
Component-Based Software Engineering:
Building systems from Components

at 9th IEEE Conference and Workshops on Engineering of Computer-Based Systems

Ivica Crnkovic1, Stig Larsson2, Judith Stafford3

1Mälardalen University, Department of Computer Engineering, Sweden, ivica.crnkovic@mdh.se
2ABB Automation Technology Products, Sweden, stig.bm.larsson@se.abb.com

3Software Engineering Institute, Carnegie Mellon University, USA, jas@sei.cmu.edu

Abstract

This paper gives a short overview of the Workshop on
Component-based Software Engineering – Building
Systems from Components held at 9th IEEE Conference
and Workshops on Engineering of Computer-Based
Systems in Lund, Sweden, April, 2002. The aim of the
workshop was to bring together researches and
practitioners from system engineering, software
architecture and from component-based software
engineering communities in order to exchange
experiences and research results from these domains.

1 Introduction

Component-based Software Engineering (CBSE) is
concerned with the development of software systems
from reusable parts (components), the development of
components, and system maintenance and improvement
by means of component replacement or customization.

Building systems from components and building
components for different systems requires established
methodologies and processes not only in relation to
development/maintenance phases, but also to the entire
component and system lifecycle including organizational,
marketing, legal, and other aspects. In addition to
objectives such as component specification, composition,
and component technology development that are specific
to CBSE, there are a number of software engineering
disciplines and processes that require methodologies be
specialized for application in component-based
development. Many of these methodologies are not yet
established in practice, some have not yet been developed.

The progress of software development in the near
future will depend very much on the successful
establishment of CBSE; this is recognized by both
industry and academia. The growing interest in CBSE is
reflected in the number of workshops and conferences
with CBSE tracks [2-5]. The Workshop on Component-
based Software Engineering held at 9th IEEE Conference
and Workshops on Engineering of Computer-Based
Systems in Lund, Sweden [1] followed that trend by
setting focus on the system level – Building Systems from
Components.

2 The aim of the workshop

Component-based approach is not new. Components
are explicitly addressed in software architecture and
commonly used in system engineering. Yet, there is
different understanding of components in these areas.
While the primary goal of software architecture and
system engineering is to understand the system by
dividing it in components and identifying components as
composable units that express certain functions and
properties, CBSE starts from the given properties of the
components and then defines a system by utilizing these
properties. The main idea for the workshop was to
analyze and compare these approaches, to find common
understandings and possibly cross-fertilize the best ideas
and practices from these areas. Systems attributes in
relation to component attributes and the composition
process were the primary subjects of the workshop.

The following areas of interest were listed in the Call
for paper:
− Software architecture as related to CBSE;
− Analysis/design methods for building component-

based systems;
− Selection/evolution criteria for components and

assemblies of components;
− Predictability of component compositions;
− Configuration management of components and

component compositions;
− Verification of systems based on component

attributes.

3 The Workshop Results

In total 14 papers were selected and presented at the
workshop; in total, 22 researchers and practitioners
participated. The workshop was divided, according to the
topics of position papers, into six sessions: a keynote
speech and five working sessions. Each working session
started with a 10 minutes presentation of each paper and
then it continued with discussions related to the session’s
topic. In this way the discussions were focused on more
general and more important aspects, rather then on
particular papers.

The keynote speech was an excellent introduction to
the workshop since it gave an overview of development
of a complex system using a platform- and component-
based approach, while at the same time considering the
system aspect, emphasizing the importance of considering
the system as a whole. The speech sparked a lively
discussion about differences between system engineering,
a typical top-down approach where a whole picture of the
system is the most important, and a component-based
software engineering which emphasis the role of software,
software architecture and software components.

The working sessions covered both theoretical/research
and practical aspects of CBSE and covered the following
topics:
− CB Development Process
− Software Architecture and CBSE
− Predictable composition
− Dynamic Component-based Systems
− CBSE and Formal Methods

The presentations and the discussions suggested that
the workshop focus on addressing two types of questions.
One type was: how to design a system and identify the
properties of components that are needed for the system?
The next stage in this approach was considered to be
either find such a component or to generate it, or to
develop it. The second type of question was, How to
specify a component so that its specification can be
properly understood in the context of system requirements
and how to predict/derive the system properties from the
measurable and specified components? Although the
workshop did not identify a unique, common approach, it
clearly points out that there is a need for combining the
experiences and results from both approaches. In addition
to discussion of these principle questions, several case
studies (for example Nokia, ABB, Ericsson, Philips) were
presented, illustrating the state of the practice as well as
main problems and requirements in industry related to
component-based development.

