
Mälardalen University Press Dissertations
No. 154

AUTOMATING REUSE IN WEB APPLICATION DEVELOPMENT

Josip Maras

2014

School of Innovation, Design and Engineering

Mälardalen University Press Dissertations
No. 154

AUTOMATING REUSE IN WEB APPLICATION DEVELOPMENT

Josip Maras

2014

School of Innovation, Design and Engineering



Mälardalen University Press Dissertations
No. 154

AUTOMATING REUSE IN WEB APPLICATION DEVELOPMENT

Josip Maras

Akademisk avhandling

som för avläggande av teknologie doktorsexamen i datavetenskap 
vid Akademin för innovation, design och teknik kommer att 

offentligen försvaras torsdagen den 17 april 2014, 13.15 i Gamma, 
Mälardalens högskola, Högskoleplan 1, Västerås.

Fakultetsopponent: Associate Professor Martin Robillard, McGill University

Akademin för innovation, design och teknik

Copyright © Josip Maras, 2014
ISBN 978-91-7485-140-3
ISSN 1651-4238
Printed by Arkitektkopia, Västerås, Sweden



Mälardalen University Press Dissertations
No. 154

AUTOMATING REUSE IN WEB APPLICATION DEVELOPMENT

Josip Maras

Akademisk avhandling

som för avläggande av teknologie doktorsexamen i datavetenskap 
vid Akademin för innovation, design och teknik kommer att 

offentligen försvaras torsdagen den 17 april 2014, 13.15 i Gamma, 
Mälardalens högskola, Högskoleplan 1, Västerås.

Fakultetsopponent: Associate Professor Martin Robillard, McGill University

Akademin för innovation, design och teknik

Mälardalen University Press Dissertations
No. 154

AUTOMATING REUSE IN WEB APPLICATION DEVELOPMENT

Josip Maras

Akademisk avhandling

som för avläggande av teknologie doktorsexamen i datavetenskap 
vid Akademin för innovation, design och teknik kommer att 

offentligen försvaras torsdagen den 17 april 2014, 13.15 i Gamma, 
Mälardalens högskola, Högskoleplan 1, Västerås.

Fakultetsopponent: Associate Professor Martin Robillard, McGill University

Akademin för innovation, design och teknik



Abstract
Web applications are one of the fastest growing types of software systems today. Structurally, they are
composed out of two parts: the server-side, used for data-access and business logic, and the client-side
used as a user-interface. In recent years, thanks to fast, modern web browsers and advanced scripting
techniques, developers are building complex interfaces, and the client-side is playing an increasingly
important role.

From the user's perspective, the client-side offers a number of features. A feature is an abstract notion
representing a distinguishable part of the system behavior. Similar features are often used in a large
number of web applications, and facilitating their reuse would offer considerable benefits. However,
the client-side technology stack does not offer any widely used structured reuse method, and code
responsible for a feature is usually copy-pasted to the new application. Copy-paste reuse can be complex
and error prone - usually it is hard to identify exactly the code responsible for a certain feature and
introduce it into the new application without errors.

The primary focus of the research described in this PhD thesis is to provide methods and tools for
automatizing reuse in client-side web application development. This overarching problem leads to a
number of sub-problems: i) how to identify code responsible for a particular feature; ii) how to include
the code that implements a feature into an already existing application without breaking neither the code
of the feature nor of the application; and iii) how to automatically generate sequences of user actions
that accurately capture the behavior of a feature? In order to tackle these problems we have made the
following contributions: i) a client-side dependency graph that is capable of capturing dependencies that
exist in client-side web applications, ii) a method capable of identifying the exact code and resources that
implement a particular feature, iii) a method that can introduce code from one application into another
without introducing errors, and iv) a method for generating usage scenarios that cause the manifestation
of a feature. Each contribution was evaluated a suite of web applications, and the evaluations have
shown that each method is capable of performing its intended purpose.
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Sažetak

Domena web aplikacija je jedna od najbrže rastućih i najraširenijih ap-
likacijskih domena danas. Web aplikacije se sastoje od dva jednako važna
dijela: serverske aplikacije, koja omogućava pristup podacima i imple-
mentira poslovnu logiku te klijentske aplikacije koja služi kao korisničko
sučelje. U zadnje vrijeme, zbog brzih, modernih Internet preglednika i
naprednih skriptnih tehnika, razvijaju se sve složenija korisnička sučelja
pa klijentska aplikacija ima sve veću ulogu.

Sa stajalǐsta korisnika, klijentska aplikacija obično nudi niz funkcional-
nosti. Slične funkcionalnosti se često koriste u vǐse različitih web ap-
likacija pa bi pružanje podrške pri njihovu ponovnom korǐstenju moglo
olakšati razvoj. Medutim, medu tehnikama i tehnologijama koje se ko-
riste za razvoj web aplikacija ne postoji široko rasprostranjena, struk-
turirana metoda ponovnog korǐstenja; kôd koji implementira odredenu
funkcionalnost se najčešće kopira u novu web aplikaciju. Takav način
ponovnog korǐstenja je kompleksan i sklon pogreškama – obično je teško
i identificirati kôd odredene funkcionalnosti i umetnuti ga u novu ap-
likaciju bez uvodenja grešaka.

Glavni cilj istraživanja opisanog u ovoj disertaciji je razvoj metoda i
alata za automatizaciju ponovnog korǐstenja pri razvoju klijentskih web
aplikacija. Ovaj problem vodi do tri manja pod-problema: i) kako iden-
tificirati kôd koji implementira odredenu funkcionalnost; ii) kako umet-
nuti kôd neke funkcionalnosti u već postojeću aplikaciju, bez uvodenja
grešaka; iii) kako automatski generirati nizove korisničkih akcija koji
pokreću funkcionalnost? Kao odgovore na te probleme, predložili smo
sljedeće doprinose: i) graf ovisnosti klijentskih web aplikacija koji pred-
stavlja ovisnosti koje postoje unutar klijentske web aplikacije; ii) metoda
za identifikaciju kôda i resursa koji implementiraju odredenu funkcional-
nost; iii) metoda za umetanje kôda jedne aplikacije u drugu aplikaciju,
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tificirati kôd koji implementira odredenu funkcionalnost; ii) kako umet-
nuti kôd neke funkcionalnosti u već postojeću aplikaciju, bez uvodenja
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viii

bez uvodenja pogreški; i iv) metoda za generiranje nizova korisničkih ak-
cija koji pokreću odredenu funkcionalnost aplikacije. Svaki od doprinosa
je evaluiran na nizu web aplikacija.

Populärvetenskaplig
sammanfattning

Webbutveckling är ett av de snabbast växande och mest utbredda mjuk-
varuomr̊adena och webbapplikationer används nu i nästan varje aspekt
av v̊ara liv: p̊a jobbet, för v̊ara sociala kontakter, eller för e-handel. Mod-
erna webbläsare och avancerade scriptingtekniker har gjort det möjligt
för kan utvecklare att bygga interaktiva, sofistikerade och komplexa ap-
plikationer även för webben.

Ur användarens perspektiv erbjuder en webbapplikation ett antal
funktioner, och liknande funktioner används ofta i en rad olika app-
likationer (till exempel bildvisare, avancerade webbformulär eller chatt-
system). Utveckling av nya applikationer skulle vara mycket effektivare
om dessa återkommande funktioner enkelt kunde återanvändas i stället
för att programmeras p̊a nytt varje g̊ang, men s̊adan återanvändning är
ofta sv̊ar och tidskrävande. Det är sv̊art att identifiera de delar av koden
som ansvarar för en viss funktion, och när de väl identifieras är det sv̊art
att lägga in dem i ett befintligt program utan att orsaka fel.

Huvudsyftet med forskningen som presenteras i den här avhandlingen
är att tillhandah̊alla metoder och verktyg för att automatisera återanvän-
dning vid utveckling av webbapplikationer. Utifr̊an detta m̊al har vi
åstadkommit följande bidrag: i) en beroendegraf som representerar de
kodberoenden som finns i en webbapplikation, ii) en metod föra att
identifiera den exakta koden och resurserna som implementerar en viss
funktion, iii) en metod som kan flytta kod fr̊an en applikation till en
annan utan att introducera fel, och iv) ett sätt att generera använd-
ningsscenarier som täcker en funktion väl.

ix
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ningsscenarier som täcker en funktion väl.

ix



Abstract

Web applications are one of the fastest growing types of software systems
today. Structurally, they are composed out of two parts: the server-side,
used for data-access and business logic, and the client-side used as a
user-interface. In recent years, thanks to fast, modern web browsers and
advanced scripting techniques, developers are building complex inter-
faces, and the client-side is playing an increasingly important role.

From the user’s perspective, the client-side offers a number of fea-
tures. A feature is an abstract notion representing a distinguishable
part of the system behavior. Similar features are often used in a large
number of web applications, and facilitating their reuse would offer con-
siderable benefits. However, the client-side technology stack does not
offer any widely used structured reuse method, and code responsible for
a feature is usually copy-pasted to the new application. Copy-paste reuse
can be complex and error prone – usually it is hard to identify exactly
the code responsible for a certain feature and introduce it into the new
application without errors.

The primary focus of the research described in this PhD thesis is to
provide methods and tools for automating reuse in client-side web ap-
plication development. This overarching problem leads to a number of
sub-problems: i) how to identify code responsible for a particular feature;
ii) how to include the code that implements a feature into an already
existing application without breaking neither the code of the feature nor
of the application; and iii) how to automatically generate sequences of
user actions that accurately capture the behavior of a feature? In order
to tackle these problems we have made the following contributions: i) a
client-side dependency graph that is capable of capturing dependencies
that exist in client-side web applications, ii) a method capable of identi-
fying the exact code and resources that implement a particular feature,
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xii

iii) a method that can introduce code from one application into another
without introducing errors, and iv) a method for generating usage sce-
narios that cause the manifestation of a feature. Each contribution was
evaluated on a suite of web applications, and the evaluations have shown
that each method is capable of performing its intended purpose.
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Štula and Darko Stipaničev for encouraging me to enroll in the PhD
program and in Sweden, Ivica Crnković and Jan Carlson for giving me
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Introduction

Web applications are among the most commonly used applications to-
day. Structurally, they are composed out of two equally important parts:
the server-side, realized as a procedural application implementing data-
access and business logic, and the client-side, realized as an event-driven
application that acts as a user-interface (UI). One of the important ben-
efits of the domain is easy update and deployment – no installation is
required, and the user always has access to the latest application ver-
sion. However, this means that web applications are usually subjected to
short release cycles. Lately, by using modern web browsers and advanced
scripting techniques, developers are able to build highly interactive, so-
phisticated, and complex applications. Unfortunately, the techniques
and tools used to support their development are not as advanced as in
other, more mature, software engineering disciplines. In particular, the
developers are faced with poor support when trying to achieve reuse.

Building new software systems by reusing already existing artifacts
has long been advocated as way to reduce development time and decrease
defect density [41, 55, 12, 37]. It has been shown that reuse can lead
to improved quality [23], increased productivity [7], and more satisfied
customers [56]. Due to these benefits, a number of approaches aimed at
facilitating reuse has been developed. Most of these approaches, such as
component-based development [41] or software product-lines [47], target
pre-planed reuse, in which certain software entities are explicitly built
in a reusable fashion. However, there is often a desire to reuse parts of
existing code that was not originally developed with reuse in mind. In
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2 Chapter 1. Introduction

such cases, identifying the code to be reused, as well as integrating it
into an already existing software system is a challenging task.

From the user’s perspective, the behavior of a client-side application
is composed of distinguishable parts, i.e. features, that manifest at run-
time. Similar features are often used in a large number of applications,
and facilitating their reuse can offer significant benefits in terms of eas-
ier and faster development. Currently, the prevailing method of reuse is
pragmatic [29], copy-paste reuse, which is complex and error-prone. It is
hard to identify the code for reuse, and to introduce it into a new appli-
cation without errors. In addition, in the web domain, reuse is made par-
ticularly difficult for the following reasons: i) the application executed in
the browser is a result of interplay of three different languages: HTML
for defining structure, CSS for presentational aspects, and JavaScript
for the behavior, and there is no trivial mapping between the source
code and the application displayed in the browser; ii) JavaScript is a
highly dynamic scripting language with characteristics that complicate
code analysis; iii) the global application state plays a much bigger role
than in most other domains, and there are many implicit dependen-
cies within the application; iv) currently there is no built-in support for
structuring code in a way that facilitates safe reuse, e.g. as independent
components with well-defined interfaces; and v) code responsible for a
certain feature is often intermixed with irrelevant code. This means that
a single application feature, rather than being implemented by a single
package, class or a method, is usually implemented by a number of code
fragments spread across three different languages with many implicit de-
pendencies. All these challenges mean that it is usually hard to identify
the code responsible for the implementation of the desired feature, and
even if the code is identified, it is difficult to introduce it into an existing
application without errors – there is need for automating reuse.

1.1 Motivation

Consider two open-source WordPress1 applications shown in Figure 1.1.
The top application has two features: feature A represented by the

image slider control denoted with a top dashed red rectangle (mark A),
and feature B, represented by the container denoted by a bottom dashed
red rectangle (mark B). Feature A is triggered by clicking on the arrow

1http://wordpress.org/

1.1 Motivation 3

Figure 1.1: The UI of the two applications from the motivating example

buttons (mark a1) or by clicking on the image thumbnails (mark a2), and
manifests with a slide effect from the current image to the subsequent
image. Feature B is triggered by clicking on one of the labels (mark b),
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and manifests by fading out the articles not described by the label, and
rearranging the remaining ones.

The bottom application also has two features: feature C, represented
by the image toggler denoted with the top dashed green rectangle (mark
C), and feature D, represented by the image slider denoted by the bot-
tom dashed green rectangle (mark D). Feature C is triggered either au-
tomatically, after a given timeout period has expired or by clicking on
one of the arrow buttons (mark c). The feature manifests by fading out
the current image and fading in the subsequent image. Feature D is
triggered by clicking on the edge arrow buttons (mark d) and manifests
with a visual slide effect to the subsequent image.

Figure 1.2: Motivating example reuse result

Consider a case where a developer needs to add a feature that can
show and hide articles described with a certain label (feature B from
the first application) to the second application. Instead of developing
one from scratch, the developer wants to reuse feature B. In order to do
this, the developer has to identify the code that implements the feature
in the first application and has to embed it into the second application

1.2 Research questions 5

(end result shown in Figure 1.2). Both of these tasks are difficult and
time consuming. Identifying the exact code is difficult because the code
responsible for the implementation is intermixed with irrelevant code,
and embedding the code is difficult because a number of conflicts, which
can break the behavior and presentation of features B, C, and D, can
occur.

1.2 Research questions

The main research challenge of automating reuse in client-side web appli-
cation development is broken down into a set of more concrete questions
which have guided different research phases.

In order to reuse a certain feature, first we have to be able to isolate
its implementation details. This is a challenging task, for the following
reasons: i) the code responsible for feature implementation is usually
intermixed with code irrelevant in respect to this feature; ii) the feature
is implemented by a combination of different languages, where the most
complex one is a dynamic scripting language (JavaScript); and iii) a
feature manifests when a user performs certain actions. These problems
lead to the first research question:

Research Question 1: How can we identify the subset of the web
application source code and resources that implement a particular
feature?

Once the code and resources of a feature have been identified and
extracted we have to enable their inclusion into the target application.
This is a complex problem, because by doing this we change the execution
environment that both the feature and the target application rely on for
their behavior. This can cause a number of problems and conflicts in
both the feature and the target application which have to be detected
and fixed. This leads to the second research question:

Research Question 2: How can we introduce the source code
and resources of a feature into an already existing application,
without breaking the functionality of neither the feature nor the
target application?

Client-side web applications are event-driven UI applications in which
features manifest when the user performs certain sequences of actions
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(scenarios). Specifying feature scenarios that capture the complete be-
havior of a feature is often a time-consuming activity. This leads to the
third and final research question:

Research Question 3: How can we automatically generate sce-
narios that cause the manifestation of a client-side feature?

1.3 Contributions

The overall contribution of the thesis is a method and the accompanying
tool for automating feature reuse in client-side web application develop-
ment. When related to the research questions (RQ), the contributions
can also be defined as:

1. A client-side dependency graph (RQ1, RQ2)
We have defined a client-side dependency graph capable of tracking
dependencies that exist in a particular scenario. We have also
defined algorithms for its construction and traversal.

2. A method for identifying feature code and resources (RQ1)
We have developed a method that is able to, by analyzing the exe-
cution of an application and a client-side dependency graph, deter-
mine a subset of the application’s code and resources responsible
for the implementation of a given feature.

3. A method for integrating feature code in an existing ap-
plication (RQ2)
We have identified a set of problems that can occur when intro-
ducing code from one application into another, and have defined
a method capable of detecting and fixing those problems. The
method is based on dependency graph analysis and the dynamic
analysis of application execution.

4. Automatic generation of scenarios (RQ3)
We have defined a method for automatic generation of scenarios.
The method works by analyzing the application source code and
systematically exploring the event and value space of the applica-
tion. It is capable of generating scenarios that cause the manifes-
tation of a certain feature, as well as the scenarios that target the
whole application.

