

Managing Temporal Constraints in Control Systems

Kristian Sandström and Christer Norström

Mälardalen Real-Time Research Centre, Department of Computer Engineering,
Mälardalen University, Västerås, Sweden

Abstract
Design and implementation of motion control applications include the mapping of control
design to real-time system implementation. Important parameters from control design include
deviation from nominal period time of an activity, end-to-end timing constraints, temporal
correlation between different sampling tasks, and constraints on temporal variations in
output. These parameters should also be considered in the real-time systems design, since
translating them to simple deadlines may lead to sub-optimal solutions. Many real-time
systems in industry today are based on pre-emptive priority based run-time systems, and
hence, it is highly desirable to fulfill the temporal requirements by correctly assigning
attributes such as priorities and offsets to the tasks executing in such systems. However, this
is a non-trivial mapping, which should be supported by appropriate methods and tools. In this
paper we propose a method, which by assigning priorities and offsets to tasks provides
guarantees that complex timing constraints are met. The method handles periodic and
sporadic tasks, shared resources, and varying execution times of tasks. We present the
method, which uses a genetic algorithm, together with simulation results, showing that the
proposed method is capable to efficiently handle complex constraints on task sets of realistic
sizes covering most embedded control systems.

1 Introduction
To successfully design and implement motion control applications, such as robots,

vehicle/trucks, and mobile machinery, in distributed computer systems there is a need to make
a smooth and predictable transition from the design of a control system to its implementation
in the computer system. One important prerequisite to accomplish this for real-time systems is
to appropriately derive and model application timing requirements [1]. Moreover, these
requirements must be translated into timing constraints that are suitable for implementation,
thereby providing means for interaction between control and computer engineers. The timing
constraints in the control design cannot be directly mapped to attributes of a real-time system,
such as priorities, period times, deadlines and offsets of tasks. Assigning the attributes of the
tasks so that the complex timing constraints derived from the control design are fulfilled is a
non-trivial problem. Typical complex timing constraints are tolerances on sampling periods,
end-to-end timing constraints, temporal correlation between different sampling tasks, and
constraints on temporal variations in output.

The aim of this paper is to show how these complex timing constraints can be mapped to
attributes of periodic tasks running on standard pre-emptive priority based multitasking real-
time operating systems, as for example WxWorks provided by Windriver, in such a way that
the timing constraints are fulfilled. In order to guarantee the behaviour of a control system
subject to complex timing constraints, one must also consider that execution times of
activities in most cases vary. Varying execution times will directly affect e.g., constraints on
maximum deviation from a nominal period time.

Bate and Burns [2], propose a related method for assigning offsets and priorities to a fixed
priority pre-emptive task set. They define a specification model that allows for expressing
similar constraints as defined in Section 2 of this paper. However, their method does not
consider the use of shared resources between sporadic and periodic tasks. Furthermore,
attribute assignment for dealing with constraints on period time variation is managed using a
heuristic algorithm with local optimization that, according to the authors, can lead to attribute
assignments causing unschedulable systems when a feasible solution exists. For this reason it
is difficult to extend the method to incorporate the additional constraints we would like to
consider. Several researchers have attacked the same problem by generating off-line
schedules [3][4][5]. A major disadvantage of such a solution is that it cannot be handled by a
standard priority-based RTOS. Furthermore, they do not support pre-emption, sporadic
activities, and varying task execution times. In [6][7] a method is presented for translating off-
line schedules to task attributes for fixed priority systems (FPS). This method could be
combined with methods in [3][4][5] and would enable the use of priority-based RTOS for
those methods. However, the combined approached would still inherit the limitations of not
supporting pre-emption, sporadic activities, and varying task execution times when searching
for a solution to the complex constraints. The method allows for using on-line acceptance test
for sporadic and aperiodic tasks to use spare capacity from the tasks translated from the off-
line schedule to FPS, while the methods presented in this paper add no run-time overhead for
managing sporadic tasks. Moreover, when translating an off-line schedule the method in
[6][7] in some cases have to represent an off-line scheduled task by more than one FPS task.
This can result in an FPS system with artificial tasks and thereby a greater number of tasks
compared to our method. However, if more instances are used it is possible to find solutions
that cannot be found otherwise. It is possible using the method presented in this paper to
include more than one instance for some or all tasks.
In [8] the authors present a design methodology for real-time systems with end-to-end timing
constraints, temporal correlation between different sampling tasks and constraints on temporal
variations in output. The methodology derives period times, deadlines, and offsets for the
tasks. However, the task model does not agree with a standard priority-based RTOS and
constraints on period time variation cannot be expressed. Furthermore, the method assumes
that task execution times are static. The work presented in [9] uses genetic algorithms for
minimizing jitter in communication using field busses. The problem solved is quite different
from the one presented in this paper in that only jitter is minimized and messages do not have
interrelated temporal constraints
The motivation for the work presented in this paper mainly originates from our participation
in a real industrial project where we used a specification model with support for periodic
tasks, deadlines, precedence relationships, mutual exclusions, and offsets [10]. By using this
model we can express all timing constraints required by the application. However, the
designer has to manually translate the timing constraints into attributes of the used model.
This is possible for simple systems, but in systems with many such requirements it becomes
very difficult to assign these attributes manually. Even if the designer succeeds in finding a
feasible mapping, we get a maintenance problem [10].
In this work we use an enhanced specification model that supports temporal dependencies
between tasks. We will show that we can solve the problem of mapping a system described by
this specification model to a run-time system model in an efficient way by using a genetic
algorithm (GA). There are several reasons for using the GA approach. GA is a general
optimisation method that has been used successfully for solving a wide variety of complex
problems including scheduling, e.g., in [11][12][13][14]. It can also easily be extended to
optimise on other attributes such as minimising the response time of handling an event. One
of the most important properties of the GA is its ability to deliver a result that fulfils a subset

of the timing constraints in cases where it is impossible to fulfil all constraints. This
information is important since the designer then can get an indication of which constraints
that can not be fulfilled and thereby simplify the re-modelling of the application. Also, even if
not all timing constraints are fulfilled, the application requirements may in some cases still be
fulfilled since the robustness of the control design can tolerate deviations from the
specification. However, this has to be verified by control analysis. Simulation results show
that our algorithm performs well compared to the algorithm presented in [2] and that it finds
solutions to a high degree when the considered systems are schedulable.
Thus, the contributions of this paper are:

