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Abstract 
Design and implementation of motion control applications include the mapping of control 
design to real-time system implementation. Important parameters from control design include 
deviation from nominal period time of an activity, end-to-end timing constraints, temporal 
correlation between different sampling tasks, and constraints on temporal variations in 
output. These parameters should also be considered in the real-time systems design, since 
translating them to simple deadlines may lead to sub-optimal solutions. Many real-time 
systems in industry today are based on pre-emptive priority based run-time systems, and 
hence, it is highly desirable to fulfill the temporal requirements by correctly assigning 
attributes such as priorities and offsets to the tasks executing in such systems. However, this 
is a non-trivial mapping, which should be supported by appropriate methods and tools. In this 
paper we propose a method, which by assigning priorities and offsets to tasks provides 
guarantees that complex timing constraints are met. The method handles periodic and 
sporadic tasks, shared resources, and varying execution times of tasks. We present the 
method, which uses a genetic algorithm, together with simulation results, showing that the 
proposed method is capable to efficiently handle complex constraints on task sets of realistic 
sizes covering most embedded control systems.  

1 Introduction 
To successfully design and implement motion control applications, such as robots, 

vehicle/trucks, and mobile machinery, in distributed computer systems there is a need to make 
a smooth and predictable transition from the design of a control system to its implementation 
in the computer system. One important prerequisite to accomplish this for real-time systems is 
to appropriately derive and model application timing requirements [1]. Moreover, these 
requirements must be translated into timing constraints that are suitable for implementation, 
thereby providing means for interaction between control and computer engineers. The timing 
constraints in the control design cannot be directly mapped to attributes of a real-time system, 
such as priorities, period times, deadlines and offsets of tasks. Assigning the attributes of the 
tasks so that the complex timing constraints derived from the control design are fulfilled is a 
non-trivial problem. Typical complex timing constraints are tolerances on sampling periods, 
end-to-end timing constraints, temporal correlation between different sampling tasks, and 
constraints on temporal variations in output. 

The aim of this paper is to show how these complex timing constraints can be mapped to 
attributes of periodic tasks running on standard pre-emptive priority based multitasking real-
time operating systems, as for example WxWorks provided by Windriver, in such a way that 
the timing constraints are fulfilled. In order to guarantee the behaviour of a control system 
subject to complex timing constraints, one must also consider that execution times of 
activities in most cases vary. Varying execution times will directly affect e.g., constraints on 
maximum deviation from a nominal period time.   



 

 

Bate and Burns [2], propose a related method for assigning offsets and priorities to a fixed 
priority pre-emptive task set. They define a specification model that allows for expressing 
similar constraints as defined in Section 2 of this paper. However, their method does not 
consider the use of shared resources between sporadic and periodic tasks. Furthermore, 
attribute assignment for dealing with constraints on period time variation is managed using a 
heuristic algorithm with local optimization that, according to the authors, can lead to attribute 
assignments causing unschedulable systems when a feasible solution exists. For this reason it 
is difficult to extend the method to incorporate the additional constraints we would like to 
consider. Several researchers have attacked the same problem by generating off-line 
schedules [3][4][5]. A major disadvantage of such a solution is that it cannot be handled by a 
standard priority-based RTOS. Furthermore, they do not support pre-emption, sporadic 
activities, and varying task execution times. In [6][7] a method is presented for translating off-
line schedules to task attributes for fixed priority systems (FPS). This method could be 
combined with methods in [3][4][5] and would enable the use of priority-based RTOS for 
those methods. However, the combined approached would still inherit the limitations of not 
supporting pre-emption, sporadic activities, and varying task execution times when searching 
for a solution to the complex constraints. The method allows for using on-line acceptance test 
for sporadic and aperiodic tasks to use spare capacity from the tasks translated from the off-
line schedule to FPS, while the methods presented in this paper add no run-time overhead for 
managing sporadic tasks. Moreover, when translating an off-line schedule the method in 
[6][7] in some cases have to represent an off-line scheduled task by more than one FPS task. 
This can result in an FPS system with artificial tasks and thereby a greater number of tasks 
compared to our method.  However, if more instances are used it is possible to find solutions 
that cannot be found otherwise. It is possible using the method presented in this paper to 
include more than one instance for some or all tasks.    
In [8] the authors present a design methodology for real-time systems with end-to-end timing 
constraints, temporal correlation between different sampling tasks and constraints on temporal 
variations in output. The methodology derives period times, deadlines, and offsets for the 
tasks.  However, the task model does not agree with a standard priority-based RTOS and 
constraints on period time variation cannot be expressed. Furthermore, the method assumes 
that task execution times are static. The work presented in [9] uses genetic algorithms for 
minimizing jitter in communication using field busses. The problem solved is quite different 
from the one presented in this paper in that only jitter is minimized and messages do not have 
interrelated temporal constraints   
The motivation for the work presented in this paper mainly originates from our participation 
in a real industrial project where we used a specification model with support for periodic 
tasks, deadlines, precedence relationships, mutual exclusions, and offsets [10]. By using this 
model we can express all timing constraints required by the application. However, the 
designer has to manually translate the timing constraints into attributes of the used model. 
This is possible for simple systems, but in systems with many such requirements it becomes 
very difficult to assign these attributes manually. Even if the designer succeeds in finding a 
feasible mapping, we get a maintenance problem [10].  
In this work we use an enhanced specification model that supports temporal dependencies 
between tasks. We will show that we can solve the problem of mapping a system described by 
this specification model to a run-time system model in an efficient way by using a genetic 
algorithm (GA). There are several reasons for using the GA approach. GA is a general 
optimisation method that has been used successfully for solving a wide variety of complex 
problems including scheduling, e.g., in [11][12][13][14]. It can also easily be extended to 
optimise on other attributes such as minimising the response time of handling an event. One 
of the most important properties of the GA is its ability to deliver a result that fulfils a subset 