1.4 Research Methodology 7

1.4 Research Methodology

This research is motivated by a practical, industrial problem – enabling
reuse of web application features not necessarily designed for reuse. For
this reason, the research falls into the category of applied research, but
with solutions that contribute to disciplines of web application analysis
and reuse in general. The basic research methodology was to observe
existing and to propose better solutions to problems at hand; build,
develop, measure, analyze, and validate the solutions and repeat the
process until no more improvements appeared possible. In essence, we
have performed the following steps in several cycles:

1. Perform a literature review on the current research problem.

2. Formulate a candidate solution based on the state of art and state
of practice.

3. Construct a tool prototype that implements the proposed solu-
tions.

4. Verify by performing experiments on case study applications.

More specifically, in our case this meant that we first developed a
tool prototype that instrumented the browser and dynamically analyzed
the execution of the web application in order to identify code related to
certain behavior. While performing the experiments we noticed that not
all code expressions executed during a certain behavior are important
for that behavior, and that there is a significant number of executed
code constructs that are irrelevant for the target behavior. This led us
to the first research question: identifying feature code. In order to solve
this problem we have studied the state of the art in program slicing,
have defined a client-side dependency graph and the algorithms for its
construction. We have defined an identification process based on the
dynamic analysis of application execution and dependency graph traver-
sal. We have evaluated the approach by performing experiments based
on different usages of the method. The evaluation has shown that the
method is capable of identifying the implementation details of individual
features, and that by extracting the identified code considerable savings,
in terms of code size and increased performance, can be achieved. Next,
in order to reuse the code, we have developed a method capable of in-
tegrating code from one application into another application. We have
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can also be defined as:

1. A client-side dependency graph (RQ1, RQ2)
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tegrating code from one application into another application. We have
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evaluated the reuse process based on user-specified scenarios on a num-
ber of case study web applications. The experiment has shown that, in
the case study applications, the method was capable of identifying and
fixing problems that happen when introducing feature code into an al-
ready existing application. Both the identification method and the reuse
method are based on dynamic analysis of application behavior while cer-
tain scenarios are exercised. Since specifying these scenarios is often a
difficult, error-prone and time-consuming activity, for the third research
question we decided to focus on how to automatically generate applica-
tion scenarios. We studied the state of the art in web application testing,
and have developed a method that generates scenarios that target spe-
cific features in client-side web applications. We have tested a method
on a number of case study applications, and have compared them to
other, similar approaches. The evaluation has shown that the method
is able to generate scenarios that target specific features, and that, in
certain cases, the method is able to achieve higher coverage than state
of the art methods.

1.5 Publications

This section gives a short description of the papers the thesis is based
on. For all papers I have been the main author, while other coauthors
have contributed with valuable discussions and reviews.

Paper A

Extracting Client-side Web User Interface Controls, Josip Maras, Maja
Štula, Jan Carlson, International Conference of Web Engineering 2010
poster session (short paper).

Summary : In this paper we present our first results on extracting easily
reusable web user-interface controls. We give a first description of a tool
called Firecrow that we have developed to facilitate the extraction of
reusable client-side controls by profiling a series of interactions, carried
out by the developer. This research was our first step in answering the
first research question, and is directly related to the second contribution
(2. A method for identifying feature code and resources).

1.5 Publications 9

Paper B

Reusing Web Application User-Interface Controls, Josip Maras, Maja
Štula, Jan Carlson, International Conference on Web Engineering 2011.
Summary : The paper defines a method for reusing client-side web ap-
plication user-interface controls. It is focused on defining how to use
the profiling data gathered during the execution of a sequence of ac-
tions, to identify the code responsible for the behavior of a certain UI
control. We also introduce a simple method for including the identified
code into another application, thereby achieving reuse. This research
is directly related to the first and second research question, and to the
second and third contribution (2. A method for identifying feature code
and resources, 3. A method for integrating feature code in an existing
application).

Paper C

Client-side web application slicing ; Josip Maras, Ivica Crnković, Jan
Carlson, Proceedings of the 26th IEEE/ACM International Conference
on Automated Software Engineering, 2011. (short paper).
Summary : In papers A and B, we have relied on profiling to create a
connection between the executed code and the UI control selected by the
user, and we have considered all lines visited while manifesting a certain
behavior as important. But, as is shown in this work, code constructs
that implement a certain behavior are actually a subset of the executed
constructs. In this short paper we present our first work on defining
the client-side dependency graph capable of capturing control and data
dependencies between different parts of the client-side web application,
and we improve upon the process presented in Paper B. This paper
directly contributes to the first research question, and to the first and
second contribution (1. A client-side dependency graph, 2. A method for
identifying feature code and resources).

Paper D

Extracting Client-side Web Application Code, Josip Maras, Jan Carl-
son, Ivica Crnković, Proceedings of the 21st international conference on
World Wide Web. ACM, 2012.
Summary : This paper is a direct expansion of paper C. We show how by
analyzing the application execution while a scenario is being exercised,
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code responsible for a certain behavior can be identified, how dependen-
cies between different parts of the application can be tracked by defining
a client-side dependency graph, and how in the end only the code respon-
sible for a certain behavior can be extracted. The evaluation has shown
that the method is capable of extracting stand-alone behaviors, while
achieving considerable savings in terms of code size and application per-
formance. This paper directly contributes to the first research question,
and to the first and second contribution (1. A client-side dependency
graph, 2. A method for identifying feature code and resources).

Paper E

Towards Automatic Client-side Feature Reuse, Josip Maras, Maja Štula,
Jan Carlson, Ivica Crnković, Web Information System Engineering, WISE
2013, (short paper).
Summary : In this paper we present the extensions and improvements
to the reuse process described in paper B. Introducing the code that
implements a feature from one application into another can introduce
a number of different types of errors that are time-consuming to detect
and fix. We present a method for performing feature reuse. We identify
problems that occur when introducing code from one application into
another, present a set of algorithms that detect and fix those problems,
and perform the actual code merging. We have evaluated the approach
on a number of representative case studies that have shown that the
method is capable of performing feature reuse. This research directly
contributes to answering the second research question, and represents
the third contribution (3. A method for integrating feature code in an
existing application).

Paper F

Generating feature usage scenarios in Client-side Web Applications, Josip
Maras, Jan Carlson, Ivica Crnković, International Conference on Web
Engineering 2013.
Summary : In many software engineering activities (e.g. testing) repre-
sentative sequences of events (i.e scenarios) that execute the application
with high code coverage are required. Specifying these scenarios is a
time-consuming and error-prone activity that often has to be performed
multiple times during the development cycle. In this paper we present
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a method and a tool for automatic generation of scenarios. The method
can be configured to target either the whole web application, or cer-
tain visual and behavioral units (UI controls). The method is based on
dynamic analysis and systematic exploration of application’s event and
value space. We have also tested the approach on a suite of web applica-
tions, and have found out that a considerable increase in code coverage,
when compared to the initial coverage achieved by loading the page and
executing all registered events, can be achieved. This research directly
contributes to answering the third research question, and is the fourth
contribution of this thesis (4. Automatic generation of scenarios).

Paper G

Identifying Code of Individual Features in Client-side Web Applications,
Josip Maras, Maja Štula, Jan Carlson, Ivica Crnković, IEEE Transac-
tions on Software Engineering, vol. 39 no. 12, 2013.

Summary : In this journal paper we aggregate and expand ideas and
results presented in papers A, B, C, and D. The paper defines the client-
side web application conceptual model, specifies the process of identify-
ing code and resources of a feature, and defines a client-side dependency
graph. It presents algorithms for building the dependency graph, identi-
fying important nodes and edges that capture the behavior of a feature,
and algorithms for identifying code and resources that implement a fea-
ture by traversing the client-side dependency graph. We have evaluated
the approach, and the experiments have shown that the method is able
to identify the implementation details of individual features, and that
by extracting the identified code considerable savings in terms of code
size and increased performance can be achieved.

1.6 Thesis outline

The rest of the thesis is organized as follows: Chapter 2 – Background,
introduces the notions and techniques necessary to understand the ap-
proach. The chapter gives an introduction to web applications and fea-
tures, and presents dynamic analysis, automated testing and program
slicing as techniques vital to our approach. Chapter 3 – The Reuse Pro-
cess Overview, gives an overview of the whole approach and, in high
detail explains each of the necessary steps. In Chapter 4 – Client-side



10 Chapter 1. Introduction

code responsible for a certain behavior can be identified, how dependen-
cies between different parts of the application can be tracked by defining
a client-side dependency graph, and how in the end only the code respon-
sible for a certain behavior can be extracted. The evaluation has shown
that the method is capable of extracting stand-alone behaviors, while
achieving considerable savings in terms of code size and application per-
formance. This paper directly contributes to the first research question,
and to the first and second contribution (1. A client-side dependency
graph, 2. A method for identifying feature code and resources).

Paper E

Towards Automatic Client-side Feature Reuse, Josip Maras, Maja Štula,
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Dependency Graph, we define the dependency graph used to capture
dependencies that exist in a client-side web application. Chapter 5 –
Automatic Scenario Generation, introduces a technique, based on the
systematic exploration of the application’s event and value space, for
automatically generating scenarios that target either the behavior of
the whole application or particular application features. Chapter 6 –
Identifying Code of Individual features, presents a method for the iden-
tification of feature implementation details, and Chapter 7 – Integrating
Features, describes a technique for the integration of feature code into
an already existing application, thereby achieving reuse. Chapter 8 –
Firecrow, presents a tool that implements algorithms and processes de-
scribed throughout the thesis, and Chapter 9 presents the related work.
Finally, Chapter 10 gives a conclusion and describes possible suggestions
for future work.

Chapter 2

Background

This chapter introduces important technical concepts used throughout
the thesis. It provides a web application primer, and gives an introduc-
tion to three important techniques: i) feature location, ii) automatic
test generation, and iii) program slicing, which are used throughout the
processes described in the thesis.

2.1 Web Applications

Web applications are structurally composed out of two equally impor-
tant parts: the server-side and the client-side. The server-side is usually
realized as a sequential application implementing data-access and busi-
ness logic, while the client-side is an event-driven applications that acts
as a user-interface (UI) to the server-side.

The life-time of a web application (shown in Figure 2.1) begins with
the user typing in a URL1 in the browser or clicking on a URL link in an
already existing application. The URL contains all information needed
to target a specific application on a specific web server. Based on the
provided URL, the browser creates an HTTP2 request to the server
requesting the specified application. The server processes the request,
finds the file, executes any associated server-side code, and responds with
an HTTP response that contains the HTML3 document that defines

1Uniform Resource Locator
2HyperText Tranfer Protocol
3HyperText Markup Language

13
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the application. The browser parses the code, builds the layout of the
page, and for each referenced external file (e.g. images, videos, audio,
JavaScript, style files) creates an additional HTTP request that is sent
to the server.

Figure 2.1: Life-time of a web application

Once the application is built and displayed in the browser, the user
can interact with it. At any time, during the life-time of the application,
the browser can initiate communication with the server-side (by send-
ing an HTTP request), can update the UI of the application, or store
information in the client browser.

2.1.1 Client-side Web Application Primer

A client-side web application is an HTML page that includes JavaScript
code, CSS code, and various resources (e.g. images and fonts), and the
interplay of these elements produces the result displayed in the browser.

HTML (HyperText Markup Language) is a markup language used
for specifying the structure of a Web application. The markup takes the
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form of elements applied to content, typically text. Additional properties
can be assigned to each HTML element by adding one or more attributes.

1 <html>

2 <head>

3 <title >Example Page</title >

4 </head>

5 <body>

6 <div id="container">

7 <img src="image.png"/>

8 <span class="caption">Test</span>

9 </span>

10 </body>

11 </html>

Listing 2.1: Example HTML code

For example, Listing 2.1 presents a simple HTML document com-
posed out of HTML elements (e.g. html, head, title), attributes (e.g.
attribute src=“image.png” of an img element in line 7 that specifies the
location of the image), and text content (string “Test” in line 8). Based
on the HTML markup, the browser builds the structure and content of
a web application.

CSS (Cascading Style Sheets) is a declarative language used to spec-
ify the presentational aspects of HTML elements. The CSS code is com-
posed of CSS rules, each rule consisting of a CSS selector and a set of
property-value pairs. A CSS selector, by combing node type, node at-
tributes (e.g. id, class), and node position in the page hierarchy, is used
to specify to which HTML elements the given property-value pairs will
be applied to.

1 img { border -style:solid; border -color: red; }

2 #container {color:blue; }

3 #container .caption { font -weight: bold; }

Listing 2.2: Example CSS code

Listing 2.2 gives a simple example of CSS rules: the rule at line 1
specifies that a property border-style with a value solid and a property
border-color with a value red should be applied to any element of type
img, while the rule at line 3 specifies that a property font-weight with
value bold should be applied to elements with a class attribute caption
that are descendants of an element with the id attribute container.

JavaScript is a weakly typed, imperative, object-oriented scripting
language with prototype based inheritance. It has no type declarations
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and only run-time checking of calls and field accesses. Functions are
first-class objects and can be manipulated and passed around like other
objects. JavaScript is a dynamic language and everything can be mod-
ified at runtime, from fields and methods of an object to its prototype.
One object can act as a prototype to a number of different objects,
and changes to that prototype affect all derived objects. The language
also offers an eval function which can execute an arbitrary string of
JavaScript code. JavaScript code, at least when discussing client-side
web applications, is executed inside a browser which offers a number of
globally available built-in objects: e.g. the global window object which
stores all global variables and acts as an interface to the window in which
the application is executed; the document object used as an interface to
the structure of the page, etc. Due to the dynamicity of JavaScript
each built-in object can be accessed and modified from any point in the
application.

1 function addText(element) {

2 element.textContent += " added by JavaScript";

3 }

4
5 var caption=document.querySelector("#container .caption");

6 addText(caption);

Listing 2.3: Example JavaScript code

Listing 2.3 presents a simple example of a JavaScript application that
selects an element from the page by using the global document object
(line 5), and appends a text string to it (line 2).

Life-cycle. Client-side web applications are event-driven UI applica-
tions, and a majority of code is executed as a response to user-generated
events. Their life-cycle can be divided into two phases: i) page initializa-
tion and ii) event-handling. The purpose of the page initialization phase
is to build the UI of the web page. The browser achieves this by parsing
the HTML code and building a representation of the HTML document
– the Document Object Model (DOM). When parsing the HTML code
the DOM is constructed one HTML element at a time. After the last
element is parsed and the UI is built, the application enters the event-
handling phase, where code is executed in response to events. All UI
updates are done by JavaScript modifications of the DOM, which can
go as far as completely reshaping the DOM, or even modifying the code
of the application.
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2.2 Software Reuse

Software reuse is the process of creating software systems from existing
artifacts rather than building them from scratch. The types of artifacts
that can be reused are not limited to source code, and may include re-
quirements, design documents, architecture, and even software develop-
ment processes. Reuse has often been touted as a process that can reduce
development time, reduce defect density, and increase developer produc-
tivity [41, 37, 11]. Numerous approaches to software reuse have been
developed, ranging from preplanned approaches where software artifacts
are constructed with reuse in mind (e.g. object-oriented inheritance [17],
software components [41], and software product lines [47]), all the way
to more pragmatic approaches [30], which facilitate reuse of artifacts not
explicitly designed for reuse.

Preplanned reuse approaches, even though they should, in theory,
provide all reuse benefits, suffer from three main drawbacks [32]: i) the
economic infeasibility of developing all software in a reusable fashion [24,
9]; ii) the difficulty in predicting which pieces of software should be
built as reusable [60, 24, 61]; and iii) even software designed as reusable
embeds a set of assumptions about how it should be reused that can
hamper its ability to be deployed in many contexts [9, 25].

In contrast, the pragmatic approaches [30] such as code scaveng-
ing [37], ad-hoc reuse [49], opportunistic reuse [51] enable the reuse of
source code that was not explicitly designed for reuse. Pragmatic reuse
tasks are often stigmatized as the “wrong” way to reuse code, mostly
due to their non-systematic, ad-hoc nature [32]. However, by facilitating
these tasks and making them more automatic and systematic, we can
access the untapped potential of already existing code, potentially in-
creasing developer productivity and lowering overall development costs.

2.3 Features

From an external perspective, a user understands a system as a collection
of features that correspond to system behaviors designed to implement
system requirements. The exact meaning of the term feature depends
on the context. For example, the IEEE [1] defines the term as: a dis-
tinguishing characteristic of a system item that includes both functional
and nonfunctional attributes such as performance and reusability. On
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and only run-time checking of calls and field accesses. Functions are
first-class objects and can be manipulated and passed around like other
objects. JavaScript is a dynamic language and everything can be mod-
ified at runtime, from fields and methods of an object to its prototype.
One object can act as a prototype to a number of different objects,
and changes to that prototype affect all derived objects. The language
also offers an eval function which can execute an arbitrary string of
JavaScript code. JavaScript code, at least when discussing client-side
web applications, is executed inside a browser which offers a number of
globally available built-in objects: e.g. the global window object which
stores all global variables and acts as an interface to the window in which
the application is executed; the document object used as an interface to
the structure of the page, etc. Due to the dynamicity of JavaScript
each built-in object can be accessed and modified from any point in the
application.

1 function addText(element) {

2 element.textContent += " added by JavaScript";

3 }

4
5 var caption=document.querySelector("#container .caption");

6 addText(caption);

Listing 2.3: Example JavaScript code

Listing 2.3 presents a simple example of a JavaScript application that
selects an element from the page by using the global document object
(line 5), and appends a text string to it (line 2).

Life-cycle. Client-side web applications are event-driven UI applica-
tions, and a majority of code is executed as a response to user-generated
events. Their life-cycle can be divided into two phases: i) page initializa-
tion and ii) event-handling. The purpose of the page initialization phase
is to build the UI of the web page. The browser achieves this by parsing
the HTML code and building a representation of the HTML document
– the Document Object Model (DOM). When parsing the HTML code
the DOM is constructed one HTML element at a time. After the last
element is parsed and the UI is built, the application enters the event-
handling phase, where code is executed in response to events. All UI
updates are done by JavaScript modifications of the DOM, which can
go as far as completely reshaping the DOM, or even modifying the code
of the application.

2.2 Software Reuse 17

2.2 Software Reuse

Software reuse is the process of creating software systems from existing
artifacts rather than building them from scratch. The types of artifacts
that can be reused are not limited to source code, and may include re-
quirements, design documents, architecture, and even software develop-
ment processes. Reuse has often been touted as a process that can reduce
development time, reduce defect density, and increase developer produc-
tivity [41, 37, 11]. Numerous approaches to software reuse have been
developed, ranging from preplanned approaches where software artifacts
are constructed with reuse in mind (e.g. object-oriented inheritance [17],
software components [41], and software product lines [47]), all the way
to more pragmatic approaches [30], which facilitate reuse of artifacts not
explicitly designed for reuse.

