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Abstract

Component-Based Software Engineering has been deemed a suitable
technique for the development of complex embedded systems, as compo-
nent reuse makes it easier to manage software complexity. Another way
of reducing software complexity is by partitioning system behavior into
different operational modes. Such a multi-mode system can change its
behavior by switching between modes. For a multi-mode system built by
components, a challenge is its mode switch handling.

In this report, a novel approach is presented to integrate our mech-
anism for handling mode switch (the Mode Switch Logic), in ProCom,
which is a component model designed for the development of real-time
embedded systems. The outcome is a slightly extended version of Pro-
Com which not only supports the development of multi-mode applications,
but also is able to handle mode switch.

1 Introduction

The growing complexity of the software of embedded systems entails new tech-
niques for the development of complex embedded systems, as traditional tech-
niques are becoming less suitable. Component-Based Software Engineering
(CBSE) [4] is a promising paradigm for developing complex systems by virtue
of its benefits such as the management of software complexity, reduced time to
market and improved software quality. CBSE allows a system to be built by
reusable components which are independently developed so that the system does
not have to be developed from scratch. The success of CBSE has been evidenced
by a variety of component models proposed both in industry and academia [5]
[12]. Among these component models, and in the focus of this report, Pro-
Com [3] is a component model for real-time and embedded systems, particularly
targeting vehicular, automation and telecommunication applications.
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In contrast to CBSE, another common approach to reducing software com-
plexity of embedded systems is to partition system behavior into different oper-
ational modes. A multi-mode system can start running in a default mode and
switch to another mode under certain circumstances. A representative exam-
ple is the control software of an airplane, which could run in the modes taxi
(the initial mode), taking off, flight and landing. Different subsystems are run-
ning in different modes. For instance, the subsystem for controlling the wheels
only runs in taxi mode whereas the navigation subsystem may only run in
flight mode. Combining CBSE and multi-mode systems, we get a Component-
Based Multi-Mode System (CBMMS), i.e. a multi-mode system developed in a
component-based manner. Figure 1 illustrates a conceptual CBMMS, with its
component hierarchy on the left and its component connections on the right.
The system, i.e. Component Top, consists of three components: a, b and c.
Component b is composed by d and e. Components a, c, d and e are primi-
tive components because they cannot be further decomposed. Components Top
and b are composite components because they are both compositions of other
components. Since the component hierarchy has a tree structure, a composite
component and its subcomponents have a parent-and-children relationship. For
instance, b is the parent of d and e, which in turn are the children of b. More-
over, the system can run in two modes: m1

Top and m2
Top . When the system is in

m1
Top , Component c is deactivated (i.e. not running), shown in the component

hierarchy in Figure 1 by not displaying c in mode m1
Top . In contrast, when the

system is in m2
Top , c is activated whilst e is deactivated. Besides, Component

a has different mode-specific behaviors represented by black and grey colors in
Figure 1.

A key issue of a CBMMS is its mode switch handling. A mode switch
may amount to the joint mode switches of many different components. For
instance, a system mode switch from m1

Top to m2
Top in Figure 1 requires the

activation of c, the deactivation of e and the behavior change of a. The mode
switches of different components must be well synchronized and coordinated to
guarantee a correct system mode switch. For that reason, we have developed
the Mode Switch Logic (MSL) [7] [6], a mechanism for handling the mode switch
of CBMMSs.

With the ProCom component model and MSL as two background techniques,
this report provides a theoretical guidance for implementing MSL in ProCom.
Currently, ProCom does not support multi-mode systems. However, the ap-
proach presented in this report realizes the development of CBMMSs together
with their mode switch handling in ProCom. The remainder of the report is
organized as follows: Section 2 introduces the ProCom component model. Sec-
tion 3 gives a brief introduction of MSL. As the main contribution of the report,
Section 4 describes how MSL is implemented in ProCom. In Section 5, an ex-
ample is used to illustrate the major elements in Section 4. Related work is
reviewed in Section 6. Finally, Section 7 concludes the report and discusses
some future work.

2 The ProCom component model

ProCom [3] is a component model for the development of distributed real-time
and embedded systems software. Compared with other existing component
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Figure 1: A conceptual component-based multi-mode system

models, the most distinctive feature of ProCom is its two layers: ProSave—the
lower layer, and ProSys—the higher layer. With different concerns, these two
layers allow a system to be modeled at different levels of granularity. Next we
shall give a brief introduction of each layer.

2.1 The ProSave layer

The ProSave layer is used to design subsystems allocated to a single physical
node. It is based on a pipe-and-filter architectural style and has clear separation
between control flow and data flow. A component belonging to this layer is called
a ProSave component. A ProSave component can provide one or more services,
each of which realizes a particular functionality. Each service has a single input
port group and one or more output port groups. A port group consists of a
trigger port and one or more data ports, with the trigger port dedicated to
control flow and the data ports dedicated to data flow.

A ProSave component is passive in the sense that the execution of each of
its services requires external activation. For a service S of a ProSave compo-
nent, when the input trigger port is activated, S becomes active and performs
computation based on its input data ports. After completing the computation,
S writes the result to its output data ports, activates its output trigger port(s)
and then becomes passive.

Figure 2(a) depicts a ProSave component with two services S1 and S2. Ser-
vice S1 has an input port group (consisting of an input trigger port and an input
data port) and an output port group (consisting of an output trigger port and
two output data ports). The ports of S2 can be explained in the same way.

The communication between ProSave components is based on a single di-
rectional one-to-one connection between ports of the same types. An output
trigger port of a ProSave component is directly connected to an input trigger
port of another ProSave component. Similarly, an output data port of a ProSave
component is directly connected to an input data port of another ProSave com-
ponent. In addition, ProCom defines a couple of connectors for more advanced
communication in ProSave. Figure 3 lists the most commonly used connectors:
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Figure 2: ProSave and ProSys components

• Control Or: It has at least two input trigger ports and one output trigger
port. Its output trigger port is activated when any one of its input trigger
ports is activated.

• Control Join: It has at least two input trigger ports and one output trigger
port. Its output trigger port is activated only when all its input trigger
ports are activated. It can also be presented by a small circle graphically.

• Control Fork: It has one input trigger port and at least two output trigger
ports. When its input trigger port is activated, all its output trigger ports
will be activated. It can also be presented by a thick dot graphically.

• Data Or: It has at least two input data ports and one output data port.
The data arriving at any one of its input data ports is forwarded to its
output data port.

• Data Fork: It has one input data port and at least two output data ports.
The data arriving at its input data port will be duplicated and produced
at all its output data ports. Just like Control Fork, it can also be presented
by a thick dot graphically.

• Selection: It has an input trigger port, at least one input data port and at
least two output trigger ports. When its input trigger port is activated, it
will activate exactly one of its output trigger ports according to the data
written to its input data port(s).

Figure 3: Typical connectors in ProSave

The ProSave layer is hierarchical, i.e. a composite ProSave component can
be composed by other ProSave components.
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2.2 The ProSys layer

The ProSys layer is used to construct distributed subsystems. A component
belonging to this layer is called a ProSys component. A ProSys component has a
number of input message ports and output message ports. Figure 2(b) depicts a
ProSys component with one input message port and two output message ports.
The communication between ProSys components is realized by asynchronous
message passing. A message is sent from an output message port and received
from an input message port via message channels. A message channel can be
associated with multiple input and output message ports, enabling many-to-
many communication.

A ProSys component is active, as it has its own threads. Therefore, concur-
rent execution is allowed in ProSys. Just like ProSave, ProSys is also hierarchi-
cal in the sense that a composite ProSys component can be composed by other
ProSys components.

The integration of ProSys and ProSave is realized by building a ProSys
component with ProSave components, illustrated in Figure 4. In order to map
the pipe-and-filter architecture to message passing, a message port is internally
treated as a pair of a trigger port and a data port. In addition, a special
connector Clock can be used for the periodic activation of ProSave components
composing the ProSys component.

