
A TASM-based Requirements Validation
Approach for Safety-critical Embedded Systems

Jiale Zhou, Yue Lu, and Kristina Lundqvist

School of Innovation, Design and Engineering
Mälardalen University, Västerås, Sweden

{zhou.jiale, yue.lu, kristina.lundqvist}@mdh.se

Abstract. Requirements validation is an essential activity to carry out
in the system development life cycle, and it confirms the completeness
and consistency of requirements through various levels. Model-based for-
mal methods can provide a cost-effective solution to requirements vali-
dation in a wide range of domains such as safety-critical applications. In
this paper, we extend a formal language Timed Abstract State Machine
(TASM) with two newly defined constructs Event and Observer, and
propose a novel requirements validation approach based on the extended
TASM. Specifically, our approach can: 1) model both functional and
non-functional (e.g. timing and resource consumption) requirements of
the system at different levels and, 2) perform requirements validation by
utilizing our developed toolset and a model checker. Finally, we demon-
strate the applicability of our approach in real world usage through an
industrial case study of a Brake-by-Wire system.

1 Introduction

With the growing complexity of safety-critical systems, requirements are no
longer merely specified at the outset of the systems development life cycle (SDLC).
On the contrary, there is a continuum of requirements levels as more and more
details are added throughout the SDLC, which can roughly be divided into
two categories in terms of high-level and low-level requirements [2]. High-level
requirements describe what features the proposed system has (i.e. features here-
after) and low-level requirements state how to develop such a system (i.e. re-
quirements hereafter). Studies have revealed that most of the anomalies dis-
covered in late development phases can be traced back to hidden flaws in the
requirements [9] [11], such as contradictory or missing requirements, or require-
ments that are discovered to be impossible to satisfy features at the late phase
of development. For this reason, requirements validation is playing a more and
more significant role in the development process, which confirms the correctness
of requirements, in the sense of consistency and completeness [20]. In details,
consistency refers to situations where a specification contains no internal contra-
dictions in the requirements, while completeness refers to situations where the
requirements must possess two fundamental characteristics, in terms of neither



objects nor entities are left undefined and the requirements can address all of
the features.

In order to increase the confidence in the correctness of the requirements,
model-based formal methods techniques have been to a large extend investigated
into the field of requirements validation [7] [10]. In these techniques, the system
design derived from requirements is often specified in terms of analyzable models
at a certain level of abstraction. Further, features are formalized into verifiable
queries or formulas and then fed into the models to perform model checking
and/or theorem proving. In this way, the requirements are reasoned about to
resolve contradictions, and it is also verified that they are neither so strict to
forbid desired behaviors, nor so weak to allow undesired behaviors. However, such
formal methods techniques also suffer from some limitations, such as how to ease
the demand of heavy mathematics background knowledge to perform theorem
proving, and how to model the target without having the state explosion problem
of model checking occurred.

To tackle with the aforementioned limitations, we propose an approach to
requirements validation using an extended version of the formal language Timed
Abstract State Machine (TASM), which contains new constructs TASM Event
and TASM Observer. Additionally, TASM has shown its success in the area of
systems verification in [18] [19], with some distinctive features: 1) TASM sup-
ports the formal specification of both functional behaviors and non-functional
properties of safety-critical systems w.r.t. timing and resource consumption and,
2) It is a literate language being understandable and usable without requiring ex-
tensive mathematical training, which avoids obscure mathematics formulae and,
3) TASM provides a toolset [16] to execute the pertaining TASM models for
the purposes of analysis. The Observer technique [4] has an origin in the model-
based testing domain where it has been used to specify and observe coverage
criteria as well as verify such observable properties, but without changing the
system’s behaviors. The applications and advantages of using the Observer tech-
nique inspire us to exploit it to perform requirements validation, which makes a
detour on the state explosion issue of model checking by not adding new states
in the analysis. To be specific, our approach consists of three main steps:

– Requirements modeling models requirements by using various constructs
in TASM.

– Features modeling translates features into our newly defined TASM ob-
servers that are used for the later analysis.

– Requirements validation contains four kinds of validation checking on
focus, i.e. Logical Consistency Checking, Auxiliary Machine Checking, Cov-
erage Checking, and Model Checking, as in the consistency and completeness
checking of requirements.