• A specification model for describing systems with complex timing constraints.
• A synthesis algorithm that assigns priorities and offsets to tasks to fulfil the timing

constraints given our specification model.
• Simulation results showing the efficiency of the suggested method.

The rest of this paper is organised as follows. Section 2 describes the used system model. The
method for attribute assignment is covered in Section 3. In Section 4 simulation results are
presented, followed by the conclusion of the paper in Section 5. An extensive example of the
method can be found in Appendix A.

2 System model
The system model is divided into two parts. The first part specifies the required behaviour of
the run-time system and the second part is a definition of the specification model used to
express the constraints of the task set.

2.1 Run-time system model
The basic model for the run-time system is a priority based, pre-emptive run-time system

with shared resources protected by semaphores conforming to the priority ceiling protocol.
Furthermore, the run-time system should provide a mechanism to enforce phasing between
tasks i.e., offsets, and the ability to periodically release tasks with some predefined resolution,
e.g., the operating system tick. These required features exist in many RTOS and if not, it is
quite easy to construct these mechanisms from existing RTOS primitives.

The run-time system may also support prioritised sporadic activities.

2.2 Specification model
The specification model defines the information that has to be specified for each periodic and
sporadic task, as well as the constraints that can be expressed on a task set. A periodic task is
defined by its worst-case execution time (WCET), best-case execution time (BCET), and
nominal period time. The nominal period time is the desired rate at which the task should be
executed. Below, the terms start time, completion time, and release are used. The start time of
a task is the actual time when the first instruction is executed on the processor, as opposed to
release, which is the time when the task becomes ready to execute. The completion time of a
task is the time when the last instruction has been executed.
The following constraints can be expressed for and between periodic tasks:

• Deadline – deadline relative to the release of the task.
• Precedence – constraint specifying the execution order between two tasks.
• Separation – constraint of a minimum distance between the completion of one task and

start of another task.
• Jitter – the maximum allowed deviation from the nominal period time. Jitter

constraints are used to control the deviation from nominal period for e.g., sampling
and actuation activities.

• Start Jitter – maximum allowed deviation of a task’s start time from its nominal
period time. The constraint is specified by an upper (Sh) and lower bound (Sl) on
the time between two consecutive executions of a task.

• Completion Jitter – maximum allowed deviation of a task’s completion time
from its nominal period time. The constraint is specified by an upper (Ch) and
lower bound (Cl) on the time between two consecutive executions of a task.

• Latency – constraint specifying a maximum allowed distance between the start of one
task and the completion of another task.

• Correlation – constraint on the maximum time between executions of two or more
tasks executing in parallel. This constraint is used to correlate concurrent sampling or
actuation activities in time.

• Shared resources – specification of the tasks that use semaphores and times for the
tasks critical sections.

Periodic tasks may have a varying execution time and phasing relative to each other and
hence the start time and completion time for a task can vary. This must be considered when
finding an attribute assignment meeting the constraints for a task set. Therefore the analysis of
a task set is performed for all instances over the least common multiple (lcm) of tasks period
times. This is necessary since calculation of the earliest- and latest start time and completion
time without considering all instances would be too pessimistic. As an example, consider the
tasks τ1 and τ2 depicted in Figure 1. The tasks have a period time of 10 and only one
constraint, a precedence constraint between τ1 and τ2. Assume a completion time of τ1

 equal to
3, and a start time of τ2

 equal to 4 in one period and a completion time of τ1 equal to 2, and a
start time of τ2

 equal to 2 in the next period. The latest completion of t1 relative to the period is
3 and the earliest start relative to the period for τ2 is 2, i.e., the precedence is violated
considering only the task timing while if the separate instances are considered one can see that
precedence is achieved between τ1 and τ2.

τ1 τ2 τ1 τ2

 0 3 4 10 12

Figure 1. The execution of the two tasks τ1 and τ2.
Phasing of tasks and the start- and completion time variations are incorporated into the model
by describing, for each instance of a task during the lcm, the earliest start time (est), the latest
start time (lst), the earliest completion time (ect), and the latest completion time (lct). The
constraints and notation are defined below, where τi represents task i and n

iτ represents
instance n of task i.
est(n

iτ) - earliest start time of n
iτ .

lst(n
iτ) - latest start time of n

iτ .
ect(n

iτ) - earliest completion time of n
iτ .

lct(n
iτ) - latest completion time of n

iτ .