Preplanned reuse approaches, even though they should, in theory,
provide all reuse benefits, suffer from three main drawbacks [32]: i) the
economic infeasibility of developing all software in a reusable fashion [24,
9]; ii) the difficulty in predicting which pieces of software should be
built as reusable [60, 24, 61]; and iii) even software designed as reusable
embeds a set of assumptions about how it should be reused that can
hamper its ability to be deployed in many contexts [9, 25].

In contrast, the pragmatic approaches [30] such as code scaveng-
ing [37], ad-hoc reuse [49], opportunistic reuse [51] enable the reuse of
source code that was not explicitly designed for reuse. Pragmatic reuse
tasks are often stigmatized as the “wrong” way to reuse code, mostly
due to their non-systematic, ad-hoc nature [32]. However, by facilitating
these tasks and making them more automatic and systematic, we can
access the untapped potential of already existing code, potentially in-
creasing developer productivity and lowering overall development costs.

2.3 Features

From an external perspective, a user understands a system as a collection
of features that correspond to system behaviors designed to implement
system requirements. The exact meaning of the term feature depends
on the context. For example, the IEEE [1] defines the term as: a dis-
tinguishing characteristic of a system item that includes both functional
and nonfunctional attributes such as performance and reusability. On



18 Chapter 2. Background

the other hand, within the program comprehension community the fea-
ture is taken to be a specific functionality that is defined by requirements
and accessible to developers and users [19, 48, 20].

In this work, we adopt the term feature, defined in [20] as: a user-
triggerable activity of a system. We consider that a feature is an abstract
description of a system’s expected behavior that manifests itself at run-
time, when the user provides the system with adequate input.

It is important to note that, unlike the feature definition given by the
IEEE [1], the feature definition used in the program comprehension com-
munity does not include non-functional requirements (e.g. performance,
maintainability). So, in the context of this thesis, only functional fea-
tures are relevant.

2.3.1 Feature Location

Features are relatively straightforward to distinguish from the user’s per-
spective. However, the same cannot be said for their implementation
details. In general, it is difficult and time-consuming to exactly iden-
tify the source code responsible for the implementation of a particular
feature. At the same time, understanding software features and their
implementation details is a vital activity in software maintenance – up
to 60% of software-engineering effort is spent on understanding the soft-
ware system at hand [14, 22]. Identifying the locations in the source
code that correspond to a specific feature is know as feature location (or
concept location) [10, 50].

Feature location techniques utilize different types of analyses in or-
der to establish a traceability between a feature of interest, specified
by the user, and the artifacts implementing that feature. The most
common types of analyses include textual analysis, static analysis, and
dynamic analysis (and their combinations). Textual approaches analyze
the source code text based on the idea that identifiers and comments en-
code domain knowledge, and that a feature may be implemented using
a similar set of words throughout the system. Static analysis examines
structural information such as control or data flow dependencies, for all
possible program inputs, often overestimating the code related to a fea-
ture [18]. Dynamic analysis, on the other hand, relies on examining the
execution of an application, and it is often used for feature location when
features can only be invoked and observed during runtime. Feature loca-
tion using dynamic analysis generally relies on execution trace analysis,
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and feature-specific scenarios are developed that invoke the desired fea-
ture. Then, the scenarios are exercised and execution traces that record
information about the code that was invoked are collected and analyzed.

2.4 Dynamic Analysis

There are two distinct ways of analyzing program properties: static and
dynamic analysis. While static analysis examines the program’s source
code in order to derive properties that hold for all executions, dynamic
analysis derives properties that hold for one or more executions by ex-
amining the running program [6].

According to [15], dynamic analysis, when compared to static anal-
ysis has both benefits and limitations. The benefits of dynamic analysis
are:

• Higher precision with regard to the actual behavior of the software
system.

• The fact that a goal-oriented strategy can be used, which entails
the definition of an execution scenario such that only the parts of
interest of the software system are analyzed.

Dynamic analysis also has a number of limitations:

• The inherent incompleteness of dynamic analysis, as the behavior
or traces under analysis capture only a small fraction of the usually
infinite execution domain of the program under study.

• The difficulty of determining which scenarios to execute in order
to trigger the program elements of interest. In practice, test suites
or recorded executions involving user interaction with the system
can be used.

• The scalability of dynamic analysis due to the large amounts of
data that may be introduced in dynamic analysis, which affects
performance, storage, and the cognitive load humans can deal with.

• The observer effect, the phenomenon in which software acts dif-
ferently when under observation, might pose a problem in cases
where timing issues play a role.
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2.5 Automated Testing

Software testing typically consumes between 30% and 50% of the total
cost of building new software [8, 21]. For this reason, it is often presumed
that test automation can lower the cost and increase the reliability of
software systems. The generation and evaluation of tests can generally
be categorized in two classes: black-box testing and white-box testing.
The main artifact in black-box testing is the specification of the software
system. The goal of black-box testing is to test the correctness of the
external system behavior, according to the specification, by studying
only the relationship between input and output values. After a suite
of black box tests is unable to find any additional errors, there is some
confidence that the system indeed behaves according to the specification.
The biggest disadvantage of black-box testing is the lack of objective
criteria to evaluate the quality of test suites.

The main artifact in white-box testing is the source code of the soft-
ware system. By using the source code it is possible to set-up different
criteria to asses the quality of the white-box test suite. Test suite quality
is usually measured in respect to which extent elements of the program’s
source code are covered by the test suite. The most widely used coverage
criteria are: i) statement coverage, which aims to execute each statement
in the program’s source code at least once; ii) branch coverage, which
aims to cover all branches of each control structure (in an if-else state-
ment, that both the if and else branches get executed); iii) condition
coverage, which aims to cover each boolean expression, in a way that
they are evaluated at least one time as true and one time as false.

Over the years, a number of different approaches to test-case gener-
ation have been developed [4], such as:

• Random testing, where test cases are randomly generated across
the input domain.

• Search-based testing, in which search-based optimization algorithms
are used to automate the search for test data guided by a fitness
function that captures the current test objective.

• Model-based test case generation [4], where models of software sys-
tems are used to generate test suites.

• Symbolic execution [36], where symbolic values are used instead of
concrete values as program input.
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In Symbolic execution, symbolic values are used as program input,
and program variables are represented as symbolic expressions of those
inputs. During program execution, all encountered control-flow branches
(e.g. if statements, conditional expressions) whose branching conditions
are expressions that contain symbolic variables are added to the so called
path-constraint which carries information about how the control-flow of
the execution depends on the input parameters. By modifying the path-
constraint and solving newly obtained input constraints, concrete values
which cause a specific control-flow can be obtained. These values can
then be used to specify test cases. A number of variations to symbolic ex-
ecution have been developed, e.g. the technique of concolic execution [54],
which executes the program for both concrete and symbolic values.

2.6 Program Slicing

Program slicing [62] is a method that starting from a subset of a pro-
gram’s behavior, reduces that program to a minimal form which still
produces that behavior. A program slice consists of the parts of a pro-
gram that affect the values computed at a point of interest, a so called
slicing criterion. The original concept of a program slice was introduced
by Weiser [62], as a reduced, executable program obtained from a pro-
gram by removing statements, such that the slice replicates a part of
the behavior of the original program. Another common definition of a
slice is a subset of the statements and control predicates of the program
that directly or indirectly affect the values computed at the criterion,
but that do not necessarily constitute an executable program. There is
a number of existing program slicing methods, and they can be divided
into two different categories: i) static and ii) dynamic slicing. Static slic-
ing makes no assumptions on the program input, while dynamic slicing
studies program execution with specific program inputs.

2.6.1 Static Slicing

Static slicing is the original slicing approach proposed by Weiser [62]. In
static slicing, programs are analyzed statically, regardless of the program
input (i.e. for all possible program inputs). A static slicing criterion is
usually specified by a program point and a set of variables. Consider the
example program that asks the user for a number n, and calculates the
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sum and the product of the first n positive numbers (Listing 2.4).

1 var n = prompt ();

2 var i = 0;

3 var sum = 0;

4 var product = 1;

5
6 while(i < n) {

7 sum += i;

8 product *= i;

9 i++;

10 }

11
12 document.writeln(product);

13 document.writeln(sum);

Listing 2.4: Example program

1 var n = prompt ();

2 var i = 0;

3 var sum = 0;

4
5
6 while(i < n) {

7 sum += i;

8
9 i++;

10 }

11
12
13 document.writeln(sum);

Listing 2.5: Line 13 static slice

The example program has two behaviors: i) calculating the product,
and ii) calculating the sum of the first n positive numbers. If, for exam-
ple, we want to obtain only the second behavior (calculating the sum),
we would set the slicing criterion to line 13 (document.writeln(sum)),
and would obtain the resulting slice shown in Listing 2.5. Notice how all
lines related to the calculation of the product have been removed from
the original program, due to not contributing to the calculation of the
sum.

In Weiser’s original approach, slices are computed by computing con-
secutive sets of transitively relevant statements, with regard to data and
control dependencies. There are also a number of methods, first proposed
by Ottenstein and Ottenstein [46], that define the slicing problem as a
reachability problem in a program dependence graph (PDG). A PDG is
a directed graph whose vertices are statements and control predicates,
and edges data and control dependencies.

In general, slices can also be computed in two ways: i) by the back-
ward traversal of the PDG – backward slicing, as in the example from
Listing 2.5; and ii) by the forward traversal of the PDG – forward slicing.
A backward slice is composed of all statements that the slicing criterion
is dependent on, while a forward slice is composed of all statements
dependent on the slicing criteria.
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2.6.2 Dynamic Slicing

In contrast to static slicing, dynamic slicing is performed only for certain
values of the program input – a particular program execution is analyzed.
A dynamic slicing criterion is typically composed out of an input, the
occurrence of program statement, and a set of variables.

1 var n = prompt ();

2 var i = 0;

3 var sum = 0;

4
5
6
7
8
9

10
11
12
13 document.writeln(sum);

Listing 2.6: Dynamic slice for
line 13 and n=0

1 var n = prompt ();

2 var i = 0;

3 var sum = 0;

4
5
6 while(i < n) {

7 sum += i;

8
9 i++;

10 }

11
12
13 document.writeln(sum);

Listing 2.7: Dynamic slice for
line 13 and n=2

Consider the same program from Listing 2.4. If dynamic slicing is
performed with a slicing criterion set to line 13, with a input n=0, the re-
sulting dynamic slice would be equal to the code presented in Listing 2.6
(since the while loop is not executed for n = 0 none of its statements are
relevant). However, if we set the slicing criterion with respect to n=2,
then the while loop will be executed, its statements contribute to the
value of the sum variable, and thus are included in the resulting slice
shown in Listing 2.7.
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The Reuse Process
Overview

The goal of the process is to automate reuse in web application develop-
ment. More concretely, the goal is to enable code-level reuse of features
from one client-side application into an already existing client-side ap-
plication. In this chapter, we define what a client-side feature is and give
an overview of the reuse process.

3.1 Client-side Features

A client-side web application is defined with its structure, the presenta-
tional aspects of that structure, and the behavior that occurs on that
structure (Figure 3.1). Client-side applications act as user interfaces to
server-side applications, and their two primary functions are: i) to com-
municate with the user over their UI, and ii) to communicate with the
server by exchanging messages.

An application offers a number of features. In general, a feature is
a user-triggerable activity of a system [20]. In the context of client-side
applications, we define a client-side feature as: a subset of the appli-
cation’s behavior, triggered by sequences of user-generated events, that
manifests at runtime with: i) changes to certain parts of the application
structure, and/or ii) communications with the server.
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Figure 3.1: A conceptual model of a client-side web application

3.2 Defining the Reuse Process

Let A and B be two client-side web applications, each defined with its
HTML code, CSS code, JavaScript code, and resources. An applica-
tion offers a set of features F , and each feature is implemented by a
subset of the application’s code and resources. However, identifying the
exact subset is a challenging task because the code responsible for the
desired feature is often intermixed with code that is irrelevant from the
perspective of the feature. The goal of the reuse process is to identify
the code and resources of feature fa from application A and to include
them, without errors, into application B. With this inclusion, a new
application B′ that offers both the feature fa from A and the features
FB from B, is created.
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3.3 The Reuse process

Figure 3.2 presents the overview of the reuse process. As input, the
process receives the source code of both the application A from which
the feature will be extracted, and the application B where the feature
code will be reused. The process also receives Feature Descriptors which
define structural parts of application A where the feature manifests, the
scenarios that trigger the manifestation of the feature (Feature Scenar-
ios), the scenarios that trigger the behavior of the target application
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process is based on the dynamic analysis of application execution trig-
gered by a scenario. In essence, this phase identifies the subset of the
application’s source code and resources that implement the target fea-
ture manifested by the scenarios on parts of the page specified by the
Feature Descriptors. This identification is performed by the means of a
client-side dependency graph (Chapter 4), which captures dependencies
that exist in a client-side web application. The Feature Identification
phase is described in Chapter 6. Since a prerequisite for the feature
identification is the existence of feature scenarios, in the next section we
describe how the scenarios can be specified.

3.3.2 Specifying Scenarios

Scenarios causing the manifestation of a particular feature can be ob-
tained in two ways: i) by the developer manually specifying them, or
ii) with automatic scenario generation techniques.

Since there does not have to exist a clear-cut set of application be-
haviors that constitute a feature, manual specification of usage scenarios
enables users to precisely specify application behaviors that, from their
perspective, constitute a feature. However, this is often a complex and
time-consuming activity that requires knowledge about the internal de-
tails of the application, and comes with a cost of inadvertently forget-
ting certain behaviors. For this reason, we have developed an Automatic
Scenario Generation technique (Chapter 5) that systematically explores
the event and value space of the application. Even in the case where
manual scenarios are used, the users can benefit from the automatically
generated scenarios, because they can be used to raise awareness about
different application behaviors.

Regardless of the method used to obtain scenarios, using scenarios
for feature identification offers the following advantages: i) it does not
require any formal specification of the feature, something that is rarely
done in web application development; and ii) it enables the dynamic
tracking of code dependencies, which can not be accurately done stat-
ically for a language as dynamic as JavaScript. The downsides of the
approach are: i) scenarios are primarily suited for functional features
with observable behaviors that can be triggered by the user; ii) the ac-
curacy and the completeness of the captured feature is dependent on the
quality of the scenarios.
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3.3.3 Application Analysis

When introducing code from one application into another a number of
problems can arise (Chapter 7). Since client-side applications are highly
dynamic, the locations and types of these problems can not accurately
be determined statically. For this reason, in addition to the dependency
graph and execution summary of the feature, we also have to obtain the
dependency graph and execution summaries of the target application
where the feature will be reused into. This is done in the Application
Analysis phase. This phase is similar to the Feature Identification phase,
and the only difference is that there is no explicit phase of identifying
feature code – only the dependency graph is created and the execution
summary logged. As the Feature Identification phase, the Application
Analysis phase is based on the dynamic analysis of application execution
while scenarios triggering application behavior are exercised.

3.3.4 Feature Integration

The inclusion of code and resources of a feature into another application
changes the situation in both the feature code and the application code
– a new page, whose DOM is different from what is expected by the
code of each individual application, is created. Also, both the feature
code and the application code can make modifications to the internal
objects provided by the browser, which can lead to application states
not expected by the code of the other application. These unanticipated
changes can create a number of possible errors and conflicts that have
to be detected and fixed. For this reason, we analyze the dependency
graphs and execution summaries derived in the Feature Identification
and Application Analysis phase, detect the potential problems, and per-
form fixes on the dependency graphs. Once this is done, the process
performs code merging, where the main idea is to merge the matching
nodes of both applications, and to move the HTML nodes that specify
the structure of the feature to a position designated by the user. Finally
the process can check if the behavior of the resulting application is in ac-
cordance with the behavior in the originating applications. The Feature
Integration phase is described in Chapter 7.
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3.4 Conclusion

In this chapter, we have given an overall description of the reuse pro-
cess. We have defined what exactly is meant by the term feature, and
have specified a dynamic feature reuse process composed of three distinct
phases: scenario generation, feature identification, and feature integra-
tion. The rest of the thesis will describe an important artifact used in
the process – the client-side dependency graph, and will, in greater de-
tail, present each of the distinct steps of the automatic client-side feature
reuse process.

Chapter 4

Client-side Dependency
Graph

In order to establish dependencies between the handling of different user
actions (Chapter 5), or to accurately identify the source code and re-
sources that implement a particular feature (Chapter 6), we have to be
able to track application dependencies. One way of capturing dependen-
cies is through a program dependency graph [46], that makes explicit
both the data and control dependencies that exist in an application. In
this chapter, we define a client-side dependency graph that is capable of
capturing dependencies that exist in a highly-dynamic, multi-language
environment that is the client-side of a web application. We also define
algorithms and processes for the construction of such graphs.

4.1 Defining the dependency graph

The client-side application is composed of four different parts, HTML
code, CSS code, JavaScript code, and resources, that are intertwined and
must be studied as a part of the same whole. Because of this, we de-
fine the client-side dependency graph consisting of four types of vertices:
HTML vertices, CSS vertices, JavaScript vertices, and resource vertices
(Table 4.1). Since the client-side of the web application is extremely dy-
namic (e.g. new HTML elements are regularly created by JavaScript code
and inserted into the DOM of the application, but also new JavaScript
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and CSS code can be dynamically created with JavaScript code), we
also differentiate between static (directly present in source code) and
dynamic vertices (dynamically created with JavaScript code).

Table 4.1: Nodes in the client-side dependency graph

Different parts of the application code can be in different relation-
ships: i) a code construct can be contained within another construct
(e.g. a child HTML node within the parent HTML node), ii) a con-
struct can obtain its data from another construct (e.g. one JavaScript
expression defines a variable used by another JavaScript expression, or
an HTML node has its styles defined by a CSS rule), or iii) the execution
of one expression depends on the value of another expression (e.g. the
execution of an if statement body depends on the if statement condi-
tion). Because of these reasons the graph can have three types of arcs:
structural dependency arcs, data flow arcs, and control flow arcs.