The main contributions of this work are three-fold: 1) We extend the TASM
language with two newly defined constructs in terms of Event and Observer
and, 2) We propose a novel approach to requirements validation by using the
extended TASM language and, 3) We demonstrate the applicability of our ap-
proach through a case study. The remainder of this paper is organized as follows:



An introduction to the TASM language and its extension is presented in Sec-
tion 2. Section 3 introduces the Brake-by-Wire (BbW) system and its require-
ments. Our approach to requirements validation is described and demonstrated
by using the BbW system in Section 4. Section 5 discusses the related work, and
finally concluding remarks and future work are drawn in Section 6.

2 TASM Language and Its Extension

Figure 1 shows the meta-model of the extended TASM language in UML class
diagram. The constructs included in the dashed rectangle are the new TASM
constructs defined in this work. Section 2.1 gives an overview of the TASM
language and Section 2.2 presents the extension of TASM.

Fig. 1. The Meta-model of the extended TASM language.

2.1 Overview of TASM

TASM [16] is a formal language for the specification of safety-critical systems,
which extends the Abstract State Machine (ASM) [5] with the capability of mod-
eling timing properties and resource consumption of applications in the target
system. TASM inherits the easy-to-use feature from ASM, which is a literate
specification language understandable and usable without extensive mathemati-
cal training [8]. A TASM model consists of two parts – an environment and a set
of main machines. The environment defines the set and the type of variables, and
the set of named resources which machines can consume. The main machine is
made up of a set of monitored variables which can affect the machine execution,
a set of controlled variables which can be modified by machines, and a set of



machine rules. The set of rules specify the machine execution logic in the form
of “if condition then action", where condition is an expression depending on the
monitored variables, and action is a set of updates of the controlled variables.
We can also use the rule “else then action" which is enabled merely when no
other rules are enabled. A rule can specify the annotation of the time duration
and resource consumption of its execution. The duration of a rule execution can
be the keyword next that essentially states the fact that time should elapse until
one of the other rules is enabled.

TASM describes the basic execution semantics as the computing steps with
time and resource annotations: In one step, it reads the monitored variables,
selects a rule of which condition is satisfied, consumes the specified resources,
and after waiting for the duration of the execution, it applies the update set
instantaneously. If more than one rules are enabled at the same time, it non-
deterministically selects one to execute. As a specification language, TASM sup-
ports the concepts of parallelism which stipulates TASM machines are executed
in parallel, and hierarchical composition which is achieved by means of aux-
iliary machines which can be used in other machines. There are two kinds of
auxiliary machines - function machines which can take environment variables
as parameters and return execution result, and sub machines which can encap-
sulate machine rules for reuse purpose [16]. Communication between machines,
including main machines and auxiliary machines, can be achieved by defining
corresponding environment variables.

2.2 The Extension to TASM

Our extension to TASM consists of two main parts, i.e. TASM Event and TASM
Observer (Event and Observer hereafter, respectively) as shown in Figure 1.
Definition 1 TASM Event (EV). TASM Event E defines the possible types of
an event instance, including ResourceUsedUpEvent, ChangeValueEvent, RuleEn-
ableEvent, and RuleDisableEvent. An event instance e is triggered by the corre-
sponding TASM construct, which is a tuple < E, t >, where E is the type of the
event instance, and t is the time instant when the instance occurs.

The events of ChangeV alueEvent type is triggered by a specific TASM envi-
ronment variable whenever its value is updated„ which can be referenced in the
form of VariableName->EventType. The ResourceUsedUpEvent is triggered by
the case whenever the resource of the application is consumed totally, which can
be referenced in the form of ResourceName->EventType. The RuleEnableEvent
and RuleDisableEvent are triggered whenever a specific TASM rule is enabled
or disabled, respectively, which can be referenced in the form of MachineName-
>RuleName->EventType.
Definition 2 TASM Observer. An observer is a tuple < ObserverEnvironment,
Listener,Observation >, where:

– ObserverEnvironment is a tuple < ObserverV ariable, EventsF ilter >,
where ObserverV ariable is a set of variables that can be used by both Listener
and Observation, and EventsF ilter can be configured to filter out events ir-
relevant to the observer.