Deadline <deadline, τi > holds iff
 deadline))offset(τn)e(τ(periodTim)lct(τ ii

n
i ≤+∗−

Precedence <τi, τj> holds iff
)()(n

j
n
i τestτlct ≤

Separation <separation, τi, τj > holds iff
 separationτlctτest n

i
n
j ≥−)()(

Start Jitter <Sh, Sl, τi> holds iff

l
n
i

n
ih

n
i

n
i S)lst(τ)est(τS)est(τ)lst(τ ≥−∧≤− ++ 11

Completion Jitter <Ch, Cl, τi> holds iff
 l

n
i

n
ih

n
i

n
i C)lct(τ)ect(τC)ect(τ)lct(τ ≥−∧≤− ++ 11

Latency <latency, τi, τj > holds iff
∧≤−∧≤∀→=))(n(latencyest(τ)lct(τ)est(τ)τlctTT n

i
n
j

n
j

n
iji

 ∧≤−∧≤∃∀→> latencyest(τ)lct(τ)est(τ)τlctmTT n
i

m
j

m
j

n
iji)(:n

 latencyest(τ)lct(τ)est(τ)τlctmTT m
i

n
j

n
j

m
iji ≤−∧≤∃∀→<)(:n

Correlation <Correlation, τi, τi+1,…, τi+m > holds iff
 nCorrelatio)est(τ)τlstm)i..(ij,k n

k
n
j ≤−+∈∀ (:

A sporadic task is specified by a worst-case execution time, a minimum inter-arrival time, and
a deadline. Here, the best-case execution time is not considered, since the best case
considering the entire task set is that the sporadic task is not activated at all at a given
instance. The minimum inter-arrival time specifies the shortest possible time between two
consecutive activations of the task. The deadline is relative to the release of the task. It is also
possible for sporadic tasks to use semaphores that are shared with both sporadic and periodic
tasks. Note that an interrupt should be modelled as a sporadic task.

3 Attribute Assignment
This section describes the algorithm for assigning priorities and offsets to the periodic tasks
and priorities to sporadic tasks in order to meet the constraints specified for a task set. It is
assumed that constraints are specified according to the model defined in the previous section.
The heart of the attribute assignment is a genetic algorithm that assigns offsets and priorities,
evaluates the assignments, and incrementally finds new assignments, thereby gradually
achieving the required system behaviour. The general idea of a GA is to let individuals in a
population gradually improve by the mechanisms of natural selection. In this case the
individuals consists of attribute assignments for a tasks set and the environment to master is
the constraints put on that task set. An overview of the structure and operation of the genetic
algorithm used is given below.

1. Initial Population – The algorithm initially makes a number of guesses about the
assignment of priorities and offsets for the complete task set. A complete assignment
for the entire task set is referred to as a genome.

2. Apply Objective function – The objective function calculates a goodness value for
each genome, given how far the genome is from meeting the requirements. If the
objective is reached, the algorithm has found a solution and is terminated.

3. Crossover – In this step parts of different genomes are combined to produce an
offspring, i.e., a new genome built from two other genomes.

4. Mutation – Randomly alters a genome by e.g., by reassigning a priority in the genome
by a random number.

5. Repeat from step 2, each iteration is referred to as a generation.
 An assignment of offsets and priorities for a task set is represented by a set of offset priority
pairs for the periodic tasks and a priority for each sporadic task, e.g., a task set with periodic
tasks t1 to ti and sporadic tasks st1 to stj is represented by the set g: {<priority1,
offset1>,…,<priorityi, offseti>,<priority1>,…,<priorityj>}. The population of the genetic
algorithm then consists of a number of such priority-offset sets G = {g1, …, gn}.
 The objective function calculates start times and completion times for the task set and
derives a single value used for sorting different genomes by their closeness to the optimum,
where the representation of optimum is defined by the genetic algorithm, e.g., the lower value

the closer to optimal. The deviations from the requirements for a task set, using the offsets
and priorities of a given genome, are calculated by rearranging the formulas earlier described
in Section 2. For example, deviation from the distance constraint is calculated by
reformulating distestlct ≥−)(τ)(τ n

i
n
j as))(τ)(τ(n

i
n
j estlctdist −− . The objective value is then expressed

as a percentage of the allowed deviation, e.g.,))(τ)(τ(n
i

n
j estlctdist −− / dist. This value is divided

by the number of instances, during an lcm, of the task. The division by dist and the number of
instances is done in order to normalise the value against other constraints so that not too
strong emphasis is put on some constraints. The objective value for a genome is the sum of
the normalised values calculated for each constraint. The objective function is at the end of
this section.
The analysis performed to calculate the earliest and latest start times and completion times for
the instances of the task set can be divided into two cases: 1) The earliest start time and
completion time are calculated disregarding the sporadic tasks, using the best-case execution
times, and assuming that no tasks are blocked when using shared resources. 2) The latest start
time and completion time is calculated considering interference from sporadic tasks, using the
worst-case execution times and assuming maximal blocking.
 In the objective function given below, task instances are assumed to be enumerated starting
with zero for the first instance. The function numInst() returns the number of instances for a
task during the lcm of the complete task set. The objective function is executed for each of the
attribute assignments contained in the GA population. For each assignment an objective value
is returned, and that value is then used to rank the different attribute assignments for a given
task set. Pessimism in the objective function can be reduced if the mechanism of the used run-
time system is considered. For example, in pre-emptive priority based systems, tasks with the
same offsets are not influenced by sporadic activities independently of each other. The goal of
this work has not been to provide an optimal objective function, the goal has been focused on
the overall success of the method, which is indicated by the simulations in section 4.
Objective function
 objective = 0
 for each task τi “Deadline”
 for each instance n of task τi
 if lct(n

iτ) > deadline(τi) + n · periodTime(τi) + offset(τi)
 deviation = lct(n

iτ) - deadline(τi) - n · periodTime(τi) - offset(τi)
 objective = objective + deviation / deadline(τi) / numInst(τi)
 for each precedence constraint <τi , τj >
 for each instance n of task τi and τj
 if lct(n

iτ) > est(n
jτ)

 deviation = 1

 objective = objective + deviation / numInst(τi)

for each separation constraint <separation, τi , τj >

 for each instance n of task τi and τj

 if est(n
jτ) – lct(n

iτ) < separation

 deviation = separation – (est(n
jτ) – lct(n

iτ))

 objective = objective + deviation / separation / numInst(τi)

for each start jitter constraint <Sh, Sl τi>

 for each instance n of task τi

 if lst(1+n
iτ) – est(n

iτ) > Sh “(lcm + lst(0
iτ)) – est(n

iτ) when
 n=numInsti-1”

 deviation = (lst(1+n
iτ) – est(n

iτ)) - Sh

 objective = objective + deviation / Sh / 2 / numInst(τi)

 if est(1+n
iτ) – lst(n

iτ) < Sl “(lcm + est(0
iτ)) – lst(n

iτ) when
 n=numInsti-1”

 deviation = Sl – (est(1+n
iτ) – lst(n

iτ))

 objective = objective + deviation / Sl / 2 / numInst(τi)
Completion Jitter calculated as start jitter above.