Table 4.2 shows the definition of different arc types. A straight full
arrow represents structural dependencies, a straight dashed arrow data
dependencies, and a curved dashed arrow control dependencies; h de-
notes HTML vertices, j JavaScript vertices, c CSS vertices, r resource
vertices, and n denotes a vertex of arbitrary type.

Because of the inherent hierarchical organization of HTML docu-
ments the HTML layout translates very naturally to a graph represen-
tation. Except for the top one, each element has exactly one parent
element, and can have zero or more child elements. The parent-child
relation is the basis for forming structural dependency arcs between h-
vertices. A directed structural dependency arc between two h-vertices
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Table 4.2: Arcs in the client-side dependency graph

represents a parent-child relationship from a child to the parent. HTML
elements can include different resources (e.g. images, videos, sounds)
so there can exist a data dependency arc between an r-vertice and an
h-vertice.

CSS rules are represented with c-vertices. All CSS code is contained
within HTML elements, and every c-vertex has a structural dependency
towards the parent h-vertex. Also, since a CSS style can be created
with JavaScript code, there can exist a data dependency between a c-
vertex and a j-vertex. CSS styles often reference resources such as images
(e.g. defining the background of an HTML element), so there are data
dependencies between c-vertices and r-vertices. Since the main goal of a
CSS rule is to define styling parameters for HTML elements, there can
exist a data dependency between an h-vertex and a c-vertex.

JavaScript code constructs that occur in the program are represented
with j-vertices, and are derived from a simplified Abstract Syntax Tree
(AST). All JavaScript code is contained in an HTML element, so a j-
vertex can have a structural dependency towards a parent h-vertex. Two
j-vertices can also have structural dependencies between themselves de-
noting that one construct is contained within the other (e.g. a relation-
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ship between a function and a statement contained in its body). Data
dependency arcs can be formed between j-vertices and all other types of
vertices: a data dependency from one j-vertex to another denotes that
the former is using the values set in the latter; an arc from a j-vertex
to an h-vertex, that the j-vertex is reading data, while an arc from the
h-vertex to the j-vertex means that the j-vertex is writing data to the h-
vertex. An arc from a j-vertex to a c-vertex means that JavaScript code
is reading data from the c-vertex. A j-vertex can also have a control
dependency towards another j-vertex (e.g. statements in an if-statement
towards the if-statement condition).

The main purpose of the graph is to capture the dependencies that
exist in a client-side web application, and to enable the identification of
source code responsible for the implementation of features, in a particular
scenario. One of the problems in accurately capturing dependencies that
exist in a scenario, is accounting for the execution context in which the
dependencies are created (both within different function calls and loop
executions, since statements are often executed multiple times). For this
reason, each arc is associated with a label that uniquely specifies the
context in which it was created.

4.1.1 Formal Graph Definition

A client-side dependency graph is a labeled multidigraph. In general, a
multdigraph is a directed graph which is permitted to have multiple arcs
(arcs with the same end vertices). Formally, it is defined as an 8-tuple
G = (V,A,ΣV ,ΣA, s, t, LV , LA) where:

• V is a set of vertices,

• A is a set of arcs,

• ΣV is a set of available vertex labels,

• ΣA is a set of available arc labels,

• S : A → V is a map indicating the source vertex of an arc,

• T : A → V is a map indicating the target vertex of an arc,

• LV : V → ΣV is a map describing vertex labeling,

• LA : A → ΣA is a map describing arc labeling.
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A vertex label lV ∈ LV is a tuple 〈ci, cc, cn, cr〉 where ci is a unique
vertex identifier, cc a corresponding code construct, cn the code construct
type (HTML, CSS, JavaScript, or resource), and cr the creation type
(either static or dynamic). An arc label lA ∈ LA is a tuple 〈i, d〉, where i
is the arc identifier that includes the identifier of the context in which the
arc was created and the order of arc creation, and d is the dependency
type (structural, data, or control dependency).

4.1.2 Example

In order to illustrate the client-side dependency graph, we present List-
ing 4.1, which shows a simple program that enables the user to enter a
number n and then, when a user clicks on a button, calculates the sum
and the product of the first n numbers.

1 <html >

2 <head >

3 <style >

4 #sCont { color: red; }

5 #pCont { color: blue; }

6 body { background -image:url("b.png")}

7 label {font -weight: bold; }

8 </style >

9 </head >

10 <body >

11 <input id="input"/>

12 <button id="cButton">Calc </button >

13 <div id="sC"></div >

14 <div id="pC"></div >

15 <script >

16 var number;

17 function add(a, b) { return a + b; }

18 var inputCont = document.querySelector("#input")

19 var sumCont = document.querySelector("#sC")

20 var pCont = document.querySelector("#pC")

21 var cButton = document.querySelector("#cButton")

22
23 inputCont.oninput = function (){

24 number = parseFloat(inputCont.value);

25 };

26
27 cButton.onclick = function () {

28 var sum = 0;

29 var product = add(0,1);

30 for(var i = 1; i <= number; i++) {

31 sum = add(sum , i)
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32 product *= i

33 }

34 sCont.innerHTML="<label >Sum:" + sum + "</label >"

35 pCont.innerHTML="<label >Product:"+product+"</label >"

36 };

37 </script >

38 </body >

39 </html >

Listing 4.1: Example web page that calculates the sum and product
of the first n numbers

Since the graph is built dynamically, for a particular application ex-
ecution, in this example we will show how the graph is constructed for
the scenario in which the user inputs n = 2 (Listing 4.2) and clicks on
the button (Figure 4.1). The number at the top of the node denotes
the order in which the nodes are created; each j-vertex is labeled with
@i − t, where i is the line number and t the type of the matching code
construct.

1 [{ "filePath": "example.html",

2 "line": 23,

3 "currentTime": 1346312751631 ,

4 "thisValue": "/html/body/input",

5 "args": {

6 "target": "/html/body/input",

7 "type": "input",

8 "inputStates": [{

9 element:"/html/body/input",

10 value: "2"

11 }]}},

12 { "filePath": "example.html",

13 "line": 27,

14 "currentTime": 1346312751662 ,

15 "thisValue": "/html/body/button",

16 "args": {

17 "target": "/html/body/button",

18 "clientX": 124, "clientY": 242,

19 "type": "click",

20 "inputStates": [{

21 element:"/html/body/input",

22 value: "2"

23 }]}}]

Listing 4.2: Example event trace
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Figure 4.1: Vertices and structural dependencies of the graph con-
structed for the example application from Listing 4.1

4.2 Graph Construction Process

Since the dependency graph captures dynamic dependencies that exist
in a particular scenario, as input the process receives the source code
of the application and the event trace of the scenario (Algorithm 1).
The main idea of the process is that web application code is interpreted
with an event-trace as a guideline, according to standard rules of web
application interpretation.

From a technical perspective, we have developed a custom JavaScript
interpreter (Chapter 8) based on the process by which the browser ex-
ecutes the web page, an interpreter that is able to, besides evaluating
web application code, to keep track of information necessary to estab-
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of the application and the event trace of the scenario (Algorithm 1).
The main idea of the process is that web application code is interpreted
with an event-trace as a guideline, according to standard rules of web
application interpretation.

From a technical perspective, we have developed a custom JavaScript
interpreter (Chapter 8) based on the process by which the browser ex-
ecutes the web page, an interpreter that is able to, besides evaluating
web application code, to keep track of information necessary to estab-
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lish dependencies between different parts of the application. With this
information, while expressions are being evaluated, the process is able
to create matching graph vertices and arcs.

Algorithm 1 Graph Construction

1: function buildGraph(code, eventTrace)
2: createInitialGraph(code)
3: mainHtmlNode ← getRoot(code)
4: processSubtree(mainHtmlNode)
5: for all event in eventTrace do
6: interpretJs(getHandler(event))
7: end for
8: end function
9: function processSubtree(hNode)

10: if isScriptElement(hNode) then
11: interpretJs(hNode)
12: else if isNotCssElement(hNode) then
13: traverseCssRulesAndCreateDeps(hNode)
14: for all hChild in hNode do
15: processSubtree(hChild)
16: end for
17: end if
18: end function

In the first step of the algorithm, the function createInitialGraph (line
2, Algorithm 1) parses the whole source code of the application (includ-
ing HTML, CSS, and JavaScript code) and creates all static vertices and
structural dependencies that exist directly in the source code of the ap-
plication: one h-vertex for each HTML element, one j-vertex for each
element in the AST of JavaScript code, one c-vertex for each CSS rule,
and one r-vertex for each resource directly referenced by either a CSS
rule or an HTML element. Next, the process follows standard rules of
web application interpretation and visits all contained HTML elements,
in the processSubtree function.

The processSubtree function is shown in line 9, Algorithm 1. If the
processed node is a script element then the process starts interpreting
the contained JavaScript code in order to create dynamic vertices and
dynamic arcs that capture data and control dependencies. If the pro-
cessed node is not a CSS element (style or link element), i.e. is a standard
HTML node, then all CSS rules are traversed and if the hNode satisfies
a CSS rule, a data dependency is created from the matching h-vertex to
the c-vertex that matches the CSS rule (line 13). Next, for each child of
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the hNode the processSubtree function is recursively called.
Complexity. In total, the processSubtree function will be executed

once per HTML node, and for each HTML node all CSS rules will be
traversed (traverseCssRulesAndCreateDeps). In lines 6 and 11, Algo-
rithm 1, the algorithm invokes the interpretJs function, whose execution
directly depends on the number of execution steps in a particular sce-
nario. In total, the complexity of the algorithm can be approximated as:
O(|h| · |c|+ s), where h is the set of HTML nodes, c a set of CSS rules,
and s the number of execution steps in a scenario.

Example. For the example application shown in Listing 4.1, the graph
is shown in Figure 4.1. First, by calling the createStaticNodes function,
all static graph vertices and their structural dependencies (full arrows
in Figure 4.1) are created. In this case, this means that all static h-
vertices (full circles in Figure 4.1) matching the HTML nodes at lines 1
– 3, 10 – 15 (Listing 4.1), all c-vertices (squares in Figure 4.1) matching
the CSS rules at lines 4 – 7, and all j-vertices (rectangles in Figure 4.1)
matching the JavaScript code at lines 16 – 36 are created. Next, the
HTML nodes up to line 15 are visited, and data-dependencies from h-
vertices to c-vertices matching the CSS rules are created: from the body
HTML element to the CSS rule in line 6, from the div element in line
13 to the CSS rule in line 4, and from the div element in line 14 to the
CSS rule in line 5 (Figure 4.2).

Figure 4.2: Data (dashed lines) and structural (full lines) dependencies
between h-vertices and c-vertices, lines 1–14, Listing 4.1

Interpreting JavaScript code

Algorithm 2 shows how dependencies are created at runtime, when eval-
uating JavaScript code. The process evaluates the AST nodes in the
source code of the script element according to the rules of JavaScript
interpretation (line 3, getNextNode selects the next AST node for eval-
uation). Then, the AST node is evaluated (line 4) and the matching
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lish dependencies between different parts of the application. With this
information, while expressions are being evaluated, the process is able
to create matching graph vertices and arcs.

Algorithm 1 Graph Construction

1: function buildGraph(code, eventTrace)
2: createInitialGraph(code)
3: mainHtmlNode ← getRoot(code)
4: processSubtree(mainHtmlNode)
5: for all event in eventTrace do
6: interpretJs(getHandler(event))
7: end for
8: end function
9: function processSubtree(hNode)

10: if isScriptElement(hNode) then
11: interpretJs(hNode)
12: else if isNotCssElement(hNode) then
13: traverseCssRulesAndCreateDeps(hNode)
14: for all hChild in hNode do
15: processSubtree(hChild)
16: end for
17: end if
18: end function

In the first step of the algorithm, the function createInitialGraph (line
2, Algorithm 1) parses the whole source code of the application (includ-
ing HTML, CSS, and JavaScript code) and creates all static vertices and
structural dependencies that exist directly in the source code of the ap-
plication: one h-vertex for each HTML element, one j-vertex for each
element in the AST of JavaScript code, one c-vertex for each CSS rule,
and one r-vertex for each resource directly referenced by either a CSS
rule or an HTML element. Next, the process follows standard rules of
web application interpretation and visits all contained HTML elements,
in the processSubtree function.

The processSubtree function is shown in line 9, Algorithm 1. If the
processed node is a script element then the process starts interpreting
the contained JavaScript code in order to create dynamic vertices and
dynamic arcs that capture data and control dependencies. If the pro-
cessed node is not a CSS element (style or link element), i.e. is a standard
HTML node, then all CSS rules are traversed and if the hNode satisfies
a CSS rule, a data dependency is created from the matching h-vertex to
the c-vertex that matches the CSS rule (line 13). Next, for each child of
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the hNode the processSubtree function is recursively called.
Complexity. In total, the processSubtree function will be executed

once per HTML node, and for each HTML node all CSS rules will be
traversed (traverseCssRulesAndCreateDeps). In lines 6 and 11, Algo-
rithm 1, the algorithm invokes the interpretJs function, whose execution
directly depends on the number of execution steps in a particular sce-
nario. In total, the complexity of the algorithm can be approximated as:
O(|h| · |c|+ s), where h is the set of HTML nodes, c a set of CSS rules,
and s the number of execution steps in a scenario.

Example. For the example application shown in Listing 4.1, the graph
is shown in Figure 4.1. First, by calling the createStaticNodes function,
all static graph vertices and their structural dependencies (full arrows
in Figure 4.1) are created. In this case, this means that all static h-
vertices (full circles in Figure 4.1) matching the HTML nodes at lines 1
– 3, 10 – 15 (Listing 4.1), all c-vertices (squares in Figure 4.1) matching
the CSS rules at lines 4 – 7, and all j-vertices (rectangles in Figure 4.1)
matching the JavaScript code at lines 16 – 36 are created. Next, the
HTML nodes up to line 15 are visited, and data-dependencies from h-
vertices to c-vertices matching the CSS rules are created: from the body
HTML element to the CSS rule in line 6, from the div element in line
13 to the CSS rule in line 4, and from the div element in line 14 to the
CSS rule in line 5 (Figure 4.2).
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Interpreting JavaScript code

Algorithm 2 shows how dependencies are created at runtime, when eval-
uating JavaScript code. The process evaluates the AST nodes in the
source code of the script element according to the rules of JavaScript
interpretation (line 3, getNextNode selects the next AST node for eval-
uation). Then, the AST node is evaluated (line 4) and the matching
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Algorithm 2 Interpreting JavaScript

1: function interpretJs(scriptNode)
2: programAST ← getAST(scriptNode)
3: while astNd ← getNextNode(programAST ) do
4: evalRes ← evalute(astNd)
5: jVrtx ← getVertex(astNd)
6: if isInLoopOrBranchStatement(astNd) then
7: addControlDep(jVrtx, getParentConditionVertex(astNd))
8: else if isEnteringCatchStatement() then
9: addControlDep(jVrtx, getErrorThrowingVertex())

10: else if isEnteringEventHandler() then
11: addControlDep(jVrtx, getEventRegVertex())
12: else if isEnteringFunction(astNd) then
13: addControlDep(jVrtx, getCallExpVertex())
14: end if
15: if isBreakContinueOrReturn(astNd) then
16: addControlDep(getImportantParent(astNd), jVrtx )
17: end if
18: if isAccessingIdentifier(astNd) then
19: addDataDep(jVrtx, getLastAssignVertex(astNd))
20: else if isEvaluatingComplexExpression(astNd) then
21: addDataDep(jVrtx, getChildVertices(astNd))
22: end if
23: if isCreatingJsCode(astNd) then
24: parseAddedCodeCreateASTNodes(astNd)
25: else if isCreatingHtmlOrCss(evalRes) then
26: addDataDep(createDynamicVertices(evalRes), jVrtx)
27: traverseCssRulesAndCreateDeps()
28: end if
29: if isModifyingDOM(evalRes) then
30: modifiedVertices ← getModifVertices(evalRes)
31: addDataDep(modifiedVertices, jVrtx ))
32: traverseCssRulesAndCreateDeps(modifiedVertices)
33: else if isSendingRequest(evalRes) then
34: addDataDep(jVrtx, getOpenConnectionVertex(evalRes))
35: else if isAccessingResponse(evalRes) then
36: addDataDep(jVrtx, getSendRequestVertex(evalRes))
37: end if
38: end while
39: end function
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j-vertex is obtained (line 5). If the evaluated AST node is in a loop or a
branch, a control dependency from the current j-vertex to the condition
expression j-vertex (line 7) is created. If the evaluated expression is in
a catch expression, then a control dependency towards the vertex that
matches the expression causing the exception (line 8) is created.

...

/*11*/ <input id="input"/>

...

/*15*/<script >

/*16*/ var number;

/*17*/ function add(a, b) { return a + b; }

/*18*/ var inputCont = document.querySelector("#input")

...

/*23*/ inputCont.oninput = function (){

/*24*/ number = parseFloat(inputCont.value);

/*25*/ };

...

Listing 4.3: Excerpt from Listing 4.1

Example. In the example, lines 16 and 17, Listing 4.3 have no de-
pendencies. In line 18, the call expression calls the API method that
returns the element with an id input, and a data-dependency from the
call expression j-vertex to the HTML node h-vertex in line 11 is created.
Also, since this is an internal method call, a data-dependency from the
call expression j-vertex to the string literal “#input” j-vertex is created.
Next, since the value of the call expression is assigned to a variable,
a data-dependency from the variable declaration expression to the call
expression is created. The algorithm is similar for lines 19, 20, 21. In
line 23, the variable inputCont from inputCont.oninput obtains its value
from the variable declared in line 18, and a matching data-dependency
is created. The assignment expression in the same line assigns a func-
tion to an HTML object property, and two data-dependencies from the
HTML node h-vertex in line 11 are created: one towards the function
expression j-vertex and the other towards the assignment expression in
line 23 j-vertex (Figure 4.3). The process is similar for line 27.

