#Ericsson AB, Kista, Sweden

Email: {rafia.inam, mikael.sjodin, marcus.jagemar}@mdh.se

Abstract—Memory contention is one of the largest sources of
inter-core interference in statically partitioned multicore systems,
and the contention reduces the overall performance of appli-
cations and causes unpredictable execution-times. A first step
in achieving predictable execution is to accurately measure the
amount of consumed memory bandwidth for each application.
Such measurements can be used to track down bottlenecks,
provide better partitioning among cores, and ultimately be used
to arbitrate and police access to the memory bus.

We propose to use hardware performance counters to con-
tinuously track the memory-bandwidth consumed by different
applications executing in parallel. In this paper we describe
ongoing efforts exploring suitable performance counters on core-
level and on system-on-chip level for the 8-core Freescale P4080
processor. The aim is to accurately and efficiently track consumed
memory bandwidth per application; with the final goal to use
these measurements to improve predictability of multicore real-
time software.

Keywords-performance counters, performance monitoring,
memory bandwidth, OSE.

I. INTRODUCTION

Most modern processors host a range of hardware perfor-
mance counters which can be used to infer the amount of
consumed computing-resources. Different processor architec-
tures provide different sets of performance counters which
make the determining consumption of various resources more
or less easy and accurate. In this paper we discuss on-going
work on using the hardware performance counters to measure
consumed memory-bandwidth on multicore architectures. The
ultimate goal of our work is to use these measurements
to achieve predictable execution of real-time software on
multicore architectures.

Tracking consumed memory-bandwidth in multicores has
several potential uses. Memory contention is one of the largest
sources of inter-core interference in statically partitioned mul-
ticore systems. Thus, evaluating the consumed bandwidth by
each core can be a key to understand and resolve performance
bottlenecks in multicore applications and can reduce the
sources of indeterminism in the execution-times. In future, we
envision that the tracking of the consumed memory-bandwidth
could also be used to make intelligent scheduling decisions to
prevent contention and to spread memory accesses over time to
even out the load on the memory bus. Hence, we believe that

* This work is supported by the Knowledge Foundation (KK-Stiftelsen),
via the research programme PPMSched.

an efficient and accurate tracking of the consumed memory-
bandwidth will be a key technology to realize predictable real-
time systems on multicores.

Contemporary scheduling of real-time tasks on multicore
architectures is inherently unpredictable, and activities in one
core can have negative impact on performance in unrelated
parts of the system (i.e. on other cores). A major source
of such unpredictable negative impact is the contention for
shared physical memory. In commercially existing hardware,
there are currently no mechanisms that allow a core to protect
itself from negative impact if another core starts stealing
its memory bandwidth. Hence, we need to develop software
technologies to track, and eventually police, the consumed
memory bandwith in order to achieve predictable multicore
software.

Our work target performance critical real-time systems,
which is a class of hard and soft real-time systems where it is
imperative to achieve both high performance and predictable
throughput. For hard real-time systems, this situation typically
occurs when the designer wants to maximize the utilization of
hardware resource (e.g., using the cheapest possible hardware,
or fitting the maximum number of functions into an already
existing hardware). For soft real-time systems, the situation
occurs when the system’s value is determined both by its
delivered quality of service and its capacity to handle large
volumes of computations.

The hardware performance counters are registers frequently
used for off-line and on-line performance analysis without
slowing down the system. Since they provide non-intrusive
performance monitoring, they are good candidates to be used
for monitoring in performance critical systems. The counters
are used to track certain low-level operations or events within
the processor accurately and with minimal overhead. The per-
formance counters can be used when evaluating performance
of a computer system. For example, Eranian describes the use
of performance counters to measure four interesting memory-
related metrics: measuring cache misses, measuring memory
bandwidth, measuring latency and access locality for the x86
platform [1].

We propose to use performance counters to measure mem-
ory bandwidth for our target hardware platform the Freescale
P4080 processor [2] which hosts eight e500mc cores. Ongo-
ing work is to implement the performance counters for an
industrial real-time multicore operating-system kernel, OSE

[3], developed by ENEA. The characteristics monitor, denoted
charmon, uses the performance monitor facility located inside
the P4080 processor. We plan to implement the performance
counters into the charmon, for online monitoring of the
consumed memory bandwidth.
Paper Outline: Section II presents the background on per-
formance monitors and memory bandwidth measurement.
Hardware and software technologies used in our work are
presented in section III. Section IV describes on-going work on
memory bandwidth measurement approach. Finally, section V
concludes the paper with a description of future work.