for each latency constraint <latency, τi , τj >

 if periodTime(τi) = periodTime(τj)

 for each instance n of task τi and τj

 if lct(n
iτ) ≤ est(n

jτ)

 If lct(n
jτ) - est(n

iτ) > latency

 deviation = (lct(n
jτ) - est(n

iτ)) - latency

 objective = objective + deviation / latency / numInst(τi)

 else

 objective = objective + 1 / numInst(τi)

 if periodTime(τi) > periodTime(τj)

 for each instance n of task τI

 find the instance m
jτ with earliest lct, where lct(n

iτ) ≤ est(m
jτ)

 if an instance m
jτ is found

 if lct(m
jτ) - est(n

iτ) > latency

 deviation = (lct(m
jτ) – est(n

iτ)) - latency

 objective = objective + deviation / latency / numInst(τi)

 else

 objective = objective + 1 / numInst(τi)

 if periodTime(τi) < periodTime(τj)

 Analogous to periodTime(τi) > periodTime(τj)

for each correlation constraint <correlation, τi, …, τm >

 for each instance n of task τi to τm

 find the maximum difference between lst(n
kτ) – est(n

lτ) for
 any k and l

 in [i..m] where k ≠ l.

 if lst(n
kτ) – est(n

lτ) > correlation

 deviation = lst(n
kτ) – est(n

lτ) - correlation

 objective = objective + deviation / correlation / numInst(τi)

End Objective function

4 Results
A series of simulations have been carried out to evaluate the performance of the proposed

method. The first set of simulations shows the success ratio, for the GA, at assigning priorities
and offsets to task sets so that the constraints for the task sets are met. For this set of
simulations all the constraints presented in this paper are used by the generated task sets. The
second set of simulations compares the method in this paper to the algorithm presented in [2]
by Bate and Burns. To be able to compare the two approaches the constraints not supported
by the algorithm in [2] have been removed.

4.1 Simulation set up
Periodic and sporadic tasks are randomly generated until the specified utilization is reached.
The periodic utilization is randomly generated in [0, U], and the sporadic utilization equaling
U – periodic utilization, where U is the desired system utilization. The period time of the
periodic tasks are randomly selected from a number of predefined period times and the
WCET is randomly generated as a percentage of the period time, the percentage is specified
as a range, e.g., 2%-4% of the period time. The BCET for a periodic task is defined as a
percentage of the WCET of the task. Table 2 displays the numbers used for the periodic tasks
in the simulations presented in this paper. The minimum inter-arrival time for sporadic tasks
are randomly generated from a predefined set of ranges and the WCET is generated in the
same way as for the periodic tasks. The parameters for the sporadic tasks in the simulations
are given in table 1.

Min. Inter-arrival time Distribution %
[0,1000] 20
[1000, 5000] 70
[5000,20000] 10
WCET in percentage of min. inter-arrival time
[0,1] 30
[1,2] 40
[2,5] 30

Table 1. Data for generating sporadic tasks.

Period time Distribution %
10000 20
25000 20
50000 40
100000 20
WCET in percentage of period time
[0,2] 45
[2,4] 50
[4,8] 5
BCET in percentage of WCET
[0,70] 10
[70,80] 30
[80,90] 30
[90,97] 30

Table 2. Data for generating periodic tasks.
When the tasks with period times, WCETs, and BCETs have been generated, offsets and
priorities are randomly generated. The temporal behavior of the task set is then analyzed and
the constraints are generated based on the temporal information so that the task set fulfils the
constraints. The number of constraints generated are based on a predefined percentage of the
number of periodic tasks, e.g., if 70% is specified for the amount of constraints and the
number of periodic tasks are 20, then there will be 14 tasks involved in the constraints.
Deadlines are not included in this number since a deadline is always randomly generated for
each task.

The simulations are performed for four different utilization levels, 30%, 50%, 70%, and
90%. For each utilization level simulations are carried out for different amounts of
constraints, 30%, 50%, 70%, and 90%, where the constraints are generated as presented
above. There are 100 task sets generated for each utilization and constraints level. The
simulations were run on a 550 MHz Pentium III processor with 128 MB RAM. The software
is implemented using C/C++. For the basic data structures and operations of the genetic
algorithm we used the GAlib genetic algorithm package, written by Matthew Wall at the
Massachusetts Institute of Technology. The GA will terminate on success, or when reaching
2000 generations, or when there is no improvement in the objective value for 100 generations.

4.2 Success ratio for the GA
For this simulation all the constraints presented in this paper are used by the generated task
sets as well as shared resources between periodic and sporadic tasks (and other combinations).
There is an even distribution between the numbers of tasks assigned to the different
constraints in order to get a good coverage of all the constraints. Start and completion jitter is

not treated as two separate constraints when the amount of constraints is calculated. If a jitter
constraint is generated, both start and completion jitter is generated for the task and it is
viewed as one task with one constraint. The graph shows the percentage of task sets with
attributes assigned that fully meet the constraints. The average number of sporadic and
periodic tasks, as well as the total number of tasks is given in Table 3. Finally, Table 4 shows
the average computation time for processing the task sets, including computation times for
both correct and incorrect assignments.