 

 

of the timing constraints in cases where it is impossible to fulfil all constraints. This 
information is important since the designer then can get an indication of which constraints 
that can not be fulfilled and thereby simplify the re-modelling of the application. Also, even if 
not all timing constraints are fulfilled, the application requirements may in some cases still be 
fulfilled since the robustness of the control design can tolerate deviations from the 
specification. However, this has to be verified by control analysis. Simulation results show 
that our algorithm performs well compared to the algorithm presented in [2] and that it finds 
solutions to a high degree when the considered systems are schedulable. 
Thus, the contributions of this paper are: 

• A specification model for describing systems with complex timing constraints. 
• A synthesis algorithm that assigns priorities and offsets to tasks to fulfil the timing 

constraints given our specification model. 
• Simulation results showing the efficiency of the suggested method. 

The rest of this paper is organised as follows. Section 2 describes the used system model. The 
method for attribute assignment is covered in Section 3. In Section 4 simulation results are 
presented, followed by the conclusion of the paper in Section 5. An extensive example of the 
method can be found in Appendix A. 

2 System model 
The system model is divided into two parts. The first part specifies the required behaviour of 
the run-time system and the second part is a definition of the specification model used to 
express the constraints of the task set. 

2.1 Run-time system model 
The basic model for the run-time system is a priority based, pre-emptive run-time system 

with shared resources protected by semaphores conforming to the priority ceiling protocol. 
Furthermore, the run-time system should provide a mechanism to enforce phasing between 
tasks i.e., offsets, and the ability to periodically release tasks with some predefined resolution, 
e.g., the operating system tick. These required features exist in many RTOS and if not, it is 
quite easy to construct these mechanisms from existing RTOS primitives.  

The run-time system may also support prioritised sporadic activities. 

2.2 Specification model 
The specification model defines the information that has to be specified for each periodic and 
sporadic task, as well as the constraints that can be expressed on a task set. A periodic task is 
defined by its worst-case execution time (WCET), best-case execution time (BCET), and 
nominal period time. The nominal period time is the desired rate at which the task should be 
executed. Below, the terms start time, completion time, and release are used. The start time of 
a task is the actual time when the first instruction is executed on the processor, as opposed to 
release, which is the time when the task becomes ready to execute. The completion time of a 
task is the time when the last instruction has been executed. 
The following constraints can be expressed for and between periodic tasks: 

• Deadline – deadline relative to the release of the task. 
• Precedence – constraint specifying the execution order between two tasks. 
• Separation – constraint of a minimum distance between the completion of one task and 

start of another task. 
• Jitter – the maximum allowed deviation from the nominal period time. Jitter 

constraints are used to control the deviation from nominal period for e.g., sampling 
and actuation activities.  



 

 

• Start Jitter – maximum allowed deviation of a task’s start time from its nominal 
period time. The constraint is specified by an upper (Sh) and lower bound (Sl) on 
the time between two consecutive executions of a task.  

• Completion Jitter – maximum allowed deviation of a task’s completion time 
from its nominal period time. The constraint is specified by an upper (Ch) and 
lower bound (Cl) on the time between two consecutive executions of a task.  

• Latency – constraint specifying a maximum allowed distance between the start of one 
task and the completion of another task.  

• Correlation – constraint on the maximum time between executions of two or more 
tasks executing in parallel. This constraint is used to correlate concurrent sampling or 
actuation activities in time. 

• Shared resources – specification of the tasks that use semaphores and times for the 
tasks critical sections.  

Periodic tasks may have a varying execution time and phasing relative to each other and 
hence the start time and completion time for a task can vary. This must be considered when 
finding an attribute assignment meeting the constraints for a task set. Therefore the analysis of 
a task set is performed for all instances over the least common multiple (lcm) of tasks period 
times. This is necessary since calculation of the earliest- and latest start time and completion 
time without considering all instances would be too pessimistic. As an example, consider the 
tasks τ1 and τ2 depicted in Figure 1. The tasks have a period time of 10 and only one 
constraint, a precedence constraint between τ1 and τ2. Assume a completion time of τ1

 equal to 
3, and a start time of τ2

 equal to 4 in one period and a completion time of τ1 equal to 2, and a 
start time of τ2

 equal to 2 in the next period. The latest completion of t1 relative to the period is 
3 and the earliest start relative to the period for τ2 is 2, i.e., the precedence is violated 
considering only the task timing while if the separate instances are considered one can see that 
precedence is achieved between τ1 and τ2.   

