
On-Chip Monitoring of Single- and Multiprocessor
Hardware Real-Time Operating Systems

Mohammed El Shobaki
Department of Computer Engineering

Mälardalen University, V¨asteras, Sweden
mei@mdh.se

Abstract

This paper presents a novel hardware monitoring system
that gives non-intrusive observability into the execution of
hardware-accelerated Real-Time Operating Systems.

Monitoring is a necessity for testing, debugging and per-
formance evaluations of real-time computer systems. Most
research into monitoring of real-time systems have been de-
voted to minimising the execution interference imposed by
the monitor. One approach to this has been the use of hard-
ware support to extract software execution traces by prob-
ing the external processor (or system) busses.

However, the use of cache memories on various levels,
and the increased integration of system components on-chip
(SoCs) in addition to limited chip-package pins, severely
obstructs traditional hardware monitors from probing pro-
cessor signals and busses. For real-time systems built on
these premises there is a need to access execution informa-
tion residing on-chip, as well as to avoid interference with
the system’s execution behaviour.

In this paper we present an integrated solution to on-chip
monitoring of system-level events in a real-time system. The
monitor, called MAMon1, probes a hardware-based Real-
Time Kernel using a Probe Unit integrated as an IP-block.
This component detects and collects events regarding pro-
cess’ execution, communication, synchronisation, and I/O
interrupt activities. Collected events are timestamped and
transferred to a separate computer system hosting an event
database and a set of monitoring application tools. We
describe the monitor architecture, the implementation of a
prototype, and an evaluation of its use.

1 Introduction

Run-time observability in embedded system architec-
tures is a requirement for testing, debugging, and for val-

1Multiprocess Application Monitor

idating design assumptions made about the behaviour of
the system and its environment. The classical approach to
run-time observability is to applymonitoring, i.e. the pro-
cess of detecting, collecting, and interpreting run-time in-
formation regarding the system’s execution behaviour. In
monitoring real-time systems an important aspect is to min-
imise, or completely avoid, the intrusiveness of the monitor
on the system’s timing and execeution properties. Failing to
handle monitor intrusivity may lead toprobe effectswhich
cause non-deterministic behaviour in programs with race
conditions and poor synchronisation [6, 13].

The research efforts on real-time monitoring has over the
past decade been mostly devoted to dealing with probe ef-
fects and timing interference in various applications of mon-
itoring [17, 18, 2, 8, 7]. Hence, a wide spectrum of moni-
toring approaches have been proposed, ranging from pure
software techniques [17, 8] to the use of special hardware
support [12, 18, 7].Software monitoring systemsoffer the
cheapest and most flexible solution where a common tech-
nique is to insert instrumentation code at interesting points
in the target software. When the instrumentation code is
executed the monitoring process is triggered and informa-
tion of interest is captured into trace buffers in target system
memory. The drawbacks of instrumentation is the utilisa-
tion of target resources such as memory space and proces-
sor execution time. Moreover, to avoid probe effects, the
instrumentation code must be kept in the deployed software
or be compensated for in the real-time schedulability anal-
ysis [17] - with both alternatives resulting in performance
penalties.Hardware monitoring systemson the other hand
use special hardware to passively probe the target’s physical
busses, such as the processor and system busses, and collect
information of interest without interfering with the target’s
execution. The main advantage with hardware monitoring
is that probe effects can be completely avoided. The disad-
vantages are the dependancy on the target architecture and
its related costs.Hybrid monitoringuses a combination of
software and hardware monitoring and is typically used to
reduce the impact of software instrumentation alone [7].



With today’s highly integrated hardware, encapsulating
complete systems on a chip (SoC), the traditional hardware
monitors are facing severe difficulties. Processor cores, I/O
components, cache memories, and even standard memory,
are all integrated on the same chip. Given also that chip
packages can be obstructive (as in Ball-Grid Array pack-
ages) and have limited pins, it has become almost impos-
sible for external hardware to probe internal signals. For
real-time systems built on these premises there is a need to
access execution information residing on-chip, as well as to
avoid interference with the system’s execution behaviour.