Figure 4: A ProSys component composed by ProSave components

3 The Mode Switch Logic

The Mode Switch Logic (MSL) [7] [6] is a systematic approach to the mode
switch handling of CBMMSs. The major elements of MSL include a mode-aware
component model, a mode mapping mechanism and a mode switch runtime
mechanism. In the following, we shall briefly introduce these elements, which
establish the foundation of our MSL implementation in ProCom.

3.1 The mode-aware component model

The mode-aware component model defines essential features that a component
should possess in order to support both individual mode switch and cooperative
mode switch with other components. As is illustrated in Figure 5, a component
can support multiple modes and has a unique configuration defined for each
mode. The mode switch of a component is realized by its reconfiguration, i.e.
changing its configuration in the current mode to a new configuration in the
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target mode. The mode switch runtime mechanism of MSL controls the mode
switch behavior of a multi-mode component. Furthermore, to enable cooperative
mode switch, dedicated mode switch ports are introduced for the cross-layer
communication in the component hierarchy. A multi-mode primitive component
has a dedicated mode switch port pMSX , which is used to exchange mode related
information with its parent during a mode switch. A multi-mode composite
component has two dedicated mode switch ports: apart from pMSX that has the
same role as for primitive components, the other one is pMSX

in , used to exchange
mode related information with its subcomponents during a mode switch.

Figure 5: The mode-aware component model

3.2 Mode mapping

Usually a multi-mode component is independently developed without assuming
the context where it will be used. For a multi-mode composite component ci,
composed by c1j , c

2
j , · · · , cnj (n ∈ N), the mapping between the modes of ci and

its subcomponents must be properly specified. Among these components, when
a component is running in one of its supported modes, ci must be able to derive
the current modes of itself and its subcomponents. Similarly, when a mode
switch takes place, ci should also be able to derive the new modes of itself and
its subcomponents. This is called mode mapping, which can be handled by
the mode mapping mechanism provided by MSL. The central idea of this mode
mapping mechanism is to express the mode mapping of a composite component
by a group of Mode Mapping Automata (MMAs). The relation between MMAs
and mode mapping can be represented by Figure 6, where the mode mapping
of ci is expressed by a set of MMAs including MMAci and MMAckj

(k = [1, n]).

Each Mode Mapping Automaton (MMA) is associated with a specific component
among ci and ckj . All MMAs reside in ci and are internally synchronized. An
initial version of the mode mapping mechanism of MSL is introduced in [8] and
refined in [6].

3.3 The mode switch runtime mechanism

The mode switch runtime mechanism handles the mode switch of a CBMMS and
the mode switches of its components at runtime. In this report, we shall intro-
duce its two most fundamental elements: the Mode Switch Propagation (MSP)
protocol and the mode switch dependency rule. The MSP protocol specifies
how a mode switch event is detected by an individual component and efficiently
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Figure 6: Mode mapping and Mode Mapping Automata (MMAs)

propagated to other related components. The mode switch dependency rule
guarantees the mode consistency between a system and its components after
each mode switch. Both elements of the mode switch runtime mechanism are
based on the transmission of downstream and upstream primitives throughout
the component hierarchy. A downstream primitive is sent from a composite
component to its subcomponents via its dedicated mode switch port pMSX

in . An
upstream primitive is sent from a component to its parent via its dedicated
mode switch port pMSX .

3.3.1 The Mode Switch Propagation (MSP) protocol

MSL distinguishes different roles for the components of a CBMMS:

• Mode Switch Source (MSS): a component which can detect a mode switch
event (e.g. the value of a sensor exceeds a threshold) and actively request
to switch mode. When an MSS ck requests to switch mode, a mode switch
scenario is triggered, uniquely specified by ck, its current mode mi

ck
and

target mode mj
ck

.

• Mode Switch Decision Maker (MSDM): a component which triggers a
mode switch based on the mode switch request from an MSS. Since an
MSDM has a higher authority than the corresponding MSS, the MSDM
must be at a higher level in the component hierarchy.

• Type A component: a component which needs to switch mode as a con-
sequence of the mode switch of an MSS.

• Type B component: a component not affected by the mode switch of an
MSS.

The main purpose of the Mode Switch Propagation (MSP) protocol is to
propagate the mode switch request of an MSS to all Type A components without
disturbing Type B components. Let Top be the top component of a CBMMS.
For a component ci, let Pci be the parent of ci. Let Tci = A or Tci = B denote
ci is a Type A or Type B component. A general description of the MSP protocol
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is as follows:

The Mode Switch Propagation (MSP) protocol: When an MSS ci detects
a mode switch event, it will request to switch mode by triggering a mode switch
scenario. If ci 6= Top, ci will issue a primitive MSR (Mode Switch Request)
which is propagated upstream and stepwise until it reaches the MSDM cj. Let
CM be the set of vertically intermediate components between ci and cj in the
component hierarchy. When ck ∈ CM receives the MSR, ck forwards it to Pck

because Tck = A and the current state of ck allows a mode switch. Contrastly, cj
is the MSDM under three conditions; (1) Tcj = B; (2) Tcj = A and the current
state of cj does not allow a mode switch; (3) Tcj = A and the current state of
cj allows a mode switch whereas cj = Top. Then,

• In Condition (2), cj will reject the MSR by doing nothing. Mode switch
propagation is terminated and no component will switch mode.

• In conditions (1) and (3), cj will approve the MSR by issuing a primitive
MSQ (Mode Switch Query) that is propagated downstream and stepwise to
all Type A components. After receiving an MSQ, a component ck will check
if its current state allows a mode switch and is required to reply to Pck

with either a primitive MSOK or MSNOK. Component ck only replies with
an MSOK when its current state allows a mode switch (and all its Type A
subcomponents reply with an MSOK if ck is composite). Otherwise, if the
current state of ck does not allow a mode switch, ck will reply with an
MSNOK without propagating the MSQ downstream further. If ck receives at
least one MSNOK from a subcomponent, it will also reply with an MSNOK.

• If all the Type A subcomponents of cj has replied with an MSOK, cj will
trigger a mode switch by issuing a primitive MSI (Mode Switch Instruction)
that follows the propagation trace of the MSQ. Mode switch propagation is
completed when all Type A components have received the MSI. In contrast,
if cj receives at least one MSNOK, it will abort the mode switch plan by
issuing a primitive MSD (Mode Switch Denial) that follows the propagation
trace of the MSQ. Mode switch propagation is terminated when all Type A
components have received the MSD and no component will switch mode.

If ci = Top, then cj = ci and CM = ∅. When ci detects a mode switch
event, it will directly issue an MSQ to its Type A subcomponents and the rest will
be the same as the case when ci 6= Top.

The identification of the MSDM based on a specific MSR, and the approval or
rejection of an MSR by the MSDM are determined by the mode mapping of the
MSDM and its current state. Besides, mode mapping also identifies Type A and
Type B components, and derives the new mode of each Type A component. This
reveals the close cooperation between the MSP protocol and mode mapping.

3.3.2 The mode switch dependency rule

For a CBMMS, a system mode switch corresponds to the mode switches of all
Type A components. The correctness of a system mode switch relies on not
only the correct mode switch of each Type A component, but also on the mode
consistency between the system and all Type A components. When a system
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is in the process of switching mode, some components may complete mode
switch earlier than some other components. This temporary mode inconsistency
is tolerable, however, when a system completes a mode switch, all Type A
components must be running in their new modes. In order to guarantee such
mode consistency, a mode switch dependency rule is introduced in MSL. In
general, the mode switch dependency rule is described as follows:

The mode switch dependency rule: Let cj be the MSDM for a mode switch
scenario and cj triggers a mode switch by issuing an MSI that is propagated
downstream and stepwise to all Type A components. Then,

• For any primitive component ci (Tci = A), ci starts its mode switch by
reconfiguring itself upon receiving an MSI. The mode switch completion of
ci equals its reconfiguration completion. A primitive MSC (Mode Switch
Completion) will be sent from ci to Pci when ci completes its mode switch.