II. BACKGROUND

In this section we describe performance monitoring software
and other available tools to measure application cache and
memory bandwidth usage.

A. Performance monitors

Usually a performance monitor is used to collect low-
level information about events occurring in the processor
during software execution (for example, the number of elapsed
cycles, the number of cache misses, instructions executed,
etc.). Performance monitor counters are currently implemented
for many modern processor architectures such as x86, ARM
and PowerPC. A brief information on different available
performance monitor software is given below:

PerfCtr adds support to Linux kernel (2.6.x) for using
hardware performance-monitoring counters on x86, x86-64,
PowerPC, and certain ARM processors [4], [5]. Another light-
weight performance monitor is perfctr-xen that provides access
to hardware performance counters in virtualized environments
using the Xen hypervisor [6].

PerfMon is developed by the HP Research [7] and is very
similar to PerfCtr. Originally it was designed specifically
for Itanium (IA-64) under Linux, and now it supports x86
and more architectures. Development of perfmon has been
moved to an open community under the name of perfmon2.
The perfmon2 is a generic kernel interface to access the
performance counters on Linux with the help of a user level
library [8] that offers kernel-level sampling buffers and event
set multiplexing.

Performance Application Programming Interface (PAPI) is
developed by the Innovative Computing Laboratory [9]. It
provides a standard set of performance monitoring events and
a standard API to access hardware counters in a portable way.
It uses perfmon and perfctr drivers on Linux. Performance
Counters for Linux (PCL) is another preferred performance
monitoring framework for Linux that allows monitoring of
events per task and per CPU counters [4]. Another tool when
investigating performance counters is cachegrind/valgrind. In
general terms the cachegrind Linux tool performs in a similar
way as the charmon.

All the above mentioned tools operate on Linux. Since we
are using a different operating system than Linux, normal
Linux-based tools are not usable out-of-the-box and needs to
be ported. Also some tools does not support the PowerPC

platform we are using which narrows the list of available tool.
We are using charmon because it is already implemented for
the P4080 processor and it also provides a continuous system
monitoring functionality and supports clients to be linked to
it performing various tasks depending on system behavior.

One additional example of system monitoring is presented
in [10]. In their approach they implement a low intrusive
(1%-3%) sample based mechanism to gather system wide
information. The sampling is implemented by means of period-
ically executing sampling interrupts generated by performance
counters. In our work this is done by a periodically executing
process gathering performance counters in a ring buffer.

B. Measuring application bandwidth usage

In cache pirating described in [11] and bandwidth bandit
[12] stealing cache and memory bandwidth causes higher
system load. They have implemented tools that predictably
steal cache and memory bandwidth to predict application
resource usage. We could use these techniques to individually
measure the desired memory usage for a set of applications
that should be mapped to different partitions of a system.

III. HARDWARE AND SOFTWARE TECHNOLOGIES

Here we give an overview of our target hardware and
software platforms, and describe the performance monitor
software we use to measure the memory bandwidth on these
platforms.

A. Hardware used

We target the Freescale P4080 processor [2] hardware
platform which hosts eight identical e500mc cores that have
uniform access to the main memory. The processor has a set
of execution-resources that are private to each core (e.g. CPU,
L1 caches, and L2 caches) and a set of execution-resources
that are shared among all cores (e.g. L3 cache, memory bus
and main memory), as exemplified in Figure 1. In this initial
paper we focus on the shared memory and assume that all
accesses to the shared resources goes through the same bus,
and that the bus serves one request at the time.1

B. OSE operating system

OSE is a deterministic, distributed real-time, fully preemp-
tive OS, optimized to provide high performance with bounded
response times and is used in many soft and hard real-time
embedded systems (e.g. telecommunications, automobiles, and
medical devices) [13]. The minimal standard configuration for
OSE is 350 kbytes including the kernel services and core
basic services layers (smaller configurations are possible by
excluding portions of the core basic services layer).

In addition to basic services layer (that provides preemptive
priority-based scheduling, asynchronous message passing for
inter-process communication and synchronization, and error

1These assumptions are consistent with typical architectures used in in-
dustry today. However, architectures with e.g. non-uniform memory access
and interleaved access to the shared memory-bus are predicted for coming
generations of hardware.