The sections that follow include a summary of the
keynote speech and abstracts of the papers. The full
papers can be found in [6] and the presentation material in
[7].

4 Keynote Speech

Peter Ericsson, Industrial experience of using a
component-based approach to industrial robot control
system development.

The keynote speech addressed the experience that
ABB Automation Technology Products, Robotics has
gained during ten years of development of today’s robot
controller software, supporting simulation systems and
communication software. ABB produces and delivers
industrial robot systems to a variety of application fields

such as those for car manufacturing, foundry, painting and
food packaging. The controller software represents a huge
and complex system with several million lines of code
and several hundred man-years of development. Many
different software engineering fields such as real-time,
motion control, databases, application programming
language, communication, and human-machine
interaction are combined in these products and increase
the demands on the development process as well as the
system architecture.

The talk addressed the following subjects:

- Organization issues;
- Development processes;
- System architecture;
- Test strategy; and
- Legal and commercial issues.

Since the development and maintenance of this system
has been lasted more than ten years, many strategic
decisions are related to modifiability and maintainability
aspects. In addition the decisions related to the system
functionality the following primary goals for the system
development has been identified: Understandability,
reusability, software architecture, development processes,
quality, adaptability, and openness. The key factor for the
success was the coherence between organization and
system architecture. The basic architecture is a component
based, and each organizational unit is responsible for their
components. The development process is integration-
intensive. The software architecture design plays a crucial
role in the development. The platform is designed to
support the components’ development based on selected
design patterns. Components of different size and
complexity coexist and represent the basic elements of the
system architecture. Most of the components were
internally developed but many components (both
application and platform) are external. A holistic and
recursive use of key design patterns in the platform itself
was emphasized.

The following design patterns have been used: Object
oriented design, event driven real time kernel, message
bus (support of asynchronous communication),
subscription–distribution servers, framework engines,
multi-layered architecture, and client–server.

A standing challenge in the development is find the
balance between platform and application. To achieve this
deep domain knowledge is required in order to identify
which parts should belong to the platform and which to
the application components. The choice depends on
analysis on many questions, such as: What will be subject
for frequent changes? What are the possible
configurations? What are the most probable key scenarios
on future system requirements? A too “thin” platform
gives insufficient support for application development; a
too “fat” platform introduces problems such as to large
complexity, inflexibility, and scalability.

Challenges related to component-based development
are many:
- Lack of established processes and tools for

component-based embedded system development
makes it difficult to maintain and transfer know-how
to new development teams

- Few common component models exist outside the
server and desktop domain.

- Hard to find suppliers of software components other
than the basic operating system and related
components

- Cope with changes where the operating system
suppliers includes both infrastructure and domain
specific components.

An interesting observation was that system engineering,
which includes both hardware and software parts, is
mainly concentrated on the software parts. Hardware is
updated more slowly than software and, when done, is
more easily accomplish. On the other hand, the software
system is often used on several different hardware
platforms without requiring additional resources.

5 Presentation and Discussion Sessions

This section summarizes the papers by inclusion of the
papers’ abstracts.

5.1 Session I - CB Development Process

Antonia Bertolino, Andrea Polini, Re-thinking the
Development Process of Component-based Software

This paper contribution to the ECBS workshop is a
position statement that a wide gap exists between the
technologies for Component-based Software Engineering
and the scientific foundations on which this technology
relies. What is mostly lacking is a revised model for the
development process. We very quickly outline a skeleton
for re-thinking the models that have shaped the software
production in the last decades, and we start to make some
speculations, in particular for what concerns the testing
stages. As a working example, we take in consideration
the Enterprise Java Beans framework. However, our
research goal is to draw generally valid conclusions and
insights.

Jonas Hörnstein, Håkan Edler, Test Reuse in CBSE
Using Built-in Tests

Component-based software engineering (CBSE) is
expected to drastically reduce the time spent on
developing software through the use of prefabricated
components. However, some of the time gained on
reusing components instead has to be spent on testing that
components work as specified the new environment. The
Component+ project aims at solving this by using built-in
tests. This paper presents architecture for the integration

of built-in tests in software components that makes it
possible to reuse tests and hence minimize the time spent
on testing.

