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Abstract—OSLC serves a new standard for the integration
of tools used in different phases of software development. It
enables to establish relationships among different data artifacts
throughout the life cycle of an application. OSLC aims to provide
seamless integration of life cycle management tools and it enables
to have explicit relationships among data artifacts from the
early development phases, i.e., requirements. This helps to gain
a better holistic view over the development of software as a
system development activity. Systems engineering is in essence
an interdisciplinary approach to understand, design, and manage
the complexity of different projects and phenomena throughout
their life cycle. In this context, to have a holistic view of the
system is not a desirable, but a fundamental prerequisite. In
this work, we i) investigate how OSLC can strengthen a systemic
view in tool integration scenarios and ii) discuss also how systems
engineering concepts and principles can be relevant to describe
such scenarios. This is done by identifying the relationships
among systems engineering and OSLC key concepts. Finally, we
show, as a proof of concept, a concrete application of OSLC in
building an integrated tool chain.

Keywords—OSLC, systems engineering, systems thinking, tool
integration, life cycle.

I. INTRODUCTION

The development of a software product requires different
sets of tools for different development phases. Typical exam-
ples are requirements management tools, modeling tools, bug
tracking tools, test suites, etc. Each of these tools manages
a different set of resources, which have relationships with
other resources inside or outside the set. Trace links between
requirements and test cases are a well-known example of such
relationships as they help to create development tool chains.
Although the ability to establish and maintain relationships
among different development tool artifacts is of great im-
portance, tools, within a chain or integration pattern, can be
replaced over time due to cost or to new features availability.
Consequently, the ability to cope with changes in tool chains
is crucial for avoiding breakages in the chains.

Open Services for Life-cycle Collaboration (OSLC)1 [1],
as a new standard in tool integration, provides a set of
specifications for different integration scenarios throughout
the life cycle of a software product. Within OSLC-based
tool chains, modifications are effortless as long as the tools
conform to and implement OSLC specifications. OSLC enables

1Open Services for Lifecycle Collaboration is an open community build-
ing practical specifications for integrating software. In this paper, when talking
about OSLC as a standard or approach, we basically mean OSLC specifications
and integration methods defined based on them.

a form of togetherness by establishing relationships among
development artifacts and by providing semantics for these
artifacts and their relationships. Togetherness, is a systems
engineering concept in describing complex systems. Therefore,
OSLC seems to incorporate, bring along, and apply systems
engineering concepts, though implicitly and partially, to tool
integration solutions.

In recent years, the International Council on Systems
Engineering (INCOSE) has recognized the importance of tool
integration: INCOSE has formed the Tool Integration and
Interoperability Working Group (TIIWG) for addressing the
needs of having integrated tools and environments to foster
improved productivity and quality of systems engineering [2].

Our main intention by this work is towards the other
direction: we want to bring systems engineering concepts and
principles to tool integration scenarios, especially to OSLC-
based integration solutions. We believe this is crucial for the
research on the interdisciplinary aspects of software engineer-
ing [3] as computer systems are becoming key actors in our
daily life.

In this paper, we investigate the relationships between
the OSLC and systems engineering worlds, identifying the
areas where OSLC highlights, applies and strengthens systems
engineering concepts and principles. In addition, we point out
whether a certain systems engineering concept and method can
be applied to tool integration or not. The main contributions
of this paper can be summarized in the following points:

• we describe OSLC which is proposed as a new stan-
dard for tool integration,

• we show an OSLC application in a research project
to solve tool chain instantiation and tool integration
challenges,

• we investigate on the relationship between systems
engineering and OSLC, highlighting how OSLC can
help in applying systems engineering principles and
concepts to tool integration scenarios.

The outcome of this study is targeted and expected to
be ultimately used for a better design and analysis of tool
integration scenarios, by improving their systems engineering
aspects as well as their related specifications and standards.

The remainder of the paper is structured as follows: in
Section II we provide some background information about
OSLC and systems engineering; furthermore we introduce an
OSLC case study that has been initiated as part of another
work of ours [4]. Section III describes the methodology we



have devised to investigate the relationships among OSLC
and systems engineering concepts. In Section IV we apply
the aforesaid methodology and we perform our investigation
going through several key concepts of OSLC and systems
engineering to evaluate the existence of any relationship among
them. Finally, Section V provides a summary of our findings
and draws conclusions along with future directions for this
work.