• For any composite component ci (Tci = A), ci starts its mode switch by
reconfiguring itself after its MSI propagation. Component ci completes its
mode switch when it completes its reconfiguration and it has received an
MSC from all its Type A subcomponents. After that, if ci 6= cj, an MSC will
be sent from ci to Pci after ci completes its mode switch.

• If Tcj = A, the system mode switch is completed after the mode switch of
cj. Otherwise, if Tcj = B, the system mode switch is completed after cj
has received an MSC from all its Type A subcomponents.

The MSP protocol and the mode switch dependency rule can be demon-
strated in Figure 7, which shows a mode switch process based on the system
introduced in Figure 1 under the guidance of the mode switch runtime mecha-
nism of MSL. Component b is an MSS and Top is the corresponding MSDM. For
this specific mode switch scenario, Top, a, b, c and d are all Type A components
while e is a Type B component. Component Top approves the MSR by issuing
an MSQ to its Type A subcomponents b and c. Then b further propagates the
MSQ to its Type A subcomponent d. All Type A components reply with an MSOK

after checking their current states upon receiving an MSQ. When Top receives an
MSOK from a, b and c, it triggers a mode switch by issuing an MSI that follows
the propagation trace of the MSQ. After the MSI propagation, a component will
start reconfiguration that is represented by black bars in Figure 7. Finally, MSC
is propagated bottom-up in the same fashion as MSOK. White bars mean that
the mode switch of a composite component is blocked when it has completed
reconfiguration but is still waiting for an MSC from one or more of its Type A
subcomponents.

4 Implementing MSL in ProCom

In previous sections, the ProCom component model and MSL have been intro-
duced separately. In this section, we describe our contribution in this report—
implementing MSL in the ProCom component model. The basic idea of our
approach is to integrate the key elements of MSL in ProCom with minimum
modification to ProCom. First, a ProCom component must be made mode-
aware to become consistent with the mode-aware component model and the
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Figure 7: A complete mode switch process

mode mapping mechanism. Second, the mode switch runtime mechanism must
be included in each ProCom component for its mode switch handling. Further-
more, since component connections may change during a mode switch, ProCom
must be able to provide multiple versions of component connections and switch
between them when necessary. Next we shall present our approach in terms of
the definition of multi-mode ProCom components, the mode switch handling in
ProCom, and the support of varied component connections in different modes.
To simplify the presentation, two assumptions are made: (1) the execution of
a component in ProCom can be immediately interrupted by a mode switch;
(2) no new mode switch event is detected when a system is switching mode.
The handling of atomic component execution which cannot be interrupted is
presented in Chapter 5 of [6]. Without the second assumption, a conflict may
occur due to multiple mode switch triggering. It is our ongoing work to provide
handling of such conflicts.

4.1 Multi-mode ProCom components

Multi-mode components have not been considered by the current ProCom com-
ponent model. However, we are able to define multi-mode ProCom components
without extending ProCom. Since ProCom distinguishes ProSave and ProSys,
multi-mode ProSave and ProSys components will be introduced separately in
the following.

In ProSave, in order to separate the mode switch handling from the func-
tional behavior of each component, a dedicated service Smode is used for the
mode switch handling of a multi-mode ProSave component. This service in-
cludes the definition of multiple modes, the configuration for each mode, mode
mapping and the mode switch runtime mechanism. Furthermore, Smode also
has dedicated mode switch ports that correspond to pMSX and pMSX

in in the
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mode-aware component model. The service Smode consists of an input port
group and an output port group. The input port group comprises an input
trigger port pmst

i and an input data port pms
i , while the output port group com-

prises an output trigger port pmst
o and an output data port pms

o . Figure 8(a)
shows a typical multi-mode ProSave component ci with two services, the lower
service being Smode . The dedicated mode switch ports of Smode are highlighted
in purple.

Figure 8: Multi-mode ProSave and ProSys components

In ProSys, no concept of service exists and concurrent execution is allowed
in a ProSys component, hence a dedicated internal thread can be used for the
mode switch handling of a multi-mode ProSys component. Similar to ProSave,
a multi-mode ProSys component should also have dedicated mode switch ports.
Since a ProSys component is equipped with message ports that integrate both
control flow and data flow, the dedicated mode switch ports of a multi-mode
ProSys component can be assigned to an input message port pms

i and an output
message port pms

o . Figure 8(b) shows a typical multi-mode ProSys component
ci whose dedicated mode switch ports are highlighted in purple.

4.2 The mode switch handling in ProCom

Section 3 has stated that the mode switch of a CBMMS is handled by the
mode switch runtime mechanism of MSL. In this subsection, we integrate this
mode switch runtime mechanism in ProCom. For primitive multi-mode ProCom
components, the mode switch runtime mechanism can be simply implemented in
the code (see algorithms 1 and 2 in the appendix). In this report, our focus is on
the mode switch handling of composite multi-mode ProCom components which
requires a more elaborate approach in both ProSave and ProSys. Hereafter we
by default imply multi-mode ProCom components while mentioning ProSave
or ProSys components. The mode switch of a composite ProCom component
is handled by dedicated subcomponents via its dedicated mode switch ports
defined in Section 4.1.

4.2.1 The mode switch handling in ProSave

Since a composite ProSave component has no behavior and is just a composition
of a set of enclosed ProSave components, a reasonable strategy is to introduce
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additional subcomponents that are dedicated to its mode switch handling. The
same strategy can be applied to a ProSys component composed by ProSave
components.

For a composite component ci, which is either a composite ProSave com-
ponent or a composite ProSys component composed by ProSave components,
we introduce two dedicated subcomponents of ci for its mode switch handling:
MSLA

ci and MSLB
ci , both of which are primitive ProSave components. Compo-

nents MSLA
ci and MSLB

ci interact with the Smode service of each subcomponent
of ci and are synchronized with each other.

Let ci.p denote the port p of component ci. Also, let SCci =
{c1j , c2j , · · · , cnj } (n ∈ N) denote the set of subcomponents of ci, excluding MSLA

ci

and MSLB
ci . Figure 9 illustrates the ports of MSLA

ci and MSLB
ci , both of which

are synchronized with each other via their synchronization ports psynci and psynco .
Component MSLA

ci has a single service with an input port group and an output
port group. Apart from the synchronization ports, these port groups consist of
the following ports:

• pti: an input trigger port whose activation makes MSLA
ci active.

• pmsx
i : an input data port for receiving a downstream primitive (e.g. MSQ,
MSI or MSD) from the parent of ci.

• pto: an output trigger port activated after MSLA
ci completes its current

instance of execution.

• Pmsx
o = {p1o, p2o, · · · , pno} (n = |SCci |): a set of output data ports for

sending a downstream primitive to SCci .

• pso: an output data port indicating the current mode of ci.

Figure 9: The pair of ProSave subcomponents of ci for handling its mode switch

The ports of MSLB
ci are quite symmetrical to MSLA

ci . Apart from the syn-

chronization ports, MSLB
ci also has the following ports:

• pti: an input trigger port whose activation makes MSLB
ci active.

• Pmsx
i = {p1i , p2i , · · · , pni } (n = |SCci |): a set of input data ports for receiv-

ing an upstream primitive (e.g. MSR, MSOK, MSNOK, or MSC) from SCci .

• pto: an output trigger port activated after MSLB
ci completes its current

instance of execution.
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• pmsx
o : an output data port for sending an upstream primitive to the parent

of ci.