If the process is currently handling an event (line 10, Algorithm 2),
then a control dependency towards the event registering expression j-
vertex is created. When executing function code (line 12), a dependency
is created towards the call expression causing the function execution. If
the currently evaluated expression is reading an identifier, then a data
dependency is created towards the last expression assigning the value of
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Algorithm 2 Interpreting JavaScript

1: function interpretJs(scriptNode)
2: programAST ← getAST(scriptNode)
3: while astNd ← getNextNode(programAST ) do
4: evalRes ← evalute(astNd)
5: jVrtx ← getVertex(astNd)
6: if isInLoopOrBranchStatement(astNd) then
7: addControlDep(jVrtx, getParentConditionVertex(astNd))
8: else if isEnteringCatchStatement() then
9: addControlDep(jVrtx, getErrorThrowingVertex())

10: else if isEnteringEventHandler() then
11: addControlDep(jVrtx, getEventRegVertex())
12: else if isEnteringFunction(astNd) then
13: addControlDep(jVrtx, getCallExpVertex())
14: end if
15: if isBreakContinueOrReturn(astNd) then
16: addControlDep(getImportantParent(astNd), jVrtx )
17: end if
18: if isAccessingIdentifier(astNd) then
19: addDataDep(jVrtx, getLastAssignVertex(astNd))
20: else if isEvaluatingComplexExpression(astNd) then
21: addDataDep(jVrtx, getChildVertices(astNd))
22: end if
23: if isCreatingJsCode(astNd) then
24: parseAddedCodeCreateASTNodes(astNd)
25: else if isCreatingHtmlOrCss(evalRes) then
26: addDataDep(createDynamicVertices(evalRes), jVrtx)
27: traverseCssRulesAndCreateDeps()
28: end if
29: if isModifyingDOM(evalRes) then
30: modifiedVertices ← getModifVertices(evalRes)
31: addDataDep(modifiedVertices, jVrtx ))
32: traverseCssRulesAndCreateDeps(modifiedVertices)
33: else if isSendingRequest(evalRes) then
34: addDataDep(jVrtx, getOpenConnectionVertex(evalRes))
35: else if isAccessingResponse(evalRes) then
36: addDataDep(jVrtx, getSendRequestVertex(evalRes))
37: end if
38: end while
39: end function
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j-vertex is obtained (line 5). If the evaluated AST node is in a loop or a
branch, a control dependency from the current j-vertex to the condition
expression j-vertex (line 7) is created. If the evaluated expression is in
a catch expression, then a control dependency towards the vertex that
matches the expression causing the exception (line 8) is created.

...

/*11*/ <input id="input"/>

...

/*15*/<script >

/*16*/ var number;

/*17*/ function add(a, b) { return a + b; }

/*18*/ var inputCont = document.querySelector("#input")

...

/*23*/ inputCont.oninput = function (){

/*24*/ number = parseFloat(inputCont.value);

/*25*/ };

...

Listing 4.3: Excerpt from Listing 4.1

Example. In the example, lines 16 and 17, Listing 4.3 have no de-
pendencies. In line 18, the call expression calls the API method that
returns the element with an id input, and a data-dependency from the
call expression j-vertex to the HTML node h-vertex in line 11 is created.
Also, since this is an internal method call, a data-dependency from the
call expression j-vertex to the string literal “#input” j-vertex is created.
Next, since the value of the call expression is assigned to a variable,
a data-dependency from the variable declaration expression to the call
expression is created. The algorithm is similar for lines 19, 20, 21. In
line 23, the variable inputCont from inputCont.oninput obtains its value
from the variable declared in line 18, and a matching data-dependency
is created. The assignment expression in the same line assigns a func-
tion to an HTML object property, and two data-dependencies from the
HTML node h-vertex in line 11 are created: one towards the function
expression j-vertex and the other towards the assignment expression in
line 23 j-vertex (Figure 4.3). The process is similar for line 27.

If the process is currently handling an event (line 10, Algorithm 2),
then a control dependency towards the event registering expression j-
vertex is created. When executing function code (line 12), a dependency
is created towards the call expression causing the function execution. If
the currently evaluated expression is reading an identifier, then a data
dependency is created towards the last expression assigning the value of
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Figure 4.3: Data (dashed lines) and structural (full lines) dependencies
between h-vertices and j-vertices, lines 11, 18, 23, Listing 4.1

that identifier (line 19). If the currently evaluated expression is complex
(e.g. binary, unary, call expression), then a data-dependency towards
j-vertices that represent its children are created (e.g. from a binary ex-
pression to its left and right child expressions), line 21.

Example. The scenario is composed of two events: the input of value 2
in the HTML input element, line 11, Listing 4.1 and the click on the but-
ton in line 12. The first event causes the execution of the event-handler
in lines 23 – 25. First, a control-dependency from the function expres-
sion j-vertex towards the assignment expression j-vertex from line 23 is
created, since this is where the event was registered. Next, the evalu-
ation of the member expression (inputCont.value) causes the creation
of a data-dependency towards the variable declaration j-vertex in line
18. The parseFloat call expression matches an internal method, and a
data-dependency towards the member expression argument j-vertex is
created. The identifier number on the right-hand side is declared at
line 16, and a matching data-dependency is created alongside a data-
dependency towards the parseFloat call expression j-vertex (Figure 4.4).
The process continues by handling the click event with a handler in lines
27 – 36, and proceeds in manner similar to the previously described steps
up until line 34.

Next, the algorithm is dealing with cases when the evaluation of
JavaScript code creates new nodes (lines 23 – 28, Algorithm 2). If the
evaluation of JavaScript code is creating new JavaScript code (by using
the eval function), then the string passed to the eval function is parsed
and new dynamic j-vertex nodes are created (line 24). If the JavaScript
code is creating new HTML or CSS nodes (e.g. by writing to the in-
nerHTML property, by calling the createElement function of the global
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Figure 4.4: Data (straight dashed lines) and control (arched dashed lines)
dependencies between h-vertices and j-vertices, for line 24, Listing 4.1

document object, or by calling the addRule or insertRule method of the
stylesheet object), then the matching dynamic vertices are created with
a dependency towards the j-vertex that matches the expression caus-
ing the creation (line 26). The created dynamic vertices can be of any
type (because the innerHTML property can be used to create any type of
code). Since new HTML and CSS nodes are created, we have to establish
new dependencies. For this reason the traverseCssRulesAndCreateDeps
function is called.

...

/*7*/ label {font -weight: bold;}

...

/*13*/ <div id="sCont" ></div >

...

/*34*/ sCont.innterHTML = "<label >Sum:" + sum + "</label >"

...

Listing 4.4: Excerpt from Listing 4.1

Example. In line 34, Listing 4.4 a new HTML element is created
by assigning an HTML string to the innerHTML property of an HTML
element object. This causes the creation of a new h-vertex with a data-
dependency towards a j-vertex matching the assignment expression in
line 34 and a structural dependency towards the h-vertex matching the
HTML element from line 13. Since a new HTML element is created,
all CSS rules are traversed, and a data-dependency from the newly cre-
ated h-vertex to the c-vertex matching the CSS rule in line 7 is created
(Figure 4.5).
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Figure 4.3: Data (dashed lines) and structural (full lines) dependencies
between h-vertices and j-vertices, lines 11, 18, 23, Listing 4.1

that identifier (line 19). If the currently evaluated expression is complex
(e.g. binary, unary, call expression), then a data-dependency towards
j-vertices that represent its children are created (e.g. from a binary ex-
pression to its left and right child expressions), line 21.

Example. The scenario is composed of two events: the input of value 2
in the HTML input element, line 11, Listing 4.1 and the click on the but-
ton in line 12. The first event causes the execution of the event-handler
in lines 23 – 25. First, a control-dependency from the function expres-
sion j-vertex towards the assignment expression j-vertex from line 23 is
created, since this is where the event was registered. Next, the evalu-
ation of the member expression (inputCont.value) causes the creation
of a data-dependency towards the variable declaration j-vertex in line
18. The parseFloat call expression matches an internal method, and a
data-dependency towards the member expression argument j-vertex is
created. The identifier number on the right-hand side is declared at
line 16, and a matching data-dependency is created alongside a data-
dependency towards the parseFloat call expression j-vertex (Figure 4.4).
The process continues by handling the click event with a handler in lines
27 – 36, and proceeds in manner similar to the previously described steps
up until line 34.

Next, the algorithm is dealing with cases when the evaluation of
JavaScript code creates new nodes (lines 23 – 28, Algorithm 2). If the
evaluation of JavaScript code is creating new JavaScript code (by using
the eval function), then the string passed to the eval function is parsed
and new dynamic j-vertex nodes are created (line 24). If the JavaScript
code is creating new HTML or CSS nodes (e.g. by writing to the in-
nerHTML property, by calling the createElement function of the global
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Figure 4.4: Data (straight dashed lines) and control (arched dashed lines)
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document object, or by calling the addRule or insertRule method of the
stylesheet object), then the matching dynamic vertices are created with
a dependency towards the j-vertex that matches the expression caus-
ing the creation (line 26). The created dynamic vertices can be of any
type (because the innerHTML property can be used to create any type of
code). Since new HTML and CSS nodes are created, we have to establish
new dependencies. For this reason the traverseCssRulesAndCreateDeps
function is called.

...

/*7*/ label {font -weight: bold;}

...

/*13*/ <div id="sCont" ></div >

...

/*34*/ sCont.innterHTML = "<label >Sum:" + sum + "</label >"

...

Listing 4.4: Excerpt from Listing 4.1

Example. In line 34, Listing 4.4 a new HTML element is created
by assigning an HTML string to the innerHTML property of an HTML
element object. This causes the creation of a new h-vertex with a data-
dependency towards a j-vertex matching the assignment expression in
line 34 and a structural dependency towards the h-vertex matching the
HTML element from line 13. Since a new HTML element is created,
all CSS rules are traversed, and a data-dependency from the newly cre-
ated h-vertex to the c-vertex matching the CSS rule in line 7 is created
(Figure 4.5).
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Figure 4.5: Data-dependencies between h-vertices and j-vertices, for line
34, Listing 4.1

The algorithm continues by creating dependencies caused by UI mod-
ifications and server-side communications (lines 29 – 37, Algorithm 2). If
the DOM of the page is modified, a dependency from all impacted nodes
to the j-vertex matching the expression causing the modification is cre-
ated (line 31). Since the DOM of the page has changed, different CSS
rules could be applied to different nodes, so the traverseCssRulesAnd-
CreateDeps function is called. Next, the algorithm deals with server-side
communications. If the JavaScript expression is sending a request, then
a data dependency towards a j-vertex representing the expression that
opens the connection is created (line 34), and if the JavaScript expression
is accessing a server-side response, a control dependency to the j-vertex
matching the expression sending the request is created (line 36).

Example. In line 34, Listing 4.4, alongside the creation of a new
HTML element, the content of an existing HTML element from line
13 is also modified. This constitutes a UI modification, and a data-
dependency from the h-vertex matching the HTML element from line
13 towards the j-vertex matching the assignment expression in line 34 is
created (Figure 4.5). The process is similar for line 35.

All dependencies created when evaluating an expression are labeled
with the current evaluation position, in order to differentiate between
dependencies created on different function calls and loop executions.

...

/*17*/ function add(a, b) { return a + b;}

...

/*29*/ var product = add(0, 1);

/*30*/ for (var i = 0; i <= number; i++) {

/*31*/ sum = add(sum , i);

Listing 4.5: Excerpt from Listing 4.1

Example. Figure 4.6 shows the data-dependencies created when ex-
ecuting the call expression in line 29 (Listing 4.5). The numbers near
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each arc represent arc labels. In this example, by using this labeling, we
can accurately follow arcs created in different contexts, e.g. arcs created
due to call expressions in line 29 in contrast to the arcs created when
executing the call expression in line 31.

Figure 4.6: Dependencies for the function call in line 29, Listing 4.1

4.3 Conclusion

In this chapter, we have defined a client-side dependency graph that
captures all dependencies that exist in a client-side application, for a
particular scenario. The graph is composed of four types of vertices:
HTML vertices, CSS vertices, JavaScript vertices, and resource vertices;
and three types of arcs: structural dependency arcs, data flow arcs, and
control flow arcs. Each vertex can either be static, which means that it
is directly present in the source code, or dynamic if the matching code
construct is dynamically created by evaluating JavaScript code. Since
the graph captures dynamic dependencies, each arc is uniquely labeled,
which enables differentiation of arcs created in different execution con-
texts. We have also presented algorithms that describe how the graph
is constructed during the web application execution.

In the following chapters, we show how the dependency graph is used
to generate feature scenarios, identify feature code, and facilitate reuse.



44 Chapter 4. Client-side Dependency Graph

Figure 4.5: Data-dependencies between h-vertices and j-vertices, for line
34, Listing 4.1
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ated (line 31). Since the DOM of the page has changed, different CSS
rules could be applied to different nodes, so the traverseCssRulesAnd-
CreateDeps function is called. Next, the algorithm deals with server-side
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opens the connection is created (line 34), and if the JavaScript expression
is accessing a server-side response, a control dependency to the j-vertex
matching the expression sending the request is created (line 36).
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HTML element, the content of an existing HTML element from line
13 is also modified. This constitutes a UI modification, and a data-
dependency from the h-vertex matching the HTML element from line
13 towards the j-vertex matching the assignment expression in line 34 is
created (Figure 4.5). The process is similar for line 35.

All dependencies created when evaluating an expression are labeled
with the current evaluation position, in order to differentiate between
dependencies created on different function calls and loop executions.
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/*17*/ function add(a, b) { return a + b;}
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/*29*/ var product = add(0, 1);
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due to call expressions in line 29 in contrast to the arcs created when
executing the call expression in line 31.
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4.3 Conclusion

In this chapter, we have defined a client-side dependency graph that
captures all dependencies that exist in a client-side application, for a
particular scenario. The graph is composed of four types of vertices:
HTML vertices, CSS vertices, JavaScript vertices, and resource vertices;
and three types of arcs: structural dependency arcs, data flow arcs, and
control flow arcs. Each vertex can either be static, which means that it
is directly present in the source code, or dynamic if the matching code
construct is dynamically created by evaluating JavaScript code. Since
the graph captures dynamic dependencies, each arc is uniquely labeled,
which enables differentiation of arcs created in different execution con-
texts. We have also presented algorithms that describe how the graph
is constructed during the web application execution.

In the following chapters, we show how the dependency graph is used
to generate feature scenarios, identify feature code, and facilitate reuse.



Chapter 5

Automatic Scenario
Generation

The method for automatic feature reuse relies on the analysis of applica-
tion execution caused by certain scenarios; scenarios that either capture
the behavior of the whole application or cause the manifestation of a
particular feature. Specifying such scenarios, for most features, is fairly
straightforward, but in some cases it can be time-consuming and require
in-depth knowledge of the internal details of the target application. For
this reason, a method for automatic generation of scenarios would be
beneficial. In this chapter, we introduce such a method based on dy-
namic analysis and systematic exploration of the application’s event and
value space.

5.1 Overview

The goal of the process is to generate scenarios that capture either the
behavior of the whole application or the behavior of a particular feature.
The process is composed of two phases: i) Scenario Generation and
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The first phase – Scenario Generation – starts by creating an ini-
tial scenario that represents the process of loading the page in a default
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ing the execution. New scenarios are generated by: i) extending event
chains – all event registrations and data-dependencies during scenario
execution are tracked, and new scenarios are generated by extending the
event chain of the current scenario with newly registered events, or with
previously executed events whose execution potentially depends on the
variables and objects modified by the current scenario; and by i) modi-
fying the input parameters, i.e. the internal state of the browser (e.g. the
initial window size, the type of the browser) and the event parameters –
the process tracks how the input parameters influence the control-flow
of the application, and generates new scenarios by modifying those in-
puts. New scenarios are created and analyzed until a certain coverage is
achieved, a given time-budget expended, or a target number of scenarios
reached.

Figure 5.1: The process of generating feature scenarios

In the second phase – Scenario Filtering – execution traces of all
executed scenarios are analyzed, and the set of scenarios is filtered. If
the process targets certain application features, all scenarios that do not
cause the manifestation of those features are removed. In addition, we
also remove scenarios whose removal does not lower the overall coverage.
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5.1.1 Terminology

An event e is defined as a tuple e = 〈o, t〉, where o is the ID of the object
on which the event occurs (an HTML node, the global window, or the
global document object), and where t is an event type. At run-time,
when an event occurs, it is parametrized with properties of three differ-
ent types [5]: i) event properties, a map from strings (property names) to
numbers, booleans, strings and DOM nodes (e.g. the which property of
the mouse click event identifies the clicked mouse button), ii) form prop-
erties, which provide string values for the HTML form fields (e.g. e-mail
formatted string for an HTML input element), and iii) the execution
environment properties, which represent values for the browser’s state
(e.g. window size) that can be influenced by the user. A parametrized
event ep consists of an event e and parameters p associated with that
event. The goal of the process is to compute a set S = {s0, s1, ..., sn} of
scenarios that achieves high code coverage. A scenario si is defined as
a sequence of parametrized events si = 〈ep0, ep1, ..., epm〉. Each scenario
exercises a certain subset of the application behavior.

During scenario execution, application execution can be influenced
by the internal state of the browser. In order to represent this, we
use one special event [5]: e0

d = 〈window, “main”〉 that denotes the
loading of the target web page. This event has properties that define
the internal state of the brower, e.g. the initial window size, type of the
browser, cookie string. By modifying these properties, we can simulate
different browser configurations that can influence the control-flow of the
application.

We can also establish a relationship between an application feature
and a scenario: a scenario causes the manifestation of a particular feature
if its last parametrized event epm, in some way, affects the parts of the
page structure where the feature manifests. A parametrized event affects
a part of the page structure if: i) it is called on an HTML node that is
a part of the structure; ii) it modifies the structure; iii) in the case of
server-side communication events, if there is a data dependency from the
message-sending request to the structure. If epm affects the structure,
this means that all previous parametrized events epj ; j < m are also
important from the perspective of the structure, because event chains
are created only out of interdependent events (described in the following
sections).
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5.2 Detailed process description

The process described in Section 5.1 is in more details presented by
Algorithm 3.