II. BACKGROUND AND PRELIMINARIES

A. Systems engineering

Systems engineering is an interdisciplinary field of en-
gineering devoted to the management of complex systems
throughout their whole life cycle. While there exist different
definitions for systems engineering, the International Council
on Systems Engineering (INCOSE) [2] provides the following
definitions for system and for systems engineering, respec-
tively:

System. According to Rechtin [5], a system is a construct
or collection of different elements, which produces results not
obtainable by the single elements alone. The elements, or parts,
can include people, hardware, software, facilities, policies, and
documents; thus, all the things required to produce systems-
level results. The results include system level qualities, prop-
erties, characteristics, functions, behavior and performance.

Systems Engineering. An engineering discipline whose
responsibility is creating and executing an interdisciplinary
process to ensure that the customer and stakeholder’s needs
are satisfied in a high quality, trustworthy, cost efficient and
schedule compliant manner throughout a system’s entire life
cycle.

From the [6]’s perspective, the science of complex systems
can be seen as the combination of two macro activities streams:
thinking and acting in terms of systems. According to [6],
thinking and acting in terms of systems is a ”prerequisite to
being able to structure and operate organizations and their
enterprises so that they can (pro-) actively pursue their purpose,
goals and missions”. The thinking part can be defined as
the set of all those activities which aims to gain a holistic
understanding of complex systems by observing the dynamic
behavior of the systems in action. The acting part involves
the creation and application of engineering structures for the
observed systems.

Systems engineering is, in essence, based on systems
thinking which is a unique perspective on reality with respect
to wholes and parts, and the relationships among the parts
of those wholes [7]. Systems thinking has been evolving
since 1920 with cross-disciplines contributions, e.g., biology,
engineer, computer science, etc., which have strengthened this
discipline. Nowadays, systems thinking is considered to be a
successful approach for gaining a holistic understanding of
a system as well as an effective means for problem solving.
According to [6] there are, at least, four fundamental properties
which should be considered when analyzing a system:

• togetherness: related elements resulting in a new
whole,

• structure: elements and their static properties,

• behavior: effects produced by the elements and their
relationships, and

• emergence: predictable or not predictable result of a
system in action.

In [6], the author summarizes those properties, and their
relationship, in the System-Coupling Diagram depicted in
Figure 1. There is a situation system, i.e. a problem or an
opportunity to be solved or exploited, for which, by means of
the available system Assets, a respondent system is built. The
respondent system, which in turn may be a togetherness of
several sub-systems, has its own structure and behavior, which
result in its own specific emergence (i.e., emergent properties
and behaviors). Depending on the goodness of its emergent
behavior, the respondent system can be further modified to
better cope the situation system.

Fig. 1: System-Coupling Diagaram

By tackling the aforesaid activities streams separation, it
can be argued that understanding the situation system and
selecting the system assets are activities mainly related to
the thinking stream, while setting up the system assets and
building the respondent systems are activities mainly related
to the acting stream.

B. OSLC

Usually, throughout the life cycle of a software product,
different tools from different vendors are used, where each
of these tools addresses specific activities, e.g., requirement
management, test management, bug tracking, etc..

Fig. 2: OSLC Core concepts and relationships [1]

Two of the major challenges when using different tools are
the integration of the involved tools as well as the traceability



among the different data artifacts used and managed by the
tools. The importance of such challenges is even emphasized
when considering that companies often replace tools, within
their development process, due to cost, better features, support,
or because one tool vendor goes bankrupt and out of the
market.

OSLC is a new standard, supported by an open community,
which aims to alleviate these issues offering specifications for
tool integration [1]. OSLC is supported by several companies
and organizations such as IBM, Siemens, SHELL, NASA
Jet Propulsion Laboratory, and General Motors, to name a
few. OSLC community is organized in the form of differ-
ent work groups focusing on different life cycle integration
scenarios.These scenarios, for which specifications are pro-
duced, are referred to as domains [1], [8], e.g., Requirements
Management domain (RM), Architecture Management domain
(AM), Change Management domain (CM), Quality Manage-
ment domain (QM), etc. The specification for each domain is
built upon one core specification, namely OSLC Core, which
defines the basic concepts and rules and ensures consistency
among different domain specifications. Figure 2 shows the
core concepts and their relationships as they are defined in
the OSLC Core specification.

OSLC tries to be minimal by providing a small set of
resources and properties for describing artifacts involved in
a specific domain. Figure 3 shows the OSLC core common
properties used for the Test Case resource definition contained
in the QM2. Accordingly, one or many testers can be defined
as creators of a specific test case; each test case is specified by
means of its identifier, which can be any arbitrary String value;
date of creation and date of modification can be specified too
using the created and modified properties. Further properties
can be defined if needed, although OSLC deprecates this
practice for standardization purposes.

