

TRITA-MMK 2002:6
ISSN 1400-1179

ISRN KTH/MMK/R--02/6-SE

Enforcing Temporal Constraints in
Embedded Control Systems

By

Kristian Sandström

Stockholm 2002

Doctoral Thesis

Mechatronics Laboratory

Department of Machine Design

Royal Institute of Technology, KTH

S-100 44 Stockholm Sweden

 ii

TRITA-MMK 2002:6
ISSN 1400-1179
ISRN KTH/MMK/R—02/6—SE

Mechatronics Lab
Department of Machine Design
Royal Institute of Technology
S-100 44 Stockholm, Sweden Document type

Doctoral Thesis
Date
2002-04-19

Author(s)
Kristian Sandström

Supervisor(s)
Christer Norström, Martin Törngren,
and Jan Wikander

Title

Enforcing Temporal Constraints in
Embedded Control Systems

Sponsor(s)

Mälardalens University, KK-foundation

Abstract

Computer control systems are embedded in a large and growing group of products, ranging
from consumer entertainment products to large airliners. Products such as automotive vehicles,
aircraft, and industrial robots are equipped with advanced computer control systems and have
high requirements of reliable and safe operation. A common property of these systems is that
the computer systems are becoming increasingly more complex due to the inclusion of more
functionality. At the same time, the product cycles are becoming shorter leading to
requirements of shorter time to market. To meet this challenging task, the development of
computer control systems must be a well-defined and controlled engineering process. One
important part in reaching this goal is to find methods for dealing with the complexity of
computer systems.

A computer control system is typically realized by a set of concurrent activities with inter-
dependencies that have to meet a set of pre defined temporal constraints. Because of this, it is
difficult to know in advance if the implementation of a design will meet its temporal
constraints. Furthermore, it is hard to foresee the consequence of introducing alterations or
additional functionality in a system. For a method to be useful it also has to capture all the
relevant aspects of the application domain, and in the domain of embedded control systems
this includes the ability to express and enforce the temporal constraints of control activities.
Moreover, the computer system is a heterogeneous system with many responsibilities. Hence,
methods for embedded control systems should support not only control activities but also
activities related to e.g., human-machine interaction and communication.

The work presented in this thesis contributes with methods for enforcing temporal
constraints in embedded control systems. The results include an industrial case study pointing
out limitations in classic real-time models and giving indications of engineering needs.
Moreover, a method is presented for pre-run-time scheduling of periodic control activities
under the interference of sporadic interrupts. Furthermore, a method is presented for
enforcement of complex temporal constraints using standard priority based real-time operating
systems. Finally, the work includes a method for management of communication resources in
distributed systems.

Keywords

Embedded systems, real-time system, control systems, task model,
scheduling, temporal constraints.

Language

English

 v

ACKNOWLEDGEMENTS
First I would like to thank Christer Norström for an inspiring co-

operation, for his dedication, and for his support. Furthermore, I would also
like to thank Professor Jan Wikander, and Professor Martin Törngren for
their support and for sharing their knowledge of mechatronics.

I would also like to thank the ret of my colleagues for making the daily
work motivating and fun. I would especially like to thank Henrik Thane,
Anders Wall, Jukka Mäki-Turja, and Roger Hassel. Moreover, I highly
appreciate the review efforts made by Christer Norström, Hans Hansson,
Henrik Thane, Jan Wikander, and Anders Wall.

Harriet Ekwall has provided invaluable support in all sorts of practical
issues.

Finally, I am especially grateful for the strong support given by my
fiancée Camilla and the daily smiles delivered by my daughter Lina.

Västerås, 5 mars 2002

Kristian Sandström

 vi

 vii

THESIS CONTENTS

This thesis consists of a summary with original research papers
appended. These are listed below and will be referred to in the text as papers
A to D.

A Experiences from Introducing State-of-the-art Real-Time

Techniques in the Automotive Industry
Christer Norström, Mikael Gustafsson, Kristian Sandström, Jukka Mäki-
Turja, Nils-Erik Bånkestad. In Eight IEEE International Conference and
Workshop on the Engineering of Computer-Based Systems, Washington,
US, April 2001. IEEE Computer Society.
Kristian Sandström had part in all parts of the work presented.

B Handling Interrupts with Static Scheduling in an Automotive
Vehicle Control System
Kristian Sandström, Christer Norström, Gerhard Fohler. In Proceedings
of the fifth International Conferance on Real-Time Computing Systems
and Applications, October 1998. IEEE Computer Society.
Kristian Sandström and Christer Norström did the main part of this
work.

C Managing Temporal Constraints in Control Systems
Kristian Sandström and Christer Norström. MRTC Technical Report
02/45. The work is an extension of the work presented in: Managing
Complex Temporal Requirements in Real-Time Control Systems,
Kristian Sandström and Christer Norström, In Proceedings of 9th IEEE
Conference and Workshop on Engineering of Computer-Based Systems,
Sweden, April 2002. A shorter version of this technical report has been
submitted to the 8th IEEE Real-Time and Embedded Technology and
Applications Symposium, California, USA, September 2002.
Kristian Sandström provided the main part of this work.

D Frame Packing in Real-Time Communication
Kristian Sandström, Christer Norström, Magnus Ahlmark. In proceedings
of RTCSA 2000 Korea, December 2000. IEEE Computer Society
Kristian Sandström and Christer Norström provided the main part of the
work.

 viii

 ix

THESIS SUMMARY

Contents

1 Introduction__11

2 Background and Motivation ________________________________11

2.1 Temporal Constraints __________________________________11

2.2 Temporal analysis and attribute assignment _______________13

2.3 The Context of Embedded Control Systems ________________14

3 Focus and Aim__16

4 Results and Contributions __________________________________16

4.1 Academic results ______________________________________16
4.1.1 Paper A ___17
4.1.2 Paper B ___17
4.1.3 Paper C ___17
4.1.4 Paper D ___18
4.1.5 Tools__19

4.2 Educational results ____________________________________19

4.3 Industrial relevance____________________________________19
4.3.1 Technology transfers ________________________________20
4.3.2 Prototypes ___20

5 Conclusion and future work ________________________________20

6 References ___21

 x

 11

1 Introduction
The trend today and in the foreseeable future is the addition of more and

increasingly complex functionality in embedded systems. In the
development of Embedded Control Systems (ECS) a bulk of the total
development time is spent on testing and maintenance. To successfully meet
the challenge of developing more advanced products without increasing
costs, the development of embedded control systems must put more
emphasis on analysis and design. Although there are many methods for
analysis and modelling of ECS described in the real-time research literature,
few of them are actually used in industry. The reasons for this are manifold.
The needs of industrial development processes are rarely covered by a single
existing real-time method and integration of different methods can be
complicated and may involve unsolved research problems. Also, some real-
time methods need supporting tools in order to be useful in industry.
Moreover, in developing these tools additional research problems are likely
to be encountered when methods are deployed in industrial development
processes. Finally, education is needed for engineers to be able to use the
methods properly and efficiently.

The work provided in this thesis covers methods for use in the design and
implementation of ECS. The focus is primarily on the specification,
analysis, and realization of temporal constraints. The results are viewed with
respect to both industrial and academic relevance.

The structure of this summary is as follows: Section 2 presents the
background and motivation for this work. Section 3 presents the academic
results and the industrial relevance and Section 4 provides a summary and
gives directions for future work.

It should be noted that there is no overview of related work in this
summary. Related work is presented in the papers that this thesis consists of.

2 Background and Motivation
The main goal for the work throughout this thesis has been to provide

methods that aid the engineer in specifying and fulfilling the intended
system behaviour for ECS. In this section, the author’s view is given of what
the requirements are for successful specification and verification of ECS.
This section is divided into three sub sections; Temporal constraints
describing constraints for ECS, Temporal analysis and attribute assignment
treating the process of realising a desired behaviour, and The Context of ECS
discussing the context in which methods for ECS should be valid.

2.1 Temporal Constraints
The development process for embedded control systems is similar to that

of other computer based systems with respect to the high-level process
elements of design, implementation, and verification. In detail there are

 12

differences adhering to the enforcement of temporal requirements of control
systems. During the design of the computer control system the activities that
will carry out the intended system behaviour are formed, as are the
interactions between activities and the temporal constraints of these
activities and interactions. If a system is going to be formally analysed a
precise model for specifying temporal constraints is required. Common in
many analysis models in real-time theory is the ability to specify deadlines
and/or offsets for the execution of periodical activities. Although these
mechanisms are appropriate for expressing constraints on many activities,
some limitations arise when used for temporal constraints related to control
design. In an industrial project in the automotive industry in which the
author participated, the main objective was to make an automated tool for
pre-run-time scheduling. During this project the observation was made that
the classical task model used was the reason for why the tool did not relieve
the engineer of the scheduling burden to the extent that was intended. The
engineers had to express temporal constraints originating from control
system design, and those constraints were quite hard to express using the
basic deadlines and offsets that were provided. When using the classical
model for expressing control constraints the engineers had to manually
distribute offsets and deadlines over time to make the specified system
schedulable. To understand why this was necessary, one should take a look
at typical control constraints and their sources.

A key property of a control system implemented on a single CPU is that
only one activity can be performed at any instant in time. Moreover, the
processor architecture and the software implementation result in activities
that have different execution time from one activation to another. The
consequences of this include:

• That activities do not have strict periodicity due to interference from
other activities.

• That time varying delays are introduced between the sampling of
process data and the corresponding actuation of corrective data.

• That correlated sampling activities do not necessarily observe the
process at the same point in time, if executed on the same CPU they
cannot execute truly in parallel.

The consequences listed above can all be dealt with by control theory and
design, but will put some constraints on the real-time system models and
methods. The deviation from strict periodicity for example, can be
accounted for in control design if the variations have known bounds. This
will in turn put requirements on the expressiveness of the used real-time
models. Constraints that come from control design include:

• Constraints on the variation of the period time of execution of
activities (jitter). Deviation from exact periodic execution will affect,
e.g., sampling. Since exact periodic execution is hard to
accommodate (in computer systems) for a set of tasks with different

 13

period times, the ability to specify bounds for the variation is
important.

• Constraints on maximum time from start of one activity to
completion of another. The ability to specify bounds on the delay of
control loops. In complex control systems, several control loops may
interact and the period times for the different control loops might
differ. This includes the ability to specify bounds on transactions
where the tasks involved have different period times.

• Correlation constraints bounding the time between the executions of
several concurrent activities. This type of constraint represents the
behaviour of several concurrent activities that need to be
synchronised in time, e.g., sampling of interrelated data. This
constraint can be important in order to get a coherent picture of the
state of the controlled process.

• Combinations of constraints, such as those listed above. In a control
loop the variation of the period time of sampling and actuation may
need to be bounded, at the same time as the time from sampling to
actuation has a time limit. Furthermore, the entire control loop may
be part of a larger control structure and needs to be synchronised
with other activities.

The constraints listed above are relative temporal constraints as opposed
to deadline and offset constraints that for periodic activities generally are
absolute. As an example, a jitter constraint could be expressed using a
deadline and an offset, but there exist many different deadline offset
combinations that fulfil one specific jitter constraint. In a system with many
activities there could be an immense number of possible combinations for
assigning deadlines and offsets, and it is hard to find a solution by hand if
only a part of those combinations lead to a system that is schedulable.
Hence, it can be difficult to transfer control constraints to a classic real-time
model with deadlines and offsets. To aid the engineer developing control
systems, methods and tools based on control constraints are needed.

2.2 Temporal analysis and attribute assignment
Disregarding the model used, activities specified during the design

usually are implemented utilising some infrastructure, e.g., a real-time
operating system and communication subsystems. To transfer information
about the design to the implementation, the design information eventually
has to be expressed using the infrastructure primitives, e.g., task and task
attributes such as priorities. One method for assigning implementation
primitives so that temporal constraints specified in the design phase are met
is to make ad hoc assignments of the task attributes (e.g. priorities). The
resulting system behaviour is then verified and changes in the attribute
assignments are made iteratively until a satisfactory behaviour is achieved.
In the design phase the verification can be done by real-time analysis
methods and in later phases by testing. One problem with the manual

 14

assignment of task attributes is that it does not scale well, i.e., it is difficult
to use for other than very small systems. Depending on the used run-time
system, a number of more methodical approaches are available for making
the attribute assignment. For pre run-time scheduled systems the synthesis is
an integrated part of the scheduling phase where the execution windows of
activities are constructed so that temporal constraints are met. For pre-
emptive priority based run-time scheduled systems, methods like rate
monotonic and deadline monotonic can be used to assist the engineer in
assigning priorities of activities. However, as discussed earlier, ad hoc
transformation of more complex temporal constraints to e.g., deadlines and
offsets are not always practical. Therefore, methods are needed that either
makes those transformations or make the synthesis directly from the
complex temporal constraints. There exist few methods for making the
synthesis from complex control constraints. Available methods for pre-run-
time scheduling, e.g., [1][2][3], support control constraints but lack support
for pre-emption, sporadic activities, and varying task execution times. For
run-time scheduled systems there are methods with support for a sub set of
the control constraints in section 2.1, e.g., [4][5].

Analysis of the temporal behaviour can both be used as part of methods
for assigning task attributes and as a stand-alone tool. Besides conventional
analysis methods for real-time systems based on a worst-case scenario,
methods that could more accurately model the environment and the true
behaviour of a control system would be beneficial. Since there is a cost in
over estimating the resource requirements, the analysis should be as exact as
possible. But, even if the analysis is exact it is not possible for most
products to dimension the control system for scenarios that will occur at
most a few times during the products lifetime. Instead temporal constraints
could be guaranteed with some reliability and confidence. Potential methods
could be based on quality of service for real-time systems and statistical
measures for analysis. Furthermore, since the correct behaviour of an ECS
is dependent on correct functional behaviour at the right point in time,
methods for co-analysis of the temporal and the functional behaviour could
add confidence in early analysis of a system. Potential methods include
formal methods with models for representing system functionality and
environmental behaviour as well as state machine based methods with
support for temporal analysis.

2.3 The Context of Embedded Control Systems
To make methods for synthesis and analysis of control constraints useful

to an engineer there are additional constraints that must be considered to
make the methods applicable in real systems. The computer system in
complex embedded control systems have to cater for a vide variety of
services. This includes, human-machine interaction and interfacing with
communication sub systems and other target specific hardware. The control
system does not only have to share the same resources with other services. It
also has to interact and exchange information with them. Hence, accounting

 15

for the behaviour of other computer activities has to be an integrated part of
methods for temporal analysis of computer control systems. This fact leads
to a number of issues to consider when developing methods for analysing
and enforcing temporal constraints of embedded control systems:

• It is important to consider both periodic and sporadic activities in the
same system. Periodic activities originate in e.g., control
functionality whereas sporadic activities can reflect an event-
triggered behaviour or interrupt generated from e.g., the
communication sub system. Both of these types of activities will
coexist in most control systems. However, these two types of
activities are often treated differently and separately in real-time
analysis.

• The architecture of contemporary CPU’s and computers, as well as
the algorithms in the software implementation, lead to execution
times of activities that vary from one activation to another. This
directly affects the real-time analysis since e.g., jitter will be a result
of a varying execution time.

• Activities in computer control system interact and have shared
resources. The consequence is that methods should include
mechanisms for synchronisation of the execution of activities, also
between activities with different period times. Furthermore, there
should be mechanisms for managing shared resources, also between
periodic and sporadic activities.

Many embedded control systems are distributed systems with temporal
constraints involving activities executing on different nodes and
communication over a communication bus. Methods for analysis and
synthesis can cover the complete system or the system can be divided into
sub parts that are treated separately. If the system is treated in parts, the
temporal constraints spanning several nodes must be partitioned into
separate constraints for each node and bus. Two reasons for dividing the
analysis and synthesis into sub parts are reduction of complexity and
separate handling of system parts by sub contractors. For systems where the
complexity can be managed and it is possible for one actor to control the
details of the entire system it is possible to make analysis and synthesis that
cover the entire system at once. For this, many methods for scheduling
activities on a processor can, with modifications, be applied in planning
resource usage on communication busses. However, there are additional
matters to consider. In embedded control systems most data (signals) sent
between activities are quite small in terms of bits and to handle them
individually in bus communication would cause a large overhead. Therefore,
several signals are allocated to a larger container, a frame. However, the
transmission of the frame still has to meet the most severe temporal
constraint of the contained signals. There are several criteria that could be
considered when allocating signals to frames, e.g., resulting use of
bandwidth and resulting number of frames sent to a specific node. To

 16

manage the resource usage of the bus alone is a hard task in complex
systems. It could prove very hard to succeed with global system resource
management, without trying to limit the complexity.

In the development of embedded control systems it is important that
engineers have access to methods and tools that support the hard and
complicated task of designing and implementing cooperative activities with
complex temporal constraints. It is also important that the methods
incorporate knowledge from both control engineering and computer
engineering, in order to be a successful aid in design of embedded computer
control systems. Furthermore, methods should manage real world
characteristics originating from e.g., the heterogeneous nature of embedded
control systems.

3 Focus and Aim
The main goal of this thesis is to provide methods and knowledge that

assist the engineer in the design and implementation of embedded control
systems. In more detail, the methods should give engineers support for
describing the desired temporal behaviour of activities in a computer control
system. More over, the methods should assist the engineer in transferring the
described temporal behaviour to an implementation and to verify that the
implementation meets the specified behaviour. The methods should also add
ease to the management of temporal constraints in the process of
maintenance and further development of control systems. Finally, it is
important that the heterogeneous nature of embedded control systems is
reflected in the methods by providing support for periodic control activities
in a computer system consisting of a variety of activities such as human-
machine interaction and networking.

4 Results and Contributions
In this section the results of the thesis is organised according to academic

results, educational results, and the industrial relevance of the results.

4.1 Academic results
A key paper in the thesis is paper A, which treats the experiences from a

project within the automotive industry. From the work presented in this
paper several problems were identified and solved, mainly in paper B:
Handling Interrupts with Static Scheduling in an Automotive Vehicle
Control System and paper C: Managing Complex Temporal Requirements -
A Method for Assigning Priorities and Offsets in Fixed Priority Systems.
The work provided in Paper B presents a method for fulfilling temporal
constraints in heterogeneous embedded systems by integrating handling of
sporadic activities with pre-run-time scheduled periodic tasks. Paper C
presents a method with stronger support for control functionality by
management of complex temporal constraints for use with standard priority
based real-time operating systems. Furthermore, in paper B problems

 17

related to the implementation of the communication system is dealt with,
whereas paper D proposes a method for managing communication resources
in distributed systems.

4.1.1 Paper A: Experiences from Introducing State-of-the-art Real-
Time Techniques in the Automotive Industry

This paper discusses some findings and conclusions from introducing
real-time techniques in the development of computer control systems for
automotive vehicles.

Some of the most important findings can be summarised as:

1. Introduction of solid real-time theory provides valuable benefits,
including early error detection and less verification efforts.

2. Real-time theory should be transferred in the form of tools, methods,
and education.

3. Real-time theory has poor support for some control induced temporal
constraints.

4. Results from real-time theory has to be adapted to be useful in an
industrial context, the adaptation includes research issues such as
providing useful information to the engineer when the system is not
schedulable.

4.1.2 Paper B: Handling Interrupts with Static Scheduling in an
Automotive Vehicle Control System

This paper proposes a method for handling sporadic interrupts that pre-
empts pre-run-time scheduled tasks. The motivation for this work came
from introducing a pre-run-time scheduler in the development of control
systems for automotive vehicles. In the system the interrupt load caused by
the communication sub system was high and could not be handled by the
pre-run-time scheduled system by simple ad hoc methods. The problem was
solved by developing a method that accounts for interrupts in the pre-run-
time scheduling process. The technique uses results for analysis of fixed
priority tasks by incorporating the analysis into a heuristic tree search
algorithm for pre-run-time scheduling.