τ1 τ2 τ1 τ2 

 0   3       4     10  12 
 

Figure 1. The execution of the two tasks τ1 and τ2. 
Phasing of tasks and the start- and completion time variations are incorporated into the model 
by describing, for each instance of a task during the lcm, the earliest start time (est), the latest 
start time (lst), the earliest completion time (ect), and the latest completion time (lct). The 
constraints and notation are defined below, where τi represents task i and n

iτ represents 
instance n of task i.  
est( n

iτ ) - earliest start time of n
iτ .  

lst( n
iτ ) - latest start time of n

iτ .  
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iτ ) - latest completion time of n
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A sporadic task is specified by a worst-case execution time, a minimum inter-arrival time, and 
a deadline. Here, the best-case execution time is not considered, since the best case 
considering the entire task set is that the sporadic task is not activated at all at a given 
instance. The minimum inter-arrival time specifies the shortest possible time between two 
consecutive activations of the task. The deadline is relative to the release of the task. It is also 
possible for sporadic tasks to use semaphores that are shared with both sporadic and periodic 
tasks. Note that an interrupt should be modelled as a sporadic task. 

3 Attribute Assignment 
This section describes the algorithm for assigning priorities and offsets to the periodic tasks 
and priorities to sporadic tasks in order to meet the constraints specified for a task set. It is 
assumed that constraints are specified according to the model defined in the previous section. 
The heart of the attribute assignment is a genetic algorithm that assigns offsets and priorities, 
evaluates the assignments, and incrementally finds new assignments, thereby gradually 
achieving the required system behaviour. The general idea of a GA is to let individuals in a 
population gradually improve by the mechanisms of natural selection. In this case the 
individuals consists of attribute assignments for a tasks set and the environment to master is 
the constraints put on that task set. An overview of the structure and operation of the genetic 
algorithm used is given below. 

1. Initial Population – The algorithm initially makes a number of guesses about the 
assignment of priorities and offsets for the complete task set. A complete assignment 
for the entire task set is referred to as a genome. 

2. Apply Objective function – The objective function calculates a goodness value for 
each genome, given how far the genome is from meeting the requirements. If the 
objective is reached, the algorithm has found a solution and is terminated. 

3. Crossover – In this step parts of different genomes are combined to produce an 
offspring, i.e., a new genome built from two other genomes.   

4. Mutation – Randomly alters a genome by e.g., by reassigning a priority in the genome 
by a random number.  

5. Repeat from step 2, each iteration is referred to as a generation. 
    An assignment of offsets and priorities for a task set is represented by a set of offset priority 
pairs for the periodic tasks and a priority for each sporadic task, e.g., a task set with periodic 
tasks t1 to ti and sporadic tasks st1 to stj is represented by the set g: {<priority1, 
offset1>,…,<priorityi, offseti>,<priority1>,…,<priorityj>}. The population of the genetic 
algorithm then consists of a number of such priority-offset sets G = {g1, …, gn}. 
    The objective function calculates start times and completion times for the task set and 
derives a single value used for sorting different genomes by their closeness to the optimum, 
where the representation of optimum is defined by the genetic algorithm, e.g., the lower value 



 

 

the closer to optimal. The deviations from the requirements for a task set, using the offsets 
and priorities of a given genome, are calculated by rearranging the formulas earlier described 
in Section 2. For example, deviation from the distance constraint is calculated by 
reformulating distestlct ≥− )(τ)(τ n

i
n
j  as ))(τ)(τ( n

i
n
j estlctdist −− . The objective value is then expressed 

as a percentage of the allowed deviation, e.g., ))(τ)(τ( n
i

n
j estlctdist −−  / dist. This value is divided 

by the number of instances, during an lcm, of the task. The division by dist and the number of 
instances is done in order to normalise the value against other constraints so that not too 
strong emphasis is put on some constraints. The objective value for a genome is the sum of 
the normalised values calculated for each constraint. The objective function is at the end of 
this section. 
The analysis performed to calculate the earliest and latest start times and completion times for 
the instances of the task set can be divided into two cases: 1) The earliest start time and 
completion time are calculated disregarding the sporadic tasks, using the best-case execution 
times, and assuming that no tasks are blocked when using shared resources. 2) The latest start 
time and completion time is calculated considering interference from sporadic tasks, using the 
worst-case execution times and assuming maximal blocking. 
 In the objective function given below, task instances are assumed to be enumerated starting 
with zero for the first instance. The function numInst() returns the number of instances for a 
task during the lcm of the complete task set. The objective function is executed for each of the 
attribute assignments contained in the GA population. For each assignment an objective value 
is returned, and that value is then used to rank the different attribute assignments for a given 
task set. Pessimism in the objective function can be reduced if the mechanism of the used run-
time system is considered. For example, in pre-emptive priority based systems, tasks with the 
same offsets are not influenced by sporadic activities independently of each other. The goal of 
this work has not been to provide an optimal objective function, the goal has been focused on 
the overall success of the method, which is indicated by the simulations in section 4. 
Objective function 
 objective = 0 
 for each task τi “Deadline” 
  for each instance n of task τi   
   if  lct( n