– Listener specifies the observer execution logic in the form of "listening
condition then action", where the condition is an expression describing the
sequence of the occurrence of events and the action is a set of actions updat-
ing the value of observer variables when the condition evaluates to be true.

– Observation is a predicate of the TASM model, which can evaluate to be
either true or false, depending on the value of corresponding observer vari-
ables.

In this work, we only introduce the informal execution semantics of Observer,
as depicted in Figure 2, and the formal semantics is considered as part of our
future work. Basically, in the runtime, the TASM model often produces massive
events according to the modeled application. After the EventsF ilter removes
the irrelevant events, the remaining events will be logged in the local database,
namely EventsLog. Next, the Listener defined in Observer will evaluate its
condition based off of the sequence of logged events. Since regular expression
is usually used as a sequential search pattern, the specification of the event se-
quence follows the syntax and semantics of regular expression. If the condition
is satisfied, then the action will start to update the observer variables. Once all
of the updates are executed, the Observation will be concluded based on the
updated observer variables. A running TASM model (representing the target
system) can be observed by several observers at the same time.

For a better understanding, we give an example of Observer as shown in Fig-
ure 3, where eventA and eventB are RuleEnableEvent type, and eventC and
eventD are RuleDisableEvent type. The observer variables include a Boolean
variable ov (initiated as false) and a Time variable time (initiated as zero).
ChangeV alueEvent andResourceUsedUpEvent are regarded as irrelevant events
and removed by the EventsF ilter, theRuleEnableEvent andRuleDisableEvent
events are logged in the Eventslog database. As shown in line 9 in Figure 3,
the expression of the Listener condition in regular expression, represents the
event sequence that begins with eventA, followed by arbitrary events (repre-
sented by ".*") in the middle, and ends with two events in terms of either
eventB and eventD, or eventC and eventD. If the condition evaluates to be sat-
isfied, the observer variable ov will be assigned as true, and time as the interval
between eventA and eventD. In this example, if the events sequence in the con-
dition is detected and the interval time is larger than 100, the Observation will
be concluded as a true predicate.

3 Case Study

Our case study is a Brake-by-Wire (BbW) system which is a demonstrator at a
major automotive company [13]. The BbW system aims to replace the mechani-
cal linkage between the brake pedal and the brake actuators. Further, the BbW
system consists of micro-controller units, sensors, actuators and communication
bus, which interprets driver’s operation and operating conditions, through sen-
sors, to decide on the desired brake torque of the brake actuators for appropriate
brake force on each wheel.

The features that the BbW system should possess are described as follows:



Fig. 2. The workflow of the Observer
execution.

1 ObserverVariables :{
2 Boolean ov := false;
3 Time time := 0;
4 }
5 EventsFilter :{
6 filter out: ChangeValueEvent ,

↪→ResourceUsedUpEvent;
7 }
8 Listener :{
9 listening eventA .*( eventB | eventC)

↪→eventD then
10 ov := true;
11 time := eventD.t - eventA.t;
12 }
13 Observation :{
14 ov == true and time > 100;
15 }

Fig. 3. An example of the TASM Ob-
server.

– Req H1: The system shall provide a base brake functionality where the
driver indicates that she/he wants to reduce speed so that the braking system
starts decelerating the vehicle.

– Req H2: When the brake pedal is not pressed, the brake shall not be active.
– Req H3: The time from the driver’s brake request till the actual start of

the deceleration should be no more than 300 ms.

The list of requirements for the BbW system in our work is as follows:

– Req L1: The brake torque calculator shall compute the driver requested
torque and send the value to the vehicle brake controller, when a brake
pedal displacement is detected.

– Req L2: The vehicle brake controller shall decide the required torque on each
wheel and each of the required wheel torque values is sent together with the
sensed vehicle velocity to the Anti-lock Braking System (ABS) function on
respective wheel.

– Req L3: The ABS function shall decide appropriate braking force on each
wheel, based on the received torque request, current vehicle velocity and
wheel angular velocity.