0
0,1
0,2
0,3
0,4
0,5

0,6
0,7
0,8
0,9
1

0,30 0,50 0,70 0,90 Utilization

Su
cc

es
s

ra
tio

C30

C50

C70

C90

Graph 1. The success ratio of the GA algorithm
for different load and number of constraints.

Constraints

Utilization 30% 50% 70% 90%

30% 11.7/5.8/5.9 19.3/9.3/10.0 26.9/12.6/14.2 34.6/16.3/18.3
50% 11.8/6.1/5.8 19.3/9.4/9.8 27.0/12.7/14.34 34.4/16.5/17.9
70% 11.6/5.5/6.2 19.7/9.8/9.9 26.2/14.1/12.3 34.4/16.8/17.6
90% 11.6/5.6/6.0 19.0/10.2/8.8 27.2/13.2/14.0 33.8/16.3/17.5

Table 3. The average number of tasks for the simulation, displayed as
total/periodic/sporadic

Constraints

Utilization 30% 50% 70% 90%

30% 1 1 1 1
50% 10 12 18 17
70% 98 128 124 132
90% 699 792 882 774

Table 4. The average computation time in seconds.
The simulations indicate that the method solves the attribute assignment to a high degree

and that the success ratio decreases as the utilization and the number of constraints increases.
The number of tasks given by the second graph shows that the results are valid for fairly large
embedded systems, while the computation time given in the last graph indicates that for
significantly larger task sets, in terms of number of tasks, with high utilization the
computation times may be too long to be practical. The computation time of the algorithms is

mainly related to the number of tasks and not so strongly to the number of constraints because
the analysis is the computationally most demanding part. Although, a large number of
constraints may increase the computation time by requiring more generations of the GA, and
thereby more analysis, to find a solution. The correlation between the number of constraints
and the computation time is also dependent on the termination criteria of the GA. Since the
GA terminates on a given number of iterations and when improvement of the algorithm is to
slow, large task set with many constraints will to a higher degree be stopped by the
termination criteria compared to a large task set with few constraints. Thus, the computation
time is kept down at the cost of a lower success ratio. Relaxing the termination criteria would
increase computation times but also most likely the success ratio.

4.3 Comparison with Bate and Burns’ method
In this section we compare the performance of our method with that of the method presented
by Bate and Burns’ [2]. Since their method handles less general constraints, we will here use a
restricted simulation set-up, in that we have to exclude start jitter, correlation, and shared
resources from the task model.
There is an even distribution between the number of tasks assigned to jitter constraints and the
number of tasks assigned to separation and latency constraints. The ratio between tasks with
latency compared to separation constraints will be 4/1. The ratio is set to reflect an assumed
higher number of latency constraints than separation constraints in real systems; this
assumption is based on many years industrial experience gained by the authors.
The first graph for this set of simulations (graph 2) shows, for both algorithms, the percentage
of task sets with attributes assigned that fully meet the constraints. The success ratio depicted
is the average ratio for all constraint levels. The following two graphs (graphs 3 and 4) give
the success ratio for each constraint level. In the graphs below, the GA algorithm is denoted
GA and the algorithm in [2] is denoted BB.

0

0,1

0,2

0,3

0,4

0,5

0,6

0,7

0,8

0,9

1

0,3 0,5 0,7 0,9 Utilization

Su
cc

es
s

ra
tio

GA

BB

Graph 2. The average success ratio.

0
0,1
0,2
0,3
0,4
0,5
0,6
0,7
0,8
0,9
1

0,30 0,50 0,70 0,90Utilization

Su
cc

es
s

ra
tio

C30
C50
C70
C90

Graph 3. Success ratio for the BB algorithm.

0
0,1
0,2
0,3
0,4
0,5
0,6
0,7
0,8
0,9
1

0,30 0,50 0,70 0,90 Utilization

Su
cc

es
s

ra
tio

C30
C50
C70
C90

Graph 4. Success ratios for the GA algorithm.

The average numbers of tasks are close to the numbers for the first simulation, given in Table
3. The computation times for the GA algorithm are in the same magnitude as those given in
Table 4, while the algorithm in [2] has computation times of at most a few milliseconds.
Graph 2, displaying the success ratio for the two algorithms, shows that the algorithm
presented in this paper performs well compared to the algorithm in [2], especially for task sets
with high utilization. The difference in success ratio depends on that the GA performs global
optimization of the attributes, distributing the tasks execution, using offsets, as needed for
meeting the constraints, while the algorithm in [2] does not globally optimize the attribute
assignment, but assign attributes based on the properties of each constraint individually. As
the utilization increases the effect of using global as opposed to local optimization becomes
more apparent.

5 Conclusion
The problem of assigning priorities and offsets to tasks from a specification model supporting
complex timing constraints is an important part in the implementation of real-time control
systems that consist of a number of periodic control activities executing with different
frequencies while exchanging data. Such control systems are for instance common in motion
control algorithms. Sampled data control applications, in general, are real-time systems that
are sensitive to deviations from nominal deterministic timing, i.e. the timing that normally is
assumed in control design. Since an implementation of a computer control system inevitably
introduces time-delays and time-variations, it is important to investigate the sensitivity of a
control system to such “timing disturbances” during the control engineering phase. Moreover,
timing tolerances together with other timing requirements must be clearly communicated from