This work contributes with an efficient and safe method to account for
sporadic interrupts when creating a pre-run-time schedule. Furthermore, the
method will add no additional run-time overhead.

4.1.3 Paper C: Managing Complex Temporal Requirements - A
Method for Assigning Priorities and Offsets in Fixed Priority
Systems

The paper presents a method for assigning task attributes with the
objective to meet complex temporal constraints for applications running on
a standard real-time operating system. Using this method, complex temporal

 18

constraints originating from control design can be expressed with a precise
syntax and semantics. Based on specifications of the temporal constraints,
task offsets and priorities are derived so that the constraints are met.

The constraints that can be expressed include; correlation constraints
between concurrent sampling tasks (or actuation tasks), jitter constraints on
period times, and latency constraints from sampling to actuation.
Furthermore, except for periodic tasks, sporadic tasks can be specified as
well as shared resources between sporadic and periodic tasks. The model
also handles varying execution times of tasks. The method uses genetic
algorithms to search for an optimal assignment of priorities and offsets for a
task set. Simulations indicate the appropriateness of the method and the
effectiveness compared to related work.

This work contributes with a strict syntax and semantics for specification
of complex temporal constraints for control systems and a method for
enforcement of complex temporal constraints using standard priority based
real-time operating systems. Compared to methods proposed in [4][5] the
method in presented in this paper can handle a larger set of constraints, e.g.,
both jitter and correlation constraints. Moreover methods in [1][2][3] do not
handle sporadic tasks, shared resources between periodic and sporadic tasks,
and varying execution times of tasks.

4.1.4 Paper D: Frame Packing in Real-Time Communication
This paper describes a method for allocating data shared by activities

over a network into frames handled by the communication subsystem. In
embedded systems the size of most data sent between activities on different
nodes are quite small compared to the available data containers, i.e., frames,
for the bus. Even if there are small frames available the transmission
overhead increases as the size of the frame decreases. As a result, signals
from several activities have to be allocated to the same frame in order to
reach an acceptable performance of the communication subsystem. The
signals have different temporal constraints and the allocation will therefore
affect the bus utilisation. In fact, finding frame sizes and making proper
allocation of signals to frames so that the bus utilisation is minimised is a
NP-hard problem. The method presented allows fast allocation of very large
signal sets with good result with respect to bus bandwidth utilisation. The
method is based on approximation algorithms and simulations are used to
verify the appropriateness of the algorithms.

The work presented in this paper makes contributions by formulating the
packing problem, showing that the packing problem is NP-hard, presenting a
simple and effective heuristic for frame packing, and demonstrating the
effectiveness of the algorithm on realistically sized problems derived from
the automotive industry.

 19

4.1.5 Tools
To aid the development and evaluation of methods for managing

temporal constraints in ECS two software tools have been developed.

GenECS is a tool for generating simulated system specifications for
embedded control systems. The tool generates task sets with temporal
constraints according to a predefined profile. It is possible to control the
distribution of values generated for attributes such as the worst and best case
execution times, deadlines, jitter constraints for period times, and utilisation
for sporadic and periodic tasks.

TemporalControl is a tool for assigning attributes for pre-emptive priority
based real-time operating systems. Given a specification of a task set with
temporal constraints the tool assigns priorities and offsets to the tasks so that
the constraints will be met during run-time. The task set can include both
periodic and sporadic tasks with synchronisation constraints and shared
resources. Temporal constraints that can be solved include jitter, correlation,
and latency.

An earlier version of the tools where developed as part of a master thesis
conducted by Johnnie Blom under supervision of Kristian Sandström.

4.2 Educational results

The knowledge gained during the work of the thesis has been exploited for
many educational purposes. As the most prominent the following are
mentioned:

• The development of course material and lab exercises for a basic
course in real-time systems at Mälardalen University.

• Development and realisation of several instances of a large-scale
project course in distributed real-time systems. Research results have
been applied in the course, e.g., in a project developing design and
analysis tools for embedded real-time systems.

• A compendium in real-time systems used at Mälardalen University,
Uppsala University, and Dalarna University.

4.3 Industrial relevance
Throughout the work of this thesis there have been an exchange of

knowledge with industrial partners. Methods have been tested in industrial
cases and research issues have been extracted from problems found in
industrial projects. Furthermore, several courses in real-time systems have
been given to industry. In the rest of this section, the more extensive co-
operations are presented.

 20

4.3.1 Technology transfers
In a project with Volvo Construction Equipment Components a real-time

design model and analysis was introduced in the development of their
computer control system. The model has evolved and is still in use in the
development of the embedded control system for construction equipment.
From this project a lot of problems were identified, and some of them are
solved in this thesis.

In a master thesis [6], methods for allocation of signals to frames and
scheduling of frames on the network where developed. The work was
conducted in cooperation with Volcano Communication Technologies. A
simulation environment was developed and the results have later been used
in an industrial project.

4.3.2 Prototypes
As a commercial spin-off, a prototype tool for pre run-time scheduling,

the Configuration Compiler, was developed. The prototype was developed
for use at Volvo Construction Equipment Components and is now
incorporated in the tool set for the commercial real-time operating system
Rubus provided by Arcticus Systems.

5 Conclusion and future work
In order to develop and maintain embedded control systems of higher

quality in shorter time, it is important that methods and tools support the
complex task of computer control system development. Tools and methods
that help the engineer to formulate and enforce the complex temporal
constraints put on control systems are needed. Furthermore, since most
embedded control systems are heterogeneous, support for systems consisting
of subsystems with different characteristics are required.

This thesis proposes methods for specification, analysis, and synthesis of
temporal constraints for embedded control systems. Furthermore, methods
are provided that are adapted for the reality of embedded systems with a mix
of control and computer system related functionality. The contributions are:

• An industrial case study pointing out limitations in classic real-time
models and giving indications of engineering needs.

• A strict syntax and semantics for specification of complex temporal
constraints for control systems.

• Scheduling off periodic control activities under the interference of
interrupts.

• A method for enforcement of complex temporal constraints using
standard priority based real-time operating systems.

• A method for management of communication resources in
distributed systems.

 21

Several tools and prototypes have been developed to validate the results
and some of the prototypes have been transferred to industry and are in
successful use today.

In future work the author would like to investigate how the methods can
be better adapted to practical operating conditions of a system. The method
for attribute assignment presented in this thesis assigns attributes based on a
safe analysis using a system model that will represent the outer boundaries,
with respect to the temporal behaviour of the real system. The analysis will
often provide over estimations if compared to how the real system will
behave. The main part of this pessimism in the analysis comes from the
assumption that sporadic activities will be activated with their maximum
frequency and with a worst-case phasing relative the periodic activities. In
the real system, this is in many cases unlikely to occur and surely in some
cases it cannot. For many products housing embedded control systems, the
price of having absolute certainty, with respect to resource usage, cannot be
justified. Instead the system could be dimensioned to meet its temporal
constraints with some probability within some confidence interval. One
possible method for achieving this property for the method presented in
paper C would be to base the analysis part of the genetic algorithm on
samples taken from simulations.

Another possible direction for future research is to look at methods for
use earlier in the development process and how they link to the methods
presented in this thesis. Since, an undetected error made in early
development is much more expensive than an error made late it is important
to have early measures of the possibility to meet functional and temporal
constraints. It is also important to find a coherent methodology that connects
methods throughout the development process from architectural analysis to
implementation and maintenance.

6 References
 [1] Mok A. K., Tsou D., and De Rooij R. C. M. The MSP.RTL Real-Time

Scheduler Synthesis Tool. In Proc. 17th IEEE Real-Time Systems
Symposium, pp. 118-128. IEEE Computer Society.

[2] Würtz J. and Schild K. Scheduling of Time-Triggered Real-Time
Systems, In Constraints, pp. 335-357, October, 2000. Kluwer Academic
Publishers.

[3] Cheng S. T. and Agrawala A. K. Allocation and Scheduling of Real-
Time Periodic Tasks with Relative Timing Constraints. Second
International Workshop on Real-Time Computing Systems and
Applications (RTCSA'95) October 25-27, 1995.

[4] Bate I. and Burns A. An Approach to Task Attribute Assignment for
Uniprocessor Systems. In Proc. 11th Euromicro Conference on Real-
Time Systems (ECRTS99), York, England, June 9-11, 1999, IEEE
Computer Society.

 22

[5] Gerber R., Saksena M, and Hong S. Guaranteeing Real-Time
Requirements with Resource-Based Calibration of Periodic Processes.
IEEE Transactions on Software Engineering, 21(7), July 1995.

[6] Ahlmark M. Local Interconnect Network (LIN) - Packaging and
Scheduling. Master Thesis, Department of Computer Engineering,
Mälardalens University, June 2000.

 23

PUBLICATIONS

Managing Complex Temporal Requirements in Real-Time Control
Systems
Kristian Sandström and Christer Norström. In proceedings of 9th IEEE
Conference on Engineering of Computer-Based Systems, Sweden, April
2002.

Experiences from Introducing State-of-the-art Real-Time Techniques in
the Automotive Industry
Christer Norström, Mikael Gustafsson, Kristian Sandström, Jukka Mäki-
Turja, Nils-Erik Bånkestad. In Eigth IEEE International Conference and
Workshop on the Engineering of Compute-Based Systems Washington, US,
April 2001. IEEE Computer Society.

Verifying Temporal Constraints on Data in Multi-Rate Transactions
Anders Wall, Kristian Sandström, Jukka Mäki-Turja, Christer Norström. In
proceedings of RTCSA 2000 Korea , December 2000. IEEE Computer
Society.

Frame Packing in Real-Time Communication
Kristian Sandström, Christer Norström, Magnus Ahlmark. In proceedings of
RTCSA 2000 Korea , December 2000. IEEE Computer Society.

Findings from introducing state-of-the-art real-time techniques in
vehicle industry
Christer Norström, Mikael Gustaffson, Kristian Sandström, Jukka Mäki-
Turja, Nils-Erik Bånkestad. In industrial session of the 12th Euromicro
Conference on Real-Time Systems, Stockholm, Sweden, June 2000.

Modeling and Scheduling of Control Systems
Kristian Sandström. Licentiate Thesis, ISSN 1400-1179l, Department of
Machine Elements, The Royal Institute of Technology, Sweden, 1999.

Constructive Feedback turns Failure into Success for Pre-Scheduled
Systems
Kristian Sandström, Christer Norström. In Swedish National Real-Time
Conference SNART'99, August 1999.

Towards Efficient Analysis of Interrupts in Real-Time Systems
Jukka Mäki-Turja, Gerhard Fohler, Kristian Sandström. In work in
progress, 11th EUROMICRO Conference on Real-Time Systems, York,
England, May 1999.

mailto:

 24

Handling Interrupts with Static Scheduling in an Automotive Vehicle
Control System
Kristian Sandström, Christer Norström, Gerhard Fohler. In Proceedings of
the fifth International Conferance on Real-Time Computing Systems and
Applications,pages 158-165, October 1998. IEEE Computer Society.

An Overview of RTT: A Design Framework for Real-Time Systems
Christer Norström, Jukka Mäki-Turja, Kjell Post, Mikael Gustaffson, Jan
Gustafsson, Kristian Sandström, Ellus Brorson. Journal of Parallel and
Distributed Computing, no 36, August 1996.

A Graphical Design Environment for Development of Object-Oriented
Hard Real-Time Systems
Christer Eriksson, Roger Hassel, Lennart Myrehed, and Kristian
Sandström. TOOLS Europé 95, Paris, France, Mars 1995. Published in
TOOLS 16 by Prentice Hall, ISBN 0-13-443128-6.

http://www.mrtc.mdh.se/php/staff_show.php3?id=0042
mailto:

Experiences from Introducing State-of-the-art Real-Time
Techniques in the Automotive Industry

by
Christer Norström, Mikael Gustafsson*, Kristian Sandström,

Jukka Mäki-Turja, and Nils-Erik Bånkestad**
Mälardalen Real-Time Research Centre, Department of

Computer Engineering, Mälardalen University, Västerås, Sweden
*TietoEnator ArosTech AB, Västerås, Sweden

** Volvo Construction Equipment Components AB, Eskilstuna,
Sweden

In Eigth IEEE International Conference and Workshop on the
Engineering of Compute-Based Systems, Washington, USA,

April 2001. IEEE Computer Society.

A

 26

 27

Experiences from Introducing State-of-the-art Real-Time
Techniques in the Automotive Industry

Christer Norström, Mikael Gustafsson, Kristian Sandström,

 Jukka Mäki-Turja, and Nils-Erik Bånkestad

Mälardalen Real-Time Research Centre, Department of Computer
Engineering, Mälardalen University, Västerås, Sweden

*TietoEnator ArosTech AB, Västerås, Sweden
** Volvo Construction Equipment Components AB, Eskilstuna, Sweden

Abstract
The use of state-of-the-art real-time techniques in industry is still rare.

The reason for this is three-folded: (1) the lack of commercially available
tools, (2) the lack of methodologies that considers real-time throughout the
complete development process, and (3) the lack of competence in real-time
theory among industrial practitioners.

In this paper we present a case study of introducing state-of-the-art real-
time techniques in industry. The case study was done as a collaboration
between Mälardalen University and the industrial partners Volvo
Construction Equipment AB (VCE) and TietoEnator ArosTech. VCE
develops computer control systems for construction equipment vehicles,
such as wheel loaders, graders, and articulated haulers. TietoEnator
ArosTech is a firm of consultants with expertise competence in the area of
embedded real-time systems.

We will present both the used methodology and the findings from
introducing this methodology in an industrial project. The methodology
emphasis is on introducing timing requirements early in the design of a
system and it relies on the use of a well defined design language. We will
present our findings categorized into methodological aspects, technology
transfer, and technical aspects. The main result reported can be summarized
as “people, not paper, transfer technology”.

1 Introduction
Development of complex embedded systems is a growing area, i.e., we

see more and more applications that are dependent on the use of embedded
computers. Examples include highly complex systems, such as medical
control equipment, mobile phones, and vehicle control systems.

Most of the embedded systems can also be characterised as real-time
systems, which means that their correct function is dependent on both

 28

correct functional results and that the results are produced at the correct
time.

The increased complexity of these systems leads to increasing demands
on issues such as requirements engineering, high level design, early error
detection, productivity, integration, verification, and maintenance. This calls
for methods and models that enable a controlled and structured way of
working during the complete life cycle of the system [Kal88].

There exist many design methods for real-time systems like, UML-RT
and HRT-HOOD. However, these methods often concentrate on the logical
and structural decomposition rather than focusing on the temporal
behaviour. The temporal behaviour is often added on top. This is not so
strange since these methods are based on general software development
methods that are not focusing on embedded real-time systems. Furthermore,
these methods have no, or limited, support for high level timing analysis and
do not provide support for automatic mapping from the design to a resource
structure. This often leads to a semantic gap between the design and the
implementation, that is, the code and design description may not describe
the same version of the system. Thus, classic problems during integration
may occur, such as erroneous synchronisation and communication interfaces
and that the system is hard to maintain.

Therefore, we have developed a model and method focused on the real-
time properties of a system. The key property of the model and method is
specification of a high level design that includes the specification of
temporal constraints, communication and synchronisation. Furthermore, the
model and method supports formal verification of these properties, early
system integration, and efficient testing.

The aim of this paper is to briefly present this model and method, as well
as our findings from introducing and using them in an industrial project.
This project was performed as a cooperation between Mälardalen
University, Volvo Construction Equipment AB (VCE) and TietoEnator
ArosTech.

VCE has had onboard electronics since 1981 for specific functionality.
Currently more and more functionality is provided by the computer control
system. This has led to an increased number of people involved in the
development of each product, and thus the need for better development
methods and tools.

This was the motivation for the university to participate in the
development of a new computer control system for the next generation
wheel loaders. Since a complete new architecture was to be developed we
were given the opportunity to introduce new technologies and methods.

Many functions are similar in different vehicles and therefore it would be
a desired property to be able to reuse existing solutions. This was the
starting point for defining a new architecture that could be used for all types
of future construction equipment. Hence, the result of this project will act as

 29

a basis for extracting a product line architecture [Bos00]. However, the latter
step is outside the scope of this paper.

Thus, this paper is focused on presenting our findings from introducing
state of the art real-time technology in an industrial project. The validity of
these findings is based on a single, but extensive, case study of one
industrial project. Some of the findings are strengthened by similar results in
other industrial projects that also have utilized state of the art real-time
technology [Cas98, Mel98].

The outline of the paper is as follows: Section 2 presents briefly the
characterization of the application. The design language used is described in
Section 3. Section 4 presents briefly the tool that maps the design to a
resource structure. Thereafter, in Section 5, the development methodology is
presented. In Section 6 we present our findings categorized into findings
related to methodological aspects, technology transfer, and technical aspects.
Finally, in Section 7 some conclusions are given.

2 Application characteristics
The application is a vehicle control system with high demands on safety,

reliability, and timeliness. The hardware in the system consists of two nodes
that are connected via redundant buses. The application contains tasks,
running at different period times, which collaborate to perform certain
control functions. The system contains about 80 tasks with well-defined
functionality. Each node is very I/O intensive. The complete system has
about 150 I/O channels connected to it.

The execution times of the tasks in the application range from about 10
µs to 1 millisecond. The application is, due to the construction of the
hardware, interrupt intensive. Since this application has many interrupts, the
effect of these interrupts cannot be neglected when scheduling the
application tasks.

The worst-case utilization of the processors for the critical part is around
80%, divided into 35% for interrupts and 45% for application tasks. The
spare capacity left is used by soft real-time tasks. At run-time, the spare
capacity will be more than the remaining 20% if the load is less than the
worst case.

The reason for the extensive use of interrupts is mainly due to the
hardware design. The hardware could not be modified since it was already
designed and certified when the software development started.

3 Design language
The design language should be simple with a few, but powerful,

constructs with clearly defined syntax and semantics. The reason for this is
twofold: 1) parts of the implementation can be automatically generated by
tools and, 2) the traceability from specification to implementation is
improved since it is easier to overcome the semantic gap between design

 30

specification and implementation. The design is tightly coupled to the
implementation; it is easier to fix a bug by correcting the design than to just
make a modification in the code, when tools generate parts of the
implementation directly from the design specification.

Another important principle is the separation of concerns. A specific
example in the language is to separate communication and synchronization
constructs from the C-code. This gives advantages in verifying the temporal
behavior of the system (analyzing or estimating the execution time of the
code is easier since it is independent from other components of the system).
The integration phase also becomes easier when the interaction and
synchronization is specified and analyzed early in the design.

The most important contribution, however, is that temporal constraints
are defined early in the development process, which enables an early
temporal verification.

The key elements of the language in increasing order of granularity are:

• Application – defines the top level of a complete software system.

• Modes and mode transitions – defines a high level state machine.

• Transactions – describes the functionality in a mode.

• Interaction graphs – describes the interactions between tasks that
make up a transaction.

• Tasks – the computational elements of the design language.

3.1 Application model
A classical way of attacking problems is by ”divide and conquer”, i.e., by

decomposing the problem into more manageable sub-problems. This is done
here by hierarchical decomposition, where an application is broken down
into modes. A mode is an operational state of the application. Different
modes contain different functionality. Each mode should only include the
functionality that is needed for the desired behaviour. A picture of this
hierarchy is shown in Figure 1.

 31

Application

Mode 1 Mode 2 Mode 3

Transaction
1

Transaction
2

Transaction
3

Transaction
4

Transaction
5

Figure 1: Application model

3.2 Modes and mode transitions
A mode describes specific functionality in a system state. If the

functionality differs substantially from one state to another, one should
separate them into two different modes. An example is the control system in
a vehicle, which can have different functionality depending on the status of
the vehicle. If the vehicle is fully functional, the control system is in full
operating mode. If a severe error occurs the control system can take the
vehicle into a reduced functionality, mode where only the most critical
functions of the control system are provided, so that the vehicle can be taken
for repair.