iτ ) > deadline(τi) + n · periodTime(τi) + offset(τi) 
    deviation = lct( n

iτ ) - deadline(τi) - n · periodTime(τi) - offset(τi) 
    objective = objective + deviation / deadline(τi) / numInst(τi) 
 for each precedence constraint <τi , τj >  
  for each instance n of task τi  and τj   
   if lct( n

iτ ) > est( n
jτ ) 

    deviation = 1 

    objective = objective + deviation / numInst(τi) 

for each separation constraint <separation, τi , τj >  

  for each instance n of task τi  and τj   

   if est( n
jτ ) – lct( n

iτ ) < separation  

    deviation = separation – (est( n
jτ ) – lct( n

iτ )) 

    objective = objective + deviation / separation / numInst(τi) 

for each start jitter constraint <Sh, Sl τi>  



 

 

  for each instance n of task τi    

   if lst( 1+n
iτ ) – est( n

iτ ) > Sh  “(lcm + lst( 0
iτ )) – est( n

iτ )  when 
                                                          n=numInsti-1”  

    deviation = (lst( 1+n
iτ ) – est( n

iτ )) - Sh 

    objective = objective + deviation / Sh / 2 / numInst(τi) 

   if est( 1+n
iτ ) – lst( n

iτ ) < Sl   “(lcm + est( 0
iτ )) – lst( n

iτ ) when  
                                                         n=numInsti-1” 

    deviation = Sl  – (est( 1+n
iτ ) – lst( n

iτ )) 

    objective = objective + deviation / Sl / 2 / numInst(τi)  
Completion Jitter calculated as start jitter above. 

for each latency constraint <latency, τi , τj > 

  if periodTime(τi) = periodTime(τj) 

   for each instance n of task τi  and τj 

    if lct( n
iτ ) ≤ est( n

jτ ) 

     If  lct( n
jτ ) - est( n

iτ ) > latency 

      deviation = (lct( n
jτ ) - est( n

iτ )) - latency 

      objective = objective + deviation / latency / numInst(τi) 

    else 

     objective = objective + 1 / numInst(τi) 

  if periodTime(τi) > periodTime(τj) 

   for each instance n of task τI 

    find the instance m
jτ with earliest lct, where lct( n

iτ ) ≤ est( m
jτ ) 

    if an instance m
jτ  is found 

     if  lct( m
jτ ) - est( n

iτ ) > latency 

      deviation = (lct( m
jτ ) – est( n

iτ )) - latency 

      objective = objective + deviation / latency / numInst(τi) 

    else 

     objective = objective + 1 / numInst(τi) 

  if periodTime(τi) < periodTime(τj) 

   Analogous to periodTime(τi) > periodTime(τj) 

for each correlation constraint <correlation, τi, …, τm >  

  for each instance n of task τi  to τm   



 

 

   find the maximum difference between lst( n
kτ ) – est( n

lτ ) for  
              any k and l 

     in [i..m] where k ≠ l.  

   if lst( n
kτ ) – est( n

lτ ) > correlation 

    deviation = lst( n
kτ ) – est( n

lτ ) - correlation 

    objective = objective + deviation / correlation / numInst(τi) 

End Objective function

4 Results  
A series of simulations have been carried out to evaluate the performance of the proposed 

method. The first set of simulations shows the success ratio, for the GA, at assigning priorities 
and offsets to task sets so that the constraints for the task sets are met. For this set of 
simulations all the constraints presented in this paper are used by the generated task sets. The 
second set of simulations compares the method in this paper to the algorithm presented in [2] 
by Bate and Burns. To be able to compare the two approaches the constraints not supported 
by the algorithm in [2] have been removed.  

4.1 Simulation set up 
Periodic and sporadic tasks are randomly generated until the specified utilization is reached. 
The periodic utilization is randomly generated in [0, U], and the sporadic utilization equaling 
U – periodic utilization, where U is the desired system utilization. The period time of the 
periodic tasks are randomly selected from a number of predefined period times and the 
WCET is randomly generated as a percentage of the period time, the percentage is specified 
as a range, e.g., 2%-4% of the period time. The BCET for a periodic task is defined as a 
percentage of the WCET of the task. Table 2 displays the numbers used for the periodic tasks 
in the simulations presented in this paper.  The minimum inter-arrival time for sporadic tasks 
are randomly generated from a predefined set of ranges and the WCET is generated in the 
same way as for the periodic tasks. The parameters for the sporadic tasks in the simulations 
are given in table 1. 



 

 

 
Min. Inter-arrival time Distribution %
[0,1000] 20 
[1000, 5000] 70 
[5000,20000] 10 
WCET in percentage of min. inter-arrival time  
[0,1] 30 
[1,2] 40 
[2,5] 30 

Table 1. Data for generating sporadic tasks. 