OSLC is based on the concept of Linked Data [9], Resource
Description Framework (RDF) [10], and HTTP protocol.
Figure 4 shows the application of these concepts and their
relationship within OSLC: each artifact is described as an
HTTP resource, identified by means of a Uniform Resource
Identifier (URI), accessed and manipulated with the GET, PUT,
POST and DELETE HTTP methods. Considering resource
provision and retrieval concepts in an integration scenario, a
tool can play two roles, namely consumer and the provider.
That is, for exchanging an artifact, a provider has to encode
an artifact’s properties in an HTTP resource, and post and
provide it under a specific URI; knowing the retrieving URI,
a consumer can access the HTTP resource representing the
artifact, and simply fetch it from the URI itself. It is important
to note that a tool can also be, at the same time, the provider
and consumer of different resources.

C. Case study

In our previous work [4] we show how to extend a
verification tool for EAST-ADL [11] models, namely ViTAL
[12], with automatic test-case generation for functional re-
quirements. The work was developed within the European
Combined Model-based Analysis and Testing of Embedded

2The complete explanation of the aforesaid properties is outside the scope
of the paper.

Fig. 4: Linked Data in OSLC [1]

Systems (MBAT) project [13] for showing a new and promis-
ing Verification and Validation (V&V) approach, which makes
V&V activities more effective and efficient for industrial
needs by exploiting the synergy between model-based analysis
and (dynamic) testing. To achieve such synergic scenarios,
different tools used in the development life cycle need to
tightly collaborate, be integrated, and also have a semantic
’agreement’ on the artifacts that are exchanged between them.
This should also be done in a way that different tool chains
can be instantiated and thus the integration is not limited and
’locked’ to particular tools. This is where OSLC comes into
help.

As a proof of concept for the MBAT methodology, the
ViTAL tool which can perform model-based analysis and also
generate test-cases is integrated with Farkle [14] test execution
framework, as part of a tool chain to: i) derive automatically
Python executable test scripts from the ViTAL generated test-
cases and ii) execute them using Farkle. The interoperability
between ViTAL and Farkle is achieved by means of an OSLC
interface. In a similar fashion, ViTAL is also actually integrated
with a requirement repository tool using OSLC. The complete
methodology is applied to the Brake-by-Wire industrial use-
case, provided by Volvo.

1) ViTAL: ViTAL is a verification tool for EAST-ADL
models, providing capabilities for simulation, verification and
test-case generation. It is an Eclipse-based environment, con-
sisting of the following plug-ins: (i) two editor plug-ins for
EAST-ADL system model and timed automata description of
the component behavior, respectively, (ii) a plug-in for a model
transformation between EAST-ADL models and UPPAAL
PORT input models, and (iii) an UPPAAL PORT plug-in for
model-checking of EAST-ADL models enriched with timed
automata semantic.

2) Farkle Environment: Farkle is a test execution envi-
ronment, which enables embedded systems to be tested in
their own environment. It has been developed for testing
embedded systems built using OSE [15] Real-Time Operating
System. It can be also adapted to other OSes which support
LINX protocol for inter-process communication, e.g. Linux.



Fig. 3: OSLC Core common properties for the Test Case resource

In OSE, tasks synchronization and programming are based on
the concept of direct and asynchronous message passing. In
OSE, the runnable tasks are called processes and the messages
exchanged among processes are called signals. The Python
scripts are used to send and receive signals as well as to decide
the test-case verdict, i.e., pass or fail.

3) Work-flow and OSLC interface: Figure 5 depicts the
work flow used in [4], consisting of seven major steps: i)
at first, the system designer creates EAST-ADL and timed
automata models, ii) timed automata models are used to
describe the internal behavior of system components modeled
in EAST-ADL, and are automatically related with EAST-ADL
system models by means of a model-to-model transformation;
iii) UPPAAL-PORT generates test-cases by applying model
checking on timed automata models of EAST-ADL compo-
nents; iv) the generated test cases are exchanged through the
OSLC interface for creating executable test cases, which are
v) enriched with some code annotations, vi) converted in test
scripts and vii) executed 3.