The connections around MSLA
ci and MSLB

ci are illustrated in Figure 10. The
ports associated with services rather than Smode of both ci and SCci have
been omitted for simplicity. Components MSLA

ci and MSLB
ci are connected

to both ci and SCci . Their connection with ci is represented by the connec-
tion between ci.p

ms
i and MSLA

ci .p
msx
i and the connection between MSLB

ci .p
msx
o

and ci.p
ms
o . Their connection with SCci is represented by the connection be-

tween MSLA
ci .p

k
o (k = [1, n]) and ckj .p

ms
i and the connection between ckj .p

ms
o and

MSLB
ci .p

k
i . A mode related control flow is established within ci from MSLA

ci to

SCci and then to MSLB
ci . A Control Or connector is used so that MSLB

ci can
be triggered by any subcomponent of ci. This connection pattern is repeated
within all composite ProSave components. For instance, ∀ckj ∈ SCci (k = [1, n])

which is composite, the internal connections of ckj will exhibit the same connec-
tion pattern as ci. Such a connection pattern enables the transmission of both
downstream and upstream primitives. For instance, a downstream primitive
from ci to ckj can be transmitted from MSLA

ci .p
k
o to ckj .p

ms
i and ckj can propagate

the primitive further to lower levels if it is composite and wants to. Conversely,
an upstream primitive from ckj to ci can be transmitted from ckj .p

ms
o to MSLB

ci .p
k
i

and then MSLB
ci will forward this primitive to MSLA

ci via their synchronization
ports. Let cl be the parent of ci, if ci wants to propagate this primitive further to
cl, MSLB

ci can send the primitive to ci.p
ms
o which must be externally connected

to MSLB
cl

, the component dedicated to the mode switch handling of cl.

Figure 10: The connections around MSLA
ci and MSLB

ci

Attention must be paid to the connector Clock in Figure 10. Since ProSave
components are passive and require external activation, a common Clock must
be placed at the top ProSave level, periodically triggering the mode related
control flow in ProSave.

Moreover, our initial intention was to use a single dedicated component to
handle the mode switch of a composite ProSave component. The reason why
two such components are used is attributed to the rigorous execution semantics
in ProSave, which prohibits mutual triggering between two neighboring ProSave
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components. If a single component, say MSLci , is used instead of MSLA
ci and

MSLB
ci , there must exist mutual triggering between MSLci and SCci . Conse-

quently, the execution semantics of ProCom will be violated.
Since both MSLA

ci and MSLB
ci are primitive ProSave components, they can

be easily implemented by following the mode mapping mechanism and mode
switch runtime mechanism of MSL. Their detail mode switch behaviors can be
found in the algorithms in the appendix of this report.

4.2.2 The mode switch handling in ProSys

The mode switch handling in ProSys is similar to that in ProSave.
For a composite ProSys component ci, we introduce a dedicated subcom-

ponent of ci for its mode switching handling: MSLci which plays an equal role
as the pair of MSLA

ci and MSLB
ci . However, message passing between ProSys

components is more flexible than the pipe-and-filter communication style in
ProSave. Two ProSys components can send messages to each other, therefore,
a single subcomponent MSLci is sufficient for the mode switch handling of ci.

Still, let SCci = {c1j , c2j , · · · , cnj } (n ∈ N) denote the set of subcomponents of
ci, excluding MSLci . Figure 11 illustrates the ports of MSLci :

• pmsx
i : an input message port for receiving a downstream primitive from

the parent of ci.

• Pi = {p1i , p2i , · · · , pni } (n = |SCci |): a set of input message ports for receiv-
ing an upstream primitive from SCci .

• pso: an output message port indicating the current mode of ci.

• Po = {p1o, p2o, · · · , pno} (n = |SCci |): a set of output message ports for
sending a downstream primitive to SCci .

• pmsx
o : an output message port for sending an upstream primitive to the

parent of ci.

Figure 11: The ProSys subcomponent of ci for handling its mode switch

The connections around MSLci are illustrated in Figure 12, where the ports
not related to the mode switches of both ci and SCci have been omitted for
simplicity. Dark red shapes are message channels. Component MSLci has di-
rect communication with both ci and SCci . On the one hand, MSLci .p

msx
i

is connected to ci.p
ms
i and MSLci .p

msx
o is connected to ci.p

ms
o . On the other

hand, MSLci .p
k
o (k = [1, n]) is connected to ckj .p

ms
i and ckj .p

ms
o is connected

to MSLci .p
k
i . No Clock is needed in ProSys, because ProSys components are
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active and can execute without external activation. Additionally, since a mes-
sage channel allows many-to-many communication, the Control Or connector
in ProSave is removed. This connection pattern is repeated for all composite
ProSys components while enabling the transmission of both downstream and
upstream primitives.

Figure 12: The connections around MSLci

MSLci is a primitive ProSys component where the mode switch runtime
mechanism of ci is implemented. Its detail mode switch behavior is described
as algorithms in the appendix.

4.3 Managing the variability of ProCom component con-
nections in multiple modes

Section 4.2 explains the mode switch handling of a ProCom component, yet
without addressing how component reconfiguration is achieved during a mode
switch in ProCom. Many properties of a component can be changed by reconfig-
uration, e.g. functional behavior and running status (activated or deactivated).
Among these properties, our focus in this report is on the inner component con-
nections of a composite ProCom component. As is indicated in Figure 1 at the
very beginning of the report, the inner component connections of a composite
component ci can be different while ci is in different modes. The inner compo-
nent connections of ci for each mode can be separately defined at design time
and changed to each other when a mode switch occurs at runtime. In order to
manage the variability of component connections in different modes in ProCom,
we provide a solution which can automatically generate a complete view of in-
ner component connections of each composite ProCom component based on its
inner component connections separately defined for each mode. Depending on
the current mode of a composite component, the activated subcomponents and
corresponding inner component connections are selected.

4.3.1 Managing the variability of component connections in ProSave

Consider a composite ProSave component ci, whose inner component connec-
tions are mode-dependent. The basic idea of managing the variability of inner
component connections of ci is to package each ckj ∈ SCci (k = [1, n], n = |SCci |)
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with additional connectors. Each connector integrates all the possible incoming
or outgoing connections of a specific port for all modes and can select the correct
connection based on the current mode of ci.

Let Mci = {m1
ci ,m

2
ci , · · · ,m

q
ci}(q > 1) be the set of supported modes of ci.

Suppose the inner component connections of ci for each mode ml
ci (l = [1, q])

have been well-defined. Besides, for a ProSave component c, the following sets
of ports are defined:

• P t
i : the set of input trigger ports excluding c.pmst

i .

• P d
i : the set of input data ports excluding c.pms

i .

• P t
o : the set of output trigger ports excluding c.pmst

o .

• P d
o : the set of output data ports excluding c.pms

o .

In order to merge the inner component connections of ci into a complete
view, connectors are automatically generated within ci based on the following
rules:

• For each p where p ∈ ckj .P
t
i or p ∈ ci.P

t
o , a Control Or connector A is gen-

erated, with a set of input trigger ports Pi = {pt1i , pt2i , · · · , ptqi }(q = |Mci |)
and an output trigger port pto. The incoming connection to A.ptli (l = [1, q])
follows the pre-defined connection while ci is in mode ml

ci . The output
trigger port A.pto is directly connected to p.

• For each p where p ∈ ckj .P
d
i or p ∈ ci.P

d
o , a Data Or connector B is

generated, with a set of input data ports Pi = {pd1i , pd2i , · · · , pdqi }(q =
|Mci |) and an output data port pdo. The incoming connection to B.pdli (l =
[1, q]) follows the pre-defined connection while ci is in mode ml

ci . The
output data port B.pdo is directly connected to p.