Period time Distribution %
10000 20 
25000 20 
50000 40 
100000 20 
WCET in percentage of period time  
[0,2] 45 
[2,4] 50 
[4,8] 5 
BCET in percentage of WCET  
[0,70] 10 
[70,80] 30 
[80,90] 30 
[90,97] 30 

Table 2. Data for generating periodic tasks. 
When the tasks with period times, WCETs, and BCETs have been generated, offsets and 
priorities are randomly generated. The temporal behavior of the task set is then analyzed and 
the constraints are generated based on the temporal information so that the task set fulfils the 
constraints. The number of constraints generated are based on a predefined percentage of the 
number of periodic tasks, e.g., if 70% is specified for the amount of constraints and the 
number of periodic tasks are 20, then there will be 14 tasks involved in the constraints. 
Deadlines are not included in this number since a deadline is always randomly generated for 
each task.  

The simulations are performed for four different utilization levels, 30%, 50%, 70%, and 
90%. For each utilization level simulations are carried out for different amounts of 
constraints, 30%, 50%, 70%, and 90%, where the constraints are generated as presented 
above. There are 100 task sets generated for each utilization and constraints level. The 
simulations were run on a 550 MHz Pentium III processor with 128 MB RAM. The software 
is implemented using C/C++. For the basic data structures and operations of the genetic 
algorithm we used the GAlib genetic algorithm package, written by Matthew Wall at the 
Massachusetts Institute of Technology. The GA will terminate on success, or when reaching 
2000 generations, or when there is no improvement in the objective value for 100 generations. 

4.2 Success ratio for the GA 
For this simulation all the constraints presented in this paper are used by the generated task 
sets as well as shared resources between periodic and sporadic tasks (and other combinations).  
There is an even distribution between the numbers of tasks assigned to the different 
constraints in order to get a good coverage of all the constraints. Start and completion jitter is 



 

 

not treated as two separate constraints when the amount of constraints is calculated. If a jitter 
constraint is generated, both start and completion jitter is generated for the task and it is 
viewed as one task with one constraint. The graph shows the percentage of task sets with 
attributes assigned that fully meet the constraints. The average number of sporadic and 
periodic tasks, as well as the total number of tasks is given in Table 3. Finally, Table 4 shows 
the average computation time for processing the task sets, including computation times for 
both correct and incorrect assignments. 
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Graph 1. The success ratio of the GA algorithm  
for different load and number of constraints. 

Constraints  
 
Utilization  30% 50% 70% 90% 

30% 11.7/5.8/5.9 19.3/9.3/10.0 26.9/12.6/14.2 34.6/16.3/18.3
50% 11.8/6.1/5.8 19.3/9.4/9.8 27.0/12.7/14.34 34.4/16.5/17.9
70% 11.6/5.5/6.2 19.7/9.8/9.9 26.2/14.1/12.3 34.4/16.8/17.6
90% 11.6/5.6/6.0 19.0/10.2/8.8 27.2/13.2/14.0 33.8/16.3/17.5

Table 3. The average number of tasks for the simulation, displayed as 
total/periodic/sporadic 

Constraints  
 
Utilization  30% 50% 70% 90% 

30% 1 1 1 1 
50% 10 12 18 17
70% 98 128 124 132 
90% 699 792 882 774 

Table 4. The average computation time in seconds. 
The simulations indicate that the method solves the attribute assignment to a high degree 

and that the success ratio decreases as the utilization and the number of constraints increases. 
The number of tasks given by the second graph shows that the results are valid for fairly large 
embedded systems, while the computation time given in the last graph indicates that for 
significantly larger task sets, in terms of number of tasks, with high utilization the 
computation times may be too long to be practical. The computation time of the algorithms is 



 

 

mainly related to the number of tasks and not so strongly to the number of constraints because 
the analysis is the computationally most demanding part. Although, a large number of 
constraints may increase the computation time by requiring more generations of the GA, and 
thereby more analysis, to find a solution. The correlation between the number of constraints 
and the computation time is also dependent on the termination criteria of the GA. Since the 
GA terminates on a given number of iterations and when improvement of the algorithm is to 
slow, large task set with many constraints will to a higher degree be stopped by the 
termination criteria compared to a large task set with few constraints. Thus, the computation 
time is kept down at the cost of a lower success ratio. Relaxing the termination criteria would 
increase computation times but also most likely the success ratio.  

4.3 Comparison with Bate and Burns’ method 
In this section we compare the performance of our method with that of the method presented 
by Bate and Burns’ [2]. Since their method handles less general constraints, we will here use a 
restricted simulation set-up, in that we have to exclude start jitter, correlation, and shared 
resources from the task model.  
There is an even distribution between the number of tasks assigned to jitter constraints and the 
number of tasks assigned to separation and latency constraints. The ratio between tasks with 
latency compared to separation constraints will be 4/1. The ratio is set to reflect an assumed 
higher number of latency constraints than separation constraints in real systems; this 
assumption is based on many years industrial experience gained by the authors. 
The first graph for this set of simulations (graph 2) shows, for both algorithms, the percentage 
of task sets with attributes assigned that fully meet the constraints. The success ratio depicted 
is the average ratio for all constraint levels. The following two graphs (graphs 3 and 4) give 
the success ratio for each constraint level. In the graphs below, the GA algorithm is denoted 
GA and the algorithm in [2] is denoted BB. 
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Graph 2. The average success ratio. 
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Graph 3. Success ratio for the BB algorithm. 
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Graph 4. Success ratios for the GA algorithm. 