5.2 Session II - Software Architecture and
CBSE

Iain Bate, Neil Audsley, Architecture Trade-off
Analysis and the Influence on Component Design

The production and assurance of systems that are safety-
critical and/or real-time is recognized as being costly, time-
consuming, hard to manage, and difficult to maintain. This
has lead to research into new methods whose objectives
include:
- Modular approaches to development, assurance and

maintenance to enable: Increased reuse; Increased
robustness to change and reduced impact of change.

- Integration strategies that allow systems to be procured
and produced by multiple partners, and then efficiently
integrated;

- Ways of determining the approach likely to be the
“best” (the best can only be found with hindsight);

- Techniques for identifying and managing risks.

Many of the component-based engineering techniques are
considered relatively mature for developing dependable
components and ensuring correctness across their interfaces
when combined with other components, e.g. approaches
based on rely-guarantees. This paper addresses the following
key remaining issues:

- How the system’s objectives should be decomposed and
designed into components (i.e. the location and nature of
interfaces); and

- What functionality the components should provide to
achieve the system’s objectives.

The paper develops a method for:

- Derivation of choices – identifies where different design
solutions are available for satisfying a goal.

- Manage sensitivities – identifies dependencies between
components such that consideration of whether and how
to relax them can be made. A benefit of relaxing
dependencies could be a reduced impact to change.

- Evaluation of options – allows questions to be derived
whose answers can be used for identifying solutions that
do/do not meet the system properties, judging how well
the properties are met and indicating where refinements
of the design might add benefit.

- Influence on the design – identifies constraints on how
components should be designed to support the meeting
of the system’s overall objectives.

Hans de Bruin, Hans van Vliet, The Future of
Component-Based Development is Generation, not
Retrieval

Component-Based Development (CBD) has not
redeemed its promises of reuse and flexibility. Reuse is
inhibited due to problems such as component retrieval,
architectural mismatch, and application specificness.
Component-based systems are flexible in the sense that
components can be replaced and fine-tuned, but only
under the assumption that the software architecture
remains stable during the system's lifetime. In this paper,
we argue that systems composed of components should be
generated from functional and nonfunctional requirements
rather than being composed out of existing or newly
developed components. We propose a generation
technique that is based on two pillars: Feature-Solution
(FS) graphs and top-down component composition. A FS-
graph captures architectural knowledge in which
requirements are connected to solution fragments. This
knowledge is used to compose component-based systems.
The starting point is a reference architecture that
addresses functionality concerns. This reference
architecture is then stepwise required to cater for non-
functional requirements using the knowledge captured in
a FS-graph. These requirements are the architecture-level
counterpart of aspect weaving as found in Aspect-
Oriented Programming (AOP).

Ioana Sora, Pierre Verbaeten, Yolande Berbers, Using
Component Composition for Self-customizable
Systems

Self-customizable systems are equipped with
mechanisms to automatically adapt themselves to a set of
user requirements or to their environment. We address
this customization problem through component
composition. Our approach is based on hierarchically
decomposed component systems, deploying composed
components as a means of abstracting details.
Composition is performed in a stepwise refinement
manner, which allows to handle the complexity of the
system and to realize very fine-tuned compositions even
when composition decision is made automatically. The
composition strategy is driven by anonymous
dependencies established between components by their
requirements. Our goal is to perform unanticipated
customizations with as few user interventions as possible.
We evaluate and prove our composition approach by
building customized network protocols.

Frank Lüders, Andreas Sjögren, Case Study: A
Component-Based Software Architecture for
Industrial Control

When different business units of an international
company are responsible for the development of different
parts of a large system, component-based software

architecture may be a good alternative to more traditional,
monolithic architectures. The new common control
system, developed by ABB to replace several existing
control systems, must incorporate support for a large
number of I/O systems, communication interfaces, and
communication protocols. An activity has therefore been
started to redesign the system’s architecture, so that I/O
and communication components can be implemented by
different development centers around the world. This
paper reports on experiences from this effort, describing
the system, its current software architecture, the new
component- based architecture, and the lessons learned so
far.

5.3 Session III - Predictable composition

Ralf H. Reussner, Heinz W. Schmidt, Using
Parameterized Contracts to Predict Properties of
Component Based Software Architectures

This position paper presents an approach for
predicting functional and extra-functional properties of
layered software component architectures. Our approach
is based on parameterized contracts a generalization of
design-by-contract. The main contributions of the paper
are twofold. Firstly, it attempts to clarify the meaning of
“contractual use of components” a term sometimes used.