Algorithm 3 generateScenarios(webAppCode, selectors)

1: S ← emptyArray
2: SA ← emptyArray
3: ME ← emptyMap
4: s0 ← emptyScenario
5: s0 ← appendEventToScenario(s0, createDefaultLoadingEvent())
6: S ←push(S, s0)
7: do
8: s ← selectScenario(S )
9: if s == null then

10: break
11: end if
12: executionInfo ← executeScenario(s)
13: associate(ME , s, executionInfo)
14: recalculateCoverage(webAppCode, executionInfo)
15: if hasAchievedTargetCoverage(webAppCode) then
16: break
17: end if
18: S ← createByExtendingEventChains(s, S, executionInfo, ME)
19: S ← createByModifyingInputParameters(s, S, executionInfo)
20: push(SA, s)
21: while |SA| < LIMIT and hasTime()
22: SA ← filterScenarios(SA, selectors, ME)
23: return SA

The first phase – Scenario Generation (lines 1 – 21) starts by creating
two empty arrays S and SA, where S will hold all scenarios generated
by the process, and SA all scenarios analyzed in the process; and ME ,
a map that connects scenarios and their execution info. Initially, the
process creates one empty scenario s0 (line 4) and adds to it a default
loading event (line 5). Next, the process iteratively selects the next
scenario for analysis (line 8), executes it (line 12), creates a mapping
between the executed scenario and the execution info (line 12), and gen-
erates new scenarios by extending event chains (line 18) and modifying
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input parameters (line 19). The process exits the first phase if there are
no remaining scenarios for analysis (lines 9, 10), the target coverage is
achieved (lines 15, 16), the target number of scenarios analyzed, or a
given time budget expended (line 21). After the first phase is complete,
the process enters the second phase – Scenario Filtering (line 12), where
the analyzed scenarios that do not contribute to the selected feature and
the scenarios that do not lower the overall coverage are removed.

5.2.1 Example application

Throughout this chapter we give a detailed description of how new sce-
narios are created, and for this we will use the example from Listing 5.1.

1 <html ><head >

2 <style >

3 .c{ width: 100px; height: 100px;}

4 #fc{background:rgb (255 ,0 ,0);}

5 #sc{background:rgb (0,0,255);}

6 </style ></head >

7 <body >

8 <div id="fc" class="c" ></div ><div id="sc" class="c" ></div >

9 <script >

10 var fc = document.getElementById("fc");

11 var sc = document.getElementById("sc");

12
13 var clicks = 0;

14 fc.onmousedown = function(e) {

15 if(e.which == 1)

16 fc.onmousemove = function(e) {

17 var val = e.pageX % 256;

18 this.style.background="rgb("+val+","+val+","+val+")";

19 }

20 else if(e.which == 2)

21 if(++ clicks % 2 == 0)

22 this.textContent = "Even";

23 else

24 this.textContent = "Odd";

25 }

26 sc.onclick = function(e) {

27 this.textContent = e.pageX + ";" + e.pageY;

28 }

29 </script >

30 </body >

31 </html >

Listing 5.1: Example application
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input parameters (line 19). The process exits the first phase if there are
no remaining scenarios for analysis (lines 9, 10), the target coverage is
achieved (lines 15, 16), the target number of scenarios analyzed, or a
given time budget expended (line 21). After the first phase is complete,
the process enters the second phase – Scenario Filtering (line 12), where
the analyzed scenarios that do not contribute to the selected feature and
the scenarios that do not lower the overall coverage are removed.

5.2.1 Example application

Throughout this chapter we give a detailed description of how new sce-
narios are created, and for this we will use the example from Listing 5.1.
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Listing 5.1: Example application
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The UI of the application is composed of two squares, one corre-
sponding to the div element with the ID fc, and the other to the div
element with the ID sc, line 8, Listing 5.1. The example application has
two features: Feature 1, that manifests on the first square (the HTML
node with ID fc, line 8), which consists of two behaviors: i) when the
user clicks on the square with the left mouse button, the application
subscribes to the mouse move events which change the color of the first
square background depending on the position of the mouse, ii) it counts
the number of middle mouse button clicks on the first square, and out-
puts whether this number is even or odd; and Feature 2, that manifests
on the second square (the HTML node with ID sc, line 8), with the fol-
lowing behavior: i) when the user clicks on the second square it outputs
the current mouse position. This is an example of an event-driven ap-
plication where code coverage depends both on the events raised by the
user, and the properties of the raised events (e.g. which mouse button
was clicked). Throughout this section, we will show how the process
generates scenarios that target the first feature.

5.2.2 Selecting Scenarios

Our method creates new scenarios by systematically exploring the event
and value space of the application. This means that the number of gen-
erated scenarios grows considerably with application complexity, and the
procedure by which the next scenario for analysis is picked could influ-
ence how fast the scenario generation method achieves good coverage.
For this reason, we have considered several prioritization functions that
determine the order in which the scenarios will be analyzed. The pri-
oritization functions are the following: i) FIFO (First In, First Out),
where scenarios are picked based on their order of creation; ii) Random,
where the next scenario is randomly picked from the pool of non ana-
lyzed scenarios; iii) Event Length, where the next scenario for analysis
is the scenario with the shortest sequence of events. We also use two
more complex prioritization functions: iv) Coverage and a v) Custom
prioritization function.

The Coverage prioritization function is based on the intuition that
executing scenarios with events that have already achieved high code
coverage is likely to be less useful than executing scenarios with events
with low coverage [5]. After the execution of every scenario, for every
function visited during the evaluation of each event ei, we recalculate
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the coverage achieved so far. Based on this coverage, each scenario is
assigned a weight (or a priority). We use the following formula [5]:

P (si) = 1− cov(e0) · cov(e1) · ... · cov(em),

where si = 〈e0, e1, ..., em〉 is the scenario whose weight is being de-
termined, e0, e1, ..., em the event chain of si, and cov(ej) a function that
calculates statement coverage of all functions visited during the execu-
tion of an event achieved so far by the whole process (i.e. by all previ-
ously analyzed scenarios) in all functions executed during the handling
of event ej . The next scenario for analysis is then chosen with weighted
random selection.

The Custom prioritization function is based on the following intu-
ition: if there is an unexecuted scenario created by exploring the value
space (i.e. modifying the input parameters), or a scenario whose last
event has not yet been executed in the scenario generation process, then
the process selects such a scenario based on the order of creation. If
there are no such scenarios, i.e. only the scenarios created by extending
the event chain with events already executed in the process, then select
the next scenario by using the Coverage prioritization function.

5.2.3 Scenario Execution

As discussed for the dependency graph creation (Chapter 4), the dy-
namic nature of web applications means that the scenario generation
process must be based on dynamic rather than static analysis. For this
reason, we execute and analyze each scenario. The scenario execution is
performed with our custom-made browser simulator (Chapter 8) which
has a JavaScript interpreter capable of performing both concrete and
symbolic execution of web applications, and building a dependency graph
(Chapter 4). On top of this, the browser simulator can be instantiated
with different internal browser states, in that way mimicking different
browsers.

Example. The first scenario being executed is the scenario that con-
tains only the default loading event: so = 〈e0d〉, where e0d is the default
loading event. In the example from Listing 5.1, this means constructing
the DOM of the page (based on lines 1 – 9) and executing JavaScript
statements in lines 10 – 14, 26. At this point, no user-generated events
are executed. The loading of the example page does not depend on the
internal browser state. After the page is loaded, the browser is aware of
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two event registered event handlers (onmousedown in line 14 and onclick
in line 26). This information will be used by the process to generate new
scenarios.

5.2.4 Extending event chains

When generating scenarios by exploring the event space the goal is to
extend event chains, either with events that are encountered for the first
time by the scenario generation process, or with already executed events
that are still registered at the end of scenario execution (Algorithm 4).

Algorithm 4 createByExtendingEventChains(s, S, executionInfo, ME)

1: g ← getDependencyGraph(executionInfo)
2: for all e : getRegisteredEvents(executionInfo) do
3: if wasInstanceExecuted(e, S) then
4: for all ep : getPreviousParametrizations(e, S) do
5: if connectionExists(g, getExecutionInfo(ME , e

p)) then
6: sn ← createCopy(s)
7: sn ← appendEventToScenario(sn, e

p)
8: S ← appendScenario(S, sn)
9: end if

10: end for
11: else
12: sn ← createCopy(s)
13: ep ← parametrizeWithDefaults(e)
14: sn ← appendEventToScenario(sn, e

p )
15: S ← appendScenario(S, sn)
16: end if
17: end for

After the execution of a scenario, the process traverses all events that
are still registered at the end of the execution. If the event was already
executed (lines 3 – 10), i.e. at least one parametrization of that event
already exists in previously analyzed scenarios, then execution logs for
each event parametrization are traversed. During the execution of each
scenario we build a dependency graph (Chapter 4) which captures both
static and dynamic dependencies between code constructs. We consider
that there is a potential connection between an event and a scenario
(line 5) if the scenario modifies variables and/or objects on which the
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control-flow of the event depends on (either directly or indirectly). If
a connection exists, then a new scenario is created by appending the
parametrized event to the current scenario. If the event has not yet been
executed (lines 12 – 15), then the newly registered event is parametrized
with default parameters, and a new scenario is created by appending the
parametrized event to the events from the current scenario.

Example. In the example from Listing 5.2, after the execution of the
initial s0 scenario, the process is aware of two registered events (line 2,
Algorithm 4): onmousedown in line 14 and onclick in line 26. Since s0
is the first analyzed scenario, these events have not been executed so
far, and the algorithm follows the procedure from lines 12 – 15. This
causes the creation of two new scenarios. Based on the onmousedown
event registration, the scenario s1 = 〈e0d, 〈#fc, onmousedown〉{which:1}〉
(the default parameter, left button – is represented by the value 1 of
the which property), and based on the onclick mouse registration from
line 26 the scenario s2 = 〈e0d, 〈#sc, onclick〉{pageX:50,pageY:150}〉 (the de-
fault behavior is to click in the middle of the target element).

/*13*/ var clicks = 0;

/*14*/ fc.onmousedown = function(e) {

/*15*/ if(e.which == 1)

/*16*/ fc.onmousemove = function(e) { ...}

/*20*/ else if(e.which == 2)

/*21*/ if(++ clicks % 2 == 0)

/*22*/ this.textContent = "Even";

/*23*/ else

/*24*/ this.textContent = "Odd";

/*25*/ }

/*26*/ sc.onclick = function(e) { ... }

Listing 5.2: Excerpt from Listing 5.1

When analyzing the execution of scenario s1, a new event, which
has not been encountered so far, is registered in line 16. This leads to
the creation of a new scenario: s3 = 〈e0d, 〈#fc, onmousedown{which:1}〉;
〈#fc, onmousemove〉{pageX:50,pageY:50}〉. Next, imagine that a scenario
s5 = 〈e0d, 〈#fc, onmousedown〉{which:2}〉, generated by the other part
of the process (will be described in the following section) is analyzed.
When analyzing the execution of s5, we can see that its onmousedown
event, writes to the variable clicks, created outside of the event con-
text (line 21). That same variable influences the control flow of the
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already exists in previously analyzed scenarios, then execution logs for
each event parametrization are traversed. During the execution of each
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that there is a potential connection between an event and a scenario
(line 5) if the scenario modifies variables and/or objects on which the
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control-flow of the event depends on (either directly or indirectly). If
a connection exists, then a new scenario is created by appending the
parametrized event to the current scenario. If the event has not yet been
executed (lines 12 – 15), then the newly registered event is parametrized
with default parameters, and a new scenario is created by appending the
parametrized event to the events from the current scenario.

Example. In the example from Listing 5.2, after the execution of the
initial s0 scenario, the process is aware of two registered events (line 2,
Algorithm 4): onmousedown in line 14 and onclick in line 26. Since s0
is the first analyzed scenario, these events have not been executed so
far, and the algorithm follows the procedure from lines 12 – 15. This
causes the creation of two new scenarios. Based on the onmousedown
event registration, the scenario s1 = 〈e0d, 〈#fc, onmousedown〉{which:1}〉
(the default parameter, left button – is represented by the value 1 of
the which property), and based on the onclick mouse registration from
line 26 the scenario s2 = 〈e0d, 〈#sc, onclick〉{pageX:50,pageY:150}〉 (the de-
fault behavior is to click in the middle of the target element).

/*13*/ var clicks = 0;

/*14*/ fc.onmousedown = function(e) {

/*15*/ if(e.which == 1)

/*16*/ fc.onmousemove = function(e) { ...}

/*20*/ else if(e.which == 2)

/*21*/ if(++ clicks % 2 == 0)

/*22*/ this.textContent = "Even";

/*23*/ else

/*24*/ this.textContent = "Odd";

/*25*/ }

/*26*/ sc.onclick = function(e) { ... }

Listing 5.2: Excerpt from Listing 5.1

When analyzing the execution of scenario s1, a new event, which
has not been encountered so far, is registered in line 16. This leads to
the creation of a new scenario: s3 = 〈e0d, 〈#fc, onmousedown{which:1}〉;
〈#fc, onmousemove〉{pageX:50,pageY:50}〉. Next, imagine that a scenario
s5 = 〈e0d, 〈#fc, onmousedown〉{which:2}〉, generated by the other part
of the process (will be described in the following section) is analyzed.
When analyzing the execution of s5, we can see that its onmousedown
event, writes to the variable clicks, created outside of the event con-
text (line 21). That same variable influences the control flow of the
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event (there exists a data dependency from the variable clicks to the
if statement condition) – s5 is dependent on itself, and a new scenario
s6 = 〈e0d, 〈#container, onmousedown〉{which:2}, 〈#container, onmouse-
down〉{which:2}〉 is created.

5.2.5 Modifying input parameters

In order to generate scenarios by modifying input parameters, we use
concolic testing [26, 54]. The main idea is to execute the scenario both
with concrete (e.g. default values for the initially created scenarios) and
symbolic values for input parameters. The input parameters encompass
both the variables that describe the internal state of the browser and
the event parameters. While the application is executed, all expression
are evaluated both concretely and symbolically. During the execution all
encountered control-flow branches (e.g. if statements, conditional expres-
sions) whose branching conditions are expressions that contain symbolic
variables are added to the so called path-constraint, which carries infor-
mation about how the control-flow of the execution depends on the in-
put parameters. In order to build a scenario that exercises another path
through the application we have to modify the input parameters based
on the path constraint. This is usually done by systematically dropping
and negating the constraints that compose the path-constraint, and in
our approach we use generational search [27]. Constraints obtained in
this way are solved with a constraint solver, which gives new input pa-
rameter values that exercise different execution paths. Currently we are
using an off-the-shelf constraint solver – Choco [35].

Algorithm 5 createByModifyingInputParemeters(s, S, executionInfo)

1: pathConstraint ← getPathConstraint(executionInfo)
2: for all invertedFormula : getInvertedFormulas(pathConstraint) do
3: result ← solveFormula(invertedFormula)
4: if result �= null then
5: 〈e0, ..., en〉 ← getAffectedEvents(s, result)
6: 〈ep0, ..., epn〉 ← parametrizeEvents(〈e0, ..., en〉, result)
7: sn ← createScenario(〈ep0, ..., epn〉)
8: S ← appendScenario(S, sn)
9: end if

10: end for
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Handling parameter domains – In addition to the constraints gath-
ered during concolic execution, some of the event parameters always fall
into a certain domain (e.g. the which property of the mouse event handler
can have only three values: 1, 2, or 3; or the mouse position parameters,
such as pageX and pageY, are constrained by the position of the element
the event occurs upon). For this reason, when constructing constraints
that will be sent to the solver, constraints that capture the domain of
each parameter are also added.

Handling the internal browser state – the execution of a scenario can
be significantly influenced by the internal state of the browser. This state
encompasses properties such as cookies, initial size of the window, the
user agent string, etc.; but it also includes the internal browser objects
that can be browser specific. By studying the control-flow dependencies
towards internal browser objects, constraints that capture the type of
browser can be derived. This leads to the creation of browser-specific
scenarios. In our case, this is not a problem, since we use a custom-made
JavaScript interpreter (Chapter 8) that can mimic different browsers.

/*14*/ fc.onmousedown = function(e) {

/*15*/ if(e.which == 1)

/*16*/ ...

/*20*/ else if(e.which == 2)

Listing 5.3: Excerpt from Listing 5.1

Example. After the execution of the s1, we study the path constraint
obtained from the if statement in line 15, Listing 5.3: which = 1. In order
to cover another execution path, we invert that constraint and obtain
– which �= 1, and add the constraints inherent to the which property:
which = 1,which = 2,which = 3. For these constraints, we imagine
that the constraint solver obtains the result which = 3. This causes
the creation of a new scenario s4 = 〈e0d, 〈#fc, onmousedown〉{which:3}〉.
When we execute the scenario s4 the resulting path constraint is which �=
1,which �= 2, because both the condition of the if statement in line 15,
and the condition of the if statement in line 20 were evaluated to false.
By inverting these constraints we obtain: which �= 1,which = 2 and
which = 1. With the constraint solver we get two solutions: which = 2
and which = 1. The solution which = 1 is discarded since the scenario
with the exact parameters already exists, and out of which = 2 we obtain
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a new scenario s5 = 〈e0d, 〈#fc, onmousedown〉{which:2}〉.

5.2.6 Filtering Scenarios

In order to achieve high coverage, the process generates a number of
scenarios. However, we are typically interested in obtaining a minimal
number of scenarios that still achieve the same coverage. The main
purpose part of the process is to remove scenarios that are not necessary
for the goal of scenario generation.