We hereby focus on the OSLC interface and its realization,
corresponding to step 4 of the Figure 5. Within OSLC, inte-
gration is reached by i) implementing consumer and provider

3The detailed explanation of the methodology is outside the scope of this
paper; the interested reader can refer to [4].

and by ii) choosing the resource to be exchanged among those
as provided within the OSLC domains. Considering the flow
of our case study, we have implemented a provider on top
of ViTAL and a consumer on top of Farkle. Furthermore, in
our particular implementation, we have defined a Test Case
resource based on the definition of test case resource from the
OSLC QM specification, to represent an Abstract Test Case
which is exchanged between ViTAL and Farkle (other ways
of implementation are also possible).

The implementation has been carried out using Eclipse
Lyo4, a software development kit which supports developers
in building OSLC-compliant tools. OSLC consumers and
providers are composed by two Eclipse projects each: one
project contains the implementation of the exchanged OSLC
resource, while the other project contains the implementation
of the methods realizing the exchanging operations. While
the projects containing the OSLC resource implementation
have to be identical, i.e., they have to implement the same
OSLC resource with the same set of properties, the projects
implementing the exchanging operations are different and they
implement different methods for consumers or providers.

4http://www.eclipse.org/lyo
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Fig. 5: ViTAL-Farkle integrated tool chain - workflow [4]

1 @OslcResourceShape ( t i t l e = " Q u a l i t y Management Resource
Shape " , d e s c r i b e s = C o n s t a n t s . TYPE_TEST_CASE )

2 @OslcNamespace ( C o n s t a n t s .MDH_QM_NAMESPACE)
3 p u b l i c f i n a l c l a s s T e s t C a s e e x t e n d s A b s t r a c t R e s o u r c e {
4 p r i v a t e S t r i n g d e s c r i p t i o n , i d e n t i f i e r ;
5 @ O s l c P r o p e r t y D e f i n i t i o n ( O s l c C o n s t a n t s .DCTERMS_NAMESPACE +

" d e s c r i p t i o n " )
6 @OslcT i t l e ( " D e s c r i p t i o n " )
7 @OslcValueType ( ValueType . XMLLiteral )
8 p u b l i c S t r i n g g e t D e s c r i p t i o n ( ) { re turn d e s c r i p t i o n ; }
9 p u b l i c void s e t D e s c r i p t i o n ( f i n a l S t r i n g d e s c r i p t i o n ) { t h i s

. d e s c r i p t i o n = d e s c r i p t i o n ; }
10 }

Listing 1: OSLC implementation of the TestCase resource

Listing 1 shows an excerpt of the Java implementation of
our abstract test case resource. It is defined as a specialization
of the OSLC AbstractResource (line 3). The TestCase
resource definition comprises a set of local variables along with
the respective getters and setters. The set of local variables, as
well as the Java annotations (e.g., line 6), are standard and
specified in the QM domain definitions. The Java annotations
realize the mapping between the Java object (representing the
resource) and the abstract test case resource properties.

1 @OslcServ ice ( C o n s t a n t s .QUALITY_MANAGEMENT_DOMAIN)
2 @Path ( " t e s t C a s e s " )
3 p u b l i c c l a s s T e s t C a s e S e r v i c e {
4 @GET
5 p u b l i c T e s t C a s e [ ] g e t T e s t C a s e s ( @QueryParam ( " o s l c . where " )

f i n a l S t r i n g where ) {
6 f i n a l L i s t < Tes tCase > r e s u l t s = new A r r a y L i s t < Tes tCase > ( )

;
7 f i n a l T e s t C a s e [ ] t e s t C a s e s = R e t r i e v e r . g e t T e s t C a s e s ( ) ;
8 f o r ( T e s t C a s e t e s t C a s e : t e s t C a s e s ) { r e s u l t s . add ( t e s t C a s e )

; }
9 re turn r e s u l t s . t o A r r a y ( new T e s t C a s e [ r e s u l t s . s i z e ( ) ] ) ;

10 }
11 }

Listing 2: OSLC ATC provider

Listing 2 presents an excerpt of the ViTAL provider imple-
mentation. Once the function Retriever.getTestCases()
has set-up an OSLC resource with the needed ViTAL informa-
tion, the resource is put online and it can be accessed via HTTP
methods. The method annotation @GET (line 4,5) specifies the
method to be invoked each time the provider receives an HTTP
GET from any consumer.