4 The TASM-based Approach to Requirements
Validation

In this section, we will introduce our approach that addresses the issue of for-
malizing and validating requirements specifications written in natural language.
Further, our approach is based on the use of the extended TASM language to
formalize both requirements and features. We will go into details about each
step by introducing the adhering sub-steps and show an illustration by using the
BbW system. Specifically, Section 4.1 and Section 4.2 discuss modeling of the
requirements and features respectively, and Section 4.3 presents the analysis and
results of requirements validation of the BbW system.



4.1 Requirements Modeling

The first step of our approach is to analyze the low-level requirements (i.e. ,
requirements) in natural language and formalize them by using the corresponding
TASM models. This step contains five sub-steps, as shown in Figure 4:

Fig. 4. The sub-steps of requirements modeling.

– Step 1: Requirements Preprocessing distinguishes functional require-
ments from non-functional requirements.

– Step 2: Components Identification extracts the possible software com-
ponents of the system referred in the functional requirements and maps them
onto TASM main machines.

– Step 3: Connections Identification identifies the connections between
different software components, according to a certain type of interactions.

– Step 4: Behavior Specification specifies the behaviors of components,
which implement different system functionalities.

– Step 5: Property Annotation adds timing and resource consumption
annotations to the relevant TASM model.

Requirements Preprocessing. At this step, we need to distinguish functional
requirements from non-functional requirements. The functional requirements will
be formalized into executable TASM models, and non-functional requirement
in terms of timing and resource consumption requirements can provide useful
information for property annotation. In the BbW system, all the requirements,
i.e. ReqL1, ReqL2 and ReqL3, are functional requirements.

Components Identification. The identification of the system components and
the mapping of each component onto a TASM main machine is of importance
in the process. In order to do so, we recommend the following two tasks:
– Identification of the external (or environmental in other words) components

that interact with the system.
– Identification of the internal components that compose of the system.

At this step, a list of main machines will be defined for the BbW system, as
shown in Table 1.

Connections Identification. In the TASM model, asynchronous communi-
cation between different main machines can be implemented by using a set
of variables, which ignores the transmission delay between machines. On the
contrary, the common form of inter-process communication (IPC) is message-
passing, which considers the transmission delay and bandwidth consumption as



Main Machine Quantity Category Description
DRIVER 1 External Entity model the driver’s behavior
VEHICLE 1 External Entity model the behavior of the vehicle

TORQUE_CALC 1 Micro-controller calculate the driver’s requested torque
BRAKE_CTRL 1 Micro-controller calculate the requested torque per wheel

ABS_CTRL 4 Micro-controller calculate the brake force on each wheel
BRAKE_ACTU 4 Actuator perform the brake force on each wheel

WHLSPD_SENSOR 4 Sensor sense the rotating speed of each wheel
VCLSPD_SENSOR 1 Sensor sense the moving speed of the vehicle
PEDAL_SENSOR 1 Sensor sense the position of the brake pedal

COMMU_BUS 1 Bus the communication bus
Table 1. The TASM main machines model the entire Brake-by-Wired system.

unavoidable. To this end, we define a main machine with the annotation of time
and bandwidth as a means of modeling the communication bus. In our case
study, the sensors in the BbW system communicate with the corresponding con-
trollers through ports using signals, where transmission delay can be ignored.
Further, a specific TASM main machine i.e. COMMU_BUS (in Table 1) models
the communication bus, which is responsible for the communication between the
brake controller and the ABS controllers.

Behavior Specification. There is no silver-bullet to model the behaviors of
various components in TASM. Based on our experiences, we recommend the
following steps:
– Identification of possible states of the target system: A user-defined type is

used to represent the possible states, and a state variable is defined to denote
the current state of the system.

– Identification of the transition conditions of states: The conditions of a cer-
tain machine rule are given, according to the corresponding value of the state
variable and the transition conditions.

– Identification of the actions when the system enters a specific state: The
actions of machine rules are specified, based on the behaviors of a component
and the next possible state.
In the BbW system, all of the identified components (i.e. TASM main ma-

chines) are divided into five categories according to different functionalities: ex-
ternal entity, micro-controller, actuator, sensor, and bus. For reasons of space,
we do not list all the rules used by the identified TASM main machines. Instead,
we list the rules of four typical templates in our case study, i.e. micro-controller,
actuator, sensor, and bus. In order to have a better understanding on the pro-
posed sub-steps, we discuss the specification of a micro-controller component in
detail.