Algorithm 6 filterScenarios(S, selectors, ME)

1: if targetsFeature(selectors) then
2: for all s ∈ S do
3: if notRelatedToFeature(s, selectors, ME) then
4: S ← removeScenario(S, s)
5: end if
6: end for
7: end if
8: jointCoverage ← getJointCoverage(S, ME)
9: for all s ∈ sortDescendingByNoOfEvents(S) do

10: if canScenarioBeRemoved(s, jointCoverage) then
11: jointCoverage ← removeScenarioCoverage(jointCoverage, s))
12: S ← removeScenario(S, s)
13: end if
14: end for

If the process of automatic scenario generation is executed with the
goal of generating scenarios that cause the manifestation of certain ap-
plication features (instead of targeting the whole application behavior),
then for every executed scenario, the process checks whether the sce-
nario is related to the specified parts of page structure where the feature
manifests (Chapter 5.1.1) – if it is not, the scenario is filtered away.
The process then calculates joint scenario coverage, which is a map that
shows, for each code expression, how many scenarios have executed that
expression. Then, all scenarios are traversed in descending order, start-
ing from the scenario with the longest event chain. For each scenario,
the algorithm checks whether the joint coverage would remain the same
if that scenario was removed. If so, the scenario is removed from the set
of scenarios, and its coverage from jointCoverage.
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Example. In the example application, the scenario generation phase
has generated the following six scenarios:

• s0 = 〈e0d〉;
cov0 = {10− 14, 26}

• s1 = 〈e0d, 〈#fc, onmousedown〉{which:1}〉;
cov0 = {10− 16, 26}

• s2 = 〈e0d, 〈#sc, onclick〉{pageX:50,pageY:150}〉;
cov1 = {10− 14, 26, 27}

• s3 = 〈e0d, 〈#fc, onmousedown〉{which:1};
〈#fc, onmousemove〉{pageX:50,pageY:50}〉;
cov4 = {10− 18, 26}

• s4 = 〈e0d, 〈#fc, onmousedown〉{which:3}〉;
cov2 = {10− 15, 20, 26}

• s5 = 〈e0d, 〈#fc, onmousedown〉{which:2}〉;
cov3 = {10− 15, 20, 21, 22, 26}

• s6 = 〈e0d, 〈#fc, onmousedown〉{which:2};
〈#fc, onmousedown〉{which:2}〉;
cov5 = {10− 15, 20, 21, 22, 24, 26}

First, all scenarios are traversed in order to remove the ones that do
not contribute to the feature. In this case, this means the removal of
scenario s2 because it neither occurs on, nor does it modify the specified
parts of the web application structure (#fc). Next, a joint coverage for
the remaining scenarios is calculated. Here, we will discuss in terms of
code lines, but the algorithm in general works on AST nodes. Joint cov-
erage, from the perspective of executed lines, for the remaining scenarios
s0, s1, s3, s4, s5, s6 is: 10–14: 6, 15: 5, 16: 2, 17–18: 1, 20: 3, 21: 2, 22: 2,
24: 1, 26: 6. The first processed scenario, s6 can not be removed because
it is the only scenario that executes line 24, while scenarios s5 and s4
can be removed, because their lines are executed by at least one other
scenario. Scenario s3 can not be removed because no other scenario
executes lines 17 and 18, while scenarios s1 and s0 can be removed.
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First, all scenarios are traversed in order to remove the ones that do
not contribute to the feature. In this case, this means the removal of
scenario s2 because it neither occurs on, nor does it modify the specified
parts of the web application structure (#fc). Next, a joint coverage for
the remaining scenarios is calculated. Here, we will discuss in terms of
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erage, from the perspective of executed lines, for the remaining scenarios
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5.3 Evaluation

The evaluation of the automatic scenario generation technique is based
on four experiments. In the first experiment, we study the coverage the
process was able to achieve, and the number of generated scenarios and
their events, when generating test cases for a suite of web applications.
In the second experiment, we compare the results of our method, with
the results obtained with a related method – Artemis [5]. For the third
experiment, the goal was to compare the effectiveness of different pri-
oritization functions, in terms of achieved statement coverage. Finally,
in the forth experiment, we study how the process is able to generate
feature scenarios for a case study application. All results were obtained
with the Firecrow tool1 (Chapter 8) which implements the algorithms
described in this chapter. The code of all web applications, the gen-
erated scenarios, and other experiment results can be obtained from:
www.fesb.hr/~jomaras/download/usageScenarioGenerator.zip.

5.3.1 Generating scenarios for the whole page

The first experiment was performed on a suite of web applications, most
of them obtained from the 10k and 1k JavaScript challenges1.

The goal of the first experiment was to compare the statement cov-
erage achieved by simply loading the page, with the coverage achieved
by using our method. Table 5.1 shows the results. For each application
it shows: the lines of code (LOC); the statement coverage that can be
achieved by simply loading the page (L-Cov); the maximum statement
coverage the generated scenarios were able to achieve (A-Cov); the gain
of our method, when compared to simply loading the page; the number
of kept scenarios (S); and the total number of events in the kept scenarios
(E). On average, the process was able to achieve additional 40 percent
statement coverage when compared to the coverage achieved by loading
the page. In order to cover these additional statements, our process, on
average, generates 9 scenarios with 19 events.

1https://github.com/jomaras/Firecrow
1http://10k.aneventapart.com/ and http://js1k.com/
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Table 5.1: Experiment results for analyzing 100 scenarios for the whole
application. LOC (Lines of Code), Cov (statement Coverage), L (Load-
ing), A (Achieved), S (Scenarios), E (Events)

Application LOC L-Cov A-Cov Gain S E

ajaxtabscontent 238 66% 91% 25% 7 7
angelJump 313 66% 71% 5% 2 11

minesweeper 177 60% 94% 34% 4 7
prism3D 402 61% 91% 30% 15 33

snake 211 58% 99% 41% 6 13
dynamicArticles 178 35% 85% 50% 3 6

fractalViewer 1630 36% 77% 41% 14 42
rentingAgency 297 41% 100% 59% 14 15

tinySlider 128 47% 76% 29% 4 5
snowpar 353 20% 99% 79% 24 32
floatwar 458 18% 67% 49% 7 39

Average 398.6 46% 86% 40.1% 9 19

5.3.2 Comparison with Artemis

For the second experiment, we have compared our method with an al-
ready existing method – Artemis [5], in terms of maximum coverage the
methods were able to achieve. We have used the same web application
suite as in the experiments described in [5] (and we have excluded the
same libraries from the results, e.g. jQuery), except for one applica-
tion (we have excluded the AjaxPoll application because the application
functionality is dependent on the state of the server, which is a feature
that our approach does not yet take into account).

Table 5.2 shows the experiment results. The gains achieved by our
method range from 0 – 9 percent, with an average of 3.1 percent. The
gains are larger for applications in which input parameter values sig-
nificantly influence the achieved coverage (e.g. if it is important which
mouse button or keys were pressed), while they are smaller (or almost
non-existent) in other types of applications. Our method is able to
achieve these improvements because we rely on symbolic execution, and
are able to generate values of event parameters that change the control-
flow of the application.

In the experiment description, Artzi et al., mention that generating
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Table 5.2: Comparison of the experiment results between Artemis and
our approach (Firecrow)

Application Artemis Firecrow Gain

3dModeller 74% 82% 8%
ajaxtabscontent 89% 91% 2%

ball pool 90% 99% 9%
dragable-boxes 62% 63% 1%

dynamicArticles 82% 85% 3%
fractalViewer 75% 77% 2%
homeostasis 63% 63% 0%

htmlEdit 63% 63% 0%
pacman 44% 47% 3%

Average 71.3% 82.6% 3.1%

tests for a single application does not take more than 2 minutes on an
average PC (but they do not present concrete numbers). In our case (Ta-
ble 5.3), the time required to generate tests for a single application is,
on average, 12 minutes. This happens because the backbone of their ap-
proach is the WebKit1 browser engine, while we use our own JavaScript
interpreter (Chapter 8), written in JavaScript, which is not optimized
for speed. We do this, because our approach uses tracking of symbolic
expressions and the dependency graph to generate scenarios, and this in-
formation is obtained with the custom JavaScript interpreter. However,
the techniques and algorithms used in our approach could be adapted to
WebKit, Firefox, or Chrome, if these browsers would support tracking
of symbolic expressions and the generation of dependency graphs. This
would considerably reduce the time required to generate web application
scenarios. This is part of our future work.

5.3.3 Evaluating prioritization functions

For the third experiment, the goal was to compare the effectiveness of
scenario prioritization functions (Chapter 5.2.2), with respect to the cov-
erage they are able to achieve. For the application suite, we have used
the applications from the first two experiments. The experiment results
are show in Table 5.3.

1http://www.webkit.org/
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Table 5.3: Experiment results for comparing prioritization functions by
maximum achieved coverage; 100 analyzed scenarios; maximum coverage
in bold

EventLength Fifo Rand Cov Cust

Application Maximum statement coverage

3dModeller 82% 82% 82% 82% 82%
ajaxtabscontent 91% 91% 78% 89% 91%

ball pool 98% 98% 99% 99% 98%
dragable-boxes 63% 63% 61% 59% 63%

dynamicArticles 85% 85% 85% 85% 85%
fractal viewer 75% 75% 75% 77% 75%
homeostasis 63% 63% 63% 63% 63%

pacman 47% 47% 45% 45% 47%
htmlEdit 63% 63% 63% 63% 63%
3dMaker 83% 83% 82% 53% 84%

angelJump 69% 69% 69% 71% 69%
minesweeper 94% 94% 93% 94% 94%

prism3D 91% 91% 78% 82% 81%
rentingAgency 97% 97% 74% 98% 100%

snake 96% 99% 80% 90% 90%
snowpar 99% 99% 42% 99% 87%

tinySlider 76% 76% 76% 76% 76%
floatwar 67% 64% 64% 66% 64%

Type Summary

Avg coverage 80% 80% 73% 77% 78%
Avg #scenarios 11 11 9 10 10

Avg #events 18 17 17 20 18
Avg time (min) 12 12 18 9 13

In this experiment, on average, the maximum coverage is achieved
with the Event Length and Fifo prioritization functions. They are fol-
lowed by the Custom prioritization function, the Coverage function, and
finally in the end, the Random function. For each prioritization function,
we also present the average number of kept scenarios (Avg #scenarios),
the average total number of events in kept scenarios (Avg #events), and
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the average time in minutes that was required to generate the scenarios2.
However, in order to generally claim that one prioritization function is
better than the other, experiments on a larger suite of web applications
would have to be performed. We consider this part of our future work.

5.3.4 Generating Feature Scenarios – a case study

Consider the example application shown in Figure 5.2 that enables the
user to: i) toggle between different types of accommodation (by using
the select menu marked with 1, or by pressing keyboard keys: e.g. A
– Apartments, or H – hotels), ii) to select map locations (marked with
2) with mouse clicks which will change the information and photos dis-
played in the photos section (marked with 3); iii) to toggle between
different photos (marked with 3) by clicking on buttons, or by pressing
keyboard buttons (e.g. 1 for the first photo, 2 for the second photo);
iv) to toggle between different county map zoom levels (marked with
4) by clicking on the county map; v) to automatically cycle between
different event information (marked with 5).

Figure 5.2: Case study application

2Intel Xeon 3.7 Ghz, 16GB RAM
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The example application has three distinct high-level features: i) se-
lecting the map location and viewing its information (sections marked
with 1, 2, and 3); ii) toggling between different county map zoom levels
(marked with 4); and iii) viewing event information (marked with 5).
Even in the case of these relatively simple features, specifying scenarios
with high coverage is a time-consuming activity that requires in-depth
knowledge of application behavior and the understanding of the under-
lying implementation. For example, a developer who wants to specify a
scenario that exercises the complete behavior of the first feature has to
be aware of different ways the location can be selected (by mouse click-
ing on the location point in the map, by changing the type of displayed
locations through the select box, or by pressing keyboard keys), and of
different ways the photos (marked with 3) can be toggled (either with
mouse clicks on different buttons, or with keyboard presses).

Table 5.4: A case study of generating feature scenarios. SG – generated
scenarios, SF – scenarios after filtering

Feature |SG| |SF | Gen. events User events

#1 25 12 12 12
#2 25 1 2 2
#3 25 1 1 1

We have initialized the process for each of the features, with the
results shown in Table 5.4. For each feature, the process was able to
achieve full coverage (in general this does not have to be the case), and
it was successful in generating scenarios that target specific UI controls.
The table shows how many scenarios the process generated in order to
achieve full coverage (column |SG|), how many scenarios were kept after
the filtering process (|SF |), and how many events in total the filtered
scenarios have (Gen. events). The table also shows the minimum num-
ber of events, we were able to find, to achieve full coverage. In this
application, the process was able to generate feature scenarios which in
total have the minimal number of events we were able to determine by
studying the application code. In general, since scenarios can be picked
randomly from the set of generated scenarios, the generated sequences
of events in all analyzed scenarios are not necessarily minimal.
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5.4 Conclusion

Scenarios that execute application features with high coverage are used in
many software engineering activities, such as testing or reuse. Manually
specifying these scenarios is a time-consuming activity, and automation
could bring considerable benefits. In this chapter, we have presented
an automatic method for generating scenarios. The method works by
systematically exploring the event and value space of the application.
In order to create high-coverage scenarios we utilize techniques such as
symbolic execution and dependency tracking. In order to reduce the
number of generated scenarios, we analyze the relationships between the
scenarios and features, and remove all non-related scenarios. We also
filter scenarios based on their coverage.

The method was evaluated with four experiments. In the first ex-
periment we compared the coverage achieved with the generated scenar-
ios, with the scenario of simply loading the web page. The experiment
has shown that, on average, a 40 percent increase in coverage can be
achieved. For the second experiment, we have compared our method
with a similar method for automatic testing (Artemis). The experiment
has shown that, for certain kinds of applications, where coverage sig-
nificantly depends on values of input parameters, our method is able to
achieve better coverage, while in other types of applications, our method
achieves results comparable to Artemis. For the third experiment, we
have compared different scenario prioritization techniques. However, the
experiment results are inconclusive, and while two of the prioritization
functions achieve better results than the rest, the experiment would have
to be repeated on a larger suite of web applications. In general, as part
of our future work, we plan to perform similar experiments on a larger
suite of web applications. Finally, we studied how the method was able
to generate feature scenarios on a case study application and, in this
experiment, the method was able to generate scenarios that cause the
manifestation of particular features.

Chapter 6

Identifying Code of
Individual Features

From the user’s perspective, a client-side application offers a number of
features that are relatively easy to distinguish. However, the same can
not be said for their implementation details. A feature is implemented
by a subset of the application’s code and resources, and identifying the
exact subset is a challenging task: code responsible for the desired fea-
ture is often intermixed with code irrelevant from the perspective of the
feature, and there is no trivial mapping between the source code and
the application displayed in the browser. The ability to exactly iden-
tify the code and resources of a particular feature is vital for performing
reuse. In addition, a wide range of software engineering activities such
as code understanding, debugging, and maintenance can be facilitated.
In this chapter, we describe a method for automatic identification and
extraction of code and resources that implement a particular feature.

6.1 Feature manifestations

Client-side applications act as user interfaces to server-side applications,
and their two primary functions are: i) to communicate with the user
through the UI of the application, and ii) to communicate with the
server by exchanging messages. Each application offers a number of
features (Figure 6.1). Since client-side applications are UI applications,
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67



68 Chapter 6. Identifying Code of Individual Features

each feature is triggered by a sequence of user actions, i.e. a scenario,
and a triggered feature manifests as a sequence of: i) UI modifications
to the structure of the page, and/or ii) Server-side communications.
These structural changes and server-side communications represent the
feature behavior in a particular scenario and we refer to them as Feature
Manifestations.

Figure 6.1: Feature manifestations

For example, Listing 6.1 shows a simple application with a feature
that manifests when a user clicks on the part of the page structure de-
fined with the div element in line 11. The feature manifests with one UI
modification (line 15 – changing the background color of the container el-
ement), one server-side communication (line 18 – sending a synchronous
message to the server), and one UI modification (line 19 – append text
content to the container element).

1 <html >

2 <head >

3 <style >

4 #container {

5 width: 100px; height: 100px;

6 background -color: blue;

7 }

8 </style >

9 </head >

10 <body >
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11 <div id="container" ></div >

12 <script >

13 var container = document.getElementById("container");

14 container.onclick = function () {

15 container.style.backgroundColor = "red";

16 var httpRequest = new XMLHttpRequest ();

17 httpRequest.open("GET", "serverSide.php", false);

18 httpRequest.send();

19 container.textContent += httpRequest.responseText;

20 };

21 </script >

22 </body >

23 </html >

Listing 6.1: An example of feature manifestations

As can be seen from the example in Listing 6.1, a feature manifes-
tation matches an evaluation of a JavaScript expression executed when
demonstrating a scenario, an evaluation that either modifies the struc-
ture of the page, or communicates with the server. Feature manifesta-
tions capture the essence of a feature in a particular scenario. One of
the key insights that we use in this process is: in order to identify the
code that implements a feature in a scenario, we have to identify code
responsible for each feature manifestation.

6.2 Overview of the Identification process

A feature manifests when a user performs a certain scenario, and feature
manifestations can only be determined dynamically. For this reason
we base the approach on the dynamic analysis of application execution
while feature scenarios are exercised. Scenarios are an integral part
of our approach, and in the current process they have to be set up
either manually by the user, or automatically generated with a scenario
generation technique (Chapter 5).

In order to identify the implementation of a certain feature, we have
to track dependencies between different parts of the application. For this
reason, we use the Client-side Dependency Graph (Chapter 4), as the
main artifact in the process. The overall Feature Identification process
is shown in Figure 6.2. From the perspective of the whole reuse process
(Chapter 3), the Feature Identification is the first step, and Figure 6.2
details the steps of the Feature Identification activity from Figure 3.2.
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The Feature Identification consists of two phases: Interpretation and
Graph Marking.