The average numbers of tasks are close to the numbers for the first simulation, given in Table 
3. The computation times for the GA algorithm are in the same magnitude as those given in 
Table 4, while the algorithm in [2] has computation times of at most a few milliseconds. 
Graph 2, displaying the success ratio for the two algorithms, shows that the algorithm 
presented in this paper performs well compared to the algorithm in [2], especially for task sets 
with high utilization. The difference in success ratio depends on that the GA performs global 
optimization of the attributes, distributing the tasks execution, using offsets, as needed for 
meeting the constraints, while the algorithm in [2] does not globally optimize the attribute 
assignment, but assign attributes based on the properties of each constraint individually. As 
the utilization increases the effect of using global as opposed to local optimization becomes 
more apparent. 

5 Conclusion 
The problem of assigning priorities and offsets to tasks from a specification model supporting 
complex timing constraints is an important part in the implementation of real-time control 
systems that consist of a number of periodic control activities executing with different 
frequencies while exchanging data. Such control systems are for instance common in motion 
control algorithms. Sampled data control applications, in general, are real-time systems that 
are sensitive to deviations from nominal deterministic timing, i.e. the timing that normally is 
assumed in control design. Since an implementation of a computer control system inevitably 
introduces time-delays and time-variations, it is important to investigate the sensitivity of a 
control system to such “timing disturbances” during the control engineering phase. Moreover, 
timing tolerances together with other timing requirements must be clearly communicated from 



 

 

the design phase (presumably carried out by control engineers) to the implementation phase 
(presumably carried out by computer engineers). Further, many motion control applications 
are used in safety critical contexts, and/or environments where high reliability and availability 
are required. This emphasises the need for analysis of the correctness of the computer control 
system prior to implementation. 
In this paper we propose a method for fulfilling complex temporal requirements by assigning 
priorities and offsets to tasks, running on a standard commercial RTOS. The method uses a 
genetic algorithm to search for an acceptable solution, i.e., a solution satisfying all constraints. 
However, even in cases when an acceptable solution cannot be found, the genetic algorithm 
will provide a near optimal solution indicating which constraints that are difficult (or 
impossible) to satisfy). This is important from an engineering perspective, since the result can 
be used as input for remodelling of the application.  
Results from simulation shows that the algorithm presented in this paper has a high success 
ratio in assigning attributes that make schedulable task sets meeting their constraints. 
Moreover, in comparison to the algorithm in [2] the GA algorithm performs well, with 
noticeable higher success ratio. The computation times for the GA algorithm is considerable 
much longer than for the algorithm in [2], which handles a substantially simpler task model. 
However, the simulation results show that the proposed method efficiently assigns attributes 
for task sets of a size that covers most embedded control systems, in reasonable time for an 
off-line tool.  
The method proposed in this paper supports specification of jitter constraints for both task 
start and completion times, making it possible to more precisely control the variations in 
period time of a task.  More over, separation constraints, and latency constraints are 
supported, as are correlation constraints between tasks executing in parallel. The varying 
execution times of tasks are supported as well as shared resources between sporadic and 
period tasks.  
Finally, future work includes adding optimisation on other criteria, e.g., minimisation of the 
number of used offset and priority levels, and general minimisation of e.g., jitter, in order to 
have as low jitter as possible in the system. Due to the architecture of the GA it is easy to add 
new optimisations as the ones listed above, and since it only requires additional functionality 
in the objective function it is cheap in terms of computation time.  
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Appendix A: Example 

In this example we assume an application for which constraints needed for implementation 
have been derived from a control design and expressed according to the specification model 
described in Section 2. The example system consists of 4 periodic tasks and 1 sporadic task. 
In Table 5 the periodic tasks are listed. 

Task Wcet Bcet Period time 
A 2 2 20 
B 3 3 20 
C 2 2 20 
D 3 3 20 

Table 5: The example task set. 
In addition there is one sporadic task, SP, in the system. The sporadic task SP has a Wcet of 2 
and a minimum inter-arrival time of 9. Furthermore, task SP has a deadline constraint of 6. 
The constraints that apply to the periodic task set are given below.  
Start Jitter, <21, 19, A> 
Start Jitter, <21, 19, C> 
Latency, <9, A, B > 
Separation <4, C, D > 
Given the specification above, the GA tries to find an attribute assignment in the run-time 
model such that the execution of the task set fulfils the constraints.  The termination criterion 
of the GA is that the objective function evaluates to zero, i.e., one genome meets all the 
constraints. 
The offset and priority for a periodic task τi is represented by the tuple opi = <offset, priority> 
and the priority for a sporadic task is represented by pj = <priority>. The complete 
representation for the task set of the example is opA, opB, opC, opD, pSP. A high value represent 
a high priority. 
The size of the population of the genetic algorithm is 3 and the number of offspring generated 
in each generation is 2. The initial population is given in table 6.  