In this paper we present an architecture for on-chip
monitoring of single- and multiprocessor real-time sys-
tems that are based on hardware-accelerated operating sys-
tems [1, 10, 14, 15]. The monitor, called MAMon, probes
a hardware-implemented Real-Time Kernel (RTK) using a
Probe Unit integrated as an IP-block at the VHDL-level.
A hardware RTK implements traditional (software) RTOS
functions, such as scheduling algorithms, process manage-
ment and communication, in hardware [1, 11]. Operating
at the system-level the Integrated Probe Unit detects and
collects events regarding process’ execution, communica-
tion, synchronisation, and I/O interrupt activities. The col-
lected events are timestamped with the resolution of the
system clock frequency (10 MHz = 100ns) and then trans-
ferred, via a high-speed parallel port link, to a separate
host computer system. At the host the events are stored
in a database which constitutes the heart of a monitoring
application framework featuring event analysis and debug-
ging (searching, filtering, and graphing), performance eval-
uations, and more. Monitoring occur mainly at the system-
level, but lower abstraction-levels are supported too by al-
lowing instrumentation code to write to dedicatedprobe
registersin the monitor hardware. This opportunity would,
however, classify the monitor as a hybrid system, and thus
requires a perturbation analysis of the software instrumen-
tation.

The main contributions of this work are the ideas on
system-level monitoring of hardware RTKs, on-chip rather
than by probing external processor busses. We believe that
on-chip monitoring support will be required in future de-
velopment of real-time systems, especially those based on
SoCs.

The paper is organised as follows. Section 2 describes
a multiprocessor system concept based on a hardware-
accelerated RTOS. This system will be the target platform
in further discussions on our proposed monitor. Section 3
describes the monitor architecture for a generic target RTOS
that utilise hardware RTKs. An overview of the system and
a detailed description is given for the Integrated Probe Unit,
the host-based monitoring application framework, and the
communication interface in between. Section 4 describes

an FPGA prototype implementation of the monitor for a
multiprocessor system with 3 PowerPC-750 processors. An
evaluation of the prototype is given in Section 5, and finally,
Section 6 summarises the paper with some concluding re-
marks and directions on future work.

2 A Real-Time Multiprocessor
Architecture - SARA

The Scalable Architecture for Real-Time Applications
(SARA [10, 9]) is a research platform for real-time mul-
tiprocessor computing systems. The two main research ob-
jectives with SARA are: 1) to provide a hardware architec-
ture that behaves predictably to the real-time application,
and 2) to provide a flexible system architecture that simpli-
fies processor (performance) scalability. In attaining these
design goals, a SARA architecture is based on ahardware-
acceleratedRTOS. The hardware support comes from a
co-processor called RTU (Real-Time Unit [1, 11]) which
provides the RTOS with kernel-level services such as pro-
cess/task scheduling, synchronisation and communication,
see Section 2.1 for more details.

Figure 1 shows the hardware view of a SARA system
which includes one or more processor nodes, a commu-
nication network (bus), and the RTU as a shared software
process scheduler. This view is the same whether the hard-
ware is implemented on a multi-board computer system,
such as VME or CompactPCI-based [16] systems, or as a
SoC. A SARA implementation on a CompactPCI system is
described in Section 2.2, and in [3] a SoC implementation
is proposed.

Processor Node 1

CPU Memory I/O Bus
Interface

Local/CPU Bus

Processor Node N

CPU Memory I/O Bus
Interface

Local/CPU Bus

RTU

System Bus

Figure 1. Hardware view of a SARA system

The software, which is partitioned onto each node in
SARA, includes aminimalRTOS which mainly interfaces
to the RTU, and a collection of processes which are sched-
uled to execute on one or more processor node(s). To sim-
plify the programming model, hardware is abstracted to the
software so that processes need not be bound to a certain
processor, and process migration is allowed.

Communication between processes takes part over a vir-
tual bus (VCB) which spans over all processor nodes. The



VCB programming model, shown in Figure 2, uses the con-
cept ofvirtual slotswhich processes must attach to in or-
der to send and receive messages. Moreover, synchronised
sending, broadcasting and multicasting of messages is sup-
ported.

Application

Process 1

Virtual Communication Bus (VCB)

Message
Queues

Slots

Free Slot

Application

Process 2

Application

Process N

Figure 2. Process communication model in
SARA

2.1 RTU - Real-Time Kernel in Hardware

Hardware support to increase performance and pre-
dictability in real-time operating systems have been pro-
posed in [14, 1, 11, 15]. The Real-Time Unit, RTU by
Lindh et. al. [1, 11], is a co-processor with support for
real-time kernel services such as process scheduling and
management (create, terminate, etc), inter-process com-
munication (IPC, message send/receive), synchronisation
(semaphores), and I/O interrupt handling. The RTU, which
supports scheduling of both single- and multiprocessor sys-
tems, runs in parallel with the target system’s processor(s).
Processors interface with the RTU by memory-mapping to
its processor-independant register interface. Via this in-
terface,service-callsare placed by writing to dedicated
service-call registers.