Modes in the system are described in a mode transition graph,
comparable to a state transition graph, where all legal transitions between
modes are depicted. An example mode transition graph for our vehicle is
illustrated in Figure 2.

Init

Operating

Failed

Reduced

initOk

fatalFailed

fatalFailure

recovered

failure

reStart
fatalFailure

Figure 2: Mode transition graph for a control system for a vehicle

Why modes? In almost all application there is some kind of mode
concept, even if implicit. For example when the system is starting up,
initialisation functionality is provided which is no longer needed when the
system is fully operating. Many systems also have a failure mode with
reduced functionality. If there is no way of specifying these modes they have
to be implemented ad hoc in the code which makes it hard to understand and
maintain the system.

 32

3.3 Transactions and interaction graphs
For each mode a number of functions must be provided, we call these

transactions. A transaction consists of a collection of tasks that together
provide the desired functionality. The interaction and dependencies between
tasks are described by communication and synchronisation constructs.
Communication is specified as a directed relation from one task to another.
Synchronisation can be described by precedence relationships between tasks
or by mutual exclusion of task that share a common resource. The temporal
behaviour of tasks in the transaction is specified by temporal attributes of
single tasks. Besides tasks, interrupts can also be specified. Including
interrupts in the specification makes it possible to include them in the
analysis.

3.4 Task
A task is the smallest executable unit. A task is described with a set of

functional and temporal parameters:

Functional:

• Entry function. The entry function specifies the function to perform
on each invocation. This, together with the state and input, defines
the functionality of the task.

• State. A task has some state variables, (comparable to instance
variables of an object), which keep their values across activations of
the task. The variables constitute the task state.

• Ports. Since communication primitives are not allowed in the code,
communication is specified in the interaction graph. Each task is
equipped with in- and out-ports. The in-ports acts as input to the
entry function and the result of the entry function is placed on the
out-ports of the task.

Temporal:

• Period time. The period time of the task.

• WCET. Worst Case Execution Time of the entry function. Note that
this value is assessed and used as an additional design parameter
during the design and verified after implementation.

• Release time. Remember that every task is a member of a
precedence graph and therefore has a period. The release time is the
earliest time the task can be activated, relative to its period start.

• Deadline. The deadline is the latest time a task is allowed to
terminate, relative to its period start.

The execution semantics of a task is at activation to read the in-ports,
thereafter perform the function, and before termination write the result to its
out-ports. This construction means that each task can be designed without

 33

knowing where the input data was produced and where the produced output
data will be used.

4 Mapping of the design to a resource structure
The Configuration Compiler tool maps a textual based description of the

design to a resource structure, as illustrated in Figure 3. The Configuration
Compiler is a pre-run-time scheduler that generates dispatch tables and
communication infrastructure for each mode. Besides the mapping of the
model, the tool also supports specification of architecture specific attributes
like performance, the time granularity of the run-time dispatcher,
communication times, and number of nested pre-emptions allowed. The
implementation of the Configuration Compiler is based on a heuristic tree
search strategy, similar to the one presented in [Ram90]. The major
difference is that this scheduler takes interrupts and architecture specific
attributes into account. The current version of the tool is adapted to the real-
time operating system Rubus1.

Configuration
Specification

Architecture
Specification

Schedule

Configuration Compiler

Communication handling
Pre-run-tme scheduler

Rubus

Figure 3: The Configuration Compiler

5 Development methodology
The development methodology defines the workflow when developing an

application. The methodology employed in this project is iterative and quite
traditional. The emphasis in the method is to derive a high level design that
enables early schedulability analysis. To facilitate this it is required that
synchronization, communication, and temporal attributes are defined early
in the design process, which is of no problem except for execution times of
the tasks. The execution times are normally derived from the code.
However, in this approach we specify (estimate) an execution time budget
for each task. The execution time budget is later in the implementation
phase used as an implementation requirement. Estimating the execution time
budgets is a delicate issue that requires highly skilled engineers with a lot of
experience. However, if the estimate can not be fulfilled a negotiation
strategy has to be employed. That is, execution time may be borrowed from

1 Rubus and the Configuration Compiler are commercial products, see www.arcticus.se.

 34

another task, which does not utilize the allocated execution time. The
development methodology is general and can be adapted to different design
languages (modeling languages). The method is briefly described in Figure 4
and by the following text.

I. Requirements engineering. Here are the requirements formulated by
the customer of the system.

II. Requirements analysis. In this stage the functions of the application
are identified from the requirements specification. An important aspect
here is also to determine temporal constraints for these functions.

III. High-level system decomposition. In this stage the application’s
different operational modes are identified together with valid transitions
between them, by specifying the mode transition graph.

IV. Function decomposition and structuring. The functions, for each
mode, are decomposed into transactions. Note that one transaction
could belong to several modes. Transactions are decomposed into
smaller units called tasks and their low-level functions are specified
together with the data flow information between them. Some high level
functions has parts that have a high demand of responsiveness or are
very frequent (but small) so that implementing them as tasks would be
infeasible. Therefore such low-level functions are implemented as
interrupts. This is formally described in an interaction graph.

 35

Function decomposition
and structuring

IV

High level system
decomposition

III

Mapping temporal
constraints to attributes of the

task model V

Definition of
execution time budgets

VI

Feasibility check and
automatic implementation

VII

Implementation and
module testing

VIII

System integration and
verification

 IX

Requirements analysis

II

Requirements engineering

I

Design

Figure 4: The design methodology

V. Mapping temporal constraints to attributes of the task model. In the
previous stage the high level functions were decomposed into smaller
units and structured according to the interaction between them. This
step has to brake down the high level temporal requirements into
temporal attributes for these smaller units. The expressiveness of the
task model attributes are different, and lower level, than specified for
the high level functions, so it is important that this transformation is
done in a safe way, i.e., that the task model attributes does not violate
any of the high level constraints. It is also important that this mapping
does not overconstrain the system.

VI. Defining Execution Time Budget. Traditionally the assessment of
WCET is done by either measurements or by statically analyzing the
code produced for each task. In this approach, however, execution time
budgets are defined, these budgets are later in step VIII used as
implementation requirements. The reason for this is that a feasibility
test for the system, and a possible re-engineering, can be done at an

 36

early stage, and thus provide early detection of design errors related to
resource utilization, communication and synchronization.

VII. Feasibility check and automatic implementation. The formally
described design can be checked for temporal correctness even if no
actual (low-level) implementation has been done. This is done by a
static scheduler, which tries to find a feasible schedule. Besides the
schedule, the communication infrastructure is automatically generated.

VIII. Implementation and module testing. The implementation of tasks is
simply done by traditional programming (coding). Besides the
traditional functional specification, the programmer also has the
execution time budget as an implementation requirement, i.e., the
programmer has to implement the specified function in a way that it
does not violate the budget. The module testing includes both verifying
the functional behaviour as well as that the time budgets are not
violated. If the time budget cannot be met a redesign has to be done.

IX. System integration and verification. The integration phase is usually
done very quickly and without problems since the actual integration was
done in the design with a strict semantics. The major work is to do the
integration testing.

The above figure and listing defines the activities performed in each step,
and the iteration when using this method.

6 Findings
In this section we will describe the findings acquired when introducing

and using the design language and method earlier described in Section 2.
The findings are categorized into those related to development methodology,
technology transfer, and technical issues respectively. The development
methodology covers the findings based on the use of the design language
and method. The technology transfer part describes issues regarding the
transferring and introduction of new technology and especially real-time
technology into an organization. The technical issue part presents new or
relevant technical challenges that have been discovered during this work.

6.1 Design methodology
Finding 1: The design language provides a good basis for the design
description.

Motivation:

Using the design language described in Section 3 gives three major
benefits when designing a system:

1. It gives a skeleton of the application, which can be analysed without
having a single line of code.

 37

2. The analysis leads to early error detection of communication,
synchronization, and timing errors.

3. Simplified system integration.

Currently we can analyse communication, synchronization, and timing
requirements. Communication is analysed in three different aspects. Firstly,
the types of connected ports are checked, which ensures that the proper data
types are passed to the tasks. Secondly, the analysis will reject a design
where the amount and rate of data passed through the system makes it
infeasible to fulfil the timing requirements. Thirdly, data consistency is
checked. Again, if there is no possible way of fulfilling all timing
requirements and at the same time guarantee data consistency, the design is
rejected.

The analysis of the synchronization makes sure that all precedence and
mutual exclusion relationships between tasks can be guaranteed in
conjunction with guaranteeing the timing requirements.

Finally the analysis of the timing requirements reveals if it is possible to
find a schedule for the given design and execution time budgets that fulfils
these timing requirements. If it is impossible to fulfil the timing
requirements the design will be rejected.

The analysis presented above leads to early detection of errors, in the
design, of the properties that are analysed. Such errors are otherwise often
found in the integration phase of the project and thereby cost a lot of time
and effort to correct.

System integration is also simplified by the early analysis. If the
implementation of the code of each task comply with the interface given by
the design, i.e., retrieving data only from the in-ports, performing the desired
function within the given execution time budget, and producing data only to
the out-ports, then the integrated system will fulfil the design and thus
satisfy the requirements. Thus, a step of the development process, that often
tends to be quite troublesome and leading to costly delays in the project, are
simplified.

Note that the only thing that has to be added to implement the design is
the task code, everything else is automatically generated, i.e.,
communication, synchronization and an execution scenario (schedule).

Finding 2: The use of a precise design language

a) Enables parallel implementation and testing of the tasks.

b) Facilitates efficient integration of new personnel into the project.

Motivation:

a) The task model stipulates tasks, which have no synchronization or
communication within the code. Recall from section 2, that each task
uses a computational model based on input - calculation - output. That
leads to that each task can be implemented and tested in parallel since

 38

each task is only dependent on its own state and the values of its in-ports
to make a calculation. The module testing is, thus, very simple to make,
just feeding values to the in-ports and monitoring the output. This also
allows regression testing of modules.

b) One small group of people, who have good knowledge about the system
and a good feeling of future demands on the systems, develops the
design. The design they come up with must be stable, that is, not too
many major changes are allowed to occur after the implementation phase
start. If that is accomplished, it is easy to introduce new personnel into
the implementation phase since each new employee or consultant only
has to understand the design language and obey the given interface to be
able to start to implement and test. The design language has decreased
the introduction time for new employees substantially.

Finding 3: The methodology increases the time spent in the design phase
but shortens the implementation time.

Motivation:

We feel that the time to complete the design phase has increased
compared to similar projects, which have used traditional informal
techniques (such as structured analysis and design). This is not surprising
since a precise design with analysis is harder to come up with, compared to a
design that just is based on written documents. However, we feel also that
the precise design has lead to shorter time spent on implementation, test, and
integration due to reasons described earlier in this section. We also believe
that it will be much easier to maintain a system based on a precise design
compared to a traditional system. This is mainly due to two reasons:

1. Normally the implementation and the design tend to diverge which
makes it hard to foresee the impact of changes and added functionality.
This can be avoided by the fact that the tools are useful and actually
produces verified functionality. It is for example quite natural and widely
accepted to use the compiler instead of adding object code here and there.
Another restraining factor can be the fear of disturbing the order laid out
by the tools, again compare with the compiler example.

2. Even if there is a good match between the design documents and the
implementation it is not easy to foresee the impact of changes and added
functionality. In our case several properties of the altered design can be
analysed, as discussed earlier, already in the design phase. So changes or
add-ons that does not comply with the implemented functionality will be
detected.

Finding 4: Execution time budgets for tasks turned out to be good as a
design tool and implementation requirement.

Motivation:

To be able to make an early capacity analysis of the resources in the
system, like processors and buses, each task has to have an execution time

 39

budget. This budget states how much of the processor capacity the task is
allowed to utilize. The difficulty in specifying this budget is to relate the
execution time budget to the functional requirements of the task, e.g., for a
controller it should be possible to fulfil the desired control performance
within the specified time budget. If it is not possible this time budget is
erroneous. The execution time budgets are then used as implementation
requirements.

In this project we were really surprised that these budget estimations
where so good. However, the engineers that specified these budgets had
many years of experience in control system design and good knowledge
about hardware close programming.

To verify that the implementation fulfils the requirements the execution
time for the tasks was measured and sometime calculated.

6.2 Technology transfer
Finding 5: To be able to transfer real-time technology to industry; tools,
education (courses, tutorials), carriers, and adapters are required.

Motivation:

Tools:

When transferring theories to the industry it is necessary that the theory is
encapsulated in a tool, which shows the practical use of the theory [Sch96],
unless the theory is very simple [Bat99]. A good example of a tool that
encapsulates advanced technology well is a traditional compiler. In this case
the tool was in the first version an application written in a high level
language that was easy to adapt to up-coming requirements from the
industry. To handle these up-coming requirements in an efficient way is
important to succeed in the transfer, a part where the carrier described below
play a significant role. The tool was later ported to a low-level language to
get an efficient implementation.

Courses:

We have found out that an engineer requires at least two days of training
to understand the basic real-time theory and the added methodology to be
able to work with design of new systems. So in reality for an experienced
engineer it will take about one week including the training course to be
productive, from the model and methodology point.

Carrier:

The success of this transfer is mainly because one person, that worked in
the research group where the ideas where developed, started to work as a
consultant for TietoEnator ArosTech at VCE. Regardless how many good
reports we write we need people that carries the results [Dal94]. A related
example is the development of the control system for Volvo S80 where Ken
Tindell and others carried the response time analysis for the CAN bus into a

 40

tool and implanted that tool into Volvo Car Cooperation organization
[Cas98, Mel98].

Citation: "Tech transfer is a contact sport. People not paper transfer
technology" [Fol96].

Adapters:

Even if we have carriers we need early adapters at the company that take
the technology into the company and its organization. These people need to
be authoritative to be able to sell the new technology in the organization.
There is always a healthy conservatism in all organization. Therefore one
must find people that are ready to invest enough time and energy to find out
if the technology is applicable and gives an added value to the development
of their products or not [Ben96].

Finding 6: The major problems when introducing real-time technology in an
organization is to change the requirements caption process to include timing
requirements.

Motivation:

Several independent sources have given the same statement (Volvo Car
and Volvo Construction Equipment). Especially since all engineering
disciplines within a company has to change their way of specifying
requirements on the electronics. The main problem is that once a timing
requirement for a high-level function has been derived, it is very hard to
reconsider it later on. It seems that a timing requirement becomes more and
more truthful the older the timing constraint becomes. This really comes to
the surface when a new function is added and the schedulabilty test is
negative depending on that the utilization of the system is too high. To add
this function anyway you need to find either execution time budgets that are
too generous or timing requirements that are too strict. Assuming the
overestimation of execution times is neglectable, the timing requirements
have to be reconsidered. To find out which timing requirements that have to
be relaxed there must exist a notion of confidence of the timing
requirements. As an example, the time from pressing a particular lamp
switch until the light is turned on should it take 200 ms or 300 ms, if the
requirements say that the confidence in specifying 200 ms is low this timing
requirement could be considered to be relaxed. Thus the results from the
requirements caption process must be clearly expressed and well motivated
since it will be used during the complete life cycle of the system.

6.3 Technical issues
Finding 7: The task model used (described in Section 2) is in some cases
too restricted when handling control jitter for simple controllers and
especially for multirate controllers.

 41

Motivation

The limited expressiveness in the used task model is related to the jitter
problem and multirate communication problem. Specifying release times
and deadlines of the tasks involved in the computation can be used to fulfil
for example jitter requirements. However, this is a problem since the
engineer has to distribute the release times and deadlines at the timeline to
not overload a specific window of the timeline. This means that the engineer
has to act as a pre scheduler to the scheduler, which is not efficient. Instead,
a desired property of the task model would be to have the possibility to
specify relative timing constraints. For example, a sampling task is required
to run with a certain period time and have a tolerance of a specific amount
(Period time ± tolerance). Relative timing constraints could also be used for
specifying latency constraints, e.g., the time between sampling and
actuation. Furthermore, when a controller consists of several entities that run
with different period times, i.e., multirate control, one would also like to
have the possibility to specify latency constraints. If the used task model
supported this it would be much simpler to specify a system. Extending the
task model is an easy task but to come up with useful tools to schedule a
system based on such a task model is not an easy task.

Finding 8: Task model and scheduling techniques reported in literature has
to be extended to take real-world requirements into consideration.

Motivation:

When the scheduling tool for this task model was developed we had to
take several important aspects into account to be able to get a tool that
utilized the resources of the target system efficient. The two aspects we will
cover here are schedule representation and taking interrupt overhead into
account when constructing the same schedule.

Schedule representation. A common representation of a static schedule
is a vector, where one position in the vector represents a discrete point in
time at which the execution of a task can start. The granularity of time has to
be matched with the frequency of the periodic clock that drives the
dispatcher, which will execute the tasks according to the schedule. If the
execution time of a task is less than this granularity, or if it exceeds a
multiple of the granularity with a small fraction, then the utilization of the
CPU resource will decrease. This because there will be time intervals that
can not be used to execute tasks. An apparent solution to this is to increase
the granularity (frequency) of the periodic clock. However, with a higher
frequency of the clock the dispatcher will instead use more of the CPU
resources, since it will execute more often.

0

3000
D

CBA

Figure 5: The representation of a schedule.

 42

Another way of representing a schedule is as a list of rows, see Figure 5,
where each row represents a point in time at which the dispatcher is to start
the execution of a sequence of one or more tasks. The first task in this
sequence, or chain, is started at the given point in time. All other tasks in the
chain are started as soon as the preceding task in the sequence has
completed its execution, without need for the clock to trigger the dispatcher.
This representation will allow several tasks to be executed during an interval
less than the period time of the dispatcher clock. Hence, the dispatcher
overhead can be kept low at the same time, as the utilization of the CPU
resource is high.

Interrupt overhead. Typically, pre-run-time scheduling does not
account for interrupts, assuming their execution can be ignored or
incorporated into task execution times. In many applications, the interrupts
are, however, non-negligible and inclusion in task execution is too
pessimistic and inefficient. Furthermore, as inter-arrival and execution times
of interrupts are smaller than the granularity of the online dispatcher and the
arrival times are unknown, interrupt-handling routines cannot be modeled as
pre scheduled tasks. The application of server algorithms, e.g., sporadic
server [Spr89] total bandwidth server [Spu94], and slack stealing [Leh92]
are not feasible due to the short response times that are required.

The key issue for static scheduling accounting for interrupts is the
consideration of the overhead. If interrupts occur at run-time, interrupt-
handling routines are executed. The delay this poses on task execution must
be accounted for when the system is scheduled. Evidently, an inherent,
minimum amount - the worst case penalty - to handle a worst case scenario
has to be reserved, according to minimum inter-arrival times and execution
times. Any amount exceeding this, however, is overhead imposed by the
used method. It is this overhead that has to be kept small for efficient
utilization of the processor. During this project we had to develop a method
that handled interrupts in an efficient manner. This method combines a tree
search algorithm with response time analysis, see the paper by Sandström et
al [San98].

Finding 9: To make a pre-run-time scheduler tool really useful, feedback
has to be provided to the user when the system is not schedulable.

Motivation

When applying scheduling in industrial projects, engineers are faced with
a problem that only to a very limited degree has been attacked by the real-
time research community, namely how to provide constructive feedback to
the user in cases when a feasible schedule can not be found.

 43

Specification file Schedules

Happy
designer

Pre run-time
scheduler

feasible
system

unfeasible system

NULLConfused
designer

Figure 6: Pre run-time scheduling: present situation

This limited feedback problem leads to confused designers, as illustrated
in Figure 6, which more or less at random have to optimize and modify the
specification. However, to help the designer to come up with a specification
for which the pre-run-time scheduler can find a feasible schedule, there is a
need for heuristics that analyze the specification for semantic problems and
give constructive feedback to the user. That is, the user should be provided
hints to how the problem can be resolved, i.e., how the specification can be
modified to allow the generation of a feasible schedule.