the design phase (presumably carried out by control engineers) to the implementation phase
(presumably carried out by computer engineers). Further, many motion control applications
are used in safety critical contexts, and/or environments where high reliability and availability
are required. This emphasises the need for analysis of the correctness of the computer control
system prior to implementation.
In this paper we propose a method for fulfilling complex temporal requirements by assigning
priorities and offsets to tasks, running on a standard commercial RTOS. The method uses a
genetic algorithm to search for an acceptable solution, i.e., a solution satisfying all constraints.
However, even in cases when an acceptable solution cannot be found, the genetic algorithm
will provide a near optimal solution indicating which constraints that are difficult (or
impossible) to satisfy). This is important from an engineering perspective, since the result can
be used as input for remodelling of the application.
Results from simulation shows that the algorithm presented in this paper has a high success
ratio in assigning attributes that make schedulable task sets meeting their constraints.
Moreover, in comparison to the algorithm in [2] the GA algorithm performs well, with
noticeable higher success ratio. The computation times for the GA algorithm is considerable
much longer than for the algorithm in [2], which handles a substantially simpler task model.
However, the simulation results show that the proposed method efficiently assigns attributes
for task sets of a size that covers most embedded control systems, in reasonable time for an
off-line tool.
The method proposed in this paper supports specification of jitter constraints for both task
start and completion times, making it possible to more precisely control the variations in
period time of a task. More over, separation constraints, and latency constraints are
supported, as are correlation constraints between tasks executing in parallel. The varying
execution times of tasks are supported as well as shared resources between sporadic and
period tasks.
Finally, future work includes adding optimisation on other criteria, e.g., minimisation of the
number of used offset and priority levels, and general minimisation of e.g., jitter, in order to
have as low jitter as possible in the system. Due to the architecture of the GA it is easy to add
new optimisations as the ones listed above, and since it only requires additional functionality
in the objective function it is cheap in terms of computation time.

6 References
[1] Törngren M. Fundamentals of implementing real-time control applications in Distributed

computer systems. J. Of Real-Time Systems, 14, 219-250, Kluwer Academic Publishers,
1998.

[2] Bate I. and Burns A. An Approach to Task Attribute Assignment for Uniprocessor
Systems. In Proc. 11th Euromicro Conference on Real-Time Systems (ECRTS99), York,
England, June 9-11, 1999, IEEE Computer Society.

[3] Mok A. K., Tsou D., and De Rooij R. C. M. The MSP.RTL Real-Time Scheduler
Synthesis Tool. In Proc. 17th IEEE Real-Time Systems Symposium, pp. 118-128. IEEE
Computer Society.

[4] Würtz J. and Schild K. Scheduling of Time-Triggered Real-Time Systems, In Constraints,
pp. 335-357, Oct, 2000. Kluwer Academic Publishers.

[5] Cheng S. T. and Agrawala A. K. Allocation and Scheduling of Real-Time Periodic Tasks
with Relative Timing Constraints. Second International Workshop on Real-Time
Computing Systems and Applications (RTCSA'95) October 25-27, 1995.

[6] Radu Dobrin, Gerhard Fohler, Peter Puschner. Translating Off-line Schedules into Task
Attributes for Fixed Priority Scheduling. In Proceedings of Real-Time Systems
Symposium London, UK, December 2001.

[7] Radu Dobrin, Yusuf Özdemir, Gerhard Fohler. Task Attribute Assignment of Fixed
Priority Scheduled Tasks to Reenact Off-Line Schedules. In Proceedings of RTCSA 2000
Korea , December 2000.

[8] Gerber R., Saksena M, and Hong S. Guaranteeing Real-Time Requirements with
Resource-Based Calibration of Periodic Processes. IEEE Transactions on Software
Engineering, 21(7), July 1995.

[9] F. Coutinho, J.A. Fonseca, J. Barreiros, E. Costa. Jitter Minimisation with Genetic
Algorithms, Proceedings 3rd IEEE International Workshop on Factory Communication
Systems, Portugal, September 2000.

[10] Norström C., Gustafsson M, Sandström K., Mäki-Turja J, Bånkestad N. Experiences
from Introducing State-of-the-art Real-Time Techniques in the Automotive Industry, In
Proc. Eigth IEEE International Conference and Workshop on the Engineering of
Compute-Based Systems Washington, US , April 2001. IEEE Computer Society

[11] Zomaya A. Y., Ward C., and Macey B. Genetic Scheduling for Parallel Processor
Systems: Comparative Studies and Performance Issues. In IEEE Transaction on Parallel
and Distributed Systems, VOL. 10, NO 8, August 1999.

[12] Corrêa R. C., Ferreira A., and Rebreyend P. Scheduling Multiprocessor Tasks with
Genetic Algorithms. In IEEE Transactions on Parallel and Distributed systems, VOL 10,
NO. 8, August 1999.

[13] Grajcar M. Genetic List Scheduling Algorithm for Scheduling and Allocation on a
Loosely Coupled Heterogeneous Multiprocessor System. In Proc. 36th Design
Automation Conference (DAC), p. 280-285, New Orleans, 1999. ACM Press.

[14] Faucou S., Déplanche A., and Beauvais J. Heuristic Techniques for Allocating and
Scheduling Communicating Periodic Tasks in Distributed Real-Time Systems. In 3rd
IEEE International Workshop on Factory Communication Systems, September 6, 2000.
IEEE Industrial Electronics Society.

[15] Törngren M. Modelling and Design of Distributed Real-time Control Applications. PhD
thesis, Dept. of Machine Design, The Royal Institute of Technology, Stockholm, Sweden,
1995.

Appendix A: Example

In this example we assume an application for which constraints needed for implementation
have been derived from a control design and expressed according to the specification model
described in Section 2. The example system consists of 4 periodic tasks and 1 sporadic task.
In Table 5 the periodic tasks are listed.