Figure 3 shows the basic building blocks of the RTU.
The core part is the scheduler which schedules processes
on-line (pre-emptive priority scheme) and dispatches pro-
cess execution. Connected in between the scheduler and
the programming/bus interface, a set of functional modules
implements the various services in the RTU, such as man-
agement of the scheduler, IPC, semaphores, clock and timer
management. Process context-switching is notified to CPUs
using interrupts causing handlers in software to perform the
actual context-switching.

2.2 A SARA CompactPCI System

Desribed in [9] is a SARA implementation on a
CompactPCI (CPCI [16]) computer system. A CPCI system

Process Mngmnt
Module

RT Scheduler/Dispatcher

IPC
Module

Timer
Module

Semaphore
Module

I/O
Interrupt
Module

CPU/System Bus

Programming Interface (Registers)

IRQ

Bus Interface (Target Dependant)
RTU

Taskswitch
Interrupt

Figure 3. Basic building blocks of the RTU

has 8 slots where CPU-boards can be inserted. The first slot,
slot 0, is dedicated as thesystem slotwhich requires that the
CPU-board on that slot handles arbitration and clock distri-
bution on the CPCI backplane. Figure 4 shows the current
SARA implementation with 3 PowerPC-750 CPU-boards.
The RTU, which resides on a PMC-board (PCI Mezzanine
Card [16]), is attached to the system board from where it
can communicate with all CPUs in the system (see also Fig-
ure 10).

All CPU-boards have local memory and a local PCI-bus.
Processes that are allowed to migrate between CPUs require
global memory to hold their Process Control Blocks (PCB).
This global memory can be defined out of local memories
on all CPU-boards. Currently, global memory is allocated
at the system board only.

System Board
Non System Boards

RTU
PMC
Board

Non-Transparent
Bridge

CompactPCI-Bus

Mem

Bridge

PCI2PCI
Bridge

PPC
750 Mem

Bridge

PCI2PCI
Bridge

PPC
750 Mem

Bridge

PCI2PCI
Bridge

PPC
750

Transparent
Bridge

Local PCI-bus

Global
Memory

Local Bus-to-PCI
Bridge

Figure 4. A SARA system based on
CompactPCI-board computers [9]



3 A Monitoring System for Hardware-
Accelerated Real-Time Operating Systems

3.1 Overview

The proposed monitoring system aims at providing
means for on-chip observability at the system-level in
single- and multiprocessor real-time systems. The monitor,
which we call MAMon (short for Multiprocess Application
Monitor), is based on the following assumptions about the
monitored target system:

� The target’s RTOS is supported by a hardware Real-
Time Kernel (RTK), like the RTU or a similar compo-
nent as described in Section 2.1.

� The RTK holds information about the state of every
process in the system, inter-process communication
activities, timers, interrupts, etc.

� The RTK must allow external access to internal (vi-
tal) signals and data. Since the RTU was available to
us as asoft IP-component (HDL source), access to all
signals and data is straightforward in VHDL.

The architecture of MAMon, shown in Figure 5, consists
of two major parts: theIntegrated Probe Unit(IPU, Sec-
tion 3.2) which is the hardware part of MAMon, and ahost
computer system. Like an IP-block, the IPU is integrated
with the hardware RTK at the VHDL level. In a SoC the
IPU may also be connected to processor busses, I/O com-
ponents, and other hardware logic in order to extract infor-
mation at various levels of abstraction. In the synthesized
hardware (e.g. ASIC or FPGA implementation), the IPU
monitors the RTK in run-time, and collects events regard-
ing the system-level behaviour of the real-time application.
The collected events are timestamped each and then trans-
ferred over a high-speed parallel communication port to the
host computer where they are stored in a database. In an
integrated framework (Section 3.5) the database serves as
an event repository which can be used by monitoring appli-
cation tools to provide event-based debugging, performance
analysis, assessment of design constraints, etc.

In certain cases there is a need to generate events from
software, for instance, to mark code checkpoints (flags),
or to report register and memory contents required for
lower-level analysis. Such events are produced by insert-
ing software instructions (software probes) that writes to
a dedicated register connected in between the IPU and the
system/processor bus.

3.2 The Integrated Probe Unit

Figure 6 shows a block-diagram of the IPU’s internal or-
ganisation.