E.M. Eskenazi, A.V. Fioukov, D.K. Hammer, M.R.V.
Chaudron, Estimation of Static Memory Consumption
for Systems Built from Source Code Components

The quantitative evaluation of certain quality attributes
– memory consumption, timeliness, and performance – is
important for component-based embedded systems. We
propose an approach for the estimation of static memory
consumption of software components. The approach
deploys the Koala component model, used for embedded
software in TV sets. There are two main parts in the
method: specification of the memory demand of
components and estimation of memory demand for
systems built of these components. The proposed method
allows flexible trade-off between estimation effort and
achievable precision, yet requiring no changes in the tools
supporting the Koala component model. The method may
be extensible to include other resource attributes as well.

Yu Jia, Yuqing Gu, The Representation of Component
Semantics: A Feature-Oriented Approach

In this paper a semantic model for component is
proposed which is structured in three parts called Domain
Space, Definition Space and Context Space. We also
argue that the feature-oriented method is an effective and
practical approach to fulfill the semantic model.

5.4 Session IV- Dynamic Component-based
Systems

Ahmed Saleh, Component-based Environment For
Distributed Configurable Applications

One of the basic requirements for distributed
applications to run under different working environments
is to be flexible, configurable, portable and extensible.
Using the current development techniques independently
falls short in supporting most of these requirements due to
complexity of their integration and the conflict of their
objectives. In this context this paper describes an
integrated environment based on an interface description
language called NCSL, an architecture description
language called NADL, and a supporting management
system composed of a component-based framework and
an event management system that facilitate the process of
developing and managing distributed configurable
applications based on their non-functional requirements
(NFRs).

Ian Oliver, Quality of Service Specification in
Dynamically Replaceable Component Based Systems

When working with embedded environments that can
automatically download components on as as-needed
basis it is necessary to ensure that we do not place too
much stress (CPU overload, Memory overload etc) on the
system in order to achieve optimal performance for the
user. In order to facilitate this one must incorporate
quality of service information into the components and
perform suitable tests upon this information in order to
decide whether to download the component or not. One
issue here is how this information is presented, stored and
what information should be carried by the component.
There are also issues with what the information means
and from where it is collected. In this position paper we
describe our initial efforts in specifying the quality of
service information and also explore some of the
implementation issues we have found.

Ronan Mac Laverty, Aapo Rautiainen, Francis Tam,
Software Component Deployment in Consumer Device
Product-lines

Effective deployment of components is imperative for
consumer device manufacturers; these must utilize the
resources available optimally. For single systems this is a
standard software engineering problem, but for product-
lines new techniques must be devised. These are needed
to allow component reuse while minimizing the overhead
from cross product components. To achieve this prototype
for a tool to automatically generate and evaluate a
deployment for a consumer device has been developed.
This system and the motivation behind its development
are described below, including directions for its future
development.

5.5 Session V - CBSE and Formal Methods

Rebeca P. Díaz Redondo, José J. Pazos Arias, Ana
Fernández Vilas, Reusing Verification Information of
Incomplete Specifications

The possibility of verifying systems during any phase
of the software development process is one of the most
significant advantages of using formal methods. Model
checking is considered to be the broadest used formal
verification technique, even though a great quantity of
computing resources are needed to verify medium-large
and large systems. As verification is present over the
whole software process, this amount of resources is more
critical in incremental and iterative life cycles. Our
proposal focuses on reusing incomplete models and their
verification results — which are obtained from a model
checking algorithm— to reduce formal verification costs
in this kind of life cycles.

6 References

[1] 9th IEEE Conference and Workshops on Engineering of
Computer-Based Systems,
http://www.cigital.com/conferences/ecbs02/

[2] 4th and 5th ICSE Workshops on CBSE: Component
Certification and System Prediction, Benchmarks for
Predictable Assembly, http://www.sei.cmu.edu/pacc

[3] 27th and 28th Euromicro Conferences: CBSE track,
http://www.idt.mdh.se/ecbse

[4] First International Working Conference on Component,
http://swt.cs.tu-berlin.de/cd02/

[5] ICSR7 2002 Workshop on CBD Processes,
http://www.idt.mdh.se/CBprocesses

[6] Workshop Proceedings Component-based Software
engineering: building systems from components,
Technical report 2002-05, Mälardalen University,
Västerås, Sweden, 2002

[7] Workshop on Component-based Software engineering:
building systems from components,
http://www.idt.mdh.se/~icc/cbse-ecbs2002/