• For each p where p ∈ ckj .P
t
o or p ∈ ci.P

t
i , a Selection connector C is

generated, with an input trigger port pti, an input data port psi and a
set of output trigger ports Po = {pt1o , pt2o , · · · , ptqo }(q = |Mci |). The input
trigger port C.pti is directly connected to p. The input data port C.psi is
connected to MSLA

ci .p
s
o (see Section 4.2). The outgoing connection from

C.ptlo (l = [1, q]) follows the pre-defined connection while ci is in mode ml
ci

according to the data from C.psi : If the data returns ml
ci (l = [1, q]), C.ptlo

will be triggered.

• For each p where p ∈ ckj .P
d
o or p ∈ ci.P

d
i , a Data Selection connector D

is generated, with an input data port pdi , and another input data port psi
and a set of output data ports Po = {pd1o , pd2o , · · · , pdqo }(q = |Mci |). The
input data port D.pdi is directly connected to p. The input data port D.psi
is connected to MSLA

ci .p
s
o. The outgoing connection from D.pdlo (l = [1, q])

follows the pre-defined connection while ci is in mode ml
ci according to

the data from D.psi : If the data returns ml
ci (l = [1, q]), the data from

D.pdi will be forwarded exactly to D.pdlo .

The rules above also apply to a ProSys component composed by ProSave
components by considering each message port as a port group consisting of a
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trigger port and a data port. Among these four generated connectors, Data
Selection does not exist in the current ProCom component model. Nonetheless,
it can be easily developed as its execution semantics is fairly similar to Selection.
This is the only extension of ProCom required by our approach. The above
presented rules are illustrated in Figure 13.

Figure 13: Managing the variability of ProSave component connections

4.3.2 Managing the variability of component connections in ProSys

In comparison with ProSave, the central idea of managing the variability of
ProSys component connections is rather similar in that all the generated con-
nectors in ProSave can be replaced with primitive ProSys components. However,
since an input message port can receive messages from multiple senders, there
is no need to generate ProSys components playing the role of Control Or or
Data Or. Hence, the only ProSys component that needs to be generated is a
Selection ProSys component which functions as both connectors Selection and
Data Selection.

Let ci be a composite ProSys component composed by ProSys components,
with the set of supported modes Mci = {m1

ci ,m
2
ci , · · · ,m

q
ci}(q > 1) and the

set of subcomponents SCci = {c1j , c2j , · · · , cnj } (n = |SCci |). Suppose the inner

component connections of ci for each mode ml
ci (l = [1, q]) have been well-

defined. For a ProSys component c, let Pi be the set of input message ports
excluding c.pms

i and let Po be the set of output message ports excluding c.pms
o .

Then as is illustrated in Figure 14, for each p where p ∈ ckj .Po (k = [1, n]) or
p ∈ ci.Pi, a primitive ProSys component, called Selection and denoted as E, is
generated, with two input message ports pi and ps and a set of output message
ports P = {p1o, p2o, · · · , pqo} (q = |Mci |). The port E.pi is directly connected to p
while E.ps is connected to MSLci .p

s
o (see Section 4.2). The outgoing connection

from E.plo (l = [1, q]) follows the pre-defined connection while ci is in ml
ci

according to the data from E.ps: If the data returns ml
ci (l = [1, q]), the message

sent to E.pi will be forwarded to E.plo.
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Figure 14: Managing the variability of ProSys component connections

5 An example

Section 4 has presented our principal ideas of implementing MSL in the ProCom
component model. In this section, an example is used to illustrate this, covering
all the key elements in Section 4 and demonstrating how a CBMMS can be
developed in ProCom under the guidance of MSL.

5.1 System description

Consider a system to be developed in ProCom, with its component hierarchy
given in Figure 1. Components d and e are ProSave components while the
others are ProSys components. The system has two composite components,
Top and b, whose basic mode mappings are given in tables 1 and 2. In each
mode mapping table, the modes of different components belonging to the same
column are mapped. For instance, when Top is running in m1

Top , b is running

in either m1
b or m3

b , and c is deactivated.

Component Supported modes

Top m1
Top m2

Top

a m1
a m2

a

b m1
b m3

b m2
b

c Deactivated m1
c

Table 1: The basic mode mapping of Top

Component Supported modes

b m1
b m2

b m3
b

d m1
d m2

d m3
d Deactivated

e m1
e

Table 2: The basic mode mapping of b

It should be pointed out that tables 1 and 2 cannot present the complete
mode mappings of Top and b which should also specify their new modes and
the new modes of their subcomponents during a mode switch. The complete
mode mapping can be described by Mode Mapping Automata (MMAs) which
are presented in [6]. The mode mapping of a composite component must be
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manually specified. The complete specification of mode mapping in ProCom
requires the support of MMAs and this is left for future work.

Component b is a ProSys component composed by ProSave components.
The inner component connections of b in different modes, illustrated in Fig-
ure 15(a), are treated in ProSave where control flow and data flow are separate.
In contrast, Figure 15(b) illustrates the inner component connections of Top in
m1

Top and m2
Top in ProSys.

Figure 15: The inner component connections of b and Top in different modes

In order to develop such a CBMMS in ProCom, the first step is to de-
fine the multi-mode ProSave and ProSys components introduced in Section 4.1.
Figure 16 shows the hierarchy of all multi-mode ProCom components. The
dedicated mode switch ports of each component are marked in purple. Fur-
thermore, as multi-mode ProSave components, d and e also have a dedicated
service Smode .

Figure 16: The component hierarchy in ProCom

5.2 The mode switch handling

In this example, a, c, d and e are primitive components, whose mode switch
handling can be directly implemented as source code, following algorithms 1 and
2 in the appendix. As composite components, Top and b must use additional
subcomponents to handle their mode switches.

19



Component b is a ProSys component composed by ProSave components,
thus its mode switch can be handled by a pair of special subcomponents MSLA

b

and MSLB
b , both of which can be automatically generated, given the mode map-

ping of b. Figure 17 presents MSLA
b and MSLB

b and their ports, which strictly
conform to the definitions of MSLA

ci and MSLB
ci in Section 4.2. Please note that

MSLA
b .P

msx
o = {MSLA

b .p
d
o,MSLA

b .p
e
o} and MSLB

b .P
msx
i = {MSLB

b .p
d
i ,MSLB

b .p
e
i}

as d and e are the subcomponents of b. Components MSLA
b and MSLB

b jointly
handle the mode switch of b and their internal behaviors follow algorithms 3
and 4 in the appendix. Moreover, the connections around MSLA

b and MSLB
b are

presented in Figure 19.

Figure 17: The port definition of MSLA
b and MSLB

b

Component Top is a ProSys component composed by ProSys components,
thus its mode switch can be handled by a single special subcomponent MSLTop

that can be automatically generated, given the mode mapping of Top. Figure 18
presents MSLTop and its ports, which strictly conform to the definition of MSLci

in Section 4.2. Since the subcomponents of Top are a, b and c, for MSLTop ,
Pmsx
i = {pai , pbi , pci} and Pmsx

o = {pao , pbo, pco}. Component MSLTop handles the
mode switch of Top. Component Top is a ProSys component at top level, hence
the internal behavior of MSLTop follows Algorithm 8 in the appendix. Moreover,
the connections around MSLTop are presented in Figure 20.

Figure 18: The port definition of MSLTop

5.3 Managing the variability of component connections

Figure 15 indicates the variability of inner component connections of both b and
Top. In order to manage such variability, we can merge their inner component
connections in all modes into a complete view by adhering to the principles
introduced in Section 4.3.

A complete view of the inner component connections of b is presented in
Figure 19, automatically generated based on the inner component connections
of b separately defined for each mode (see Figure 15(a)). This complete view
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includes all the additional connectors introduced in Section 4.3, i.e. Control
Or, Data Or, Selection and Data Selection. Moreover, a Clock, MSLA

b and
MSLB

b , and a Control Or connector connected to MSLB
b .p

t
i are also generated

for handling the mode switch of b. All connectors, directly connected to a port
which is not dedicated to mode switch, have three input or output ports because
b can run in three modes: m1

b , m2
b and m3

b . Each Selection or Data Selection
has an input data port marked in red. This port is connected to MSLA

b .p
s
o which

tells the current mode of b such that the correct outgoing connection is selected.