Host Interface

Target System

Host Computer with
Monitoring Applications

HW

SW

RTUIPU

ProcessProcessProcess

RT Application

CPU 1 CPU NCPU 2

Figure 5. Overview of MAMon

3.2.1 Event Detector

TheEvent Detector, seen in top of Figure 6, is responsible
for the detection of events and for collecting event samples.
Detection of events is performed by comparing input event
signals with pre-defined eventcondition expressions. The
input signals are hard-wired (in HDL) from selected points
in the RTU. Over-sampling of the input signals is not re-
quired because the pre-defined events will never occur si-
multaneously. When an event is detected, a sample is col-
lected and stored immediately along with a timestamp in the
local FIFO buffer.

An event-sample comprises the event-type, the times-
tamp, and an event-defined parameter field, see Figure 7.
The parameter field is used to store additional information
about an event. For instance, for atask-switch eventto
be sufficiently informative, the parameter field contains the
new task’s id-number and the CPU it was scheduled to run
on. For asend message event, the parameter field may con-
tain the id-number of the receiving task and the pointer to
the message, and so on.

The timestamp comes from the 48-bit Timer module
which denotes the absolute system time given in nanosec-
onds. The Timer is updated at the resolution of the system
clock frequency.

To support detection of software probes, the IPU pro-
vides a simple interface that can be used by external decode
logic. A single strobe line is all that is required to indicate a
software write-access, and to signal the IPU to latch incom-
ing data.

3.2.2 FIFO

The FIFO buffer is needed during transient over-loads of
events while the host computer is busy reading event data
over the parallel port. FIFO buffer dimensioning is de-
scribed in Section 3.4. The FIFO is built onto on-chip dual-
ported RAM with parameterizable (generic) size and port



Event Detector

FIFO

Manager
To External
Opt. FIFO

Host Port
(EPP)

Timer
FIFO

96

96

8

32

Control

Logic

8

8

48

To Host

clock
source

Task SX/ID

24

Service-Calls

32 8

IRQ s Sw-Probe

X

User Def

3

Event Signals

Figure 6. The Integrated Probe Unit

6 Bytes1 Byte

Event

5 Bytes

48-bit Timestamp Parameters

Figure 7. The event sample format

width. Moreover, it has signals that indicate when the buffer
becomes full, or half-full.

3.2.3 FIFO Manager

The FIFO Manager mainly provides a byte-wide interface
for the Host Port to read event data from the FIFO. In cir-
cumstances when the required FIFO size is not feasible on-
chip, e.g. in FPGA implementations, the FIFO Manager can
also be used to extend the FIFO using external RAM. In this
case, the FIFO Manager will also take care of flushing the
contents of the on-chip FIFO out to the external RAM. The
option to use external RAM can be set via the Host Port.

3.2.4 Host Port

The Host Port is responsible for taking care of host-
inititated acquisition of event data. It also provides the host
with a programming interface to read the status of the IPU
and to control its behaviour (the Control Logic in Figure 6).

Since FIFO buffering is limited it is important that event
samples are transferred to the host with a guaranteed high
communication bandwidth. Therefore, the Host Port im-

plements the bi-directionalEnhanced Parallel Portprotocol
(EPP 1.9 [4]). In theory the EPP supports transfer rates up
to 2MB/s (approx. 160k events/s).

To indicate availability of events in the FIFO the Host
Port can be programmed to generate an interrupt to the host
computer. When this feature is enabled, it can be set into
one of three modes:

� Interrupt whenever new events arrive

� Interrupt when the FIFO buffer is half-full

� Interrupt when the FIFO buffer is full

The first two modes are useful when continous monitor-
ing is desired. The third mode is more useful if the IPU is set
to sample from a given command until the FIFO becomes
full, and then stop. Providing the ability to choose the in-
terrupt mode gives a customised solution that best suits the
capabilities of the host computer performance, the tools, or
the user. When the interrupt function is disabled, events can
still be acquired inpolledmode.

3.3 Events

Currently the Event Detector supports detection of four
types of events;Taskswitches, Service-Calls, Interrupts,
and Software Probes. The conditions for these events are
hardcoded in the Event Detector. Therefore, the size of the
Event Detector logic is linearly proportional to the number
of supported events. Given below is a description of each
event-type; its condition(s) and related data to be collected.

3.3.1 Taskswitch events

For a taskswitch to be detected, the IPU is connected
directly to the scheduler module in the RTU. Whenever a
taskswitch is to occur, the scheduler asserts an interrupt
signal and indicates the next task’s id along with the CPU
it is to run on. Upon detection of this event the following
packet is produced.