A micro-controller component is activated by an event, and it reads a set of
variables and performs a sequence of computation after being activated. When
it finishes execution, the result will be used by other components. Therefore,
the micro-controller component typically has three possible states – WAIT (ini-
tial state), COMPUTE, and SEND: The WAIT sate denotes that the micro-
controller is waiting for activation and, the COMPUTE state represents that
the micro-controller is performing computation. The SEND state introduces that
the micro-controller is sending the results to other components. Figure 5 shows



the rules of the TASM main machine, which models the micro-controller. PER-
FORM_COMPUTATION() and SEND_RESULT() are sub machines.

Figure 6 shows the machine rules that model an actuator, and PERFORM_A-
CTUATION() is a sub machine. Figure 7 shows the rules of the TASM main
machine, which models a sensor. Measure_Quantity() is a function machine. Fig-
ure 8 shows the machine rules, which models the communication bus. Get_Message()
is a function machine and TRANSMITTING_MESSAGE() is a sub machine.

1 R1:Activation{
2 if ctrl_state=wait and new_event=

↪→True then
3 ctrl_state := compute;
4 new_event := False;
5 }
6 R2:Computation{
7 t:= computation_time;
8 if ctrl_state = compute then
9 PERFORM_COMPUTATION ();

10 ctrl_state := send;
11 }
12 R3:Send{
13 if ctrl_state = send then
14 SEND_RESULT ();
15 ctrl_state := wait;
16 }
17 R4:Idle{
18 t := next;
19 else then
20 skip;
21 }

Fig. 5. The TASM main machine mod-
els the micro-controller component.

1 R1:Trigger{
2 if actu_state=wait and new_event=

↪→True then
3 new_event := False;
4 actu_state := actuate;
5 }
6 R2:Actuation{
7 t:= actuation_time;
8 if actu_state=actuate then
9 PERFORM_ACTUATION ();
10 actu_state := wait;
11 }
12 R3:Idle{
13 t:= next;
14 else then
15 skip;
16 }

Fig. 6. The TASM main machine mod-
els the actuator component.

1 R1:Sample{
2 if sensor_state = sample then
3 sensor_value :=

↪→Measure_Quantity ();
4 sensor_state := send;
5 }
6 R2:Send{
7 if sensor_state = send and

↪→sensor_value >= threshold
↪→then

8 observer_value := sensor_value
↪→;

9 new_sample_value := True;
10 sensor_state := wait;
11 }
12 R3:Wait{
13 t := period;
14 if sensor_state = wait then
15 sensor_state := sample;
16 }

Fig. 7. The TASM main machine mod-
els the sensor component.

1 R1:Transmit{
2 if bus_state=idle and new_message

↪→=True then
3 bus_message := Get_Message ();
4 bus_state := engaged;
5 }
6 R2:Send{
7 t:= bus_delay;
8 band:= bandwidth;
9 if bus_state = engaged then
10 TRANSMITTING_MESSAGE ();
11 bus_state := idle;
12 }
13 R3:Wait{
14 t := next;
15 else then
16 skip;
17 }

Fig. 8. The TASM main machine mod-
els the communication bus component.



Non-functional Property Annotation. The accurate estimation of the per-
taining non-functional properties of the target system is playing a paramount
role in performing non-functional requirements validation. The Property Anno-
tation step can be carried out in the following ways:
– The estimates can be determined based upon the non-functional require-

ments specified in the low-level requirements.
– The estimates can be obtained by using existing well-known analysis meth-

ods, e.g. Worst-Case Execution Time (WCET) Analysis [12] for time dura-
tion of rules.

– The estimates can be determined based upon the information in the related
hardware specifications, e.g. the time duration and power consumption of a
communication bus transferring one message.

– However, in some cases, the estimates can also be given by the experiences
of domain experts, if the accurate estimation is not possible.

We annotate the aforementioned TASM models with time duration and re-
source consumption, and the annotation terms computation_time, actuation_time,
period, bus_delay and bandwidth are either a specific value or a range of values,
which are given by our domain knowledge for simplicity.