Figure 19: The complete view of inner component connections of b

A complete view of the inner component connections of Top is presented in
Figure 20, automatically generated based on the inner component connections
of Top separately defined for each mode (see Figure 15(b)). The complete view
includes MSLTop for the mode switch handling of Top and a couple of Selection
ProSys components defined in Section 4.3. Each Selection component has two
output message ports because Top can run in two modes: m1

Top and m2
Top .

Meanwhile, each Selection component also has a particular input message port
marked in red. This port is connected to MSLTop .p

s
o which tells the current

mode of Top such that the correct outgoing connection is selected.
What deserves extra attention is that the generated complete views of com-

ponent connections in figures 19 and 20 are not optimized yet. By default,
the generation rules assume that any connection associated with any port not
dedicated to mode switch is different for different modes. However, some con-
nections remain the same for all modes. For instance, according to Figure 15(a),
the outgoing connection of e is never changed regardless of the current mode
of b. Then the four generated connectors between e and the second output
port of b in Figure 19 can actually be removed. Such optimization can be em-
ployed at both the ProSave and ProSys layers, thus substantially simplifying
the generated complete view.
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Figure 20: The complete view of inner component connections of Top

6 Related work

Apart from ProCom, many other component models have been proposed for
the development of embedded systems, such as SaveCCM [10] (the predeces-
sor of ProCom), COMDES-II [13] and MyCCM-HI [2], to name a few. There
are also some other component models which have been commercialized, e.g.
Koala [14] (targeting consumer electronics) and Rubus [9] (targeting ground ve-
hicles). These component models have different notions about the mode switch
handling. For instance, in Koala and SaveCCM, a special switch is introduced
to achieve the structural diversity of a component. Depending on the input
data, switch can select one of multiple outgoing connections. COMDES-II
uses a state-machine component to switch component configurations in different
modes. In Rubus, mode is treated as a system property. A system-wide static
configuration of components is defined for each mode. MyCCM-HI provides a
more advanced mechanism for handling mode switch. Each MyCCM-HI compo-
nent is mode-aware and is associated with a mode automaton which implements
its mode switch mechanism.

To the best of our knowledge, the extended MECHATRONICUML [11] by
Heinzemann et al. is currently the most closely related work to our MSL. How-
ever, the extended MECHATRONICUML focuses more on component reconfig-
uration while mode is not addressed. It suggests that component reconfigu-
ration is not only locally performed but also propagated through the compo-
nent hierarchy. This is similar to the MSP protocol of MSL. In the extended
MECHATRONICUML, the reconfiguration of a composite component is handled
by two dedicated subcomponents: a Manager and an Executor, which play sim-
ilar roles as the dedicated subcomponents of a composite ProCom component
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here.
Another recent work related to MSL is the oracle-based approach [15] by

Pop et al. concerning mode switch. The basic idea is to abstract component
behaviors into a property network spread throughout the component hierarchy.
The mode of each component is modeled as a property and mapped from a set
of properties to their valuations. A single property change can be propagated
throughout the property network, potentially leading to the valuation change
of other properties. And then the new mode of each component can be derived
after the update of the property network. A finite-state machine called Ora-
cle is offline constructed to guarantee predictable update time of the property
network. The construction of Oracle implies that the mode switch handling
requires global information of the property network. In contrast, MSL is fully
distributed, requiring no global information.

7 Conclusion and future work

This report presents an approach to the mode switch handling of the ProCom
component model guided by the Mode Switch Logic (MSL). It is shown that
the mode switch of a Component-Based Multi-Mode System (CBMMS) can be
properly handled after a slight extension of ProCom (i.e. the introduction of
the Data Selection connector). Multi-mode ProSave and ProSys components
are defined with reference to the mode-aware component model of MSL. Also,
it is suggested that additional subcomponents can be used to handle the mode
switch of each composite ProCom component. In order to manage the variability
of component connections of a CBMMS, component connections in all modes
are merged into a complete view with auxiliary elements generated at both the
ProSave and ProSys layers. Thereby, each composite component is able to select
the corresponding inner connections based on its current running mode. Finally,
our approach is demonstrated by a simple example.

As future work, the theories presented in this report will be refined and
implemented in PRIDE [1], a developing environment based on the ProCom
component model. It is also envisioned that the extended PRIDE will provide
a practical platform for the evaluation of both MSL and our implementation of
MSL in ProCom.
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Appendix A Algorithms for the mode switch
handling in ProCom

Herein we provide a set of algorithms as a complement to Section 4.2 for describ-
ing the mode switch handling in ProCom. All these algorithms comply with the
algorithms given in Chapter 6 of [6], which implement the mode switch runtime
mechanism of MSL. A complete list of algorithms is provided in Table 3.

Algorithm index Description

Algorithm 1 the mode switch handling of ci, a primitive ProSave component
Algorithm 2 the mode switch handling of ci, a primitive ProSys component

Algorithm 3 MSLA
ci ; ci is a composite ProSave component, ci 6= Top

Algorithm 4 MSLB
ci ; ci is a composite ProSave component, ci 6= Top

Algorithm 5 MSLci ; ci is a composite ProSys component, ci 6= Top

Algorithm 6 MSLA
ci ; ci is a composite ProSave component, ci = Top

Algorithm 7 MSLB
ci ; ci is a composite ProSave component, ci = Top

Algorithm 8 MSLci ; ci is a composite ProSys component, ci = Top

Table 3: List of algorithms

All these algorithms, except algorithms 1 and 2, describe the mode switch
behaviors of MSLA

ci , MSLB
ci or MSLci , whose ports have been defined in Sec-

tion 4.2. To simplify the presentation, we only use port name p for the asso-
ciated component ci instead of ci.p. Besides, there are a number of notations
deserving further explanation:

• MSS : a boolean variable set to true when ci is a Mode Switch Source
(MSS) (see the definition of MSS in Section 3.3).

• MS event : a boolean variable set to true when ci detects a mode switch
event as an MSS.

• Derive new mode: a function returning the new mode of an MSS after a
mode switch event is detected.

• MSR(ci,mci ,m
new
ci ): an MSR from ci, requesting to switch from mci to

mnew
ci .

• MSX (ci,m
new
ci ): a primitive rather than MSR, associated a mode switch of

ci to the new mode mnew
ci .

• Stop running(ci,mci): ci stops running in mci .

• Start running(ci,mci): ci starts running in mci .

• Resume(ci,mci): ci resumes execution in mci .

• Check state(ci,mci): ci checks its current state while running in mci . If
its current state allows a mode switch, a boolean variable MS Ready is set
to true. Otherwise, MS Ready is set to false.
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• Reconfiguration(ci,mci ,m
new
ci ): the reconfiguration of ci from mci to

mnew
ci .

• Mode Mapping : a function performing the mode mapping of ci.

• pko : According to Section 4.2, pko ∈ MSLA
ci .P

msx
o (k = [1, |SCci |]) and pko

is connected to ckj ∈ SCci . In the algorithms, it is assumed that ckj is
a Type A subcomponent of ci (see the definition of a Type A compo-
nent in Section 3.3), since ci does not send any primitive to a Type B
subcomponent.

• ∅: dummy data. When a ProSave component activates an output trigger
port, it must provide data at all its data ports in the same output port
group. Dummy data can be sent from an output data port if this port is
not expected to send any data.

• +: Multiple elements are sent from a port.

• n: an integer counter initially set to 0.

• |SCci |A: the number of Type A subcomponents of ci during a mode switch.

• p̃: the value of the data at port p kept from the previous activation period
(only for a ProSave component).

• p1|p2 := x: data x is written to ports p1 and p2.