Freescale QorIQ™ communications platforms

are the next-generation evolution of our

leading PowerQUICC® communications

processors. Built using high-performance
Power Architecture® cores, QorIQ platforms
enable a new era of networking innovation
where the reliability, security and quality of
service for every connection matters.

QorIQ P4080 Multicore Processor
The QorIQ P4080 multicore processor, the
first product offered in the QorIQ P4 platform
series, delivers industry-leading performance
in the under 30-watt power category.
It combines eight Power Architecture e500mc
cores operating at frequencies up to
1.5 GHz with high-performance datapath
acceleration logic, as well as networking
I/O and other peripheral bus interfaces.

The P4080, built in 45 nm technology, is
designed to deliver high-performance,
next-generation networking services in a
very low power envelope.

The QorIQ P4080 processor is designed for
combined control and dataplane processing,
enabling high-performance layers 2–7
processing. Its high level of integration offers
significant performance benefits compared to
multiple discrete devices, while also greatly
simplifying board design. The processor is
well-suited for applications that are highly
compute-intensive, I/O-intensive or both.
This makes it ideal for applications such
as enterprise and service provider routers,
switches, media gateways, base station
controllers, radio network controllers (RNCs),
access gateways for Long Term Evolution (LTE)
and general-purpose embedded computing
systems in the networking, telecom, industrial,
aerospace and defense markets.

Key Features
Freescale delivers a groundbreaking three-
tiered cache hierarchy on the QorIQ P4
platform. Each core has an integrated Level 1
(L1) cache as well as a dedicated Level 2 (L2)
backside cache that can significantly improve
performance. Finally, a multi-megabyte Level
3 (L3) cache is also provided for those tasks
for which a shared cache is desirable.

The CoreNet™ coherency fabric is a key
design component of the QorIQ P4 platform.
It manages full coherency of the caches and
provides scalable on-chip, point-to-point
connectivity supporting concurrent traffic to
and from multiple resources connected to the
fabric, eliminating single-point bottlenecks

for non-competing resources. This eliminates

bus contention and latency issues associated

with scaling shared bus/shared memory

architectures that are common in other

multicore approaches.

QorIQ™ Communications Platforms

P4 Series
P4080 multicore processor	

Buffer
Manager

Queue
Manager

Core Acceleration Interface

DDR2/DDR3
SDRAM Controller

DDR2/DDR3
SDRAM Controller

2 x DUART, 4 x I2C,
Interrupt Control,

GPIO, SD/MMC, SPI,
2 x USB 2.0/ULPI

Encryption

RegEx
Pattern

Matching
Engine

Enhanced
Local Bus
Controller

(eLBC)

128 KB
Backside
L2 Cache 32 KB

L1 I-Cache

Power Architecture®

e500mc Core

32 KB
L1 D-Cache

CoreNet™ Coherency Fabric

2 x 4-ch.
DMA

2 x 4-ch.
DMA

3 x PCI
Express®

On-Chip NetworkOn-Chip Network

2 x Serial
RapidIO®

18-lane SerDes

RapidIO Message
Unit (RMU)

Frame Manager

4 x 1 Gbps
Ethernet

1 x 10 Gbps
Ethernet

Real-Time
Debug

Frame Manager

4 x 1 Gbps
Ethernet

1 x 10 Gbps
Ethernet

QorIQ™ P4080 Block Diagram

1024 KB
Frontside
L3 Cache

1024 KB
Frontside
L3 Cache

Fig. 1. P4080 multicore processor architecture model [2]

handling), the OSE microkernel also provides memory man-
agement facilities that enables the operating system to take
advantage of MMU hardware for memory protection [13].
On-top of the microkernel, are core basic and core extension
layers. The core basic layer provides file-system functionality,
networking services, device driver management, debug, and
C/C++ runtime support while the core extension offers other
optional services.

C. The characteristics monitor

The charmon uses the performance monitoring facility lo-
cated inside the P4080 processor. It allows a client application
to monitor events on CPU level regarding low-level functional-
ity such as cache hits/misses, branch statistics, TLB hits/misses
and other hardware related events that can be used to calculate
key performance indexes KPIs, used for performance and/or
behavior evaluation. A KPI can be a function of a number
of events such as L1 I-cache, L1 D-cache, L2 I-cache, L2
D-cache, etc.