Genom opA opB opC opD pSP 
1 <0,2 <13,1 <0,5> <1,4> <3>
2 <2,4 <6,2> <9,3> <15,1 <5>
3 <1,4 <9,5> <0,4> <14,1 <3>

Table 6. The initial population. 
According to the operation of the GA the next step is to apply the objective function to the 
genomes of the population. Included in this is to make analysis of each genome. 
In Figure 2 the worst and best case scenarios’ for the task set are displayed, assuming offset 
and priorities according to genome 1. 
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Figure 2. The worst and best case execution scenario. 



 

 

Table 7 shows the start times and completion times for the tasks. 
Task lst lct est ect 
A 7 9 5 7 
B 15 18 13 16
C 0 2 0 2 
D 2 5 2 5 
SP - 7 - - 

Table 7. Start and completion of the tasks. 
The result of the objective function, presented in Section 3, for genome 1 can then be 
calculated as: 
Start Jitter, <21, 19, A> 

deviation = (lst( 1+n
iτ ) – est( n

iτ )) - Sh = (20+7) – 5 – 21 = 1 

objective = objective + deviation / Sh / 2 / numInst(τi) = 
          = 0 + 1/21/2/1 = 0,024 

deviation = Sl  – (est( 1+n
iτ ) – lst( n

iτ )) = 19 – (25-7) = 1 

objective = objective + deviation / Sl / 2 / numInst(τi)  = 
          = 0,024 + 1/19/2/1 = 0,05  

Start Jitter, <21, 19, C> 
(lst( 1+n

iτ ) – est( n
iτ )) < Sh     “Constraint met” 

Sl  < (est( 1+n
iτ ) – lst( n

iτ ))    “Constraint met” 

Latency, <9, A, B > 
deviation = (lct( n

jτ ) - est( n
iτ )) – latency = 18 – 5 – 9 = 4 

objective = 0,05 + 4 / 9 = 0,49 

Separation <4, C, D > 
deviation = separation – (est( n

jτ ) – lct( n
iτ )) = 4 – (2-2) = 4 

objective = 0,49 + 4 / 4 = 1,49 
Deadline <6, SP> 

deviation = lct( n
iτ ) - deadline = 7 – 6 = 1 

objective = 1,49 + 1 / 7 = 1,63 
Objective: 1,63

In Figure 3 the worst and best case scenarios’ for the task set are displayed, assuming 
offset and priorities according to genome 2. 
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Figure 3. The worst and best case execution scenario. 

Table 8 shows the start times and completion times for the tasks. 
Task lst lct est ect 
A 4 6 2 4 
B 8 13 6 9 
C 11 13 9 11
D 17 20 15 18
SP - 2 - - 

Table 8. Start and completion of the tasks. 
The result of the objective function for genome 2 can then be calculated as: 
Start Jitter, <21, 19, A> 

deviation = (lst( 1+n
iτ ) – est( n

iτ )) - Sh = 24 – 2 – 21 = 1 

objective = 0 + 1/21/2 = 0,024 

deviation = Sl  – (est( 1+n
iτ ) – lst( n

iτ )) = 19 – (22-4) = 1 

objective = 0,024 + 1/19/2 = 0,05  
Start Jitter, <21, 19, C> 

deviation = (lst( 1+n
iτ ) – est( n

iτ )) - Sh = 31 – 9 – 21 = 1 

objective = 0,05 + 1/21/2 = 0,074 

deviation = Sl  – (est( 1+n
iτ ) – lst( n

iτ )) = 19 – (22-4) = 1 

objective = 0,074 + 1/19/2 = 0,1  
Latency, <9, A, B > 

deviation = (lct( n
jτ ) - est( n

iτ )) – latency = 13 – 2 – 9 = 2 

objective = 0,1 + 2 / 9 = 0,32 

Separation <4, C, D > 
deviation = separation – (est( n

jτ ) – lct( n
iτ )) = 4 – (15-11) = 0 

objective = 0,32 + 0 / 4 = 0,32 



 

 

Deadline <6, SP> 
lct( n

iτ ) <= deadline     “Constraint met”

Objective:  0,32 
In Figure 4 the worst and best case scenarios’ for the task set are displayed, assuming 

offset and priorities according to genome 3. 
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Figure 4. The worst and best case execution scenario. 

Table 9 shows the start times and completion times for the tasks. 