Task Wcet Bcet Period time
A 2 2 20
B 3 3 20
C 2 2 20
D 3 3 20

Table 5: The example task set.
In addition there is one sporadic task, SP, in the system. The sporadic task SP has a Wcet of 2
and a minimum inter-arrival time of 9. Furthermore, task SP has a deadline constraint of 6.
The constraints that apply to the periodic task set are given below.
Start Jitter, <21, 19, A>
Start Jitter, <21, 19, C>
Latency, <9, A, B >
Separation <4, C, D >
Given the specification above, the GA tries to find an attribute assignment in the run-time
model such that the execution of the task set fulfils the constraints. The termination criterion
of the GA is that the objective function evaluates to zero, i.e., one genome meets all the
constraints.
The offset and priority for a periodic task τi is represented by the tuple opi = <offset, priority>
and the priority for a sporadic task is represented by pj = <priority>. The complete
representation for the task set of the example is opA, opB, opC, opD, pSP. A high value represent
a high priority.
The size of the population of the genetic algorithm is 3 and the number of offspring generated
in each generation is 2. The initial population is given in table 6.

Genom opA opB opC opD pSP
1 <0,2 <13,1 <0,5> <1,4> <3>
2 <2,4 <6,2> <9,3> <15,1 <5>
3 <1,4 <9,5> <0,4> <14,1 <3>

Table 6. The initial population.
According to the operation of the GA the next step is to apply the objective function to the
genomes of the population. Included in this is to make analysis of each genome.
In Figure 2 the worst and best case scenarios’ for the task set are displayed, assuming offset
and priorities according to genome 1.

 C D SP

0 2 4 6 8 10 12 14 16 18 20

A SP B

C D A

0 2 4 6 8 10 12 14 16 18 20

B

Figure 2. The worst and best case execution scenario.

Table 7 shows the start times and completion times for the tasks.
Task lst lct est ect
A 7 9 5 7
B 15 18 13 16
C 0 2 0 2
D 2 5 2 5
SP - 7 - -

Table 7. Start and completion of the tasks.
The result of the objective function, presented in Section 3, for genome 1 can then be
calculated as:
Start Jitter, <21, 19, A>

deviation = (lst(1+n
iτ) – est(n

iτ)) - Sh = (20+7) – 5 – 21 = 1

objective = objective + deviation / Sh / 2 / numInst(τi) =
 = 0 + 1/21/2/1 = 0,024

deviation = Sl – (est(1+n
iτ) – lst(n

iτ)) = 19 – (25-7) = 1

objective = objective + deviation / Sl / 2 / numInst(τi) =
 = 0,024 + 1/19/2/1 = 0,05

Start Jitter, <21, 19, C>
(lst(1+n

iτ) – est(n
iτ)) < Sh “Constraint met”

Sl < (est(1+n
iτ) – lst(n

iτ)) “Constraint met”

Latency, <9, A, B >
deviation = (lct(n

jτ) - est(n
iτ)) – latency = 18 – 5 – 9 = 4

objective = 0,05 + 4 / 9 = 0,49

Separation <4, C, D >
deviation = separation – (est(n

jτ) – lct(n
iτ)) = 4 – (2-2) = 4

objective = 0,49 + 4 / 4 = 1,49
Deadline <6, SP>

deviation = lct(n
iτ) - deadline = 7 – 6 = 1

objective = 1,49 + 1 / 7 = 1,63
Objective: 1,63

In Figure 3 the worst and best case scenarios’ for the task set are displayed, assuming
offset and priorities according to genome 2.

 B

C D SP

0 2 4 6 8 10 12 14 16 18 20

A SPB

C D A

0 2 4 6 8 10 12 14 16 18 20

B

C DSP

0 2 4 6 8 10 12 14 16 18 20

A SP B

C DSP

0 2 4 6 8 10 12 14 16 18 20

A SP

Figure 3. The worst and best case execution scenario.

Table 8 shows the start times and completion times for the tasks.
Task lst lct est ect
A 4 6 2 4
B 8 13 6 9
C 11 13 9 11
D 17 20 15 18
SP - 2 - -

Table 8. Start and completion of the tasks.
The result of the objective function for genome 2 can then be calculated as:
Start Jitter, <21, 19, A>

deviation = (lst(1+n
iτ) – est(n

iτ)) - Sh = 24 – 2 – 21 = 1

objective = 0 + 1/21/2 = 0,024

deviation = Sl – (est(1+n
iτ) – lst(n

iτ)) = 19 – (22-4) = 1

objective = 0,024 + 1/19/2 = 0,05
Start Jitter, <21, 19, C>

deviation = (lst(1+n
iτ) – est(n

iτ)) - Sh = 31 – 9 – 21 = 1

objective = 0,05 + 1/21/2 = 0,074

deviation = Sl – (est(1+n
iτ) – lst(n

iτ)) = 19 – (22-4) = 1

objective = 0,074 + 1/19/2 = 0,1
Latency, <9, A, B >

deviation = (lct(n
jτ) - est(n

iτ)) – latency = 13 – 2 – 9 = 2

objective = 0,1 + 2 / 9 = 0,32

Separation <4, C, D >
deviation = separation – (est(n

jτ) – lct(n
iτ)) = 4 – (15-11) = 0

objective = 0,32 + 0 / 4 = 0,32

Deadline <6, SP>
lct(n

iτ) <= deadline “Constraint met”

Objective: 0,32
In Figure 4 the worst and best case scenarios’ for the task set are displayed, assuming

offset and priorities according to genome 3.

 C D SP

0 2 4 6 8 10 12 14 16 18 20

A SPB

C DA

0 2 4 6 8 10 12 14 16 18 20

B

Figure 4. The worst and best case execution scenario.

Table 9 shows the start times and completion times for the tasks.