• Get data(psynci ): MSLB
ci gets data from its port psynci if psynci 6= ∅.

• MSOK all : a boolean variable set to true when all Type A subcomponents
of ci reply with an MSOK in response to MSQ.

Moreover, please note that the execution status of ci in ProSave layer is con-
trolled by MSLA

ci rather than MSLB
ci , e.g. by stoping or resuming the execution

of ci in its current mode or starting the execution of ci in its new mode. This
can be realized in different ways. For instance, one option is to share properties
between MSLA

ci and ci. A concrete plan is out of the scope of this report.
A mode switch scenario based on the example in Section 5 can be used

to demonstrate how these algorithms typically work. Let’s reuse the scenario
depicted in Figure 7, where b is an MSS which requests to switch mode by issuing
a primitive MSR to Top. Components Top, a, b, c, d are Type A components for
this scenario while e is a Type B component. Since Top is a ProSys component
at top level, MSLTop follows Algorithm 8. Since b is a non-top composite ProSys

component composed by ProSave components, MSLA
b follows Algorithm 3 and

MSLB
b follows Algorithm 4. Then taking figures 7, 19 and 20 into account, this

scenario leads to the following procedures:

1. Component b detects a mode switch event as an MSS, hence an MSR is
sent from MSLB

b .p
msx
o to b.pms

o , and then to MSLTop .p
b
i .

2. According to Algorithm 8, MSLTop will perform its mode mapping and
realize that this MSR implies the mode switches of all its subcomponents
and itself. After checking the current state of ci which allows a mode
switch, MSLTop will send an MSQ to a, b, c. As is indicated in Figure 20,
this MSQ is sent from MSLTop .p

a
o to a.pms

i , from MSLTop .p
b
o to b.pms

i , and
from MSLTop .p

c
o to c.pms

i , respectively.
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3. As primitive ProSys components, a and c both follow Algorithm 2. When
a receives the MSQ, it stops its current execution and checks if its current
state allows a mode switch. The checking result is positive, thus a sends an
MSOK to Top as the feedback. The MSOK is sent from a.pms

o to MSLTop .p
a
i .

Likewise, another MSOK is sent from c.pms
o to MSLTop .p

c
i .

4. Meanwhile, the MSQ from Top to b is propagated from b.pms
i to MSLA

b .p
msx
i .

According to Algorithm 3, MSLA
b will stop the execution of b and check

its current state. Since the current state of b allows a mode switch, MSLA
b

performs the mode mapping of b and realizes that d is a Type A component
and e is a Type B component. Therefore, MSLA

b sends an MSQ to d (via
d.mmst

i and d.mms
i ) and also let MSLB

b know |SCb|A and mnew
b by sending

them from MSLA
b .p

sync
o to MSLB

b .p
sync
i . Simultaneously, dummy data is

sent from MSLA
b .p

e
o to e.pms

i .

5. As primitive ProSave components, d and e both follow Algorithm 1. When
d receives the MSQ, it stops its current execution and checks its current
state. The checking result is positive, thus d sends an MSOK to b as the
feedback. The MSOK is sent from d.pms

o to MSLB
b .p

d
i . Simultaneously, after

receiving dummy data, e also sends dummy data to MSLB
b via MSLB

b .p
e
i .

6. According to Algorithm 4, after receiving an MSOK from d, MSLB
b gets to

know that it has only one Type A subcomponent from the data written to
MSLB

b .p
sync
i . Since b expects only one MSOK, b will also send an MSOK to

Top. This corresponds to sending the MSOK from MSLB
b .p

msx
o to bms

o and
then to MSLTop .p

b
i .

7. According to Algorithm 8, Top has received all expected primitives MSOK.
As a Type A component, Top will start its reconfiguration which is per-
formed in MSLTop , which also triggers a mode switch by sending an MSI

to a, b and c. The propagation trace of this MSI is exactly the same as
the MSQ.

8. After receiving the MSI, a and c will start their reconfiguration and then
send an MSC to Top. When b receives the MSI, it starts its reconfiguration
and sends another MSI to its Type A subcomponent d. This MSI is sent
from MSLA

b .p
d
o to d.pms

i . Meanwhile, dummy data is sent from MSLA
b to

e.

9. Upon receiving the MSI, d will start its reconfiguration and then send
an MSC to b (via MSLB

b .p
d
i ). This MSC will be forwarded from MSLB

b to
MSLTop . When Top has received all expected primitives MSC and com-
pleted its reconfiguration, the system will complete its mode switch.
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Algorithm 1 Primitive ProSave MS

loop
if pmst

i then
if ci = MSS ∧ MS event then

mnew
ci := Derive new mode;

pms
o := MSR(ci,mci ,m

new
ci );

else if pmsx
i = ˜pmsx

i then
pms
o := ∅;

else
if pms

i = MSQ then
Stop running(ci,mci);
Check state(ci,mci);
if MS Ready then

pms
o := MSOK (ci,m

new
ci );

else
pms
o := MSNOK (ci,m

new
ci );

end if
end if
if pms

i = MSI then
Reconfiguration(ci,mci ,m

new
ci );

pms
o := MSC (ci,m

new
ci );

Start running(ci,m
new
ci );

end if
if pms

i = MSD then
Resume(ci,mci);

end if
end if
pmst
i := false;

pmst
o := true;

end if
end loop
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Algorithm 2 Primitive ProSys MS

loop
if ci = MSS ∧ MS event then

mnew
ci := Derive new mode;

pms
o := MSR(ci,mci ,m

new
ci );

else
if pms

i = MSQ then
Stop running(ci,mci);
Check state(ci,mci);
if MS Ready then

pms
o := MSOK (ci,m

new
ci );

else
pms
o := MSNOK (ci,m

new
ci );

end if
end if
if pms

i = MSI then
Reconfiguration(ci,mci ,m

new
ci );

pms
o := MSC (ci,m

new
ci );

Start running(ci,m
new
ci );

end if
if pms

i = MSD then
Resume(ci,mci);

end if
end if

end loop
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Algorithm 3 MSLA
ci(ci 6= Top)

loop
if pti then

if psync
i = MSR then

Mode mapping ;
if mnew

ci 6= mci then
Stop running(ci,mci);
pso := ∅;

else
pso := mci ;

end if
∀pko := MSQ(ckj ,m

new
ckj

);

psync
o := ∅;

end if
if psync

i = MSI then
if mnew

ci = mci then
Reconfiguration(ci,mci ,m

new
ci );

end if
∀pko := MSI (ckj ,m

new
ckj

);

pso := p̃so;
psync
o := ∅;

end if
if psync

i = MSD then
∀pko := MSD(ckj ,m

new
ckj

);

pso := mci ;
psync
o := ∅;

end if
if psync

i = MSC then
if mnew

ci = mci then
pso := mci ;

else
Start running(ci,m

new
ci );

pso := mnew
ci ;

end if
Pmsx
o |psync

o := ∅;
end if
if pmsx

i = MSQ then
Stop running(ci,mci);
Check state(ci,mci);
if MS Ready then

Mode mapping ;
∀pko := MSQ(ckj ,m

new
ckj

);

pso := ∅;
psync
o := |SCci |A + mnew

ci ;
else

Resume(ci,mci);
Pmsx
o |pso := ∅;

psync
o := MSNOK (ci,m

new
ci );

end if
end if
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if pmsx
i = MSI then

Reconfiguration(ci,mci ,m
new
ci );