1 f i n a l O s l c R e s t C l i e n t o s l c R e s t C l i e n t = new O s l c R e s t C l i e n t (
p r o v i d e r s , queryBase , MEDIA_TYPE , t i m e o u t ) ;

2 f i n a l T e s t C a s e [ ] e n o v i a S y s t e m D e f i n i t i o n s = o s l c R e s t C l i e n t .
g e t O s l c R e s o u r c e s ( T e s t C a s e [ ] . c l a s s ) ;

Listing 3: OSLC ATC consumer

Listing 3 shows part of the Farkle consumer implementa-
tion. In response to the authentication to the given URI (line
1), the consumer receives back an OslcRestClient object,
which can be queried (line 2) for retrieving all the test-case
resources posted by the provider under the specified URI.

Such a tool integration based on OSLC not only brings
more clear and precise semantics on the data resources that
are exchanged among the tools, but also makes replacement
of tools easier (as long as they still conform to the OSLC
specification).

III. METHODOLOGY

So far, we have introduced OSLC, together with an ex-
ample, and discussed how it adds more semantics to the data
involved in integration scenarios; and how it contributes to
strengthening the traceability among data artifacts. We have
also explained how such semantics enables the addition or the
replacement of one or more tools in the tool chain: any tool
can be added in the tool chain just knowing which type of
resources it is expected to consume/provide and representing
them using OSLC resource definitions.

In the rest of the paper, we discuss how OSLC integration
solutions can be regarded from a systems engineering per-
spective. In order to address the abstract nature of this work
and show how OSLC can highlight and strengthen systems
aspects in the development of software products, we perform
our investigation following this three-steps methodology.:

1) Collect a list of related keywords and concepts for
defining a system and its characteristics.

2) Identify the relationship between the collected key-
words and concepts and OSLC.

3) Discuss if and how OSLC contributes to thinking and
acting in terms of systems.

The first activity is performed using [6] as the reference
literature to identify and extract systems engineering keywords
and concepts. The main goal in this step is to collect the
concepts that help to define and identify a system and its
characteristics, and how a systemic view can be usefully
applied in practice. The reason for this choice is that (while
considering that here we do not intend to provide a survey
on systems engineering concepts) [6] goes beyond just pure
systems engineering concepts, offering the dual perspective



of thinking and acting in terms of systems. It also discusses
methods and tools that are used for applying a systemic view
to different problems. Therefore, the collected keywords and
concepts in this work will be more than just pure and strict
systems engineering concepts.

The second step is carried out by consulting the OSLC
specifications and domain definitions. In this step, the rela-
tionships between the collected system concepts and OSLC are
discussed and assessed. This is done by identifying concepts
in the OSLC specification which can contribute to each of the
collected system concepts. The degree of the contribution is
specified by the following marks:

• F(Fully): indicates that either there is (at least) an
OSLC concept which fully covers and can be mapped
to the system concept, or the system concept/method
can be fully applied to and describe an integration
scenario.

• P(Partially): indicates that either there is (at least)
an OSLC concept which partially covers and can
be mapped to the system concept to some extent
but not fully, or the system concept/method can be
partially and to some degree applied to and describe
an integration scenario.

• I(Implicitly): indicates existence of either a concept
in OSLC which does not directly cover the system
concept, but can implicitly and indirectly contribute
to it, or a system concept/method which may in
some cases and with some adaptations be useful in
integration scenarios.

• N(None): either there is no OSLC concept that can
cover the system concept, or the system concep-
t/method is totally inapplicable to tool integration
scenarios.

Eventually, based on the coverage results achieved by
performing the aforesaid activities, in Step 3 we discuss and
evaluate the overall relationship between OSLC and system
concepts.

IV. OSLC AND SYSTEMS CONCEPTS

In this section, the collected set of keywords and important
concepts in defining a system and its characteristics are dis-
cussed along with the OSLC counterpart concepts. The OSLC
coverage level for the systems concepts is specified using
the terms and notations introduced in the previous section.
We start with the four main characteristics of systems that
were introduced earlier in Section II: togetherness, structure,
behavior, and emergence.

Togetherness: In OSLC, a relationship among data artifacts
can be established enabling traceability, through the properties
of the resources involved. Although this relationship does not
necessarily and explicitly result in a new whole, the so reached
integration of tools can result in an integrated tool chain, which
in turn may be considered as a new whole. Therefore, the
coverage level of the togetherness concept by OSLC can be
marked as (I).

Structure: In OSLC, each exchanged resource has to adhere
to a resource specification. This definition explicitly defines the

exchanged data artifacts and their relationships. Therefore, the
coverage level of this concept is (F).

Behavior: OSLC in its nature is static and does not address
dynamic behaviors of data artifacts or tools (N).