4.2 Features Modeling
Our approach proceeds with the formalization of high-level requirements, i.e. ,
features. At this step, each feature will be translated into corresponding TASM
observer(s). The formalization consists of the following sub-steps:
– Step 1: Listener Specification specifies the possible events sequence

which represents the observable functional behaviors or non-functional prop-
erties required by the feature, and the corresponding actions taken on ob-
server variables when the sequence is caught by the Listener.

– Step 2: Observation Specification formalizes a predicate depending on
the observer variables. If the predicate of the Observation holds, i.e. evaluates
to be true, it implies that the satisfaction of the feature can be observed in
the system.

– Step 3: Events Filtering identifies the interesting events and filters out
the irrelevant events by specifying EventsF ilter.

– Step 4: Traceability Creation links the specified Observer to the tex-
tual requirements. The link is used for requirements traceability from the
formalization to natural language requirements in order to perform coverage
checking.
In the BbW system, there are three features i.e. ReqH1, ReqH2 and ReqH3.

The specification of Observer is illustrated by applying the proposed steps to
ReqH1. To be specific, ReqH1 states "The system shall provide a base brake
functionality where the driver indicates that she/he wants to reduce speed so
that the braking system starts decelerating the vehicle", and the interesting
events sequence consists of three parts. The first part "PEDAL_SENSOR-
>Send->RuleEnableEvent" denotes the event that is triggered when the Send



rule of the PEDAL_SENSOR main machine is enabled, which models the be-
havior that the brake pedal is pressed by the driver. The second part ".*" has
the same semantic with the counterpart defined in regular expression, which
means an arbitrary number of events regardless of their type. The last part
"BRAKE_ACTU->Actuation->RuleEnableEvent" represents the event that is
triggered after the Actuation rule of the BRAKE_ACTU main machine is exe-
cuted, i.e. disabled, which models the behavior that the brake actuator acts on
the wheels i.e. decreases the speed of the vehicle. When the events sequence is
detected, the Observation "ov == true" evaluates to be true, which indicates
that the satisfaction of ReqH1 can be observed in the TASM model.

1 ObserverVariables :{
2 Boolean ov := false;
3 }
4 EventsFilter :{
5 filter out: ChangeValueEvent , ResourceUsedUpEvent , RuleDisableEvent;
6 }
7 Listener :{
8 listening PEDAL_SENSOR ->Send ->RuleEnableEvent .* BRAKE_ACTU ->Actuation ->

↪→RuleEnableEvent then
9 ov := true;

10 }
11 Observation :{
12 ov == true;
13 }

Fig. 9. The Observer of Req H1.

4.3 Requirements Validation

Validation of the formalized requirements aims at increasing the confidence in
the validity of requirements. In this work, we assume that there is a semantic
equivalence relation between the requirements and TASM models, and between
features and observers. This is built upon the fact that the TASM models and
observers are derived from the documented requirements and features, by fol-
lowing the proposed modeling steps based on our thorough understanding of
the BbW system. The validation goal is achieved by following several analysis
steps, based on the use of the derived TASM models and observers which may
help to pinpoint flaws that are not trivial to detect. Such validation steps in our
approach are:

– Logical Consistency Checking. The term of logical consistency can be
intuitively explained as "free of contradictions in the specifications". In our
work, the logical consistency checking can be performed on the executable
TASM models, i.e. requirements, by our developed tool TASM Toolset.
Two kinds of inconsistency flaws can be discovered. One kind of flaw is that
two machine rules are enabled at the same time, which is usually caused by
the fact that there exist unpredictable behaviors in the requirements. The
other is that different values are assigned to the same variable at the same
time, which is usually caused by the fact that there exist hidden undesired
behaviors in the requirements.



– Auxiliary Machine Checking. Auxiliary machines include function ma-
chine and sub machine. When the TASM Toolset starts to execute the
TASM model, if there exists any undefined auxiliary machine, the tool will
detect this situation, stop proceeding, and generate an error message. The
existence of undefined auxiliary TASM machines, in terms of functions and
sub machines, violates the completeness of TASM model specifying require-
ments. The undefined auxiliary TASM machines are usually caused by the
lack of detailed descriptions of the proposed system’s behaviors.