Task lst lct est ect 
A 4 6 2 4 
B 9 12 9 12
C 0 2 0 2 
D 16 19 14 17
SP - 5 - - 

Table 9. Start and completion of the tasks. 
The result of the objective function for genome 3 can then be calculated as: 
Start Jitter, <21, 19, A> 

deviation = (lst( 1+n
iτ ) – est( n

iτ )) - Sh = 24 – 2 – 21 = 1 

objective = 0 + 1/21/2 = 0,024 

deviation = Sl  – (est( 1+n
iτ ) – lst( n

iτ )) = 19 – (22-4) = 1 

objective = 0,024 + 1/19/2 = 0,05  
Start Jitter, <21, 19, C> 

(lst( 1+n
iτ ) – est( n

iτ )) < Sh      “Constraint met” 

Sl  < (est( 1+n
iτ ) – lst( n

iτ ))      “Constraint met” 

Latency, <9, A, B > 
deviation = (lct( n

jτ ) - est( n
iτ )) – latency = 12 – 2 – 9 = 1 

objective = 0,05 + 1 / 9 = 0,16 

Separation <4, C, D > 
separation < (est( n

jτ ) – lct( n
iτ ))     “Constraint met” 

Deadline <6, SP> 
lct( n

iτ ) < deadline     “Constraint met” 

Objective: 0,16 



 

 

Since no genome meets the termination criteria the GA proceeds with the next step, i.e., to 
generate offspring from the population. In this example we use one point crossover. In the 
crossover operation a new genome is formed by selecting a position in the genome, taking the 
information to the left of that position from one genome, and combine it with the information 
to the right of that position from another genome.  In the example the crossover results in two 
new genomes. By combining opA and opB from genome 2 with opC, opD, and pSP from 
genome 1 the first genome is produced. The second genome is produced by combining opA 
and opB from genome 2 with opC, opD, and pSP from genome 3. Table 10 display the new 
genomes. 

Genom opA opB opC opD pSP 
4 <2,4 <6,2> <0,5> <1,4> <3>
5 <2,4 <6,2> <0,4> <14,1 <3>

Table 10. The new genomes. 
The next step is to apply a random mutation to the new genomes with some probability. In the 
example opA of genome 4 is changed from <2,4> to <4,4> by mutation.   
In Figure 5 the worst and best case scenarios’ for the task set are displayed, assuming offset 
and priorities according to genome 4.  
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Figure 5. The worst and best case execution scenario. 

 
Table 11 shows the start times and completion times for the tasks. 

Task lst lct est ect 
A 5 7 5 7 
B 11 14 7 10
C 0 2 0 2 
D 2 5 2 5 
SP - 9 - - 

Table 11. Start and completion of the tasks. 
The result of the objective function for genome 4 can then be calculated as: 
Start Jitter, <21, 19, A> 

(lst( 1+n
iτ ) – est( n

iτ )) < Sh      “Constraint met” 

Sl  < (est( 1+n
iτ ) – lst( n

iτ ))     “Constraint met” 

Start Jitter, <21, 19, C> 
(lst( 1+n

iτ ) – est( n
iτ )) < Sh      “Constraint met” 

Sl  < (est( 1+n
iτ ) – lst( n

iτ ))      “Constraint met” 

Latency, <9, A, B > 
deviation = (lct( n

jτ ) - est( n
iτ )) – latency = 14 – 5 – 9 = 0 



 

 

objective = 0 + 0 / 9 = 0 

Separation <4, C, D > 
deviation = separation – (est( n

jτ ) – lct( n
iτ )) = 4 – (2-2) = 4 

objective = 0 + 4 / 4 = 1 
Deadline <6, SP> 

deviation = lct( n
iτ ) - deadline = 9 – 6 = 3 

objective = 1 + 3 / 6 = 1,5
Objective: 1,5 
In Figure 6 the worst and best case scenarios’ for the task set are displayed, assuming offset 
and priorities according to genome 5.  
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Figure 6. The worst and best case execution scenario. 

Table 12 shows the start times and completion times for the tasks. 
Task lst lct est ect 
A 2 4 2 4 
B 8 11 6 9 
C 0 2 0 2 
D 16 19 14 17
SP - 6 - - 

Table 12. Start and completion of the tasks. 
The result of the objective function for genome 5 can then be calculated as: 
Start Jitter, <21, 19, A> 

(lst( 1+n
iτ ) – est( n

iτ )) < Sh      “Constraint met” 

Sl  < (est( 1+n
iτ ) – lst( n

iτ ))      “Constraint met”

Start Jitter, <21, 19, C> 
(lst( 1+n

iτ ) – est( n
iτ )) < Sh      “Constraint met” 

Sl  < (est( 1+n
iτ ) – lst( n

iτ ))      “Constraint met” 

Latency, <9, A, B > 
deviation = (lct( n

jτ ) - est( n
iτ )) – latency = 11 – 2 – 9 = 0 



 

 

objective = 0 + 0 / 9 = 0 
Separation <4, C, D > 
separation < (est( n

jτ ) – lct( n
iτ ))      “Constraint met” 

Deadline <6, SP> 
lct( n

iτ ) <= deadline     “Constraint met” 

Objective: 0 
The best genomes are selected and the resulting population with their respective objective 
value is given in Table 13. 

Genom opA opB opC opD pSP value 
5 <0,2 <13,1 <0,5> <1,4> <3> 0 
2 <2,4 <6,2> <9,3> <15,1 <5> 0,16 
3 <1,4 <9,5> <0,4> <14,1 <3> 0,49 

Table 13. The resulting population. 
As the best genome meets the termination criterion the GA is terminated. We have found an 
offset and priority assignment that fulfil all the temporal constraints. 
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