Task lst lct est ect
A 4 6 2 4
B 9 12 9 12
C 0 2 0 2
D 16 19 14 17
SP - 5 - -

Table 9. Start and completion of the tasks.
The result of the objective function for genome 3 can then be calculated as:
Start Jitter, <21, 19, A>

deviation = (lst(1+n
iτ) – est(n

iτ)) - Sh = 24 – 2 – 21 = 1

objective = 0 + 1/21/2 = 0,024

deviation = Sl – (est(1+n
iτ) – lst(n

iτ)) = 19 – (22-4) = 1

objective = 0,024 + 1/19/2 = 0,05
Start Jitter, <21, 19, C>

(lst(1+n
iτ) – est(n

iτ)) < Sh “Constraint met”

Sl < (est(1+n
iτ) – lst(n

iτ)) “Constraint met”

Latency, <9, A, B >
deviation = (lct(n

jτ) - est(n
iτ)) – latency = 12 – 2 – 9 = 1

objective = 0,05 + 1 / 9 = 0,16

Separation <4, C, D >
separation < (est(n

jτ) – lct(n
iτ)) “Constraint met”

Deadline <6, SP>
lct(n

iτ) < deadline “Constraint met”

Objective: 0,16

Since no genome meets the termination criteria the GA proceeds with the next step, i.e., to
generate offspring from the population. In this example we use one point crossover. In the
crossover operation a new genome is formed by selecting a position in the genome, taking the
information to the left of that position from one genome, and combine it with the information
to the right of that position from another genome. In the example the crossover results in two
new genomes. By combining opA and opB from genome 2 with opC, opD, and pSP from
genome 1 the first genome is produced. The second genome is produced by combining opA
and opB from genome 2 with opC, opD, and pSP from genome 3. Table 10 display the new
genomes.

Genom opA opB opC opD pSP
4 <2,4 <6,2> <0,5> <1,4> <3>
5 <2,4 <6,2> <0,4> <14,1 <3>

Table 10. The new genomes.
The next step is to apply a random mutation to the new genomes with some probability. In the
example opA of genome 4 is changed from <2,4> to <4,4> by mutation.
In Figure 5 the worst and best case scenarios’ for the task set are displayed, assuming offset
and priorities according to genome 4.

 C D SP

0 2 4 6 8 10 12 14 16 18 20

A SP B

C D A

0 2 4 6 8 10 12 14 16 18 20

B

Figure 5. The worst and best case execution scenario.

Table 11 shows the start times and completion times for the tasks.

Task lst lct est ect
A 5 7 5 7
B 11 14 7 10
C 0 2 0 2
D 2 5 2 5
SP - 9 - -

Table 11. Start and completion of the tasks.
The result of the objective function for genome 4 can then be calculated as:
Start Jitter, <21, 19, A>

(lst(1+n
iτ) – est(n

iτ)) < Sh “Constraint met”

Sl < (est(1+n
iτ) – lst(n

iτ)) “Constraint met”

Start Jitter, <21, 19, C>
(lst(1+n

iτ) – est(n
iτ)) < Sh “Constraint met”

Sl < (est(1+n
iτ) – lst(n

iτ)) “Constraint met”

Latency, <9, A, B >
deviation = (lct(n

jτ) - est(n
iτ)) – latency = 14 – 5 – 9 = 0

objective = 0 + 0 / 9 = 0

Separation <4, C, D >
deviation = separation – (est(n

jτ) – lct(n
iτ)) = 4 – (2-2) = 4

objective = 0 + 4 / 4 = 1
Deadline <6, SP>

deviation = lct(n
iτ) - deadline = 9 – 6 = 3

objective = 1 + 3 / 6 = 1,5
Objective: 1,5
In Figure 6 the worst and best case scenarios’ for the task set are displayed, assuming offset
and priorities according to genome 5.

 C D SP

0 2 4 6 8 10 12 14 16 18 20

A SP B

C DA

0 2 4 6 8 10 12 14 16 18 20

B

C DSP

0 2 4 6 8 10 12 14 16 18 20

A SPB

Figure 6. The worst and best case execution scenario.

Table 12 shows the start times and completion times for the tasks.
Task lst lct est ect
A 2 4 2 4
B 8 11 6 9
C 0 2 0 2
D 16 19 14 17
SP - 6 - -

Table 12. Start and completion of the tasks.
The result of the objective function for genome 5 can then be calculated as:
Start Jitter, <21, 19, A>

(lst(1+n
iτ) – est(n

iτ)) < Sh “Constraint met”

Sl < (est(1+n
iτ) – lst(n

iτ)) “Constraint met”

Start Jitter, <21, 19, C>
(lst(1+n

iτ) – est(n
iτ)) < Sh “Constraint met”

Sl < (est(1+n
iτ) – lst(n

iτ)) “Constraint met”

Latency, <9, A, B >
deviation = (lct(n

jτ) - est(n
iτ)) – latency = 11 – 2 – 9 = 0

objective = 0 + 0 / 9 = 0
Separation <4, C, D >
separation < (est(n

jτ) – lct(n
iτ)) “Constraint met”

Deadline <6, SP>
lct(n

iτ) <= deadline “Constraint met”

Objective: 0
The best genomes are selected and the resulting population with their respective objective
value is given in Table 13.

Genom opA opB opC opD pSP value
5 <0,2 <13,1 <0,5> <1,4> <3> 0
2 <2,4 <6,2> <9,3> <15,1 <5> 0,16
3 <1,4 <9,5> <0,4> <14,1 <3> 0,49

Table 13. The resulting population.
As the best genome meets the termination criterion the GA is terminated. We have found an
offset and priority assignment that fulfil all the temporal constraints.

	Introduction
	System model
	Run-time system model
	Specification model

	Attribute Assignment
	Results
	Simulation set up
	Success ratio for the GA
	Comparison with Bate and Burns’ method

	Conclusion
	References