– Coverage Checking. Coverage checking corresponds to checking whether
the desired behaviors specified in features can be observed in the TASM
model, which is an important activity of requirements completeness checking.
To perform the coverage checking, all of the features are translated into
observers which observe the execution of TASM models at runtime. If the
Observation holds, the corresponding feature can be regarded as covered by
the requirements.

– Model Checking. The TASM machines can be easily translated into timed
automata through the transformation rules defined in [16]. The transfor-
mation enables the use of the Uppaal model checker to verify the various
properties of the TASM model. This check aims at verifying whether the
TASM model is free of deadlock and whether an expected property specified
in a feature is satisfied by the TASM model. It is necessary to stress that
the essential difference between Model Checking and Coverage Checking is
whether a property is exhaustively checked against a model or not. Although
a sound property checking is desired, in some cases Model Checking will en-
counter state explosion problem, which limits its usefulness in practice.

We follow the validation steps to check the validity of the requirements of
the BbW system. First, we use the TASM Toolset to perform Logical Consis-
tency Checking on the formalized TASM model. As in the fact that there are no
inconsistency warnings reported by the tool, we therefore proceed the validation
steps with Auxiliary Machine Checking. As shown in Figure 5, 6, 7 and 8, there
exist some undefined auxiliary machines in the TASM models of those typical
components, which also have been detected by our TASM toolset. For in-
stance, in the ABS_CTRL main machine (a micro-controller component), the
PERFORM_COMPUTATION sub machine is not defined, which implies that
the requirements need to specify in more details about how "The ABS func-
tion shall decide appropriate braking force on each wheel". Next for Coverage
Checking, since the observations are determined to be held according to the re-
sults of the TASM observers in the runtime, the satisfaction of requirements
towards features is therefore reached. On the note about Model Checking, we
first translate the TASM model into timed automata, and then check the dead-
lock property as well as the ReqH3 requirement via the Uppaal model checker.
The corresponding results are: 1) Deadlock free is satisfied and, 2) the ReqH3 is
satisfied. Although the case study is a demonstrator, it is an illustrative example
to show how to follow our proposed approach to perform requirements validation
at various levels.



5 Related Work

In addition to the aforementioned related work, there are some other interesting
pieces of work deserved to be mentioned as follows. Event-B [1] is a formal
state-based modeling language that represents a system as a combination of
states and state transitions. Iliasov [10] showed how to use Event-B for systems
development, where the system constraints are formalized as a set of visualized
proof obligations which can be synthesized as use cases. Such proof obligations
are then reasoned about their satisfaction in the corresponding Event-B model.
Mashkoor et al. [14] proposed a set of transformation heuristics to validate the
Event-B specification by using animation.

Cardei et al. [6] presented a methodology that first converts SysML require-
ments models into a requirements model in OWL, and then performs the rule-
based reasoning to detect omissions and inconsistency. Becker et al. [3] provided
a formalization for self-adaptive systems and the corresponding requirements,
which enables a semi-automatic analysis of performance requirements for self-
adaptive systems. Cimatti et al. [7] introduced a series of techniques that have
been developed for the formalization and validation of requirements for safety-
critical systems. Specifically, the methodology consists of three main steps in
terms of informal analysis, formalization, and formal validation. Scandurra et
al. [17] proposed a framework to automatically transform use cases into ASM
models, which are used to validate the requirements through scenario-based sim-
ulation. MARTE [15] is a UML profile for modeling and analysis of RTES, cov-
ering both functional and non-functional properties of the system. Nevertheless,
to our best knowledge, there has not been any work about using MARTE for
the purposes of requirements validation.

6 Conclusions and Future Work
In this paper, we have proposed a novel TASM-based approach to requirements
validation. The approach 1) uses the extended TASM language to model the doc-
umented requirements and, 2) performs the requirements validation by using two
tools in terms of the TASM Toolset and the model checker Uppaal. Our case
study using a Brake-by-Wire (BbW) system developed by a major automotive
company, has shown that our approach can achieve the goal of requirements vali-
dation via Logical Consistency Checking, Auxiliary Machine Checking, Coverage
Checking, and Model Checking. Even if limited in complexity, the BbW system
consists of a number of parts presenting the real world safety-critical systems,
such as micro-controllers, sensors, actuators, and communication buses.