TSWEVT TIMESTAMP CPU NR – TASKID
1B 6B 1B 2B 2B

3.3.2 Service-Call events

A service-call is detected whenever software writes to
a Service-Call Registerin the RTU, i.e. to indicate a
service-request. For each CPU in the system there exists
one Service-Call Register in the RTU’s register-interface.
These registers are connected to the IPU as well. An event
of this type produces the following packet.

SVCEVT TIMESTAMP CPU NR REGVALUE
1B 6B 1B 4B



3.3.3 Interrupt events

The RTU supports handling of external interrupts by
associating tasks with the interrupts. When an interrupt is
asserted the RTU’s interrupt module tells the scheduler to
start the associated task. To detect this event, the interrupt
lines are connected to the IPU along with the associated
tasks’ id. An interrupt event produce the follwing packet.

IRQ EVT TIMESTAMP IRQ NR – TASKID
1B 6B 1B 2B 2B

3.3.4 Software-Probe events

A software probe is similar to a service-call request in that
software writes to registers in the RTU. However, these
register are dedicated to MAMon and are connected only
to the IPU. Values written to these registers can be used
for profiling, measurements and debugging purposes. A
software probe event produce the following packet.

SWPEVT TIMESTAMP REGNR REGVALUE
1B 6B 1B 4B

3.4 Performance and FIFO Dimensioning

3.4.1 Input rate

The rate at which the EDU detects and stores events in the
FIFO buffer depends on the system freqency; the higher fre-
quency, the higher the input rate to the buffer. The EDU re-
quires 2 clock cycles to store one event in the buffer. Since
the currently supported events (see previous section) cannot
occur consecutively within 2 clock cycles, no events will be
missed. This implies that the worst condition corresponds
to an event occuring every 2 clock cycles. With a clock
freqency of 10 MHz, the input rate is 1 occurence per 200
ns. It is also assumed that the input rate follows a Poisson
statistical distribution, as described in [12].

3.4.2 Output rate

The output rate for emptying the event FIFO buffer is larg-
erly determined by the performance of the host interface
communication link, the EPP port in this case. In theory,
EPP supports transfer rates up to 2 MB/s [4]. When using a
PC running Linux as the MAMon host computer, and a stan-
dard bi-directional parallel port interface, we could reach a
maximum transfer rate of 1.3 MB/s. We therefore estimate
the time to transfer one event-packet to 10�s, assuming a
transfer involves 13 byte reads; 12 for event data plus 1 for
reading the IPU’s status register (to check for event avail-
ability). The rate at which events are stored in the database
is not considered since it is much faster than the communi-
cation bandwidth.

3.4.3 FIFO buffer dimension

To eliminate buffer overflow the FIFO buffer must be large
enough to handle the worst case input flow while the
MAMon host system is busy flushing the buffer. By ap-
plying a queueing analysis (adopted from [12]) we can es-
timate the required buffer size. This analysis assumes two
facts: 1) events can arrive concurrently while the buffer is
flushed, and 2) that the MAMon host system starts flushing
the buffer at latest when the buffer ishalf full. The first as-
sumption is fulfilled as the FIFO buffer is dual-ported. The
second assumption requires that the host either polls conti-
nously for new events, or uses the half-full-buffer interrupt
mode.

Let k be half the FIFO buffer size,R the mean input rate,
andT the transfer time per event-packet. Assuming that
the input rate follows the Poisson distribution, then,P(k)
is defined as the probability that the buffer hask arrivals
in time T (i.e. that half the buffer fills up withinT ). The
probability function is,

P(k) =
(RT )k

k!
e�RT

In determining the total buffer size (2k) it is assumed that
the probability of filling up half the buffer is at a minimum,
for instance 0.5%, given that it takeskT time to flush the
first buffer half. That is,

P(k) + P(k + 1) + P(k + 2) + : : : < 0:005

UsingT = 10�s andR = 1=200ns, gives 70 as the best
value fork. Hence, the FIFO buffer must handle no less
than 140 events.

3.5 The Monitoring Application Framework

To provide the user with a platform for event-based per-
formance analysis and debugging, we have developed an
integrated framework for monitoring applications. Our goal
is not to develop a complete monitoring envrionment, but
to show the capabilities with our hardware monitoring ap-
proach.

The framework is developed mainly in Java and uses an
SQL database to store the event histories. Figure 8 shows
this framework’s architecture. At the bottom lies the IPU
interface module which is mainly used to transfer event
samples from the IPU into the SQL database, and to con-
trol the behaviour of the IPU. The IPU interface module
runs as a separate process, but is controlled from the Java
framework via the Java Native method Interface (JNI). JNI
is required becasue this module is written in C/C++ as it is
strongly dependant on the underlying architecture for com-
municating with the EPP interface. The SQL database is



run by the MySQL DBMS (www.mysql.com). We choose
MySQL for its speed and capabilities to handle our amounts
of events, and because it is free for educational purposes.
The database and IPU interface constitutes the base of our
framework.