Implemented within the platform, the charmon is a con-
tinuously running performance monitoring tool. It gathers
information about HW-usage for the complete system by
periodically sampling performance monitor counters (PMCs)
and storing the results in a local database. PMCs are described
in general in [2] and with more details in Table 9-47 in
e500mc Core Reference Manual [14] . The charmon can
simultaneously measure PMC events for all cores and group
them on a per core basis for viewing together with calculated
KPIs. The current implementation of the charmon supports
coarse-grain sampling on a per-core basis. This means that
current metrics can not be determined per executing process,
but on a system level. One way to remedy this is to implement
counter storage when processes are being swapped in and out
of the ready queue, but with an increased probe effect.

Selecting a proper sample period for each counter set is
difficult and too short period increases the probe effect and too
long gives course grain samples. Currently we have selected
1 second as a tradeoff. In our platform there are 13 counter
sets which gives a sample periodicity of 13 seconds.

The probe effect has been neglected in our investigation
since the PMCs are located inside the CPU with low or no
cost and the DB-storage and PMC reprogramming occurs
infrequently as described earlier. The characteristics monitor
is easily extendable with additional counter sets depending on
what to monitor. Current sets include Cycles per Instruction
(CPI), branch statistics, TLB information, L1-Cache, L2-
Cache and L3 cache etc. Furthermore, using PMC gives the
the opportunity to measure non-instrumented code further
reducing the intrusiveness of the monitor.

IV. MEMORY BANDWIDTH MEASUREMENT

It is our intention to study the P4080 architecture and
the associated memory-controller on our target system to
determine which events are needed to be counted in order to
accurately determine the amount of consumed bus-bandwidth.

A. Determining the consumed memory bandwidth

In many cases, a continuous determination and tracking
of the consumed memory bandwidth is very difficult without
using a dedicated external hardware that monitors the memory-
bus. Since we target the use of standard hardware, we describe
in this section how we can estimate the bandwidth using the
performance counters.

For any given CPU architecture, the accuracy in such a
prediction will depend on issues like available events to count,
number of available counters (often a small set of counters are
available to be programmed to count various events), and the
characteristics of the memory-bus. For soft real-time systems,
it may be enough to use rough estimates of correlation between
some counted events and actual bandwidth usage to get an
acceptable estimate of the consumed bandwidth. However, for
hard real-time systems, the estimate needs to be safe (i.e. we
are not allowed to underestimate the consumed bandwidth).

In our current project we target the Freescale P4080 pro-
cessor which hosts eight e500mc cores [14]. The e500mc has
128 countable events which we can use to infer how much
memory-bandwidth has been consumed. Unfortunately there
is no event which directly tells us how many memory-bus

cycles that have been used. Instead a set of events, like “Write-
through stores translated”, “Data L1 cache reloads”, and “L2
linefill buffer”, can be monitored to try to determine the
number, and size, of memory accesses. Furthermore, the P4080
has a system-on-chip (SoC) unit which hosts a set of additional
performance counters. Here we find,e.g., counters related to
L3-cache. Unfortunately (for our purpose) there does not exist
a single bus access event like the BUS TRANS BURST in
Inte Core 2 Duo architectures [1]. Instead the P4080 SoC
has a more sophisticated interface that allow larger degree of
configurability, and thereby a larger set of events to count.

B. Online monitoring

To provide continuous online monitoring of the consumed
bandwidth, we cannot resort to simply resetting counters
and observing them at the end of a test run (as is done
in many performance measuring tools). Instead we need to
continuously monitor counters and store their values.

Some processors allow alarms or interrupts to be associated
with the performance counters. If the bandwidth can be
straightforwardly inferred from a single counter this could
be used to avoid polling the counters and thus lowering the
overhead of the monitoring. However, if the processor does
not allow us to use such alarms or the consumed bandwidth
needs to be estimated as a function of several performance
counters then we need the periodic polling of the counters.

Furthermore, in the extension of this work we will im-
plement schedulers that police the consumed bandwidth and
thus the accurate and non-intrusive estimates of the bandwidth
consumptions becomes even more important. For policing
purposes using alarms could give the most accurate accounting
of the consumed bandwidth. In the e500mc, we can set wrap-
around alarms on counters. Thus, if we would like to allow
an application to generate at most x events before being
policed we could initialize the 64-bit event counter to 264−x
before running the application. For L3-cache events and main-
memory accesses where we use the SoC counters it is yet
unclear to us whether we can set the alarms or not, and we
are currently investigating this.