We have developed a method to provide feedback to the user by
calculating a load function for the system. By identifying bottlenecks in the
system specification we can guide the designer in modifying the input to the
pre-run-time scheduler. The underlying hypothesis is that there is a
correlation between the points in time when the load function has a high
value, and the locality of the bottlenecks in the specification that leads to an
infeasible schedule, [All96].

Finding 10: To minimize the verification effort when only small updates
have been done to the application an incremental scheduling is needed.

Motivation

When an application has been tested and used in a vehicle for some time
without any problems, the application is accepted and released. If then later
some new functionality is added one wants to keep as much as possible of
the execution order in the application to avoid major re-verification efforts.

This is not possible today, that is, when adding new functionality to the
application a completely new schedule has to be generated. The major
drawback of this approach is that the application verification and validation
has to be completely redone to guarantee the functionality.

A desired feature of a scheduler would be to have the possibility to
incrementally add new tasks to the application without affecting the already
verified and unchanged part. A scheduler that takes both the updated design
specification and the old verified schedule as input could solve this problem.
The scheduler could try to find space in the old schedule for the new tasks or
if not minimize the number of changes.

We believe that it is more important to keep the order than keeping the
exact start times of the tasks, as long as the timing requirements are fulfilled.

 44

We believe this because there often are margins in the execution windows
for the tasks while a change of order could have severe impact for example
on multirate transactions, which often are sensitive on data age.

7 Conclusion and Future research
We believe the presented project has been successful in transferring real-

time technology from a university to an industrial partner. As a result, the
industrial partner has adopted a more systematic and formalized design
process, which has shortened the overall development cycle compared to
similar previous projects. It also seems that the quality of the products has
met the requirements.

However this transfer goes both ways, industry has also provided new
relevant challenges for academia. An example of this is the limited
expressiveness of the task model for real world constraints including
specification of jitter constraints and specifying relative timing constraints
(suited for multi rate control systems). It would be quite easy to extend the
task model with such attributes, but the mapping of these to an
implementation and the feasibility check, including schedule construction, is
not a trivial task. Another example is the limited feedback problem of the
static scheduler when it is unable to find a feasible schedule. There is a lot to
gain if information can be given to the designer where to find the
bottlenecks in the design and specification. The need of a incremental
scheduler is also pointed out, which would be very useful when maintaining
the application.

Remember: tech transfer is a contact sport, people not paper transfers
technology!

Acknowledgements: We would like to thank Jack Stankovic, Hans
Hansson, Sasikumar Punnekat, and Ivica Crnkovic for valuable discussions
and for reviewing earlier versions of this paper. We would also like to thank
Krithi Ramamritham for encouraging us to write this paper.

Mälardalen Real-Time research Centre (MRTC; www.mrtc.mdh.se) is a
research centre in Västerås, Sweden, supported by Swedish industry, the
Swedish Foundation for Knowledge and Competence Development (KK-
stiftelsen) and Mälardalen University.

8 References
[Ben96] J. L. Bennett. Building Relationships for Technology Transfer.

Communications of the ACM, Volume 39 Number 9. Sep. 1996.

[Spr89] B. Sprunt, L. Sha, and J. Lehoczky. Aperiodic Task Scheduling for
Hard-Real-Time Systems. The Journal of Real-Time Systems 1, 27-
60 (1989)

http://www.mrtc.mdh.se/

 45

[Leh92] J. P. Lehoczky and S. Ramos-Thuel. An optimal algorithm for
scheduling soft aperiodic tasks in fixed priority preemptive systems.
In Proc. IEEE Real-Time Systems Symposium. Dec. 1992.

[All96]B. Allwin, K. Sandström, and C. Eriksson. Constructive Feedback
Turn Failure into Sucess for Pre-Run_time Schduled Systems. 11th
Euromicro Workshop on real-time systems.

[Spu94] M. Spuri and G. C. Buttazzo. Efficient Aperiodic Service under
Earliest Deadline Scheduling. In Proc. IEEE Real-Time Systems
Symposium. Dec. 1994.

[San98] K Sandström, C. Eriksson, and G. Fohler. Handling Interrupts with
Static Scheduling in an Automotive Vehicle Control System. In
Proceedings of the fifth International Conferance on Real-Time
Computing Systems and Applications, pp. 158-165, October 1998.
ISBN 0-8186-9209-X.

[Fol96] Jim Foley. Technology Transfer from University to Industry.
Communications of the ACM, Volume 39 Number 9. Sep. 1996.

[Cas98] L. Casparsson, A. Rajnak, K. Tindell, and P. Malmberg Volcano a
revolution in on-board communications. Volvo Technology Report.
98-12-10.

[Mel98] K. Melin. Volvo S80: Electrical system of the future Volvo
Technology Report. 98-12-11.

[Bos00] J Bosch. Design and Use of Software Architectures, Adopting and
Evolving a Product-Line Approach Addison Wesley. ISBN 0-201-
67494-7, June 2000 (forthcoming)

[Kal88] D. Kalinsky and J. Ready. Distinctions between requirements
specification and design of real-time systems. Conference
proceedings on TRI-Ada '88 , 1988, Pages 426 – 432.

[Dal94] M Dalziel. Effective university-industry technology transfer.
Canadian Conference on Electrical and Computer Engineering, 1994
, Conference Proceedings, Page(s): 743-746 vol.2

[Bat99] I Bate and A. Burns. An Approach to Task Attribute Assignment
for Uniprocessor Systems. Proceedings of the 11th Euromicro
Conference on Resal-Time Systems, York, England, UK, June, 1999

[Sch96] J. Scholtz. Technology Transfer through Prototypes.
Communications of the ACM, Volume 39 Number 9. Sep. 1996.

[Ram90] K. Ramamritham. Allocation and Scheduling of Complex Periodic
Tasks. In 10th Int. Conf. on Distributed Computing Systems, pages
108-115, 1990.

 46

Handling Interrupts with Static Scheduling
in an Automotive Vehicle Control System

by
Kristian Sandström, Christer Norström, Gerhard Fohler

Mälardalen Real-Time Research Centre, Department of
Computer Engineering, Mälardalen University, Västerås, Sweden

In Proceedings of the fifth International Conferance on Real-
Time Computing Systems and Applications, October 1998.

IEEE Computer Society.

B

 48

 49

Handling Interrupts with Static Scheduling
in an Automotive Vehicle Control System

Kristian Sandström, Christer Norström, Gerhard Fohler

Mälardalen Real-Time Research Centre, Department of Computer
Engineering, Mälardalen University, Västerås, Sweden

Abstract
The requirements of industrial applications only rarely permit the

exclusive use of single paradigms in the development of real-time systems.
Product cost, reuse of existing solutions, and efficiency require diverse, or
even opposing methods to coexist or to be integrated. In this paper, we deal
with one problem encountered during the development of a real-time system
for motion control in automotive vehicles, the integration of static
scheduling and interrupts. The user mandates pre run-time scheduling for a
number of reasons, e.g., predictability, testability and low run-time
overhead. However, the interrupt overhead can not be ignored in a safety
critical system, and therefore has to be accounted for when creating a static
schedule. We propose a method that combines static scheduling and run-
time interrupts by applying standard static scheduling techniques and exact
analysis. The appropriateness of this method is underlined by successful
industrial deployment.

1 Introduction
Requirements of industrial applications only rarely permit the exclusive

use of single paradigms in the development of real-time components.
Product cost, reuse of existing solutions, and efficiency require diverse, or
even opposing methods to coexist or to be integrated. In this paper, we deal
with one problem encountered during the development of a real-time system
for motion control in automotive vehicles, the integration of static
scheduling and interrupts.

This method of managing interrupt and static scheduling has been applied
in industry, for development of the control system for automotive vehicles.
The real-time system managing the motion of the automotive vehicle
consists of two single micro controller units and redundant busses. The
application tasks are assumed to be precedence constrained, allow additional
synchronisation via mutual exclusion, and to communicate with tasks of the
same and different period times. Communication between interrupt routines
and application tasks is indirect via memory only, i.e., there is no direct,
synchronised communication. Minimum inter-arrival times for interrupts are
known but exact points in time for arrivals are unknown. The particular

 50

problem to be solved is to construct static schedules, i.e., start times and
completion times for tasks in such a way, that interrupts are accounted for in
a safe and efficient way. We will discuss the concrete industrial
requirements leading to this problem and our general solution in this paper.

The user mandates pre run-time scheduling for a number of reasons, e.g.,
predictability, testability and low run-time overhead. However, various
hardware architectures rely on the use of interrupts, e.g., to read sensor data
and manage bus messages. This company had used a time-triggered
architecture for many years. As the constructed systems where quite small
and simple, the pre run-time schedules where hand crafted. In this new
version of the control system the functionality and complexity has increased
dramatically. The consequence of this was that the engineers needed the
help of tools for schedule construction. The first version of the tool created
the schedules but did not take the effects of interrupts into account. The
interrupt overhead was non-negligible and as a result there were a lot of
deadline violations during run-time. The first attempt to solve this problem
by the engineers was to increase the worst-case execution time (WCET) of
the tasks by multiplying it by a constant. The result was that fewer, but not
all, tasks missed their deadlines. It was not possible to increase this constant
so that all tasks met their deadline and still have a schedulable system. The
second attempt was to increase the WCET for each task by the worst-case
interrupt interference. No task would miss its deadline with this approach,
but it was impossible to find a feasible schedule for the system due to the
pessimistic assumption. Therefore an algorithm that more exactly calculates
the worst-case interrupt interference for a given task set was required.

Typically, static scheduling does not account for interrupts, assuming
their execution can be ignored or incorporated into task execution times. In
a number of applications, the interrupts are, however, non-negligible and
inclusion in task execution is too pessimistic and inefficient. Furthermore,
as inter-arrival and execution times of interrupts are smaller than the
granularity of the online dispatcher and the arrival times are unknown,
interrupt-handling routines cannot be modelled as pre scheduled tasks. The
application of server algorithms, e.g., sporadic server [4] total bandwidth
server [6], and slack stealing [5] are not feasible due to the short response
times that are required. The same holds for slot shifting [1], which, in
addition, is only reactive, i.e., it is applied to existing schedules, instead of
providing guarantees along with schedule construction. Ramamritham has
proposed an algorithm that distributes resources during schedule
construction [2], but does not give guarantees either.

The key issue for static scheduling accounting for interrupts is the
consideration of the overhead. If interrupts occur at run-time, interrupt-
handling routines are executed. The delay this poses on task execution is
accounted for feasibly in the schedule beforehand. Evidently, an inherent,
minimum amount - the worst case penalty - to handle a worst case scenario
has to be reserved, according to minimum inter-arrival times and execution
times. Any amount exceeding this, however, is overhead imposed by the

 51

used method. It is this overhead that has to be kept small for efficient
utilisation of the processor. The naive approach of adding a worst case
penalty to every task, each may be ”hit” by a worst case interrupt arrival, is
overly pessimistic. In this industrial application, the naive approach results
in a utilisation of 140.1 %. Instead, our algorithm eliminates consideration
of unnecessary penalties by utilising information about task execution
behaviour at run-time for a given schedule. We provide analysis to be used
during schedule construction, as well as, being applied to already
constructed schedules.

Our algorithm enables the co-existence of the seemingly adverse
paradigms of static scheduling and interrupts. It determines interrupt
overhead during schedule construction in an efficient way and allows the
analysis of existing schedules for feasible interrupt handling. The described
algorithm is successfully deployed as part of a commercial toolkit for design
of embedded real-time systems.

The rest of this paper is organised as follows: section 2 describes the
industrial application and its requirements and section 3 describes the task
model and the representation of a schedule. The proposed algorithm and its
applicability are described in section 4. Section 5 summarises the paper.

2 Application characteristics
The application is a vehicle control system with high demands on safety,

reliability, and timeliness. The hardware in the system consists of a number
of nodes that are connected via redundant buses. The application contains
tasks, running at different period times, which collaborate to perform a
certain control function. The system contains about 80 tasks with well-
defined functionality allocated to two nodes. Each node is very I/O
intensive. The complete system has about 150 I/O channels connected to it.

The application contains tasks with three different period times: 10
milliseconds, 50 milliseconds, and 100 milliseconds. A few tasks require
longer period times, in these cases a task is executed with a period time of
100 milliseconds and the actual period time is controlled by an internal
counter. The reason for this construction has been to keep the size of the
schedule at an appropriate level. The execution times of the tasks in the
application range from about 10 µs to 1 millisecond. To be able to fulfil the
jitter requirements a clock tick resolution of one millisecond is used. The
requirements on jitter for I/O are between 2 and 20 milliseconds depending
on the rate of data. Due to the fact that a majority of all tasks have an
execution time that is less than one clock tick it is of vital importance that
the scheduler can schedule several tasks within one clock tick. As a
consequence the dispatcher has to support switching between these tasks
without the occurrence of a clock tick (see Section 3).

The application is, due to the construction of the hardware, quite interrupt
intensive. As this application has a number of interrupts and the effect these
interrupts have on the timing of the tasks has to be taken into account when

 52

constructing the schedule. Hence, the minimum inter-arrival time and
duration of the interrupts are specified in the design. The minimum inter-
arrival times for the interrupts are 250 µs, 500 µs, and 1 millisecond.

The worst-case utilisation of the processors for the critical part is around
80%. Divided into 35% for interrupts and 45% for application tasks. The
spare capacity left is used by soft real-time tasks. During run-time the spare
capacity will be more than the remaining 20% if the load is less than the
worst case.

3 Task model and run-time representation
The task model allows a number of requirements to be expressed. For

each task the following temporal requirements have to be specified:

• Period time

• Release time (relative the start of the period)

• Deadline (relative the start of the period).

• Worst case execution time

Relations between tasks can be specified by:

• Precedence relationships

• Mutual exclusion relationships (shared resources)

• Communication

• Synchronous communication (communication between task that
have same period time)

• Asynchronous communication, i.e., communication between
tasks running with different period times. The semantics of
asynchronous communication is that messages are transferred
with the lowest frequency of the sender and the receiver

In addition, all interrupts have to be specified by minimum inter arrival
time and worst case execution time of the interrupt routine.

When creating a schedule, not only these requirements have to be taken
into account, but also the run-time representation of the schedule. A
common representation of a static schedule is a vector, where one position
in the vector represents a discrete point in time at which the execution of a
task can start. The granularity of time has to be matched with the frequency
of the periodic clock that drives the dispatcher, which will execute the tasks
according to the schedule. If the execution time of a task is less than this
granularity, or if it exceeds a multiple of the granularity with a small
fraction, then the utilisation of the CPU resource will decrease. This because
there will be time intervals that cannot be used to execute tasks. An apparent
solution to this is to increase the granularity (frequency) of the periodic

 53

clock. However, with a higher frequency of the clock the dispatcher will
instead use more of the CPU resources, since it will execute more often.

Another way of representing a schedule is as a matrix, where each row
represents a point in time at which the dispatcher is to start the execution of
a sequence of several tasks. The first task in this sequence, or chain, is
started at the given point in time. All other tasks in the chain are started as
soon as the preceding task in the sequence has completed its execution,
without need for the clock to trigger the dispatcher. This representation will
allow several tasks to be executed during an interval less than the period
time of the dispatcher clock. Hence, the dispatcher overhead can be kept
low at the same time as the utilisation of the CPU resource is high.

0

3000
D

CBA

Figure 1. The representation of a schedule.

The chains in the matrix are ordered with ascending start times. In Figure
1 we see two chains: one starting at time zero including task A, B and, C,
and the other starting at time 3000, including only task D. Task B and C is
defined as chain successors to A. If pre-emption of tasks is allowed, the
schedule can be constructed so that a chain can be pre-empted by another
chain that has a later start time. As soon as the last task in that chain
completes, the pre-empted chain will resume its execution. It is the task of
the static scheduler to construct chains that unconditionally will fulfil all the
requirements put on the task set.

The latter representation is used by the run-time system that is used
together with the method described in this paper.

The following rules apply to the construction of chains:

• The start time of a chain has to be a multiple of the OS clock tick.

• Consecutive chains have ascending start times.

• The earliest start time of a task is the start time of the chain. The reason
for this is that the minimal execution times are unknown, and therefore is
assumed to be zero.

• The latest completion time of a task T is the sum of the worst-case
execution time (WCET) of all chain predecessors of the task, plus the
WCET of the task itself. If the task T or any of its chain predecessors is
pre-empted by another chain, the WCET of all the tasks of that chain have
to be taken into account when calculating the scheduled completion time
for task T.

• A task T might be pre-empted if the scheduled completion time of task T
is greater than the start time of a succeeding chain. A succeeding chain is

 54

a chain that has a start time greater than the start time of the chain that
task T is part of.

• If pre-emption is not desired the schedule is constructed in such way that
the last task of a chain always has a scheduled completion time that is
less or equal to the succeeding chain's start time and thus pre-emption
can not occur.

4 Algorithm
The algorithm has to introduce as little additional overhead as possible.

One way of doing this, instead of penalising each task, is to make use of the
fact that tasks are executed in chains. For example, if n tasks are executed
after each other in the same chain they can, from an algorithmic perspective,
be viewed as one single task. We can then calculate the completion time of
the n’th task with exact analysis [3] for one task having an execution time
of the sum of the n tasks. The critical instant will be at the start time of the
chain and the interrupts is regarded as higher priority tasks. This is repeated
for task n-1 disregarding task n and so on. The advantage of this approach is
that we can have a single critical instant for all the n tasks. In this way, the
total penalty for all tasks will be lower than the naive approach in most
cases (never higher).

If pre-emption is considered things become more complicated. For a pre-
empted chain we have to consider the delay introduced by the pre-emption.
We also have to take into account the interference, from interrupts, put upon
both the pre-empting chain and the pre-empted chain. With a critical instant,
as before, at the start time of the chain, we can calculate which task that will
be pre-empted, and where during its execution. We then insert the pre-
empting chain at this point and continue calculating the interference on the
rest of the chain including the pre-empting chain.

More precisely, the effect that the interference of an interrupt has on a
specific task T can be split into two different cases that are of interest:

1. The interrupt hits the task T or a task that is a chain predecessor.

Assume that task T is hit by an interrupt. The effect this will have on
task T's completion time, will be the same as if task T's execution time
would be prolonged with the execution time of the interrupt routine. As
a consequence, the completion time of all tasks that are chain successors,
to the task that were hit, will be delayed with the same amount.
Conclusion; if task T or a task that is a chain predecessor is hit by an
interrupt the direct worst-case delay is the WCET of the interrupt routine.
See Figure 2.

 55

B

A
Figure 2. The interference of interrupts.

2. The interrupt hits a task that is executing in a chain that has pre-empted
task T or a chain predecessor to task T.

The chain that is hit by the interrupt will be affected according to case
1. This will delay the resume point of the pre-empted chain. Therefore
task T and all its chain successors will be delayed by the WCET of the
interrupt routine. Conclusion: the direct delay of task T will be the
WCET of the interrupt routine.

The term direct delay is used because a delay of a task could lead to a
pre-emption that would not normally occur if the task were not delayed.
See Figure 3.

D

BA

D

BBA

Figure 3. An interrupt may cause pre-emption.

It should be noted that in case 2, the pre-empting chain could in itself be
pre-empted. Though, all such cases could be explored with a combination of
case one and two. In all other cases, the task, which we considered, will not
be affected.

4.1 Calculation of worst case completion time
Assuming that chains are enumerated and that tasks in a chain are

enumerated in ascending order, with the first task in the chain numbered
one. For a given task i in a chain ch the worst-case completion time, relative
the start time of the chain, is then given by:

interrupt
interrupt)(

)(

11 interrupt

C
T

R
CCR i

iRicp

pnofTask

m

p
m

i

n

ch
i n ∑∑ ∑∑

∀∋∀ ==

++=

Where:

• Cb
a denotes the WCET of task b in chain a

 56

• ic(Ri) denotes all chains p that conforms to:
(p ≠ ch) ∧ startTime(ch) < startTime(p) ≤ (Ri + startTime(ch))
This is all chains that pre-empt task i or any of its chain predecessors.