In this work, the validity of our TASM model towards requirements and fea-
tures is built upon our thorough understanding of the BbW system, and hence
TASM models are semantic preserving. Moreover, we have observed model vali-
dation issue as a common problem with model-based approaches. This is getting
more complicated when the system’s non-functional properties are considered.
To address the situation, as future work, we will combine our proposed modeling
approach with a set of assistant techniques, such as rule/pattern-based algorithm



to semi- or fully-automatically transform natural languages into TASM models.
The future work also includes a wider industrial validation of our approach,
and the improvement of our current TASM Toolset. Such improvement will
not only facilitate our evaluation but also power up our analysis with statistical
methods [12] and probabilistic modeling patterns.

References
1. J.-R. Abrial. Modeling in Event-B - System and Software Engineering. Cambridge

University Press, 2010.
2. A. T. Bahill and S. J. Henderson. Requirements development, verification and

validation exhibited in famous failures. Syst. Eng, 2005.
3. M. Becker, M. Luckey, and S. Becker. Performance analysis of self-adaptive systems

for requirements validation at design-time. In Proceedings of QoSA’13, pages 43–
52, New York, USA, 2013. ACM.

4. J. Blom, A. Hessel, B. Jonsson, and P. Pettersson. Specifying and generating
test cases using observer automata. In Proceedings of FATES’04, pages 125–139.
Springer-Verlag, 2005.

5. E. Börger and R. F. Stärk. Abstract State Machines. A Method for High-Level
System Design and Analysis. Springer, 2003.

6. I. Cardei, M. Fonoage, and R. Shankar. Model based requirements specification and
validation for component architectures. In Systems Conference, 2008 2nd Annual
IEEE, pages 1–8, 2008.

7. A. Cimatti, M. Roveri, A. Susi, and S. Tonetta. From informal requirements to
property-driven formal validation. In Proceedings of FMICS’09, pages 166–181.
Springer-Verlag, Berlin, Heidelberg, 2009.

8. E. M. Clarke and J. M. Wing. Formal methods: state of the art and future direc-
tions. ACM Comput. Surv., 28(4):626–643, Dec. 1996.

9. A. Ellis. Achieving safety in complex control systems. In Proceedings of SCSC’95,
pages 1–14. Springer London, 1995.

10. A. Iliasov. Augmenting formal development with use case reasoning. In Proceedings
of Ada-Europe’12, pages 133–146. Springer Berlin Heidelberg, 2012.

11. N. G. Leveson. Safeware: System Safety and Computers. ACM, NY, USA, 1995.
12. Y. Lu. Pragmatic Approaches for Timing Analysis of Real-Time Embedded Sys-

tems. PhD thesis, Mälardalen University, 2012.
13. MAENAD. http://www.maenad.eu, 2013.
14. A. Mashkoor, J.-P. Jacquot, and J. Souquières. Transformation Heuristics for

Formal Requirements Validation by Animation. In Proceedings of SafeCert’09,
York, United Kingdom, 2009.

15. OMG. http://www.omgmarte.org/, 2013.
16. M. Ouimet. A formal framework for specification-based embedded real-time system

engineering. PhD thesis, Department of Aeronautics and Astronautics, MIT, 2008.
17. P. Scandurra, A. Arnoldi, T. Yue, and M. Dolci. Functional requirements validation

by transforming use case models into abstract state machines. In Proceedings of
SAC’12, pages 1063–1068, NY, USA, 2012. ACM.

18. Z. Yang, K. Hu, D. Ma, and L. Pi. Towards a formal semantics for the AADL
behavior annex. In Proceedings of DATE’09, pages 1166–1171, 2009.

19. J. Zhou, A. Johnsen, and K. Lundqvist. Formal execution semantics for asyn-
chronous constructs of aadl. In Proceedings of ACES-MB’12, pages 43–48, 2012.

20. D. Zowghi and V. Gervasi. The three cs of requirements: Consistency, completeness,
and correctness. In Proceedings of REFSQ’02, 2002.