Emergence: Considering that OSLC does not deal with
behavioral aspects of tools and systems, this concept is not
covered by OSLC (N).

System Topology: A system can have a topology defining
the structure of its elements and their relationships, e.g., a
hierarchy or network topology. While OSLC does not impose
or introduce any specific topology, the relationships among
data artifacts, created using OSLC, will result in a structured
chain of integrated tools. Hence, OSLC indirectly contributes
in forming a topology (I).

Different Views: A system can usually be considered from
multiple views [16]. Although the concept of views does not
define a system, it remains as an important characteristic in
systems engineering. In OSLC there is no explicit concept for
views; however, different domains5 capture specific integration
aspects. From this perspective, the concept of view can be
considered as partially covered by OSLC (P).

Focus: In systems engineering, different focus levels can
be considered in terms of Narrow System-of-Interest (NSOI),
Wider System-of-Interest (WSOI), Environment and Wider
Environment [6]. On the one hand, OSLC does not help in
gaining such focus levels. On the other hand, data artifacts
and resources, from different OSLC domains, can be related
to each other. From this perspective, for a data artifact within
a specific OSLC domain, other data artifacts from other
OSLC domains might be considered as an environment or
a wider system. Therefore, while OSLC does not have any
concept, which can be directly mapped to the focus concept as
considered in [6], the contrary might be valid. In other words,
different focus levels might be applied to a tool chain and to
its different data artifacts, when integrated using OSLC. The
concept of focus can not clearly be identified using OSLC
concepts, however, OSLC seems to provide some very implicit
and weak form of focus (I).

System assets: In [6] the author refers to system assets as all
the means needed to build or manage a specified system, e.g.,
tools, knowledge assets. OSLC explicitly covers this concept
by targeting and highlighting resources and data artifacts
produced, consumed and generally managed in different tools
used throughout the life-cycle of a software product (F).

System coupling diagram: system coupling diagram is
chosen to be checked whether the same concepts that are cap-
tured by it have some corresponding concepts in OSLC. This
diagram constitutes of three parts: situation system, respondent
system, and system assets. Situation system basically captures
the elements and relationships that contribute to a situation
which thus are described in the form a system [6].

A respondent system is a system, which is created to
counteract the situation and whose services are composed
of available assets, forming a temporary system asset. Such
respondent system cannot be explicitly mapped to any OSLC
concepts. OSLC fully covers the asset concept in this three-part

5We refer to the OSLC definition of domains



diagram, although some types of assets, such as procedures
and processes, may not be directly captured in OSLC. The
replacement or the addition of a tool in an OSLC tool chain,
might be considered as a situation system. This means that,
the system coupling diagram may also be used to describe
tool integration scenarios. Summarizing, OSLC can partially
cover the concepts necessary for a system coupling diagram
(P).

System complexity: In systems engineering there are dif-
ferent categories of complexity: Organized Simplicity, Dis-
organized and People Related [6]. OSLC does not contain
any concepts to capture complexity. Nevertheless, the OSLC
specification brings, in a way, some concepts to organize the
complexity of data artifacts and their relationships in different
tools. For this purpose, OSLC can be considered as a means to
manage tool integration complexity issues, implying that the
tool chain and its integration can be viewed as a system (F).

Hard vs Soft systems: Based on the system goals, a system
can be categorized as hard or soft [17]. Based on such
categorization, OSLC falls into the definition of a hard system.
OSLC, as a tool integration standard, does not deal with these
concepts (N).

Models and Views: Different views, over a system, are
created by using one or more models [18]. OSLC enables
to view a system in terms of its data artifacts relationships.
Consequently, OSLC contributes to gaining a specific systemic
view over the set of tools and data involved in the integration
(F).

Systemigram: The term systemigram was coined in a pan-
European IT project from the contraction of the words systemic
and diagram. The idea behind it was to replace rich-text docu-
ments with a more structured diagram, which could summarize
concepts and interactions of a system [19]. Systemigrams are
often used for describing system of systems. They can even
be used for describing tool integration scenarios, by means of
relationships among tool resources and data artifacts (F).