• nofTask(p) is the number of tasks in chain p.

To show whether this analysis is correct, a general chain configuration
could be expressed as a set of tasks conforming to exact analysis. If, for this
task set, the exact analysis could be written as the equation above, then this
equation can rely on the proof of exact analysis [3]. This proof is available
in the appendix.

4.2 Applying the algorithm
Below is a pseudo code description of an implementation of the

algorithm. The objective is to calculate the completion time for a task i,
residing in a chain ch with start time t. Given is a set of interrupts with
minimal inter arrival time and WCET.

Let TaskInterference be the sum of the WCET of all tasks that interfere
with task i. Tasks in chains with start time less than t are of no interest,
because they do not interfere with task i.
Let hChains be all chains that have a start time greater than t.

1. TaskInterference = WCETi + ∑ WCET of all tasks
that precede taski in chain ch.

2. Ri
0 = TaskInterference.

3. For every chain, hchain, in hChains do
If Ri

n + t > startTime(hchain) then
TaskInterference = TaskInterference +

∑ WCET of all tasks in hchain
Ri

n = Ri
n + ∑ WCET of all tasks in hchain.

Remove hchain from hChains
EndIf

4. Ri
n+1 = TaskInterference +

interrupt
interruptinterrupt

C
T

R n
i∑

∀

If Ri
n+1 + tchain > deadline(taski) then abort.

Else If Ri
n+1 = Ri

n and Ri
n+1 + tchain < start time of

all chains in hChain then

Ri
n+1+ t is the latest completion time of

task i.
Else go to step 3.

 57

When the algorithm is incorporated into the scheduling phase, this
algorithm is used while constructing the schedule. This means that some of
the chains in step 3 might not exist from start when calculating the
completion time of taski. Instead they will ”appear” as the scheduling
proceeds. If a new chain, that pre-empts taski, is created the algorithm has to
be applied to that chain in a hierarchical fashion. The scheduler tries to put
as many tasks as possible in the same chain, as this will decrease the run-
time system overhead.

As an example, assume the following task set:

A B C

D

Figure 4. Precedence graph of the example.
The arrows in between tasks, in Figure 4, denote precedence

relationships, the filled circles denotes start and end of the graph.

Task WCET Release time Deadline Period Time

A 2000 0 5000 5000

B 200 0 5000 5000

C 1000 0 5000 5000

D 800 3000 4000 5000

Table 1. Specification of tasks.

Interrupt WCET Minimum inter arrival time

Interrupt1 100 1000

Interrupt2 100 3000

Table 2. Specification of interrupts.
Assume that the scheduler uses pre-emption and earliest deadline as

search heuristic. The clock tick is 1000. A schedule that does not consider
the interrupt interference will then look like Figure 5.

400038003000220020000

A B C

D

1000
Figure 5. The schedule for the example.

If we calculate the worst case completion time for each task, with the
analysis presented, the completion times of the tasks will be:

 58

2300100
3000
2000100

1000
2000020001 =

+

++=AR

2400100
3000
2300100

1000
2300020002 =

+

++=AR

2400100
3000
2400100

1000
2400020003 =

+

++=AR

Task A is the first task in the chain and the first term will therefore be
equal to the wcet of A. There is no task pre-empting A, hence, the second
term is zero. The total worst-case interference from the interrupts is 400 and
the worst-case completion time of A is 2400.

2600100
3000
2200100

1000
22000)2002000(1 =

+

+++=BR

2600100
3000
2600100

1000
26000)2002000(2 =

+

+++=BR

The first term for task B is the wcet of task A and B. Note that task B is
not “affected” by any interference from the interrupts. This does not mean
that an interrupt could not pre-empt B, but if it does, the completion time of
A will be less than the worst case and therefor task B will have an earlier
start time.

4600100
3000
4000100

1000
4000800)10002002000(1 =

+

++++=CR

4700100
3000
4600100

1000
4600800)10002002000(2 =

+

++++=CR

4700100
3000
4700100

1000
4700800)10002002000(3 =

+

++++=CR

Since task C clearly will be pre-empted by D, the second term will be the
sum of wcet of all tasks in the pre-empting chain, i.e., the wcet of task D.

1000100
3000
800100

1000
80008001 =

+

++=DR

1000100
3000
1000100

1000
100008002 =

+

++=DR

Task D is not affected by any interrupt interfering with the chain ABC,
since its start time is absolute and not dependent on A, B, and C. The worst
case completion time of D is 1000 + 3000 = 4000.

The utilisation in this example is 94%. The naive approach of including
interrupt overhead into task execution times will result in an utilisation of
102%.

 59

5 Conclusions
In this paper we presented methods to combine static scheduling and

online interrupt handling in the real-time system controlling the motion of
vehicles. We have described the real-world application and derived specific
requirements. Meeting these and consideration of cost and efficiency
necessitate the use of interrupts.

We propose analysis that allows the processing demand of online
interrupt requests to be taken into account during schedule construction, i.e.,
into the timing of task chains. The naive approach of including interrupt
overhead into task execution times is prohibitively inefficient. Rather, our
analysis limits the amount of penalty to be included for runtime interrupt
handling, by identifying task chains affected by worst case interrupt arrival.
In this industrial application, our methods result in a schedule size2 of 74.5
% of LCM, to be compared with 140.1 % using the naive approach. A lower
bound would be to summarise the WCET of all tasks and perform exact
analysis on that sum. In this case we would get a schedule size of 72.9 % of
LCM. This is the number that our method would result in if all tasks would
execute in one single chain. Though, this is not possible with the actual
specification.

The resulting static schedules allow the coexistence of the seemingly
conflicting paradigms of offline schedule construction and online interrupt
handling in an efficient way. The appropriateness of our approach is
underlined by its successful use in automotive vehicles.

6 References
[1] G.Fohler. Joint scheduling of distributed complex periodic and hard

aperiodic tasks in statically scheduled systems. In Proc. 16th Real-Time
Systems Symposium, Pisa, Italy, Dec. 1995.

[2] K. Ramamritham, G. Fohler, and J.-M. Adan. Issues in the static
allocation and scheduling of complex periodic tasks, In Proc. 10th IEEE
Workshop on Real-Time Operating Systems and Software, NY, USA,
May 1993.

[3] M. Joseph and P.K. Pandya. Finding response times in a real-time
system. Comp. J., 29(5). 1986.

[4] B. Sprunt, L. Sha, and J. Lehoczky. Aperiodic Task Scheduling for
Hard-Real-Time Systems. The Journal of Real-Time Systems 1, 27-60
(1989)

[5] J. P. Lehoczky and S. Ramos-Thuel. An optimal algorithm for
scheduling soft aperiodic tasks in fixed priority preemptive systems. In
Proc. IEEE Real-Time Systems Symposium. Dec. 1992.

2 Schedule size is defined as the percentage of time of the LCM schedule that is allocated to the tasks.

Interrupts that occur at instants during the LCM where no tasks are scheduled are not included in the schedule
size. Therefor the schedule size can be lower than the utilisation is not strange.

 60

[6] M. Spuri and G. C. Buttazzo. Efficient Aperiodic Service under Earliest
Deadline Scheduling. In Proc. IEEE Real-Time Systems Symposium.
Dec. 1994.

 61

Appendix
In this appendix we show how a general chain structure can be expressed

as a set of tasks conforming to the exact analysis theory. For this task set we
will show that the exact analysis can be re-written as the presented formula
for analysing interrupt interference.

Definition: A chain predecessor to a task i is any task that is scheduled
to execute before task i and is allocated to the same chain.

To calculate the worst case response time for a task i, assume the
following:

1. A critical instant at the start of the chain that task, i, reside within. Any
task in a chain is ready to execute at the chain start time. If all chain
predecessors and all pre-empting tasks execute for zero amount of time,
then the task will start its execution at the start time of the chain.

2. The interference that we have to consider is

• Tasks that precede task i in the same chain.

• Tasks that pre-empt task i or any of the chain predecessors to task i.

• Interrupts.

3. All tasks have a period time equal to LCM. Task that have a shorter
period time, in the specification, than LCM will be replaced by
LCM/period time number of instances of that task. Each instance in
considered on its own in the schedule. These instances will be referred
to as separate tasks.

4. All task have a deadline less or equal to LCM (because all task have
deadline less or equal to the period time)

5. Interrupts have arbitrary period times, with known minimal inter arrival
time.

To calculate the worst case response time for a task i, using exact
analysis, we have to know which tasks that have a higher priority than task
i, hp(i). For task i, let:

A. All chain predecessors to task i be in the set of higher priority tasks.
Exact analysis assumes a critical instant with all tasks ready at a specific
point in time [3]. Hence, the chain predecessors could be modelled as
higher priority task in descending order of priority.

B. All tasks that might pre-empt task i or any of its chain predecessors be
in the set of higher priority tasks. The critical instant is the worst case,
i.e., if a task i will fulfil its deadline for a critical instant it will meet its
deadline for all other cases to [3]. Thus, if a higher priority task will be
ready at a later time, e.g., at the time of the start of a pre-empting chain,
task i will still meet its deadline. Therefore all of these tasks can be
modelled as higher priority tasks.

 62

C. All interrupts be in the set of higher priority tasks. Interrupt can be
modelled as tasks with higher priority than tasks in A and B and with a
period time equal to the minimal inter arrival time of the interrupt.

Exact analysis gives us:

(1) R C
R
T

Ci i
i

j
j

j hp i
= +

∀ ∈

∑
()

Equation (2) divides the sum of all higher priority tasks in to two sums.
Where task(i) is the tasks relating to A and B above, the second is the
interrupts.

(2) R
T

C
R
T

C
R
T

Ci

j
j

j hp i

i

j
j

j task i

i

k
k

k

↔

+

∀ ∈ ∀ ∈ ∀ ∈
∑ ∑ ∑

() () interrupt

Consider the first sum in equation (2),
R
T

Ci

j
j

j task i

∀ ∈

∑
()

. This contains all

task that apply to A and B. According to assumption 3, all these tasks have
a period time equal to LCM. All tasks have a deadline less or equal to LCM,
i.e., assumption 4. From this follows that the response time has to be less or
equal to LCM. If the response time is greater than LCM we can stop the
calculation3, because the deadline is missed. This gives:

T = Rj iLCM LCM
R
T

i

j
∧ ≤ ⇒ ≤ ⇒1(3)

R
T

R
T

C Ci

j

i

j
j j⇒

= ⇒

= ⇒1
 R

T
C C i

j
j

j task i
j

j task i

=
∀ ∈ ∀ ∈
∑ ∑

() ()

This simply says that the tasks will only execute once during LCM,
which is what was stated in assumption 3. Inserting the result of equation
(2) and equation (3) in equation (1) yield:

(4) R C C
R
T

Ci i j
i

k
k

kj task i
= + +

∀ ∈∀ ∈
∑∑
interrupt()

The sum of all tasks can be divided in to two sums. The sums of all chain
predecessors to task i, according to A, and the sum of all tasks that pre-empt
task i or any of its chain predecessors, according to B.

C C Cj
j task i

l
l pred i

m
m prem i∀ ∈ ∀ ∈ ∀ ∈

∑ ∑ ∑↔ +
() () ()

Where pred(i) is the chain predecessors according to A and prem(i) is the
tasks in B. If this is substituted in equation (4), this leads us to:

3 In many cases the calculation could be stopped before the response time reaches LCM. This because the

deadline can be smaller than LCM and a start time greater than zero.

 63

(5) R C C C
R
T

Ci i l
l pred i

m
m prem i

i

k
k

k
= + + +

∀ ∈ ∀ ∈ ∀ ∈
∑ ∑ ∑

() () interrupt

We will show that the worst-case completion time analysis formula,
presented in section 5.1, is equivalent to equation 5.

(6)
interrupt

interrupt)(

)(

11 interrupt

C
T

R
CCR i

iRicp

pnofTask

m

p
m

i

n

ch
i n ∑∑ ∑∑

∀∋∀ ==

++=

The two first terms in equation (5) describes all chain predecessors to
task i and task i. This is equal to the first term in equation (6).

(7) ∑ ∑
∈∀ =

↔+
)(1ipredl

i

n

ch
nli CCC

The third term in equation (5) is all tasks that pre-empt task i or any
chain predecessor of task i. The second term in equation (6) is all tasks in
all succeeding chains that has start time less than the response time of task i,
i.e., all tasks that pre-empt task i or any of its chain predecessors. Thus, the
two terms are equal.

(8) Cm
m prem i∀ ∈
∑

()
↔ Cm

p

m

nofTask p

p ic Ri =∀ ∈
∑∑

1

()

()

The last term in equation (5) and the last term in equation (6) are the
same.

(9)
R
T

Ci

k
k

k

∀ ∈
∑
interrupt

↔
R

T
Ci

interrupt
interrupt

interrupt

∀

∑

If the terms in equation (5) that are equal to terms in equation (7) to
equation (9) is substituted with these, then we have the following equation.

interrupt
interrupt)(

)(

11 interrupt

C
T

R
CCR i

iRicp

pnofTask

m

p
m

i

n

ch
i n ∑∑ ∑∑

∀∋∀ ==

++=

 That is, equation (6). This gives that equation (5) and equation (6) are
equal.

Relaying on the proof [3] of exact analysis the analysis in equation (6) is
correct.

 64

Managing Temporal Constraints in Control Systems

by

Kristian Sandström and Christer Norström
Mälardalen Real-Time Research Centre, Department of

Computer Engineering, Mälardalen University, Västerås, Sweden

Mälardalen Real-Time Research Centre, MRTC Technical
Report 02/45

C

 66

 67

Managing Temporal Constraints in Control Systems

Kristian Sandström and Christer Norström

Mälardalen Real-Time Research Centre, Department of Computer
Engineering, Mälardalen University, Västerås, Sweden

Abstract
Design and implementation of motion control applications include the

mapping of control design to real-time system implementation. Important
parameters from control design include deviation from nominal period time
of an activity, end-to-end timing constraints, temporal correlation between
different sampling tasks, and constraints on temporal variations in output.
These parameters should also be considered in the real-time systems design,
since translating them to simple deadlines may lead to sub-optimal
solutions. Many real-time systems in industry today are based on pre-
emptive priority based run-time systems, and hence, it is highly desirable to
fulfill the temporal requirements by correctly assigning attributes such as
priorities and offsets to the tasks executing in such systems. However, this is
a non-trivial mapping, which should be supported by appropriate methods
and tools. In this paper we propose a method, which by assigning priorities
and offsets to tasks provides guarantees that complex timing constraints are
met. The method handles periodic and sporadic tasks, shared resources, and
varying execution times of tasks. We present the method, which uses a
genetic algorithm, together with simulation results, showing that the
proposed method is capable to efficiently handle complex constraints on
task sets of realistic sizes covering most embedded control systems.

1 Introduction
To successfully design and implement motion control applications, such

as robots, vehicle/trucks, and mobile machinery, in distributed computer
systems there is a need to make a smooth and predictable transition from the
design of a control system to its implementation in the computer system.
One important prerequisite to accomplish this for real-time systems is to
appropriately derive and model application timing requirements [1].
Moreover, these requirements must be translated into timing constraints that
are suitable for implementation, thereby providing means for interaction
between control and computer engineers. The timing constraints in the
control design cannot be directly mapped to attributes of a real-time system,
such as priorities, period times, deadlines and offsets of tasks. Assigning the
attributes of the tasks so that the complex timing constraints derived from
the control design are fulfilled is a non-trivial problem. Typical complex
timing constraints are tolerances on sampling periods, end-to-end timing

 68

constraints, temporal correlation between different sampling tasks, and
constraints on temporal variations in output.

The aim of this paper is to show how these complex timing constraints
can be mapped to attributes of periodic tasks running on standard pre-
emptive priority based multitasking real-time operating systems, as for
example WxWorks provided by Windriver, in such a way that the timing
constraints are fulfilled. In order to guarantee the behaviour of a control
system subject to complex timing constraints, one must also consider that
execution times of activities in most cases vary. Varying execution times
will directly affect e.g., constraints on maximum deviation from a nominal
period time.

Bate and Burns [2], propose a related method for assigning offsets and
priorities to a fixed priority pre-emptive task set. They define a specification
model that allows for expressing similar constraints as defined in Section 2
of this paper. However, their method does not consider the use of shared
resources between sporadic and periodic tasks. Furthermore, attribute
assignment for dealing with constraints on period time variation is managed
using a heuristic algorithm with local optimization that, according to the
authors, can lead to attribute assignments causing unschedulable systems
when a feasible solution exists. For this reason it is difficult to extend the
method to incorporate the additional constraints we would like to consider.
Several researchers have attacked the same problem by generating off-line
schedules [3][4][5]. A major disadvantage of such a solution is that it cannot
be handled by a standard priority-based RTOS. Furthermore, they do not
support pre-emption, sporadic activities, and varying task execution times.
In [6][7] a method is presented for translating off-line schedules to task
attributes for fixed priority systems (FPS). This method could be combined
with methods in [3][4][5] and would enable the use of priority-based RTOS
for those methods. However, the combined approached would still inherit
the limitations of not supporting pre-emption, sporadic activities, and
varying task execution times when searching for a solution to the complex
constraints. The method allows for using on-line acceptance test for sporadic
and aperiodic tasks to use spare capacity from the tasks translated from the
off-line schedule to FPS, while the methods presented in this paper add no
run-time overhead for managing sporadic tasks. Moreover, when translating
an off-line schedule the method in [6][7] in some cases have to represent an
off-line scheduled task by more than one FPS task. This can result in an FPS
system with artificial tasks and thereby a greater number of tasks compared
to our method. However, if more instances are used it is possible to find
solutions that cannot be found otherwise. It is possible using the method
presented in this paper to include more than one instance for some or all
tasks.

In [8] the authors present a design methodology for real-time systems
with end-to-end timing constraints, temporal correlation between different
sampling tasks and constraints on temporal variations in output. The
methodology derives period times, deadlines, and offsets for the tasks.

 69

However, the task model does not agree with a standard priority-based
RTOS and constraints on period time variation cannot be expressed.
Furthermore, the method assumes that task execution times are static. The
work presented in [9] uses genetic algorithms for minimizing jitter in
communication using field busses. The problem solved is quite different
from the one presented in this paper in that only jitter is minimized and
messages do not have interrelated temporal constraints

The motivation for the work presented in this paper mainly originates
from our participation in a real industrial project where we used a
specification model with support for periodic tasks, deadlines, precedence
relationships, mutual exclusions, and offsets [10]. By using this model we
can express all timing constraints required by the application. However, the
designer has to manually translate the timing constraints into attributes of
the used model. This is possible for simple systems, but in systems with
many such requirements it becomes very difficult to assign these attributes
manually. Even if the designer succeeds in finding a feasible mapping, we
get a maintenance problem [10].

In this work we use an enhanced specification model that supports
temporal dependencies between tasks. We will show that we can solve the
problem of mapping a system described by this specification model to a run-
time system model in an efficient way by using a genetic algorithm (GA).
There are several reasons for using the GA approach. GA is a general
optimisation method that has been used successfully for solving a wide
variety of complex problems including scheduling, e.g., in [11][12][13][14].
It can also easily be extended to optimise on other attributes such as
minimising the response time of handling an event. One of the most
important properties of the GA is its ability to deliver a result that fulfils a
subset of the timing constraints in cases where it is impossible to fulfil all
constraints. This information is important since the designer then can get an
indication of which constraints that can not be fulfilled and thereby simplify
the re-modelling of the application. Also, even if not all timing constraints
are fulfilled, the application requirements may in some cases still be fulfilled
since the robustness of the control design can tolerate deviations from the
specification. However, this has to be verified by control analysis.
Simulation results show that our algorithm performs well compared to the
algorithm presented in [2] and that it finds solutions to a high degree when
the considered systems are schedulable.