The Java application forms the actual framework which
provides an integrated interface to control the monitoring
process, to collect events into the database, and to query the
event database in various ways. Using this interface we can
now easily implement application specific monitoring tools
that are plugged into the framework.

From/To IPU

MySQL

Event
Database

IPU Interface

(EPP Parport)

IPU Interface

(EPP Parport)

Java Application FrameworkJava Application Framework

C/C++

Events

JDBC Java Native
Interface (JNI)

Event
Query

Event
Viewer

Performance
Analyzer

User
Specific

Figure 8. MAMon’s Application Framework

An example monitoring tool is theEvent Viewerthat
displays portions of the event history. Such a tool can be
useful for finding and analysing erroneous execution pat-
terns. The Event Viewer tool, shown in Figure 9, collects
events from the database, and displays them along a time-
line. Apart from standard functions such as zooming and
scrolling, there is also support for time-markers that are
used for timing measurements, and search-markers that can
be used to locate event conditions and patterns.

Another example tool is theEvent Querytool (also
shown in Figure 9) which provides a user-friendly interface
to query the database for event conditions and execution
patterns. The output from the query may be output textu-
ally to screen or to a file, or graphically by linking its results
with the Event Viewer tool.

The event database is also suitable for other post-
analysis, such as extraction of performance indexes for use
in diagrams and histograms showing task’s execution time,
processor utilisation, IPC frequencies, interrupt response
times, etc.

4 Physical Hardware Implementation

In this section we present some implementation details
on a prototype of MAMon for a SARA CompactPCI system
(described in Section 2.2).

Figure 9. Screenshot of Event Query & Event
Viewer tools

4.1 The Hardware Prototype

The IPU is implemented together with the Real-Time
Unit2 on a Xilinx Virtex-1000 FPGA [5]. All modules are
designed in VHDL which is either textually entered or auto-
matically generated from state and block diagrams drawn in
Renoir (graphical hardware design tool, by Mentor Graph-
ics). The FPGA is mounted on a PMC-board and connects
to the SARA-system via a PCI bus-interface chip (PLX-
bridge), see Figure 10. The host system of MAMon con-
nects to the parallel-port connector (left in Figure 10) with
a IEEE-1284C cable [4]. Because RAM-cells are limited
inside the FPGA, a 128kB SRAM module (on backside of
the board) is used to extend the internal event FIFO buffer.

Figure 10. PMC-board with a Xilinx Virtex-
1000 FPGA and PLX-bridge [9]

4.2 Physical Footprint

Table 1 shows some area figures from a synthesis to a
Xilinx Virtex-1000 target. Although these figures are target-
specific, they could serve as a reference for estimating the

2The RTU in this prototype was synthesised to support 128 tasks with
64 priorities.



equivalent area requirements for other silicon technologies.
Xilinx’s FPGA technology can be described as matrices of
Configurable Logic Blocks (CLBs) where each CLB con-
tains two Function Generators (FGs) and two D-Flip-Flops.
According to Xilinx, a Virtex-1000 FPGA has a capacity of
“1 million gates” [5].

Resource IPU RTU Avail Utilisation
CLB Slices 181 3276 12288 28.13%
FGs. 361 6553 24576 28.13%
Flip-Flops 254 2580 24576 11.53%

Table 1. Area figures for a Xilinx V1000 FPGA

As shown in the table, the IPU makes up only 5% of the total
number of CLBs for the whole design. What is not shown
in the figures, however, is the area costs for the event FIFO
buffer. This is becasue FIFO memory was mapped onto
RAM cells built-in the FPGA (called Block-Select RAM).
However, calculating the area costs for memory is straight-
forward in many technologies. Currently the event FIFO
buffer can store 16 events where each is 96 bits wide (12
bytes), i.e. 1536 bits are required.

The host interface port, currently implemented as an EPP
parallel port, requires 15 I/O pins; 8 for data, and 7 for con-
trol. On a chip with limited pinouts it could be preferrable to
multiplex these pins with other I/O, or choose an interface
with less ports, e.g. a synchronous serial port. Moreover, an
additional 29 I/O pins are used to interface with the external
SRAM used to extend the event FIFO buffer. As this mem-
ory is optional, this overhead can be removed if the internal
event FIFO can be fitted on-chip.