∀pko := MSI (ckj ,m
new
ckj

);

pso|psync
o := ∅;

end if
if pmsx

i = MSD then
Resume(ci,mci);
∀pko := MSD(ckj ,m

new
ckj

);

pso := mci ;
psync
o := ∅;

end if
if pmsx

i = ˜pmsx
i ∧ psync

i = ˜psync
i then

pso := p̃so;
pmsx
o |psync

o := ∅;
end if
pti := false;
pto := true;

end if
end loop
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Algorithm 4 MSLB
ci(ci 6= Top)

loop
if pti then

if ci = MSS ∧ MS event then
mnew

ci := Derive new mode;
pmsx
o := MSR(ci,mci ,m

new
ci );

else
if ∃pki = MSR then

Mode mapping ;
if mnew

ci = mci then
pmsx
o := ∅;

psync
o := MSR(ckj ,mckj

,mnew
ckj

);

else
Check state(ci,mci);
if MS Ready then

pmsx
o := MSR(ci,mci ,m

new
ci );

else
pmsx
o := ∅;

end if
psync
o := ∅;

end if
end if
if ∃pki = MSOK ∨ ∃pki = MSNOK then

Get data(psync
i );

n + +;
if n = |SCci | ∧ MSOK all then

if mnew
ci = mci then

pmsx
o := ∅;

psync
o := MSI ;

else
pmsx
o := MSOK (ci,m

new
ci );

psync
o := ∅;

end if
n := 0;

end if
if n = |SCci | ∧ ¬MSOK all then

if mnew
ci = mci then

pmsx
o := ∅;

psync
o := MSD ;

else
pmsx
o := MSNOK (ci,m

new
ci );

psync
o := ∅;

end if
n := 0;

end if
end if

32



if ∃pki = MSC then
n + +;
if n = |SCci |A then

if mnew
ci = mci then

pmsx
o := ∅;

psync
o := MSC ;

else
Reconfiguration(ci,mci ,m

new
ci );

pmsx
o |psync

o := MSC (ci,m
new
ci );

end if
n := 0;

end if
end if
if psync

i = MSNOK then
pmsx
o := MSNOK (ci,m

new
ci );

psync
o := ∅;

end if
if pmsx

i = ˜pmsx
i ∧ psync

i = ˜psync
i then

pmsx
o |psync

o := ∅;
end if

end if
pti := false;
pto := true;

end if
end loop
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Algorithm 5 MSLci(ci 6= Top)

loop
if ci = MSS ∧ MS event then

mnew
ci := Derive new mode;

pmsx
o := MSR(ci,mci ,m

new
ci );

else
if ∃pki = MSR then

Mode mapping ;
if mnew

ci = mci then
∀pko := MSQ(ckj ,m

new
ckj

);

else
Check state(ci,mci);
if MS Ready then

pmsx
o := MSR(ci,mci ,m

new
ci );

end if
end if

end if
if pmsx

i = MSQ then
Stop running(ci,mci);
Check state(ci,mci);
if MS Ready then

∀pko := MSQ(ckj ,m
new
ckj

);

pso := ∅;
else

pmsx
o := MSNOK (ci,m

new
ci );

end if
end if
if ∃pki = MSOK ∨ ∃pki = MSNOK then

n + +;
if n = |SCci | ∧ MSOK all then

if mnew
ci = mci then

∀pko := MSI (ckj ,m
new
ckj

);

else
pmsx
o := MSOK (ci,m

new
ci );

end if
n := 0;

end if
if n = |SCci | ∧ ¬MSOK all then

if mnew
ci = mci then

∀pko := MSD(ckj ,m
new
ckj

);

Resume(ci,mci);
pso := mci ;

else
pmsx
o := MSNOK (ci,m

new
ci );

end if
n := 0;

end if
end if
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if pmsx
i = MSI then

∀pko := MSI (ckj ,m
new
ckj

);

Reconfiguration(ci,mci ,m
new
ci );

end if
if ∃pki = MSC then

n + +;
if n = |SCci |A then

if mnew
ci = mci then

pso := mci ;
else

pmsx
o := MSC (ci,m

new
ci );

pso := mnew
ci ;

Start running(ci,m
new
ci );

end if
n := 0;

end if
end if
if pmsx

i = MSD then
∀pko := MSD(ckj ,m

new
ckj

);

pso := mci ;
Resume(ci,mci);

end if
end if

end loop
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Algorithm 6 MSLA
ci(ci = Top)

loop
if pti then

if ci = MSS ∧ MS event then
mnew

ci := Derive new mode;
Mode mapping ;
Stop running(ci,mci);
∀pko := MSQ(ckj ,m

new
ckj

);

pso|psync
o := ∅;

else if pmsx
i = ˜pmsx

i ∧ psync
i = ˜psync

i then
pso := p̃so;
Pmsx
o |psync

o := ∅;
else

if psync
i = MSR then

Mode mapping ;
if mnew

ci 6= mci then
Stop running(ci,mci);
pso := ∅;

else
pso := mci ;

end if
∀pko := MSQ(ckj ,m

new
ckj

);

psync
o := ∅;

end if
if psync

i = MSI then
if mnew

ci = mci then
Reconfiguration(ci,mci ,m

new
ci );

end if
∀pko := MSI (ckj ,m

new
ckj

);

pso := p̃so;
psync
o := ∅;

end if
if psync

i = MSD then
∀pko := MSD(ckj ,m

new
ckj

);

pso := mci ;
psync
o := ∅;

end if
if psync

i = MSC then
if mnew

ci = mci then
pso := mci ;

else
Start running(ci,m

new
ci );

pso := mnew
ci ;

end if
Pmsx
o |psync

o := ∅;
end if

end if
pti := false;
pto := true;

end if
end loop
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Algorithm 7 MSLB
ci(ci = Top)

loop
if pti then

if ∃pki = MSR then
Mode mapping ;
if mnew

ci = mci then
pmsx
o := ∅;

psync
o := MSR(ckj ,mckj

,mnew
ckj

);

else
Check state(ci,mci);
if MS Ready then

psync
o := MSR(ckj ,mckj

,mnew
ckj

);

else
psync
o := ∅;

end if
pmsx
o := ∅;

end if
end if
if ∃pki = MSOK ∨ ∃pki = MSNOK then

Get data(psync
i );

n + +;
if n = |SCci | ∧ MSOK all then

pmsx
o := ∅;

psync
o := MSI ;

n := 0;
end if
if n = |SCci | ∧ ¬MSOK all then

pmsx
o := ∅;

psync
o := MSD ;

n := 0;
end if

end if
if ∃pki = MSC then

n + +;
if n = |SCci |A then

if mnew
ci 6= mci then

Reconfiguration(ci,mci ,m
new
ci );

end if
n := 0;

end if
end if
if pmsx

i = ˜pmsx
i ∧ psync

i = ˜psync
i then

pmsx
o |psync

o := ∅;
end if
pti := false;
pto := true;

end if
end loop
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Algorithm 8 MSLci(ci = Top)

loop
if ci = MSS ∧ MS event then

mnew
ci := Derive new mode;

Mode mapping ;
Stop running(ci,mci);
pso := ∅;
∀pko := MSQ(ckj ,m

new
ckj

);

else
if ∃pki = MSR then

Mode mapping ;
if mnew

ci = mci then
∀pko := MSQ(ckj ,m

new
ckj

);

else
Check state(ci,mci);
if MS Ready then

∀pko := MSQ(ckj ,m
new
ckj

);

pso := ∅;
end if

end if
end if
if ∃pki = MSOK ∨ ∃pki = MSNOK then

n + +;
if n = |SCci | ∧ MSOK all then

if mnew
ci 6= mci then

Reconfiguration(ci,mci ,m
new
ci );

end if
∀pko := MSI (ckj ,m

new
ckj

);

n := 0;
end if
if n = |SCci | ∧ ¬MSOK all then

Resume(ci,mci);
∀pko := MSD(ckj ,m

new
ckj

);

pso := mci ;
n := 0;

end if
end if
if ∃pki = MSC then

n + +;
if n = |SCci |A then

if mnew
ci = mci then

pso := mci ;
else

pso := mnew
ci ;

Start running(ci,m
new
ci );

end if
n := 0;

end if
end if

end if
end loop
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