Thus, the contributions of this paper are:

• A specification model for describing systems with complex timing
constraints.

• A synthesis algorithm that assigns priorities and offsets to tasks to
fulfil the timing constraints given our specification model.

• Simulation results showing the efficiency of the suggested method.

 70

The rest of this paper is organised as follows. Section 2 describes the
used system model. The method for attribute assignment is covered in
Section 3. In Section 4 simulation results are presented, followed by the
conclusion of the paper in Section 5. An extensive example of the method
can be found in Appendix A.

2 System model
The system model is divided into two parts. The first part specifies the

required behaviour of the run-time system and the second part is a definition
of the specification model used to express the constraints of the task set.

2.1 Run-time system model
The basic model for the run-time system is a priority based, pre-emptive

run-time system with shared resources protected by semaphores conforming
to the priority ceiling protocol. Furthermore, the run-time system should
provide a mechanism to enforce phasing between tasks i.e., offsets, and the
ability to periodically release tasks with some predefined resolution, e.g., the
operating system tick. These required features exist in many RTOS and if
not, it is quite easy to construct these mechanisms from existing RTOS
primitives.

The run-time system may also support prioritised sporadic activities.

2.2 Specification model
The specification model defines the information that has to be specified

for each periodic and sporadic task, as well as the constraints that can be
expressed on a task set. A periodic task is defined by its worst-case
execution time (WCET), best-case execution time (BCET), and nominal
period time. The nominal period time is the desired rate at which the task
should be executed. Below, the terms start time, completion time, and
release are used. The start time of a task is the actual time when the first
instruction is executed on the processor, as opposed to release, which is the
time when the task becomes ready to execute. The completion time of a task
is the time when the last instruction has been executed.

The following constraints can be expressed for and between periodic
tasks:

• Deadline – deadline relative to the release of the task.

• Precedence – constraint specifying the execution order between two
tasks.

• Separation – constraint of a minimum distance between the
completion of one task and start of another task.

• Jitter – the maximum allowed deviation from the nominal period
time. Jitter constraints are used to control the deviation from nominal
period for e.g., sampling and actuation activities.

 71

• Start Jitter – maximum allowed deviation of a task’s start time
from its nominal period time. The constraint is specified by an
upper (Sh) and lower bound (Sl) on the time between two
consecutive executions of a task.

• Completion Jitter – maximum allowed deviation of a task’s
completion time from its nominal period time. The constraint
is specified by an upper (Ch) and lower bound (Cl) on the time
between two consecutive executions of a task.

• Latency – constraint specifying a maximum allowed distance
between the start of one task and the completion of another task.

• Correlation – constraint on the maximum time between executions
of two or more tasks executing in parallel. This constraint is used to
correlate concurrent sampling or actuation activities in time.

• Shared resources – specification of the tasks that use semaphores and
times for the tasks critical sections.

Periodic tasks may have a varying execution time and phasing relative to
each other and hence the start time and completion time for a task can vary.
This must be considered when finding an attribute assignment meeting the
constraints for a task set. Therefore the analysis of a task set is performed for
all instances over the least common multiple (lcm) of tasks period times.
This is necessary since calculation of the earliest- and latest start time and
completion time without considering all instances would be too pessimistic.
As an example, consider the tasks τ1 and τ2 depicted in Figure 1. The tasks
have a period time of 10 and only one constraint, a precedence constraint
between τ1 and τ2. Assume a completion time of τ1

 equal to 3, and a start
time of τ2

 equal to 4 in one period and a completion time of τ1 equal to 2,
and a start time of τ2

 equal to 2 in the next period. The latest completion of t1
relative to the period is 3 and the earliest start relative to the period for τ2 is
2, i.e., the precedence is violated considering only the task timing while if
the separate instances are considered one can see that precedence is achieved
between τ1 and τ2.

τ1 τ2 τ1 τ2

 0 3 4 10 12

Figure 1. The execution of the two tasks τ1 and τ2.
Phasing of tasks and the start- and completion time variations are

incorporated into the model by describing, for each instance of a task during
the lcm, the earliest start time (est), the latest start time (lst), the earliest
completion time (ect), and the latest completion time (lct). The constraints
and notation are defined below, where τi represents task i and n

iτ represents
instance n of task i.

est(n
iτ) - earliest start time of n

iτ .

 72

lst(n
iτ) - latest start time of n

iτ .

ect(n
iτ) - earliest completion time of n

iτ .

lct(n
iτ) - latest completion time of n

iτ .

Deadline <deadline, τi > holds iff

 deadline))offset(τn)e(τ(periodTim)lct(τ ii
n
i ≤+∗−

Precedence <τi, τj> holds iff
)()(n

j
n
i τestτlct ≤

Separation <separation, τi, τj > holds iff

 separationτlctτest n
i

n
j ≥−)()(

Start Jitter <Sh, Sl, τi> holds iff
l

n
i

n
ih

n
i

n
i S)lst(τ)est(τS)est(τ)lst(τ ≥−∧≤− ++ 11

Completion Jitter <Ch, Cl, τi> holds iff

 l
n
i

n
ih

n
i

n
i C)lct(τ)ect(τC)ect(τ)lct(τ ≥−∧≤− ++ 11

Latency <latency, τi, τj > holds iff

∧≤−∧≤∀→=))(n(latencyest(τ)lct(τ)est(τ)τlctTT n
i

n
j

n
j

n
iji

 ∧≤−∧≤∃∀→> latencyest(τ)lct(τ)est(τ)τlctmTT n
i

m
j

m
j

n
iji)(:n

 latencyest(τ)lct(τ)est(τ)τlctmTT m
i

n
j

n
j

m
iji ≤−∧≤∃∀→<)(:n

Correlation <Correlation, τi, τi+1,…, τi+m > holds iff

 nCorrelatio)est(τ)τlstm)i..(ij,k n
k

n
j ≤−+∈∀ (:

A sporadic task is specified by a worst-case execution time, a minimum
inter-arrival time, and a deadline. Here, the best-case execution time is not
considered, since the best case considering the entire task set is that the
sporadic task is not activated at all at a given instance. The minimum inter-
arrival time specifies the shortest possible time between two consecutive
activations of the task. The deadline is relative to the release of the task. It is
also possible for sporadic tasks to use semaphores that are shared with both
sporadic and periodic tasks. Note that an interrupt should be modelled as a
sporadic task.

3 Attribute Assignment
This section describes the algorithm for assigning priorities and offsets to

the periodic tasks and priorities to sporadic tasks in order to meet the
constraints specified for a task set. It is assumed that constraints are
specified according to the model defined in the previous section. The heart
of the attribute assignment is a genetic algorithm that assigns offsets and

 73

priorities, evaluates the assignments, and incrementally finds new
assignments, thereby gradually achieving the required system behaviour.
The general idea of a GA is to let individuals in a population gradually
improve by the mechanisms of natural selection. In this case the individuals
consists of attribute assignments for a tasks set and the environment to
master is the constraints put on that task set. An overview of the structure
and operation of the genetic algorithm used is given below.

1. Initial Population – The algorithm initially makes a number of
guesses about the assignment of priorities and offsets for the
complete task set. A complete assignment for the entire task set is
referred to as a genome.

2. Apply Objective function – The objective function calculates a
goodness value for each genome, given how far the genome is from
meeting the requirements. If the objective is reached, the algorithm
has found a solution and is terminated.

3. Crossover – In this step parts of different genomes are combined to
produce an offspring, i.e., a new genome built from two other
genomes.

4. Mutation – Randomly alters a genome by e.g., by reassigning a
priority in the genome by a random number.

5. Repeat from step 2, each iteration is referred to as a generation.

 An assignment of offsets and priorities for a task set is represented by a
set of offset priority pairs for the periodic tasks and a priority for each
sporadic task, e.g., a task set with periodic tasks t1 to ti and sporadic tasks st1
to stj is represented by the set g: {<priority1, offset1>,…,<priorityi,
offseti>,<priority1>,…,<priorityj>}. The population of the genetic algorithm
then consists of a number of such priority-offset sets G = {g1, …, gn}.

 The objective function calculates start times and completion times for
the task set and derives a single value used for sorting different genomes by
their closeness to the optimum, where the representation of optimum is
defined by the genetic algorithm, e.g., the lower value the closer to optimal.
The deviations from the requirements for a task set, using the offsets and
priorities of a given genome, are calculated by rearranging the formulas
earlier described in Section 2. For example, deviation from the distance
constraint is calculated by reformulating distestlct ≥−)(τ)(τ n

i
n
j as

))(τ)(τ(n
i

n
j estlctdist −− . The objective value is then expressed as a percentage

of the allowed deviation, e.g.,))(τ)(τ(n
i

n
j estlctdist −− / dist. This value is

divided by the number of instances, during an lcm, of the task. The division
by dist and the number of instances is done in order to normalise the value
against other constraints so that not too strong emphasis is put on some
constraints. The objective value for a genome is the sum of the normalised
values calculated for each constraint. The objective function is at the end of
this section.

 74

The analysis performed to calculate the earliest and latest start times and
completion times for the instances of the task set can be divided into two
cases: 1) The earliest start time and completion time are calculated
disregarding the sporadic tasks, using the best-case execution times, and
assuming that no tasks are blocked when using shared resources. 2) The
latest start time and completion time is calculated considering interference
from sporadic tasks, using the worst-case execution times and assuming
maximal blocking.

 In the objective function given below, task instances are assumed to be
enumerated starting with zero for the first instance. The function numInst()
returns the number of instances for a task during the lcm of the complete
task set. The objective function is executed for each of the attribute
assignments contained in the GA population. For each assignment an
objective value is returned, and that value is then used to rank the different
attribute assignments for a given task set. Pessimism in the objective
function can be reduced if the mechanism of the used run-time system is
considered. For example, in pre-emptive priority based systems, tasks with
the same offsets are not influenced by sporadic activities independently of
each other. The goal of this work has not been to provide an optimal
objective function, the goal has been focused on the overall success of the
method, which is indicated by the simulations in section 4.

Objective function

 objective = 0

 for each task τi “Deadline”

 for each instance n of task τi

 if lct(n
iτ) > deadline(τi) + n · periodTime(τi) + offset(τi)

 deviation = lct(n
iτ) - deadline(τi) - n · periodTime(τi) - offset(τi)

 objective = objective + deviation / deadline(τi) / numInst(τi)

 for each precedence constraint <τi , τj >

 for each instance n of task τi and τj

 if lct(n
iτ) > est(n

jτ)

 deviation = 1

 objective = objective + deviation / numInst(τi)

for each separation constraint <separation, τi , τj >

 for each instance n of task τi and τj

 if est(n
jτ) – lct(n

iτ) < separation

 deviation = separation – (est(n
jτ) – lct(n

iτ))

 75

 objective = objective + deviation / separation / numInst(τi)

for each start jitter constraint <Sh, Sl τi>

 for each instance n of task τi

 if lst(1+n
iτ) – est(n

iτ) > Sh “(lcm + lst(0
iτ)) – est(n

iτ) when
 n=numInsti-1”

 deviation = (lst(1+n
iτ) – est(n

iτ)) - Sh

 objective = objective + deviation / Sh / 2 / numInst(τi)

 if est(1+n
iτ) – lst(n

iτ) < Sl “(lcm + est(0
iτ)) – lst(n

iτ) when
 n=numInsti-1”

 deviation = Sl – (est(1+n
iτ) – lst(n

iτ))

 objective = objective + deviation / Sl / 2 / numInst(τi)

Completion Jitter calculated as start jitter above.

for each latency constraint <latency, τi , τj >

 if periodTime(τi) = periodTime(τj)

 for each instance n of task τi and τj

 if lct(n
iτ) ≤ est(n

jτ)

 If lct(n
jτ) - est(n

iτ) > latency

 deviation = (lct(n
jτ) - est(n

iτ)) - latency

 objective = objective + deviation / latency / numInst(τi)

 else

 objective = objective + 1 / numInst(τi)

 if periodTime(τi) > periodTime(τj)

 for each instance n of task τI

 find the instance m
jτ with earliest lct, where lct(n

iτ) ≤ est(m
jτ)

 if an instance m
jτ is found

 if lct(m
jτ) - est(n

iτ) > latency

 deviation = (lct(m
jτ) – est(n

iτ)) - latency

 objective = objective + deviation / latency / numInst(τi)

 else

 objective = objective + 1 / numInst(τi)

 if periodTime(τi) < periodTime(τj)

 76

 Analogous to periodTime(τi) > periodTime(τj)

for each correlation constraint <correlation, τi, …, τm >

 for each instance n of task τi to τm

 find the maximum difference between lst(n
kτ) – est(n

lτ) for
 any k and l

 in [i..m] where k ≠ l.

 if lst(n
kτ) – est(n

lτ) > correlation

 deviation = lst(n
kτ) – est(n

lτ) - correlation

 objective = objective + deviation / correlation / numInst(τi)

End Objective function

4 Results
A series of simulations have been carried out to evaluate the performance

of the proposed method. The first set of simulations shows the success ratio,
for the GA, at assigning priorities and offsets to task sets so that the
constraints for the task sets are met. For this set of simulations all the
constraints presented in this paper are used by the generated task sets. The
second set of simulations compares the method in this paper to the algorithm
presented in [2] by Bate and Burns. To be able to compare the two
approaches the constraints not supported by the algorithm in [2] have been
removed.

4.1 Simulation set up
Periodic and sporadic tasks are randomly generated until the specified

utilization is reached. The periodic utilization is randomly generated in [0,
U], and the sporadic utilization equaling U – periodic utilization, where U is
the desired system utilization. The period time of the periodic tasks are
randomly selected from a number of predefined period times and the WCET
is randomly generated as a percentage of the period time, the percentage is
specified as a range, e.g., 2%-4% of the period time. The BCET for a
periodic task is defined as a percentage of the WCET of the task. Table 2
displays the numbers used for the periodic tasks in the simulations presented
in this paper. The minimum inter-arrival time for sporadic tasks are
randomly generated from a predefined set of ranges and the WCET is
generated in the same way as for the periodic tasks. The parameters for the
sporadic tasks in the simulations are given in table 1.

 77

Min. Inter-arrival time Distribution
[0,1000] 20
[1000, 5000] 70
[5000,20000] 10
WCET in percentage of min. inter-arrival
[0,1] 30
[1,2] 40
[2,5] 30

Table 1. Data for generating sporadic tasks.

Period time Distribution
10000 20
25000 20
50000 40
100000 20
WCET in percentage of period
[0,2] 45
[2,4] 50
[4,8] 5
BCET in percentage of WCET
[0,70] 10
[70,80] 30
[80,90] 30
[90,97] 30

Table 2. Data for generating periodic tasks.
When the tasks with period times, WCETs, and BCETs have been

generated, offsets and priorities are randomly generated. The temporal
behavior of the task set is then analyzed and the constraints are generated
based on the temporal information so that the task set fulfils the constraints.
The number of constraints generated are based on a predefined percentage of
the number of periodic tasks, e.g., if 70% is specified for the amount of
constraints and the number of periodic tasks are 20, then there will be 14
tasks involved in the constraints. Deadlines are not included in this number
since a deadline is always randomly generated for each task.

The simulations are performed for four different utilization levels, 30%,
50%, 70%, and 90%. For each utilization level simulations are carried out
for different amounts of constraints, 30%, 50%, 70%, and 90%, where the
constraints are generated as presented above. There are 100 task sets
generated for each utilization and constraints level. The simulations were
run on a 550 MHz Pentium III processor with 128 MB RAM. The software
is implemented using C/C++. For the basic data structures and operations of
the genetic algorithm we used the GAlib genetic algorithm package, written
by Matthew Wall at the Massachusetts Institute of Technology. The GA will

 78

terminate on success, or when reaching 2000 generations, or when there is
no improvement in the objective value for 100 generations.

4.2 Success ratio for the GA
For this simulation all the constraints presented in this paper are used by

the generated task sets as well as shared resources between periodic and
sporadic tasks (and other combinations). There is an even distribution
between the numbers of tasks assigned to the different constraints in order to
get a good coverage of all the constraints. Start and completion jitter is not
treated as two separate constraints when the amount of constraints is
calculated. If a jitter constraint is generated, both start and completion jitter
is generated for the task and it is viewed as one task with one constraint. The
graph shows the percentage of task sets with attributes assigned that fully
meet the constraints. The average number of sporadic and periodic tasks, as
well as the total number of tasks is given in Table 3. Finally, Table 4 shows
the average computation time for processing the task sets, including
computation times for both correct and incorrect assignments.

0
0,1
0,2
0,3
0,4
0,5

0,6
0,7
0,8
0,9

1

0,30 0,50 0,70 0,90 Utilization

Su
cc

es
s

ra
tio

C30

C50

C70

C90

Graph 1. The success ratio of the GA algorithm
for different load and number of constraints.

Constraints

Utilization
30% 50% 70% 90%

30% 11.7/5.8/5.9 19.3/9.3/10.0 26.9/12.6/14.2 34.6/16.3/18.3
50% 11.8/6.1/5.8 19.3/9.4/9.8 27.0/12.7/14.34 34.4/16.5/17.9
70% 11.6/5.5/6.2 19.7/9.8/9.9 26.2/14.1/12.3 34.4/16.8/17.6
90% 11.6/5.6/6.0 19.0/10.2/8.8 27.2/13.2/14.0 33.8/16.3/17.5

Table 3. The average number of tasks for the simulation, displayed
as total/periodic/sporadic

 79

Constraints

Utilization

30% 50% 70% 90%

30% 1 1 1 1
50% 10 12 18 17
70% 98 128 124 132
90% 699 792 882 774

Table 4. The average computation time in seconds.
The simulations indicate that the method solves the attribute assignment

to a high degree and that the success ratio decreases as the utilization and the
number of constraints increases. The number of tasks given by the second
graph shows that the results are valid for fairly large embedded systems,
while the computation time given in the last graph indicates that for
significantly larger task sets, in terms of number of tasks, with high
utilization the computation times may be too long to be practical. The
computation time of the algorithms is mainly related to the number of tasks
and not so strongly to the number of constraints because the analysis is the
computationally most demanding part. Although, a large number of
constraints may increase the computation time by requiring more
generations of the GA, and thereby more analysis, to find a solution. The
correlation between the number of constraints and the computation time is
also dependent on the termination criteria of the GA. Since the GA
terminates on a given number of iterations and when improvement of the
algorithm is to slow, large task set with many constraints will to a higher
degree be stopped by the termination criteria compared to a large task set
with few constraints. Thus, the computation time is kept down at the cost of
a lower success ratio. Relaxing the termination criteria would increase
computation times but also most likely the success ratio.

4.3 Comparison with Bate and Burns’ method
In this section we compare the performance of our method with that of

the method presented by Bate and Burns’ [2]. Since their method handles
less general constraints, we will here use a restricted simulation set-up, in
that we have to exclude start jitter, correlation, and shared resources from
the task model.

There is an even distribution between the number of tasks assigned to
jitter constraints and the number of tasks assigned to separation and latency
constraints. The ratio between tasks with latency compared to separation
constraints will be 4/1. The ratio is set to reflect an assumed higher number
of latency constraints than separation constraints in real systems; this
assumption is based on many years industrial experience gained by the
authors.

The first graph for this set of simulations (graph 2) shows, for both
algorithms, the percentage of task sets with attributes assigned that fully

 80

meet the constraints. The success ratio depicted is the average ratio for all
constraint levels. The following two graphs (graphs 3 and 4) give the
success ratio for each constraint level. In the graphs below, the GA
algorithm is denoted GA and the algorithm in [2] is denoted BB.

0

0,1

0,2

0,3

0,4

0,5

0,6

0,7

0,8

0,9

1

0,3 0,5 0,7 0,9 Utilization

Su
cc

es
s

ra
tio

GA

BB

Graph 2. The average success ratio.