5 Prototype Evaluation

The prototype system was validated in a number of small
tests on both single- and multiprocessor targets. With no in-
trusion on neither the execution or the timing behaviour of
the target system the prototype was able to monitor task-
switches, service-calls, and external interrupts. Monitoring
of software probes (hybrid monitoring) was also accom-
plished but with a minimal intrusion equal to the delay of
a 32-bit PCI-transfer per probe (@33MHz = 30ns). To il-
lustrate a proof of concept we present hereunder an example
were we analyse a deadlock situation using the monitor.

Example: Deadlock Detection

The program in this example illustrate a typical situation
where two tasks need to synchronise before proceeding to
a next step, in this case opening a pair of fuel valves. The

deadlock occurs due to an in-planted synchronisation error
between the two tasks T1 and T2 which execute on pro-
cessors CPU1 and CPU2 respectively. Figure 11 shows the
pseudo-code for the tasks. The tasks synchronise with mu-
tual sending and receiving of messages over the VCB (de-
scribed in Section 2). Task T1 uses the blockingsendwait()
call to send a message and wait for the other party to send
as well. For a proper synchronisation, task T2 should also
call sendwait(), but due to a programming error thereceive()
call was used instead. This results in a deadlock since T1
cannot resume, and T2 will get blocked the second time it
calls receive().

Global VCB Slot_T1;

Task T1() {
Slot_T1 = Connect_to_VCB();
LOOP {

Compute_X;

...
Slot_T1.sendwait(slot_T2);
Open_valve1();
...
Close_valve1();

}

}

Global VCB Slot_T2;

Task T2() {
Slot_T2 = Connect_to_VCB();
LOOP {

Compute_Y;
.. .
Slot_T2.receive(); // Bug!

Open_valve2();
.. .
Close_valve2();

}
}

Figure 11. Deadlock example in pseudo-code

To locate the erroneous bug, we first monitor the tar-
get system and collect the system-level events into the host
database. The Event Query tool is then used to perform a
filtered search in the event database. Using predicate dis-
juncts and conjuncts in the query we can easily find the first
and last occurences of the tasks of interest. Figure 12 shows
a text-dump from the query tool. Rows 1-3 shows that T1
starts and attempts to connect to the VCB. Rows 4-6 shows
the similar sequence for T2. The sendwait() call in T1 is
mapped to the VCB primitivesVCB PutandVCB Getseen
on rows 7-8. After that T1 gets blocked, the IDLE task
starts on that processor (row 9). At row 10, T2 receives the
message from T1 without blocking, and later when it at-
tempts to receive again at row 11 it gets blocked too. The
same sequence of events can also be depicted by the Event
Viewer tool, see Figure 13. Horizontal bars indicate execut-
ing tasks, and the icons beneath indicate service-calls.

6 Conclusions

This paper has described a monitoring system and its im-
plementation for non-intrusive monitoring of real-time sys-
tems. The monitoring system, called MAMon, integrates a
probe component with a hardware Real-Time Kernel in or-
der to non-intrusively detect and collect process-level events
at the target system. Via a parallel communication link, the



##. Event Timestamp CPU Subtype/Parameters

1. TaskSwitch 00:00:00,815,083,600 CPU1 T1
2. ServiceCall 00:00:00,821,241,000 CPU1 VCB_Alloc 0x140101
3. ServiceCall 00:00:00,821,255,200 CPU1 VCB_Open 0x020101
4. TaskSwitch 00:00:00,828,930,200 CPU2 T2
5. ServiceCall 00:00:00,834,384,300 CPU2 VCB_Alloc 0x140202
6. ServiceCall 00:00:00,834,395,000 CPU2 VCB_Open 0x020202

7. ServiceCall 00:00:00,846,497,300 CPU1 VCB_Put 0x107102
8. ServiceCall 00:00:00,864,018,800 CPU1 VCB_Get 0x10F501
9. TaskSwitch 00:00:00,864,044,800 CPU1 IDLE

10. ServiceCall 00:00:00,908,777,500 CPU2 VCB_Get 0x108502
11. ServiceCall 00:00:00,979,800,300 CPU2 VCB_Get 0x108402
12. TaskSwitch 00:00:00,979,826,300 CPU2 IDLE

Figure 12. Text-dump in the Event Query Tool

Figure 13. Deadlock seen in Event Viewer Tool

collected events are transferred to a host computer system
where they are stored in a database. Built onto the database,
a set of monitoring applications provides post analysis fea-
tures such as event-debugging, profiling, and performance
evaulations based on the collected events. While our ap-
proach is non-intrusive, it also overcomes the difficulties in
extracting execution information residing on-chip of pro-
cessors and in Systems-on-Chip (SoC). Monitoring occurs
at full system speeds, both in single- and multiprocessor tar-
gets. Although the monitor’s probe component is hardware
dependant in that it is tightly coupled to a hardware real-
time kernel, the solution is independant of target processor
architectures and no software overhead is required.