Integrated OODA & PDCA diagrams: The Plan-Do-Check-
Act (PDCA) and Observe-Orient-Decide-Act (OODA) dia-
grams [20] were originally developed for leveraging the suc-
cess of military missions and operations. However, [6] shows
how systems engineering can benefit from the adoption of
these diagram and their utilization in the business process6.
OODA and PDCA diagrams are fully applicable to tool
integration, especially in the integration scenarios described
by OSLC, i.e., when tools replacements are easy to happen. In
OSLC, there is no concept for integration activities planning;
however, an integrated tool chain can be completely described
by integrated OODA and PDCA diagrams, as suggested below.
PDCA can be used when the set of tools to be integrated
is known; then, the integration is planned, done, checked,
and eventually refined with further actions. OODA seems
suitable when an issue in the integrated tool chain is observed,
e.g., a tool vendor goes out of a market, another tool is
introduced, a tool gets updated, etc. In such cases, based on
the observed issue, some orientation in the tool chain may be
done, appropriate decisions may be made and, finally, actions

6For the sake of space we avoid the complete explanation of these dia-
grams. The interested reader can find more details in the provided references.

may be performed. Summarizing, there is no one single OSLC
concept, which directly maps the concepts presented by these
diagrams. However, the flexibility that OSLC provides for
integrated tool chains, in terms of replacing tools, can be
captured by them. Generally, it seems that these diagrams serve
very well to describe tool integration scenarios (I).

System life cycle: OSLC’s main goal is to address inte-
gration scenarios among tools used in different stages of a
software product life cycle. This way, OSLC draws further
attention to different stages that exist in the life cycle of a
software product (F).

System of systems: It is usually possible to consider dif-
ferent sub-systems for a system. In other words, systems
engineering principles can be well applied to different groups
of elements and their relationships that constitute a system.
While OSLC does not provide any concept for representing
a system and its sub-systems explicitly, the whole integrated
tool chain can be considered as a system to which systems
engineering concepts can be applied. This way, different tools
that can be mapped to different OSLC domains, can be
considered as sub-systems providing specific functionality and
thus contributing to forming the higher level system, which
in this case is the tool chain. Different resources in each
tool in the tool chain can also form sub-sub-systems. From
this perspective again, systems engineering principles seem
to be well appropriate for describing a tool chain. Also, by
providing semantics to different tools, their internal resources
and their relationships, OSLC can be considered as implicitly
contributing to the application of systems engineering concepts
in tool integration scenarios (I).

System description and instances: As aforesaid, systems
are usually regarded from different viewpoints, where each
viewpoint makes use of a specific notation for describing
the systems themselves. The artifact, or the set of artifacts,
produced by applying these descriptions, are considered to be
instances of the system and the system description. OSLC
specification can be considered as a system description and
each OSLC-based integrated tool chain as an instance of it.
However, in the tool chain, only a subset of OSLC concepts
is usually used; meaning not having all the characteristics as
defined in the systems description. On the other hand, each
tool chain may be considered as a system description while an
instance of it is a set of specific tools integrated using a set
of OSLC concepts. This is possible in OSLC as it allows a
replacement of a tool with another one as long as it conforms
to the same OSLC concepts. Therefore, OSLC enables to
apply the concepts of system description and its instances from
systems engineering to tool integration (F).

Change management: Change management is usually de-
fined as the set of activities which aims to maximize productiv-
ity by minimizing mistakes produced by a poor coordination
along the system development [21]. OSLC has a dedicated
domain specification for Change Management (CM), which
is intended for ”the management of product change requests,
activities, tasks and relationships among those and related
resources such as project, category, release and plan” [1]. This
specification includes definition of ChangeRequest resource,
which is defined to capture different types of change requests
such as defect, enhancement, task, bug, and activity, to name a



few. Therefore, OSLC explicitly addresses the topic of change
management - to a degree relevant for tool integration (F).

Life cycle changes, traceability, and versions of systems:
Traceability in software engineering is defined as the ability
to trace dependencies among several artifacts or versions
of the same artifact [22]. OSLC can establish trace links
among different resources maintained by various tools in a
tool chain. A change with respect to a specific tool (i.e., tool
replacement, introduction of a new tool, etc.) can be easily
handled by OSLC by ensuring conformance to the OSLC
specifications. This is essentially is one of the core goals of
OSLC. Different versions of a resource are managed in OSLC
using the Change Management (CM) specification as discussed
above. Therefore, OSLC is capable to cope with life-cycle
changes. But as long as different configurations of a tool chain
are concerned (as different versions of a system), it does not
capture that. In other words, some meta-concepts capturing the
properties of a tool chain as a whole might be necessary for
that purpose (P).

Execution order in the life cycle: OSLC does not provide
any concept for specification of control flow in the tool chain.
Therefore, execution order cannot be described using OSLC
(N).