0
0,1
0,2
0,3
0,4
0,5
0,6
0,7
0,8
0,9

1

0,30 0,50 0,70 0,90Utilization

Su
cc

es
s

ra
tio

C30
C50
C70
C90

Graph 3. Success ratio for the BB algorithm.

0
0,1
0,2
0,3
0,4
0,5
0,6
0,7
0,8
0,9

1

0,30 0,50 0,70 0,90 Utilization

Su
cc

es
s

ra
tio

C30
C50
C70
C90

Graph 4. Success ratios for the GA algorithm.

 81

The average numbers of tasks are close to the numbers for the first
simulation, given in Table 3. The computation times for the GA algorithm
are in the same magnitude as those given in Table 4, while the algorithm in
[2] has computation times of at most a few milliseconds.

Graph 2, displaying the success ratio for the two algorithms, shows that
the algorithm presented in this paper performs well compared to the
algorithm in [2], especially for task sets with high utilization. The difference
in success ratio depends on that the GA performs global optimization of the
attributes, distributing the tasks execution, using offsets, as needed for
meeting the constraints, while the algorithm in [2] does not globally
optimize the attribute assignment, but assign attributes based on the
properties of each constraint individually. As the utilization increases the
effect of using global as opposed to local optimization becomes more
apparent.

5 Conclusion
The problem of assigning priorities and offsets to tasks from a

specification model supporting complex timing constraints is an important
part in the implementation of real-time control systems that consist of a
number of periodic control activities executing with different frequencies
while exchanging data. Such control systems are for instance common in
motion control algorithms. Sampled data control applications, in general, are
real-time systems that are sensitive to deviations from nominal deterministic
timing, i.e. the timing that normally is assumed in control design. Since an
implementation of a computer control system inevitably introduces time-
delays and time-variations, it is important to investigate the sensitivity of a
control system to such “timing disturbances” during the control engineering
phase. Moreover, timing tolerances together with other timing requirements
must be clearly communicated from the design phase (presumably carried
out by control engineers) to the implementation phase (presumably carried
out by computer engineers). Further, many motion control applications are
used in safety critical contexts, and/or environments where high reliability
and availability are required. This emphasises the need for analysis of the
correctness of the computer control system prior to implementation.

In this paper we propose a method for fulfilling complex temporal
requirements by assigning priorities and offsets to tasks, running on a
standard commercial RTOS. The method uses a genetic algorithm to search
for an acceptable solution, i.e., a solution satisfying all constraints.
However, even in cases when an acceptable solution cannot be found, the
genetic algorithm will provide a near optimal solution indicating which
constraints that are difficult (or impossible) to satisfy). This is important
from an engineering perspective, since the result can be used as input for
remodelling of the application.

Results from simulation shows that the algorithm presented in this paper
has a high success ratio in assigning attributes that make schedulable task

 82

sets meeting their constraints. Moreover, in comparison to the algorithm in
[2] the GA algorithm performs well, with noticeable higher success ratio.
The computation times for the GA algorithm is considerable much longer
than for the algorithm in [2], which handles a substantially simpler task
model. However, the simulation results show that the proposed method
efficiently assigns attributes for task sets of a size that covers most
embedded control systems, in reasonable time for an off-line tool.

The method proposed in this paper supports specification of jitter
constraints for both task start and completion times, making it possible to
more precisely control the variations in period time of a task. More over,
separation constraints, and latency constraints are supported, as are
correlation constraints between tasks executing in parallel. The varying
execution times of tasks are supported as well as shared resources between
sporadic and period tasks.

Finally, future work includes adding optimisation on other criteria, e.g.,
minimisation of the number of used offset and priority levels, and general
minimisation of e.g., jitter, in order to have as low jitter as possible in the
system. Due to the architecture of the GA it is easy to add new optimisations
as the ones listed above, and since it only requires additional functionality in
the objective function it is cheap in terms of computation time.

6 References
[1] Törngren M. Fundamentals of implementing real-time control

applications in Distributed computer systems. J. Of Real-Time Systems,
14, 219-250, Kluwer Academic Publishers, 1998.

[2] Bate I. and Burns A. An Approach to Task Attribute Assignment for
Uniprocessor Systems. In Proc. 11th Euromicro Conference on Real-
Time Systems (ECRTS99), York, England, June 9-11, 1999, IEEE
Computer Society.

[3] Mok A. K., Tsou D., and De Rooij R. C. M. The MSP.RTL Real-Time
Scheduler Synthesis Tool. In Proc. 17th IEEE Real-Time Systems
Symposium, pp. 118-128. IEEE Computer Society.

[4] Würtz J. and Schild K. Scheduling of Time-Triggered Real-Time
Systems, In Constraints, pp. 335-357, Oct, 2000. Kluwer Academic
Publishers.

[5] Cheng S. T. and Agrawala A. K. Allocation and Scheduling of Real-
Time Periodic Tasks with Relative Timing Constraints. Second
International Workshop on Real-Time Computing Systems and
Applications (RTCSA'95) October 25-27, 1995.

[6] Radu Dobrin, Gerhard Fohler, Peter Puschner. Translating Off-line
Schedules into Task Attributes for Fixed Priority Scheduling. In
Proceedings of Real-Time Systems Symposium London, UK, December
2001.

 83

[7] Radu Dobrin, Yusuf Özdemir, Gerhard Fohler. Task Attribute
Assignment of Fixed Priority Scheduled Tasks to Reenact Off-Line
Schedules. In Proceedings of RTCSA 2000 Korea , December 2000.

[8] Gerber R., Saksena M, and Hong S. Guaranteeing Real-Time
Requirements with Resource-Based Calibration of Periodic Processes.
IEEE Transactions on Software Engineering, 21(7), July 1995.

[9] F. Coutinho, J.A. Fonseca, J. Barreiros, E. Costa. Jitter Minimisation
with Genetic Algorithms, Proceedings 3rd IEEE International
Workshop on Factory Communication Systems, Portugal, September
2000.

[10] Norström C., Gustafsson M, Sandström K., Mäki-Turja J, Bånkestad N.
Experiences from Introducing State-of-the-art Real-Time Techniques in
the Automotive Industry, In Proc. Eigth IEEE International Conference
and Workshop on the Engineering of Compute-Based Systems
Washington, US , April 2001. IEEE Computer Society

[11] Zomaya A. Y., Ward C., and Macey B. Genetic Scheduling for Parallel
Processor Systems: Comparative Studies and Performance Issues. In
IEEE Transaction on Parallel and Distributed Systems, VOL. 10, NO 8,
August 1999.

[12] Corrêa R. C., Ferreira A., and Rebreyend P. Scheduling Multiprocessor
Tasks with Genetic Algorithms. In IEEE Transactions on Parallel and
Distributed systems, VOL 10, NO. 8, August 1999.

[13] Grajcar M. Genetic List Scheduling Algorithm for Scheduling and
Allocation on a Loosely Coupled Heterogeneous Multiprocessor
System. In Proc. 36th Design Automation Conference (DAC), p. 280-
285, New Orleans, 1999. ACM Press.

[14] Faucou S., Déplanche A., and Beauvais J. Heuristic Techniques for
Allocating and Scheduling Communicating Periodic Tasks in
Distributed Real-Time Systems. In 3rd IEEE International Workshop on
Factory Communication Systems, September 6, 2000. IEEE Industrial
Electronics Society.

[15] Törngren M. Modelling and Design of Distributed Real-time Control
Applications. PhD thesis, Dept. of Machine Design, The Royal Institute
of Technology, Stockholm, Sweden, 1995.

 84

Appendix A: Example

In this example we assume an application for which constraints needed
for implementation have been derived from a control design and expressed
according to the specification model described in Section 2. The example
system consists of 4 periodic tasks and 1 sporadic task. In Table 5 the
periodic tasks are listed.

Task Wcet Bcet Period time
A 2 2 20
B 3 3 20
C 2 2 20
D 3 3 20

Table 5: The example task set.
In addition there is one sporadic task, SP, in the system. The sporadic

task SP has a Wcet of 2 and a minimum inter-arrival time of 9. Furthermore,
task SP has a deadline constraint of 6. The constraints that apply to the
periodic task set are given below.

Start Jitter, <21, 19, A>

Start Jitter, <21, 19, C>

Latency, <9, A, B >

Separation <4, C, D >

Given the specification above, the GA tries to find an attribute
assignment in the run-time model such that the execution of the task set
fulfils the constraints. The termination criterion of the GA is that the
objective function evaluates to zero, i.e., one genome meets all the
constraints.

The offset and priority for a periodic task τi is represented by the tuple opi
= <offset, priority> and the priority for a sporadic task is represented by pj =
<priority>. The complete representation for the task set of the example is
opA, opB, opC, opD, pSP. A high value represent a high priority.

The size of the population of the genetic algorithm is 3 and the number of
offspring generated in each generation is 2. The initial population is given in
table 6.

Gen op opB op op pSP
1 <0 <13,1 <0 <1 <3>
2 <2 <6,2> <9 <1 <5>
3 <1 <9,5> <0 <1 <3>

Table 6. The initial population.

 85

According to the operation of the GA the next step is to apply the
objective function to the genomes of the population. Included in this is to
make analysis of each genome.

In Figure 2 the worst and best case scenarios’ for the task set are
displayed, assuming offset and priorities according to genome 1.

 C D SP

0 2 4 6 8 10 12 14 16 18 20

A SP B

C D A

0 2 4 6 8 10 12 14 16 18 20

B

Figure 2. The worst and best case execution scenario.

Table 7 shows the start times and completion times for the tasks.

Tas lst lct est ect
A 7 9 5 7
B 15 18 13 16
C 0 2 0 2
D 2 5 2 5
SP - 7 - -

Table 7. Start and completion of the tasks.
The result of the objective function, presented in Section 3, for genome 1

can then be calculated as:

Start Jitter, <21, 19, A>

deviation = (lst(1+n
iτ) – est(n

iτ)) - Sh = (20+7) – 5 – 21 = 1

objective = objective + deviation / Sh / 2 / numInst(τi) =

 = 0 + 1/21/2/1 = 0,024
deviation = Sl – (est(1+n

iτ) – lst(n
iτ)) = 19 – (25-7) = 1

objective = objective + deviation / Sl / 2 / numInst(τi) =
 = 0,024 + 1/19/2/1 = 0,05
Start Jitter, <21, 19, C>
(lst(1+n

iτ) – est(n
iτ)) < Sh “Constraint met”

Sl < (est(1+n
iτ) – lst(n

iτ)) “Constraint met”
Latency, <9, A, B >
deviation = (lct(n

jτ) - est(n
iτ)) – latency = 18 – 5 – 9 = 4

objective = 0,05 + 4 / 9 = 0,49

 86

Separation <4, C, D >
deviation = separation – (est(n

jτ) – lct(n
iτ)) = 4 – (2-2) = 4

objective = 0,49 + 4 / 4 = 1,49
Deadline <6, SP>
deviation = lct(n

iτ) - deadline = 7 – 6 = 1
objective = 1,49 + 1 / 7 = 1,63
Objective: 1,63
In Figure 3 the worst and best case scenarios’ for the task set are

displayed, assuming offset and priorities according to genome 2.

 B

C DSP

0 2 4 6 8 10 12 14 16 18 20

A SP B

C D A

0 2 4 6 8 10 12 14 16 18 20

B

C D SP

0 2 4 6 8 10 12 14 16 18 20

A SP B

C D SP

0 2 4 6 8 10 12 14 16 18 20

A SP

Figure 3. The worst and best case execution scenario.

Table 8 shows the start times and completion times for the tasks.

Tas lst lct est ect
A 4 6 2 4
B 8 13 6 9
C 11 13 9 11
D 17 20 15 18
SP - 2 - -

Table 8. Start and completion of the tasks.
The result of the objective function for genome 2 can then be calculated

as:

Start Jitter, <21, 19, A>
deviation = (lst(1+n

iτ) – est(n
iτ)) - Sh = 24 – 2 – 21 = 1

objective = 0 + 1/21/2 = 0,024
deviation = Sl – (est(1+n

iτ) – lst(n
iτ)) = 19 – (22-4) = 1

objective = 0,024 + 1/19/2 = 0,05

 87

Start Jitter, <21, 19, C>
deviation = (lst(1+n

iτ) – est(n
iτ)) - Sh = 31 – 9 – 21 = 1

objective = 0,05 + 1/21/2 = 0,074
deviation = Sl – (est(1+n

iτ) – lst(n
iτ)) = 19 – (22-4) = 1

objective = 0,074 + 1/19/2 = 0,1
Latency, <9, A, B >
deviation = (lct(n

jτ) - est(n
iτ)) – latency = 13 – 2 – 9 = 2

objective = 0,1 + 2 / 9 = 0,32

Separation <4, C, D >
deviation = separation – (est(n

jτ) – lct(n
iτ)) = 4 – (15-11) = 0

objective = 0,32 + 0 / 4 = 0,32
Deadline <6, SP>
lct(n

iτ) <= deadline “Constraint met”
Objective: 0,32
In Figure 4 the worst and best case scenarios’ for the task set are

displayed, assuming offset and priorities according to genome 3.
 C DSP

0 2 4 6 8 10 12 14 16 18 20

A SP B

C D A

0 2 4 6 8 10 12 14 16 18 20

B

Figure 4. The worst and best case execution scenario.

Table 9 shows the start times and completion times for the tasks.

Tas lst lct est ect
A 4 6 2 4
B 9 12 9 12
C 0 2 0 2
D 16 19 14 17
SP - 5 - -

Table 9. Start and completion of the tasks.
The result of the objective function for genome 3 can then be calculated

as:

Start Jitter, <21, 19, A>
deviation = (lst(1+n

iτ) – est(n
iτ)) - Sh = 24 – 2 – 21 = 1

objective = 0 + 1/21/2 = 0,024

 88

deviation = Sl – (est(1+n
iτ) – lst(n

iτ)) = 19 – (22-4) = 1
objective = 0,024 + 1/19/2 = 0,05
Start Jitter, <21, 19, C>
(lst(1+n

iτ) – est(n
iτ)) < Sh “Constraint met”

Sl < (est(1+n
iτ) – lst(n

iτ)) “Constraint met”
Latency, <9, A, B >
deviation = (lct(n

jτ) - est(n
iτ)) – latency = 12 – 2 – 9 = 1

objective = 0,05 + 1 / 9 = 0,16

Separation <4, C, D >
separation < (est(n

jτ) – lct(n
iτ)) “Constraint met”

Deadline <6, SP>
lct(n

iτ) < deadline “Constraint met”
objective: 0,16
Since no genome meets the termination criteria the GA proceeds with the

next step, i.e., to generate offspring from the population. In this example we
use one point crossover. In the crossover operation a new genome is formed
by selecting a position in the genome, taking the information to the left of
that position from one genome, and combine it with the information to the
right of that position from another genome. In the example the crossover
results in two new genomes. By combining opA and opB from genome 2
with opC, opD, and pSP from genome 1 the first genome is produced. The
second genome is produced by combining opA and opB from genome 2 with
opC, opD, and pSP from genome 3. Table 10 display the new genomes.

Genome opA opB opC opD pSP
4 <2,4> <6,2> <0,5> <1,4> <3>
5 <2,4> <6,2> <0,4> <14,1> <3>

Table 10. The new genomes.
The next step is to apply a random mutation to the new genomes with

some probability. In the example opA of genome 4 is changed from <2,4> to
<4,4> by mutation.

In Figure 5 the worst and best case scenarios’ for the task set are
displayed, assuming offset and priorities according to genome 4.

 C D SP

0 2 4 6 8 10 12 14 16 18 20

A SP B

C D A

0 2 4 6 8 10 12 14 16 18 20

B

Figure 5. The worst and best case execution scenario.

 89

Table 11 shows the start times and completion times for the tasks.

Tas lst lct est ect
A 5 7 5 7
B 11 14 7 10
C 0 2 0 2
D 2 5 2 5
SP - 9 - -

Table 11. Start and completion of the tasks.
The result of the objective function for genome 4 can then be calculated

as:

Start Jitter, <21, 19, A>
(lst(1+n

iτ) – est(n
iτ)) < Sh “Constraint met”

Sl < (est(1+n
iτ) – lst(n

iτ)) “Constraint met”
Start Jitter, <21, 19, C>
(lst(1+n

iτ) – est(n
iτ)) < Sh “Constraint met”

Sl < (est(1+n
iτ) – lst(n

iτ)) “Constraint met”
Latency, <9, A, B >
deviation = (lct(n

jτ) - est(n
iτ)) – latency = 14 – 5 – 9 = 0

objective = 0 + 0 / 9 = 0

Separation <4, C, D >
deviation = separation – (est(n

jτ) – lct(n
iτ)) = 4 – (2-2) = 4

objective = 0 + 4 / 4 = 1
Deadline <6, SP>
deviation = lct(n

iτ) - deadline = 9 – 6 = 3
objective = 1 + 3 / 6 = 1,5
objective: 1,5
In Figure 6 the worst and best case scenarios’ for the task set are

displayed, assuming offset and priorities according to genome 5.

 90

 C DSP

0 2 4 6 8 10 12 14 16 18 20

A SPB

C D A

0 2 4 6 8 10 12 14 16 18 20

B

C D SP

0 2 4 6 8 10 12 14 16 18 20

A SP B

Figure 6. The worst and best case execution scenario.

Table 12 shows the start times and completion times for the tasks.

Tas lst lct est ect
A 2 4 2 4
B 8 11 6 9
C 0 2 0 2
D 16 19 14 17
SP - 6 - -

Table 12. Start and completion of the tasks.
The result of the objective function for genome 5 can then be calculated

as:

Start Jitter, <21, 19, A>
(lst(1+n

iτ) – est(n
iτ)) < Sh “Constraint met”

Sl < (est(1+n
iτ) – lst(n

iτ)) “Constraint met”
Start Jitter, <21, 19, C>
(lst(1+n

iτ) – est(n
iτ)) < Sh “Constraint met”

Sl < (est(1+n
iτ) – lst(n

iτ)) “Constraint met”
Latency, <9, A, B >
deviation = (lct(n

jτ) - est(n
iτ)) – latency = 11 – 2 – 9 = 0

objective = 0 + 0 / 9 = 0

Separation <4, C, D >
separation < (est(n

jτ) – lct(n
iτ)) “Constraint met”

Deadline <6, SP>
lct(n

iτ) <= deadline “Constraint met”
objective: 0

 91

The best genomes are selected and the resulting population with their
respective objective value is given in Table 13.

Genome opA opB opC opD pSP value
5 <0,2> <13,1> <0,5> <1,4> <3> 0
2 <2,4> <6,2> <9,3> <15,1> <5> 0,16
3 <1,4> <9,5> <0,4> <14,1> <3> 0,49

Table 13. The resulting population.
As the best genome meets the termination criterion the GA is terminated.

We have found an offset and priority assignment that fulfil all the temporal
constraints.

 92

Frame Packing in Real-Time Communication
by

Kristian Sandström, Christer Norström, Magnus Ahlmark
Mälardalen Real-Time Research Centre, Department of

Computer Engineering, Mälardalen University, Västerås, Sweden

In proceedings of RTCSA 2000, Korea, December 2000.
IEEE Computer Society

D

 94

 95

Frame Packing in Real-Time Communication

Kristian Sandström, Christer Norström, Magnus Ahlmark

Mälardalen Real-Time Research Centre, Department of Computer
Engineering, Mälardalen University, Västerås, Sweden

Abstract
A common computational model in distributed embedded systems is that

the nodes exchange signals via a network. Most often a signal represents the
state of some physical device and has a signal size ranging from a single bit
up to a few bytes. Furthermore, each signal typically has a deadline
requirement. The communication networks used are often based on a
broadcast bus where fixed or variable sized frames are transmitted. The
amount of data that can be transmitted in each frame is almost always
bigger than the size of a signal. Thus, from a resource perspective it would
be desirable if each frame could transport several signals.