The paper also describes the option to use MAMon as a
hybrid monitoring system for monitoring at lower abstrac-
tion levels, e.g. functional and data levels. In this case in-
strumentation of the software is required and will introduce
execution delays (although minimised).

To our knowledge, the proposed idea is novel and intro-
duces a new alternative to monitoring, particularly useful in
systems with hardware-accelerated real-time operating sys-
tems, and in SoCs. Future work include further validation
of the MAMon concept for monitoring of real-case applica-
tions, and for systems built on SoC hardware.

References

[1] J. Adomat, J. Furunas, L. Lindh, and J. Starner. Real-
time kernel in hardware rtu: A step towards deterministic
and high performance real-time systems. In8th Euromicro
Workshop on Real-Time Systems, LAquila, Italy, June 1996.
EUROMICRO.

[2] S. E. Chodrow, F. Jahanian, and M. Donner. Run-time moni-
toring of real-time systems. InProceedings of the Real-Time
Systems Symposium, pages 74–83. IEEE, December 1991.

[3] M. Collin, R. Haukilahti, M. Nikitovic, and J. Adomat.
Socrates - a multiprocessor soc in 40 days. InConference
on Design, Automation and Test in Europe 2001, Designers
Forum, Munich, Germany, March 2001.

[4] Enhanced parallel port v. 1.9. IEEE 1284.
[5] Xilinx inc. http://www.xilinx.com/prsrls/ibmpartner.htm.

2100 Logic Drive, San Jose, CA 95124-3400.
[6] J. Gait. A probe effect in concurrent programs.Software -

Practise and Experience, 16(3):225–233, March 1986.
[7] D. Haban and D. Wybranietz. A hybrid monitor for behav-

ior and performance analysis of distributed systems.IEEE
Trans. on Software Engineering, 16(2):197–211, February
1990.

[8] F. Jahanian, R. Rajkumar, and S. C. Raju. Runtime moni-
toring of timing constraints in distributed real-time systems.
Real-Time Systems, 7(3):247–273, November 1994.

[9] T. Klevin and L. Lindh. Scalable architectures for real-time
applications and use of bus-monitoring. InProc. 6th interna-
tional conference on Real-Time Computing Systems and Ap-
plications (RTCSA’99), Hong Kong, China, December 1999.

[10] L. Lindh, T. Klevin, and J. Furunas. Scalable architectures
for real-time applications - SARA. InCAD & CG’99, De-
cember 1999.

[11] L. Lindh, J. Starner, J. Furunas, J. Adomat, and M. E.
Shobaki. Hardware accelerator for single and multiproces-
sor real-time operating systems. InSeventh Swedish Work-
shop on Computer Systems Architecture, Goteborg, Sweden,
June 1998.

[12] A.-C. Liu and R. Parthasarathi. Hardware monitoring of a
multiprocessor system.IEEE Micro, pages 44–51, October
1989.

[13] C. E. McDowell and D. P. Helmbold. Debugging concur-
rent programs. ACM Computing Surveys, 21(4):593–621,
December 1989.

[14] L. D. Moleksy, K. Ramamritham, C. Shen, J. A. Stankovic,
and G. Zlokapa. Implementing a predictable real-time mul-
tiprocessor kernel - the spring kernel. InIEEE Workshop on
Real-Time Operating Systems and Software, May 1990.

[15] T. Nakano, A. Utama, M. Itabashi, A. Shiomi, and M. Imai.
Hardware implementation of a real-time operating system.
In Proceedings of TRON’95, pages 34–42, 1995.

[16] PCI Industrial Computers Manufacturers Group.
CompactPCI Specification rev. 2.1.

[17] H. Tokuda, M. Koreta, and C. Mercer. A real-time monitor
for a distributed real-time operating system.ACM Sigplan
Notices, 24(1):68–77, January 1989.

[18] J. J. Tsai, K.-Y. Fang, and H.-Y. Chen. A noninvasive archi-
tecture to monitor real-time distributed systems.Computer,
23(3):11–23, March 1990.