Life cycle roles (conceiver, developers, producers,. . . ): Ide-
ally, associated to each view there is one or more roles. In
OSLC, there is no specific list defining the different roles that
can exist in the life cycle of a (software) product. However,
using the dcterms:creator and dcterms:contributor properties
of resources, it is possible to include the necessary information.
In this case, it is usually the name of persons than their roles
(P).

System lifetime: Another characteristic of a system is its
lifetime. The type of management and leadership needed for
systems with short lifetime is different from those which have
a long lifetime [6]. In OSLC there is no concept to capture
this characteristic for the tool chain, the tools and their internal
resources as systems. A tool chain in itself could have been
formed in response to a short-time need or a situation with
long longevity. Therefore, OSLC does not prevent applying
the concept of lifetime for a tool chain, although it does not
care about it either (N).

Table I provides a summary of the discussions above
regarding the relationship between systems engineering prin-
ciples and OSLC, and how OSLC concepts provide for and
cover those principles.

One of the important findings from the above discussion
is that system engineering concepts and principles seem very
much suitable to describe tool integration scenarios. Figure 6
shows a sample systemigram for the case study introduced in
Section II as a very simple example for such application of
systems engineering concepts and methods.

V. SUMMARY AND CONCLUSION

In this article, we discussed OSLC, systems engineering
and the relationships that can exist between these two worlds.
We also presented an OSLC case study. The motivation be-
hind this work is based on the observation that OSLC, as a
new specification for tool integration, aims to categorize and

Systems Concept/Method OSLC Coverage
Togetherness I

Structure F
Behavior N

Emergence N
System Topology I
Different Views P

Focus I
System Assets F

System Coupling Diagram P
System Complexity F

Hard vs Soft Systems N
Models and Views F

Systemigram F
Integrated OODA & PDCA diagrams I

System Life cycle F
System of Systems I

System description and instances F
Change Management F

Life cycle changes, traceability, and versions P
Execution order in the life cycle N

Life cycle roles P
System Lifetime N

TABLE I: Summary of Systems concepts/methods and OSLC
concepts coverage

Fig. 6: Systemigram for ViTAL-Farkle integration scenario

capture different core artifacts that exist throughout the life
cycle of a software product, as well as their relationships.
This is completely aligned with the definition of a system
which, in simplest terms, is a meaningful/purposeful collection
of elements and the relationships among them. We have
investigated how OSLC and systems engineering concepts
can be mapped and inter-related, with the ultimate goal of
promoting the application of systems engineering concepts and
principles to tool integration and their adoption in developing



tool integration specifications.

One of the important findings of this work is recogniz-
ing that systems engineering concepts and principles can be
well applied to tool integration scenarios especially when
considering a chain of integrated tools as a system. This
is even much stronger in case of OSLC: it adds semantics
and provides flexibility for tools replacement; hence, it covers
more explicitly principles such as change management, version
management, etc.

To cope with the abstract nature of this work, meaning
that it mainly concerns concepts and principles, we have
defined a methodology for performing our investigation. As
part of this methodology we have selected some key concepts
and keywords for defining and identifying a system and its
characteristics. It might be argued that the selected set of
keywords might, somehow, affect the results; that is: if another
set of keywords had been selected, the result would have been
different. While this can be a valid concern, the important
finding, in our opinion, is that a different set of keywords
would reveal the inter-relationship between OSLC and systems
engineering from a different perspective, not violating the set
of keywords we have discussed in this work. Therefore, it
can even be considered as a future work to investigate further
systems engineering concepts.

This work was done mainly considering the OSLC specifi-
cation available at writing time of the article. Since OSLC
specification is constantly evolving, future versions might
contain more systemic aspects. OSLC also has its specific
scope and limitations. For instance, the current version of
OSLC specification is mainly data-centric and does not support
control flow integration [23]. Similarly, as investigated in
[23], transaction support and the concepts of atomicity, data
integrity and roll-back are not in the scope of OSLC (at
least in its current version) which might be of importance in
industrial solutions based on OSLC to avoid data inconsistency.
Moreover, while OSLC mainly offers a data-centric software
integration solution and does not handle hardware (of course,
custom extensions in OSLC are possible), other aspects beyond
just software, such as hardware as well as human activities are
also of concern in systems engineering. Concluding, based on
our findings, there is a synergy between these two fields and we
can strongly recommend to the OSLC community to consider
systems engineering concepts and principles when developing
OSLC specifications for tool integration scenarios.
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