In this paper we investigate how to assign signals to periodic frames
with the objective function to minimise the network bandwidth requirement
while not violating specified deadlines. This problem is NP-hard, but can
for most typical applications be solved efficiently by using simple heuristics.
The effectiveness of our algorithm is demonstrated by applying it to signal
sets derived from automotive applications for a CAN based system and for
the newly developed, low cost and low speed, Local Interconnect Network
(LIN). The results can be of great use in cost sensitive embedded systems
such as car control systems, where the used hardware, communication
networks and nodes (typically micro-controllers), have to be highly utilised
to keep the production cost at a minimum level.

1 Introduction
Today most modern cars are computer controlled in order to decrease the

production cost (especially to reduce the amount of installed cables) and to
facilitate the implementation of new functionality such as anti skid, which is
very hard, or even impossible, to implement in purely mechanical systems
[4].

When replacing classical solutions, such as connecting a switch directly
to a device, e.g., a motor or a lamp, with a computer network based solution;
the status of the sensor has to be sampled, transmitted over the network,
received by the consuming node, and finally actuated to the device within an
appropriate time interval. Each sensor entity sent over the network is called
a signal. A common computational model in distributed embedded systems
is that the nodes exchange signals via a network [5].

 96

The timing requirements for each signal sent over the network have to be
derived from the controlled process. Thus, each signal has a size and a
timing requirement specification. The timing terminology used in this paper:
The End To End Deadline (ETED) is the maximum delay from a stimuli
until a response is given to the environment for a specific function. An
ETED timing requirement for a function has to be broken down to
individual timing requirements for the components that constitute the
function. This is the application engineer’s task. We will use deadline in this
context to denote the timing requirement for a signal sent on the network.
More specifically the deadline specifies the maximum delay between when a
signal is available at the sending node's communication subsystem until it is
available for the application(s) on the receiving nodes.

Since each node most likely will send several signals, the signals should
be packed in frames so that the communication bandwidth usage is
minimised. Consider the case when only one signal is included in each
frame (the size of a signal is considered to be less than the size of a frame)
and the frame is transmitted periodically with a minimum frequency that
fulfils the deadline. Then the communication cost would be high because
each signal would get the burden of all overheads in a frame, such as control
information and checksum. Consider the opposite situation, the signals are
packed in as few frames as possible and there exists two different sizes of
frames (i.e. frames that carry different amounts of data and have different
transmission times). Furthermore, assume that the signals fit into one large
frame. If the signals have about the same deadline, it would be beneficial to
send them in one large frame. On the other hand if we have for example two
groups of signals that have quite a large difference in deadlines then it
would be beneficial to divide the data into two frames. Because the smallest
deadline in each frame determines the period time of the frame, and thus the
bandwidth utilisation would become less than packing all signals into a large
frame.

To assign signals to frames is difficult since (1) the signals are
asynchronous (i.e., the different signals are available for the communication
subsystem at non synchronised times) and (2) many protocols for embedded
systems allow different frame sizes with different transmission times, e.g., in
a CAN-based system, the data is transmitted in frames containing between 0
and 8 bytes of data.

Thus, the problem investigated in this paper is: Given a finite set of
signals for each node, where each signal is characterised by a deadline and a
size. Further a finite number of different sized types of frames with different
transmission times are given. Find a mapping of signals to periodic frames,
which will minimise the bandwidth utilisation of the communication
network such that all of the signals are uniquely assigned to frames and that
the frames are globally schedulable.

When comparing different packing alternatives we have chosen to define
an utilisation measure for a frame as the transmission time divided by the

 97

deadline of the frame, and consequently the utilisation measure for the
network as the sum of utilisation measures for all frames. Note that we use
deadline instead of period time in the definition of the utilisation measure,
because we want to separate the frame packing from scheduling. In the
scheduling phase, periods are determined based on deadlines, frame
transmission time, and the scheduling method used. A straightforward
solution is to transmit each frame with a period time that is equal to half of
the deadline then the deadline requirement for each frame will be fulfilled,
but possibilities exist [13].

Thus we have a set of frames where each frame has a period time and a
transmission time, which we have to perform schedulability analysis on.
Several mature techniques for schedulability analysis of periodic frames for
different protocols exist, including the technique developed for the CAN-
bus by Tindell et al. [1,2,3] and techniques for off-line generation of
timetables 9.

The problem we address is similar to the task allocation and scheduling
problem that has been studied by many researchers, e.g. [9,11]. The main
difference is that most often in task allocation, a system with a finite set of
nodes is given while in our case we have non-finite set of frames.
Furthermore, the task allocation and scheduling problem is harder since
tasks often have relations between each other, including mutual exclusion
and precedence. Our work also relates to the work done in multimedia
applications where multiple streams are to be guaranteed as in [12], where
they model the problem as a multidimensional bin-packing problem. Their
problem is slightly more complex since they handle different kinds of
resources like, disk, CPU and network resources. However, we have not
found any work that has attacked the frame-packing problem.

The contributions of this paper are that we:

• Formulate the packing problem.
• Show that the packing problem is NP-hard
• Present a simple heuristic for frame packing that we show is very

effective.
• Demonstrate the effectiveness of the algorithm on realistic sized

problems derived from the automotive industry.
The rest of this paper is organised as follows. Section 2 presents our

system model and the formalisation of the problem. Section 3 presents the
proposed algorithms, whereas in Section 4 the corresponding analysis results
are presented. Finally in Section 5 we will draw some conclusion.

2 Problem statement

2.1 System model
We assume a distributed system consisting of a set of nodes

interconnected via a communication network. The communication protocol

 98

is assumed to be a packet transmission protocol with a limited set of frame
sizes. A frame contains one or more signals and the size of a signal is
assumed to be less or equal to the size of the largest frame. Each node
transmits and receives signals, where a signal has one producer and one or
more consumers. Each signal has a specified size and deadline. We assume
that the period time of generation of new signal values is greater than the
deadline of the signal. The nodes may or may not have a global
synchronised time base.

2.2 Problem formulation
For each node the following problem has to be solved. Given a finite set

},...,,{ 21 nsssS = of signals with size +∈ Nssz i)(and a deadline +∈ Nsd i)(.
We define a frame f as a collection of signals from S. Each frame has an
associated transmission time +∈ Nfc j)(and a size +∈ Nfsz j)(, defined by
the used communication protocol.

The problem is now to find a mapping of S into a set of frames
},...,,{ 21 lfffF = , such that each Ssi ∈ is included in a unique jf ,

with)()(j
fs

i fszssz
ji

≤∑
∈∀

, and which minimises the bandwidth utilisation

measure ∑
∈∀

∈∀

=
Ff ifs

k

k
ki

sd
fcU

))((min
)(.

Each frame has to be transmitted with a rate that fulfils the deadline
requirement on the signal with the shortest deadline in the frame fi. The
objective is to map the signals into frames such that the bandwidth
requirement U is minimised, while making sure that frames are schedulable.

This problem is NP-hard in the strong sense since it easily can be shown
that it is a special case of the well known “bin packing” problem, which is a
NP-hard combinatorial optimisation problem [7]. The “bin packing”
problem is obtained when all signals have the same deadline and when there
is only one size of frames. Then our optimisation problem becomes to pack
the signals in as few frames as possible, which is exactly the “bin packing”
problem. So if our problem is proven to belong to class P then should also
the “bin packing” problem belongs to that class, which is a contradiction,
unless P = NP.

3 An engineering approach: mapping signals to frames
The frame-packing problem is a NP-hard problem and hence we need to

solve the problem by using heuristic techniques. To get a measure of the
effectiveness of our algorithms, a theoretical lower bound for the utilisation
is derived for the signals. This theoretical lower bound is never higher than
the real lower bound.

 99

The lower bound is calculated by assuming that each signal is transmitted
in a frame with the lowest cost per bit and the deadline of the frame is the
same as the deadline of the signal. A frame has a transmission time and a
data size.

We define the lowest theoretical overhead per bit by
))(/)((min fszfcMINOH

f∀
= . The minimal theoretical signal utilisation, SU,

for a signal s is calculated by MINOH
sd
sszsSU ×=
)(
)()(. The theoretical

lower bound of the utilisation for all signals is calculated
by ∑

∈∀

=
Ss

sSUSLB)()(. Intuitively, this corresponds to packing each signal in

a minimum overhead frame, together with other frames with the same
deadline that completely fills up the frame.

Our heuristic approach is to first sort the signals in increasing deadline
order and then pack the signal into frames by a heuristic algorithm. We will
consider two type cases of packing, the first packing algorithm (fixed frame
size) considers only one size of the frames and exploits the first fit algorithm
and the second algorithm (linear frame selection) uses heuristics for
deciding which frame size to be used. A more detailed description of the
algorithms can be found in [6].

3.1 Fixed frame size
The algorithm for fixed size frames assigns signals to a frame until a

signal does not fit into the frame, then a new frame is created and the signal
is assigned to that frame.

3.2 Linear frame selection
The algorithm starts off with a frame of the smallest frame size and

assigns signals to that frame. When a signal s does not fit into the frame a
selection is made; the cost (in bandwidth usage) for using a larger frame that
fits all signals including s is compared with the cost of keeping the original
frame and assigning s to a new frame with the smallest possible size. The
alternative with the lowest cost is preferred. Moreover, when several frames
have been created the algorithm first traverses the frames in order, trying to
fit the signal into some unused space. If that is not successful the procedure
described earlier is started.

A nice property of both algorithms presented is that they are polynomial
time algorithms. Which in practice mean that they are very fast to run even
for large signal sets.

4 Simulation
To evaluate the quality of our algorithms we will perform analysis for

type-cases of signal sizes and deadline distributions, both for a Controller

 100

Area Network (CAN) [10] based system and the slow and low cost Local
Interconnection Network (LIN) [8]. CAN is a broadcast bus designed to
operate at speeds up to 1 Mbps. Data is transmitted in frames containing
between 0 and 8 bytes of data. A LIN installation usually runs at the speed
of 5-20 Kbps/s and is intended to be used for control of internal lights,
window drivers, selection switches, etc. in automotive systems. Data is
transmitted in frames containing 2, 4 or 8 bytes of data.

We have chosen to study these two buses because they operate on
different speeds and have different sets up of possible frame sizes. Further, a
CAN based system is more likely to be used for sending larger signals in
terms of number of bits since it is mostly used for sending control data,
while the LIN based system is mostly used for replacing simple on/off logic.
The sizes and deadline distributions for each bus have been derived from
discussions with our industrial partners [14].

To generate signal sets we have developed a test case generator that takes
the following as input:

• The theoretical lower bound bandwidth, which is used for regulating
the amount of signals to be generated.

• The distribution of signal sizes (e.g., 70% 1 bit signals, 20% 2 bit
signals and 10% 4 bit signals)

• The distribution of deadlines (e.g., 20% of the signals has a deadline
of 10, 25% of the signals have a deadline of 25 etc.)

4.1 CAN simulation
Signals were created with a distribution of the signal size according to

Table 1 and each signal was given one out of nine different deadlines. Table
1 gives also the probability for assigning a specific deadline to a signal.

Size distribution Deadline distribution

Size Probability Deadline Probabi
1 0.20 20 0.07
2 0.20 40 0.20
3 0.10 50 0.25
5 0.10 75 0.05
8 0.20 100 0.10
1 0.05 150 0.10
1 0.15 200 0.10

250 0.10
400 0.03

Table 1. Distribution of signal sizes (a) and deadlines (b) for the
CAN simulation.

 101

The graph presented in Figure 1 shows the bandwidth utilisation of the
frames as a function of generated signal sets with different loads. The graph
was obtained by running 10000 generated signal sets for each load level.
The graphs include the result from the lfs algorithm and the fixed frame size
algorithm. The fixed frame size algorithm was executed for 8 different
frame sizes, however smaller CAN frames have been omitted as they result
in much higher bandwidth utilisation. The network was assumed to operate
at 500 Kbps.

0,4

0,5

0,6

0,7

0,8

0,9

1

0,0
5

0,1
5

0,2
5

0,3
5

0,4
5

0,5
5

0,6
5

0,7
5

0,8
5

0,9
5

Generated signal load

Bandwidth
utilisation

48 bit
56 bit
64 bit
lfs
lower bound

Figure 1. The performance at different load levels.

As can be seen from the graph we are close to optimal in fact we are just
some percents above the optimal and thus it seems that we have a rather
good heuristic.

4.2 LIN-simulation
Signals were created with a distribution of the signal size according to

Table 2 and each signal was given one out of seven different deadlines.
Table 2 gives also the probability for assigning a specific deadline to a
signal. The cost for the three different frame sizes was assumed to be 15, 20
and 25 respectively.

Size distribution Deadline
distribution

Size Probabilit Deadlin Probabilit
1 0.50 50 0.05
2 0.20 75 0.10
3 0.20 100 0.20
10 0.05 150 0.20
16 0.05 200 0.20

400 0.20
1000 0.05

Table 2. Distribution of signal sizes (a) and deadlines (b) for the LIN
simulation.

 102

The graphs presented in Figure 2 shows the bandwidth utilisation of the
frames as a function of generated signal sets with different loads. The graphs
were obtained by running 10000 generated signal sets for each load level.

0

0,1

0,2

0,3

0,4

0,5

0,6

0,7

0,8

0,9

1

0
0,0

5 0,1 0,1
5 0,2 0,2

5 0,3 0,3
5 0,4 0,4

5 0,5

Generated signal load

Bandwidth
utilisation

16 bit 32 bit 64 bit lfs lower bound

Fig. 2. The performance of the algorithms at different
load levels generated

For small signal sets the 16 and 32 bit frames in the LIN simulation gives
better performance than the 64 bit frame because the effect of not filling up
the "last" frame is less significant. Further, compared to the CAN
simulation, the LIN simulation also has a larger gap between the lower
bound and the lfs algorithm since the price of not filling up the last frame is
much higher (because the CAN-bus runs on a much higher speed), the CAN
simulation includes significantly more signals and frames, and that only 3
frame sizes can be used in LIN.

4.3 Discussion
The CAN simulation includes many more signals, and hence more

frames, than the LIN tests and thus the price of not filling up the "last" frame
is less significant.

For small signal sets the 16 and 32 bit frames in the LIN simulation gives
better performance than the 64 bit frame, because the effect of un-used space
in the last frame is in average much higher.

It is quite easy to construct "pathological" cases where for example the 64
bit fixed frame behave much worse than the lfs algorithm.

Since all algorithms are so cheap to run one can always select the best
result provided by any of the algorithms.

 103

5 Conclusion
In this paper we have presented the frame-packing problem, made a

formalisation of the problem, showed that the problem is NP-hard, presented
a heuristic solution, and demonstrated the heuristics effectiveness on signal
sets that have been derived from real automotive applications.

The results from this paper can be used for many different
communication networks where several small signals have to share the
space available in one frame.

Further research includes looking into the issue of adjusting the period
times of the frames in an efficient way.

An interesting theoretical problem is to find out if it is possible to find an
approximation algorithm, which can give a worst-case upper bound on the
waste of bandwidth for the algorithms presented in this paper.

Acknowledgements: We would like to thank Hans Hansson, Sasikumar
Punnekat, Jukka Mäki-Turja, Ralf Elvsén, and Henrik Thane for valuable
discussions and for reviewing earlier versions of this paper.

Mälardalen Real-Time research Centre (MRTC; www.mrtc.mdh.se) is a
research centre in Västerås, Sweden, supported by Swedish industry, the
Swedish Foundation for Knowledge and Competence Development (KK-
stiftelsen) and Mälardalen University.

6 References
[1] Tindell K., J. Clark, Holistic Schedulability Analysis for Distributed

Hard Real-time Systems. Technical Report YCS197, Real-Time
Systems Research Group, Univ. of York, 1993.

[2] K. W. Tindell and A. Burns. Guaranteed message latencies for
distributed safety-critical hard real-time control networks. Technical
Report YCS229, Dept. of Computer Science, University ofYork, June
1994.

[3] K. W. Tindell, A. Burns and A. J. Wellings. Calculating Controller Area
Network (CAN) message response times, Control Engineering Practice
3(8):1163-1169, 1995.

[4] K. Melin. Volvo S80: Electrical system of the future Volvo Technology
Report. 98-12-11.

[5] L. Casparsson, A. Rajnak, K. Tindell, and P. Malmberg Volcano a
revolution in on-board communications. Volvo Technology Report. 98-
12-10.

[6] C. Norström, K. Sandström, Magnus Ahlmark. Frame Packing in Real-
Time Communication, MRTC Technical report, July 2000,
www.mrtc.mdh.se.

http://www.mrtc.mdh.se/

 104

[7] M. R. Garey and D. S. Johnson. Computers and Intractability: A Guide
to the Theory of NP-Completeness. Freeman San Francisco, CA, ISBN
0-7167-1045-5, 1979.

[8] LIN Protocol Specification, http://www.lin-subbus.org/
[9] K. Ramamritham. Allocation and Scheduling of Complex Periodic

Tasks. In 10th Int. Conf. on Distributed Computing Systems, pages 108-
115, 1990.

[10] Road Vehicles - Interchange of Digital Information - Controller Area
Network (CAN) for High Speed Communication, ISO DIS 11898,
February 1992.

[11] J Jonsson and J Vasell. Evaluation and comparison of task allocation
and scheduling methods for distributed real-time systems. In proceeding
of Second IEEE International Conference on Engineering of Complex
Computer Systems, 21-25 Oct. 1996.

[12] H. Jiandong and D. Ding-Zhu. Resource management for continuous
multimedia database applications. In proceedings of RTSS’94. 1994.

[13] A. K. Mok. FUNDAMENTAL DESIGN PROBLEMS OF
DISTRIBUTED SYSTEMS FOR THE HARD–REAL-TIME
ENVIRONMENT. Ph.D. thesis MIT 1983.

[14] C. Norström, K. Sandström, M. Gustafsson, J. Mäki-Turja, and N.-E.
Bånkestad. Findings from introducing state-of-the-art real-time
techniques in vehicle industry. In industrial session of the 12th
Euromicro Conference on Real-Time Systems, Stockholm, Sweden,
2000.

http://www.lin-subbus.org/

	Contents
	I
	Introduction
	Background and Motivation
	Temporal Constraints
	Temporal analysis and attribute assignment
	The Context of Embedded Control Systems

	Focus and Aim
	Results and Contributions
	Academic results
	Paper A: Experiences from Introducing State-of-the-art Real-Time Techniques in the Automotive Industry
	Paper B: Handling Interrupts with Static Scheduling in an Automotive Vehicle Control System
	Paper C: Managing Complex Temporal Requirements - A Method for Assigning Priorities and Offsets in Fixed Priority Systems
	Paper D: Frame Packing in Real-Time Communication
	Tools

	Educational results
	Industrial relevance
	Technology transfers
	Prototypes

	Conclusion and future work
	References
	Introduction
	Application characteristics
	Design language
	Application model
	Modes and mode transitions
	Transactions and interaction graphs
	Task

	Mapping of the design to a resource structure
	Development methodology
	Findings
	Design methodology
	Technology transfer
	Technical issues

	Conclusion and Future research
	References
	Introduction
	Application characteristics
	Task model and run-time representation
	Algorithm
	Calculation of worst case completion time
	Applying the algorithm

	Conclusions
	References
	Appendix
	Introduction
	System model
	Run-time system model
	Specification model

	Attribute Assignment
	Results
	Simulation set up
	Success ratio for the GA
	Comparison with Bate and Burns’ method

	Conclusion
	References
	Introduction
	Problem statement
	System model
	Problem formulation

	An engineering approach: mapping signals to frames
	Fixed frame size
	Linear frame selection

	Simulation
	CAN simulation
	LIN-simulation
	Discussion

	Conclusion
	References