C. Relevant hardware resources

From the Figure 1, we identify that the key resource to
monitor the consumed bandwidth is the CoreNet Coherency
Fabric. Currently charmon is calculating different kinds of
KPIs by measuring a number of events such as L1 I-cache, L1
D-cache, L2 I-cache, L2 D-cache, and L3 cache. To compute
accurate memory bandwidth consumption, we require some
more KPIs and need to measure more events for the L3 cache.

D. Extensions to the charmon

As outlined above, currently the charmon does not monitor
all the events needed to accurately track L3-events and main-
memory accesses. This will be extended in ongoing work.
However, the current architecture of charmon is designed to
performance coarse-grained monitoring on the system level.

For our purposes, we need fine-grained monitoring on the
application level.

For this reason, the counter-management (programming of
which event to count, initialization of counter registers and
reading of registers) needs to be managed in conjunction with
the task-switches. In Enea OSE we can add a hook to the task-
switch that allow us to do the proper counter-management at
the application level.

V. CONCLUSIONS AND FUTURE WORK

The measurement of the consumed memory bandwidth for
all applications running in parallel on multicore platform could
be used to not only reduce the performance bottlenecks but
to also achieve predictable execution-times. The tracking of
the consumed memory-bandwidth could also be used to make
intelligent scheduling decisions to prevent contention and to
spread memory accesses over time to even out the load on
the memory bus. We have proposed to use the hardware
performance counters at both core- and system-on-chip levels
for the 8-core Freescale P4080 processor to monitor the
consumed memory bandwidth by the running applications.

Currently, we are investigating different performance coun-
ters and all the related events needed to accurately track L3-
cache events and main-memory accesses. The next step is
to implement them into the characteristics monitor, charmon,
for online monitoring. Once these implementation efforts are
complete, we will have accurate online measurements of the
consumed memory bandwidth for all applications. The next
step will then be to implement schedulers that can be used
to arbitrate and police the memory bus accesses by different
applications.

REFERENCES

[1] S. Eranian. What can performance counters do for memory subsystem
analysis? In ACM SIGPLAN Workshop on Memory Systems Performance
and Correctness (MSPC’08), pages 26–30. ACM, 2008.

[2] P4 Series, P4080 multicore processor. cache.freescale.com/files/-
netcomm/doc/fact sheet/QorIQ P4080.pdf.

[3] Enea AB, Sweden. Data Sheet ENEA OSE 5.5. http://www.enea.com/
Documents/Resources/Datasheets/Enea%20OSE5%20021053.pdf.

[4] Thomas Gleixner. Performance counters for Linux.
http://lwn.net/Articles/310176/.

[5] M. Pettersson. Perfctr library, 2011.
http://user.it.uu.se/ mikpe/linux/perfctr/.

[6] Ruslan Nikolaev and Godmar Back. Perfctr-xen: a framework for
performance counter virtualization. In Proceedings of the 7th ACM
SIGPLAN/SIGOPS international conference on Virtual execution envi-
ronments, VEE ’11, pages 15–26, New York, NY, USA, 2011. ACM.

[7] S. Eranian. Perfmon2: A flexible performance monitoring interface for
linux. In Ottawa Linux Symposium, pages 269–288, 2006.

[8] S. Eranian. The perfmon2 project. http://perfmon2.sourceforge.net.
[9] S. Browne, C. Deane, G. Ho, and P. Mucci. PAPI: A portable interface

to hardware performance counters. In Department of Defense HPCMP
Users Group Conference, 1999.

[10] J. Anderson, L. Berc, and J. Dean. Continuous profiling: where have
all the cycles gone? In ACM SIGOPS, pages 357–390, Nov. 1997.

[11] D. Eklov, N. Nikoleris, D. Black-Schaffer, and E. Hagersten. Cache
pirating: Measuring the curse of the shared cache. In Proc. of ICPP,
2011.

[12] D. Eklov, N. Nikoleris, D. Black-Schaffer, and E. Hagersten. Design
and evaluation of the bandwidth bandit. In IEEE, 2012.

[13] Enea AB, Sweden. OSE Kernel User’s Guide, 1998.
[14] e500mc Core Reference Manual, rev 1, 2012. cache.freescale.com/files/-

32bit/doc/ref manual/E500MCRM.pdf.