Figure 6.2: Identifying code and resources of a feature based on a sce-
nario

Phase 1 – Interpretation – receives as input the whole web applica-
tion code, a feature scenario that causes the manifestation of the desired
feature, and a set of feature descriptors (i.e. CSS selectors1 or XPath
expressions2) that specify HTML elements which define parts of the
page structure where the feature manifests. The goal of this phase is to
build the client-side dependency graph, identify all feature manifestation
points and gather dynamic information (Execution Summary) necessary
for the accurate identification and extraction of feature code. The pro-
cess interprets the whole web application with the scenario as a guideline.
During the interpretation, as code expressions are evaluated, the depen-
dency graph is created (Chapter 4), and when a point in the application

1http://www.w3.org/TR/CSS2/selector.html
2http://www.w3.org/TR/xpath/
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execution is reached (i.e. a code expression is evaluated) that represents
a feature manifestation, that point is stored.

Phase 2 – Graph marking – marks all code and resources that directly
or indirectly contribute to the demonstrated feature, by traversing the
dependency graph for every HTML node in the specified structure and
for every feature manifestation. In essence, the graph marking phase
performs dynamic program slicing (Section 2.6.2) with the HTML nodes
of the specified structure and feature manifestations as slicing criteria.
Usually there are multiple such slicing criteria, and in essence, the feature
code is actually a union of code slices obtained for each slicing criterion.
However, it is a well known fact that unions of dynamic slices do not
necessarily reproduce application behavior for each slicing criteria [28].
For this reason, in order to compute correct unions, we gather additional
dynamic data in the interpretation phase (Execution Summary).

Once the correct union of slices is computed, we generate code and
download resources from the marked nodes. This action, in essence,
extracts a subset of the original application still able to reproduce the
scenario. In other words, the implementation of a feature, for this par-
ticular scenario, is identified and extracted.

6.2.1 Example

In the following sections we will illustrate the identification process with
a running example shown in Listing 6.2.

1 <html >

2 <head >

3 <style >

4 .fav{background -image: url("fS.png");}

5 .noFav{background -image: url("nS.png");}

6 #star { width: 32px; height: 32px;}

7 </style >

8 </head >

9 <body >

10 <div class="imageRaterContainer ">

11 <img alt="Image" src="atom.png"/><br/>

12 <div id="star" class="noFav"></div >

13 </div >

14 <div id="notif"></div >

15 <script >

16 var star=document.getElementById("star")

17 var notif=document.getElementById("notif")

18 star.onclick = function () {

19 var dec = star.className == "noFav" ? "fav" : "noFav";
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20 star.className = dec;

21 var req = new XMLHttpRequest ();

22 req.open("GET", "d.php?d="+dec , false);

23 req.send();

24 notif.textContent = req.responseText;

25 };

26 </script >

27 </body >

28 </html >

Listing 6.2: Example application

This very simple web application has two features (application UI is
shown in Figure 6.3): i) it allows the user to mark an image as a favorite
and sends that decision to the server, and ii) displays the message re-
turned from the server (note that they could as well be considered as a
single feature, but in this example, for the sake of presentation, we will
consider them as separate). Both features are triggered by a scenario in
which the user, by clicking on the star, toggles the image as a favorite.
On each click, a request is sent to the server with the information about
the state of the star.

Figure 6.3: The UI of the application from Listing 6.2

The UI of the application is composed of two containers: the first
(imageRaterContainer, line 10) is used as a container for the image ele-
ment and the star element, and defines the structure related to the first
feature; and the second (notif, line 14) is used for displaying status mes-
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sages returned from the server, and defines the structure related to the
second feature.

From the application’s behavior point of view there are three crucial
JavaScript expressions in Listing 6.2: lines 20, 23, and 24; lines that
directly modify the DOM of the page (lines 20 and 24), or communicate
with the server-side (line 23). From the feature point of view: lines
20 and 23 contribute to the behavior of the first feature, and line 24
to the behavior of the second feature. Our approach is, in essence,
dealing with the identification of such feature manifestation expressions,
determining whether or not they are important from the perspective of
the selected feature, and then performing dynamic program slicing with
those expressions as slicing criteria.

6.3 Interpretation

The first phase of the identification process is interpretation (Algorithm 7).
As input, this phase receives the web application code, the recorded
event trace (featureScenario), and the selectors specifying parts of the
page structure where the feature manifests (featureDescriptors). The
goal of this phase is to create the dependency graph, identify all feature
manifestation points, and gather data necessary for the computation of
correct slice unions. For this reason, the algorithm declares three global
variables: dGraph which stores the dependency graph, fManfs for storing
feature manifestations, and exeLog for logging code expressions that can
cause problems when performing slice unions. The graph construction
algorithm is already described in Chapter 4, Algorithm 1. The feature
manifestation point detection and dynamic information gathering is done
together with the graph construction process, while JavaScript code ex-
pressions are being evaluated (function OnExpressionEvaluation).

When detecting feature manifestation points, the main idea is to iden-
tify JavaScript code expressions that modify the target parts of the page
structure, or that communicate with the server-side application. For this
reason, on each evaluation of a JavaScript code expression, the function
OnExpressionEvaluation is called with the j-vertex (jVrtx ) matching the
currently evaluated code expression and the evaluation result (evalRes).
If the currently evaluated code expression is modifying the DOM of the
page (line 4) and the modified DOM HTML nodes are parts of the tar-
geted page structure (line 6) then the j-vertex causing the modification
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20 star.className = dec;

21 var req = new XMLHttpRequest ();

22 req.open("GET", "d.php?d="+dec , false);

23 req.send();

24 notif.textContent = req.responseText;

25 };

26 </script >

27 </body >

28 </html >

Listing 6.2: Example application

This very simple web application has two features (application UI is
shown in Figure 6.3): i) it allows the user to mark an image as a favorite
and sends that decision to the server, and ii) displays the message re-
turned from the server (note that they could as well be considered as a
single feature, but in this example, for the sake of presentation, we will
consider them as separate). Both features are triggered by a scenario in
which the user, by clicking on the star, toggles the image as a favorite.
On each click, a request is sent to the server with the information about
the state of the star.

Figure 6.3: The UI of the application from Listing 6.2

The UI of the application is composed of two containers: the first
(imageRaterContainer, line 10) is used as a container for the image ele-
ment and the star element, and defines the structure related to the first
feature; and the second (notif, line 14) is used for displaying status mes-
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sages returned from the server, and defines the structure related to the
second feature.

From the application’s behavior point of view there are three crucial
JavaScript expressions in Listing 6.2: lines 20, 23, and 24; lines that
directly modify the DOM of the page (lines 20 and 24), or communicate
with the server-side (line 23). From the feature point of view: lines
20 and 23 contribute to the behavior of the first feature, and line 24
to the behavior of the second feature. Our approach is, in essence,
dealing with the identification of such feature manifestation expressions,
determining whether or not they are important from the perspective of
the selected feature, and then performing dynamic program slicing with
those expressions as slicing criteria.

6.3 Interpretation

The first phase of the identification process is interpretation (Algorithm 7).
As input, this phase receives the web application code, the recorded
event trace (featureScenario), and the selectors specifying parts of the
page structure where the feature manifests (featureDescriptors). The
goal of this phase is to create the dependency graph, identify all feature
manifestation points, and gather data necessary for the computation of
correct slice unions. For this reason, the algorithm declares three global
variables: dGraph which stores the dependency graph, fManfs for storing
feature manifestations, and exeLog for logging code expressions that can
cause problems when performing slice unions. The graph construction
algorithm is already described in Chapter 4, Algorithm 1. The feature
manifestation point detection and dynamic information gathering is done
together with the graph construction process, while JavaScript code ex-
pressions are being evaluated (function OnExpressionEvaluation).

When detecting feature manifestation points, the main idea is to iden-
tify JavaScript code expressions that modify the target parts of the page
structure, or that communicate with the server-side application. For this
reason, on each evaluation of a JavaScript code expression, the function
OnExpressionEvaluation is called with the j-vertex (jVrtx ) matching the
currently evaluated code expression and the evaluation result (evalRes).
If the currently evaluated code expression is modifying the DOM of the
page (line 4) and the modified DOM HTML nodes are parts of the tar-
geted page structure (line 6) then the j-vertex causing the modification
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Algorithm 7 Interpretation(code, featureScenario, featureDescriptors)

1: dGraph ← buildGraph(code, eventTrace)
2: fManfs ← []; exeLog ← []
3: function OnExpressionEvaluation(jVrtx, evalRes)
4: if isModifyingDOM(evalRes) then
5: modifNds ← getModifNodes(evalRes)
6: if match(modifNds, featureDescriptors) then
7: push(fManfs, point(jVrtx, getLastDep(jVrtx ), ’UI’))
8: end if
9: else if isEstablishingServerSideComm(evalRes) then

10: push(fManfs, point(jVrtx, getLastDep(jVrtx ), ’COM’))
11: end if
12: if canThrowException(jVrtx ) then
13: push(exeLog, point(jVrtx, getLastDep(jVrtx )))
14: end if
15: end function

and the last dependency created from the j-vertex are stored as a feature
manifestation point. For server-side communication, we consider that it
is a part of a feature if it is, in any way, dependent on HTML elements
that are parts of the targeted page structure. Since in the interpretation
phase the dependencies are not yet followed, each server-side communi-
cation is treated as a potential feature manifestation point (lines 9–10,
Algorithm 7), but with a flag that marks it as such (’COM’).

15 <script >

16 var star=document.getElementById("star")

17 ...

18 star.onclick = function () {

19 var dec = star.className == "novFav" ? "fav" : "noFav";

20 star.className = dec;

21 var req = new XMLHttpRequest ();

22 req.open("GET", "d.php?d="+dec , false);

23 req.send();

24 ...

Listing 6.3: Code Excerpt from Listing 6.2

Example. Consider the evaluation of an assignment expression in
line 18, Listing 6.3, which assigns a function to a property of an object.
Since the star identifier refers to an HTML node that is part of the
targeted structure, the j-vertex matching the assignment expression and
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the last dependency from that j-vertex (to the j-vertex matching the
star.onclick expression) are stored as a feature manifestation point. A
similar process is repeated when evaluating the assignment expression
in line 20. The next interesting expression evaluation occurs in line 23,
where an HttpRequest is sent. According to Algorithm 7, lines 9–10, the
currently evaluated node, along with its last dependency will be stored
as a potential feature manifestation point.

The algorithm continues with adding the information to the exeLog
(line 13, Algorithm 7). For the reasons that will be described in the
following section, we log all evaluated expressions that can potentially
cause exceptions.

6.4 Problems with slice unions

Our ultimate goal is to use the feature identification method to reuse
feature code into another application. This requires that we are able to
obtain a subset of the source code that, for a given scenario, behaves
in the same way as the whole application. Since a feature manifests
through a sequence of feature manifestation points, we have to identify
the subset of the application’s code that influences each feature manifes-
tation point. A straightforward approach for identifying the code of the
entire feature would then be to just perform a union of all code expres-
sions that influence at least one feature manifestation point. However,
this approach is unsound.

Consider the example in Listing 6.4, where the goal is to extract the
code of a feature that manifests on the parts of the web page structure
with identifiers container1 and container2.

1 ab: var c1=document.getElementById("c1");

2
3 abc: function Cont(afImplement) {

4 c: if(afImplement)

5 c: var afterImplement = afImplement;

6 else

7 afterImplement = function (){};

8
9 abc: this.init = function () {

10 ab: c1.textContent += "1"; /* feature manifestation */

11 c: afterImplement ();

12 };

13 }

14
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Algorithm 7 Interpretation(code, featureScenario, featureDescriptors)

1: dGraph ← buildGraph(code, eventTrace)
2: fManfs ← []; exeLog ← []
3: function OnExpressionEvaluation(jVrtx, evalRes)
4: if isModifyingDOM(evalRes) then
5: modifNds ← getModifNodes(evalRes)
6: if match(modifNds, featureDescriptors) then
7: push(fManfs, point(jVrtx, getLastDep(jVrtx ), ’UI’))
8: end if
9: else if isEstablishingServerSideComm(evalRes) then

10: push(fManfs, point(jVrtx, getLastDep(jVrtx ), ’COM’))
11: end if
12: if canThrowException(jVrtx ) then
13: push(exeLog, point(jVrtx, getLastDep(jVrtx )))
14: end if
15: end function

and the last dependency created from the j-vertex are stored as a feature
manifestation point. For server-side communication, we consider that it
is a part of a feature if it is, in any way, dependent on HTML elements
that are parts of the targeted page structure. Since in the interpretation
phase the dependencies are not yet followed, each server-side communi-
cation is treated as a potential feature manifestation point (lines 9–10,
Algorithm 7), but with a flag that marks it as such (’COM’).

15 <script >

16 var star=document.getElementById("star")

17 ...

18 star.onclick = function () {

19 var dec = star.className == "novFav" ? "fav" : "noFav";

20 star.className = dec;

21 var req = new XMLHttpRequest ();

22 req.open("GET", "d.php?d="+dec , false);

23 req.send();

24 ...

Listing 6.3: Code Excerpt from Listing 6.2

Example. Consider the evaluation of an assignment expression in
line 18, Listing 6.3, which assigns a function to a property of an object.
Since the star identifier refers to an HTML node that is part of the
targeted structure, the j-vertex matching the assignment expression and
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the last dependency from that j-vertex (to the j-vertex matching the
star.onclick expression) are stored as a feature manifestation point. A
similar process is repeated when evaluating the assignment expression
in line 20. The next interesting expression evaluation occurs in line 23,
where an HttpRequest is sent. According to Algorithm 7, lines 9–10, the
currently evaluated node, along with its last dependency will be stored
as a potential feature manifestation point.

The algorithm continues with adding the information to the exeLog
(line 13, Algorithm 7). For the reasons that will be described in the
following section, we log all evaluated expressions that can potentially
cause exceptions.

6.4 Problems with slice unions

Our ultimate goal is to use the feature identification method to reuse
feature code into another application. This requires that we are able to
obtain a subset of the source code that, for a given scenario, behaves
in the same way as the whole application. Since a feature manifests
through a sequence of feature manifestation points, we have to identify
the subset of the application’s code that influences each feature manifes-
tation point. A straightforward approach for identifying the code of the
entire feature would then be to just perform a union of all code expres-
sions that influence at least one feature manifestation point. However,
this approach is unsound.

Consider the example in Listing 6.4, where the goal is to extract the
code of a feature that manifests on the parts of the web page structure
with identifiers container1 and container2.

1 ab: var c1=document.getElementById("c1");

2
3 abc: function Cont(afImplement) {

4 c: if(afImplement)

5 c: var afterImplement = afImplement;

6 else

7 afterImplement = function (){};

8
9 abc: this.init = function () {

10 ab: c1.textContent += "1"; /* feature manifestation */

11 c: afterImplement ();

12 };

13 }

14
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15 a: var o1 = new Cont();

16 a: o1.init();

17
18 c: var c2=document.getElementById("c2");

19 bc: var o2 = new Cont(function (){

20 c: c2.textContent +="2" /* feature manifestation */

21 });

22 bc: o2.init();

Listing 6.4: Example illustrating the problem of merging results for three
feature manifestation points. Markings a, b, and c denote the feature
manifestation point that has caused the line inclusion.

The example in Listing 6.4 has 3 feature manifestation points: a) line
10 invoked by the call expression in line 16, b) line 10 invoked by the
call expression in line 22, and c) line 20. From the perspective of the
feature manifestation point a the necessary JavaScript code lines are: 1,
3, 9, 10, 15, 16; from the perspective of feature manifestation point b:
1, 3, 9, 10, 19, 22; and from the perspective of the feature manifestation
point c: 3, 4, 5, 9, 11, 18, 19, 20, 22. For each feature manifestation
point this is the minimum amount of code necessary to replicate it. If
we perform a simple union of the identified code lines, we end up with
the whole JavaScript source code except for lines 6 and 7. However, this
is not correct: the execution of the init function (lines 9–12) caused by
the call expression in line 16 (o1.init()) now contains an error that will
stop application execution – the afterImplement identifier evaluates to
null instead of a function, due to not including line 7 (line 11 is included
in the whole code because of feature manifestation c, and is unnecessary
from the perspective of feature manifestation points a and b).

In general, consider two feature manifestation points a1 and a2, where
it was identified that the necessary control-flow for a1 is a sequence of
expressions 〈. . . , ea, ec, . . .〉, and the control flow of a2 is a sequence of
expressions 〈. . . , ea, eb, ec, . . .〉. When we construct a slice union, the
control-flow for a1 now becomes 〈. . . , ea, eb, ec, . . .〉. Since eb was not
included on behalf of a1, none of its dependencies at this point of execu-
tion were traversed and there is no guarantee that eb will not cause any
problems (e.g. throw a null exception because its initialization was not
included). For this reason, since our end goal is to enable automatic fea-
ture reuse, we will follow the dependencies of eb leading to the execution
of a1, at the expense of including additional code, because having exe-
cutable feature code is more important than having the minimal amount
of code. To do this, in Algorithm 7, line 13, we have to collect the trace
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of all evaluated member expressions and call expressions (exeLog), i.e.
expressions which when evaluated to null can change the control-flow
(e.g by throwing an exception). Notice how this does not have any in-
fluence on the result of the evaluation of a1 since eb has already been
determined as unimportant from the perspective of a1.

6.5 Graph Marking

So far, in the interpretation phase, we have identified points in the execu-
tion where the behavior is manifested, but to identify all relevant code,
we have to track all direct and indirect dependencies of those points.
This part of the process is handled by the graph marking phase, which
is composed of two steps: i) marking of feature code and ii) handling
slice union problems.

6.5.1 Marking Feature Code

The first step of the graph marking phase is the marking of feature code.
As is described in Algorithm 8, the dependency graph is traversed for
all feature manifestation points (lines 2–12) and for all h-vertices (lines
13–19) that match, or are contained within, parts of the page struc-
ture specified by the selectors (fDescriptors). There are two different
kinds of feature manifestation points (UI modifications and server-side
communications), and the process treats them differently. If the fea-
ture manifestation point is communicating with the server-side, then
the graph is traversed, for this point, only if there is a dependency from
the feature manifestation point to the part of the structure where the
feature manifests (lines 6, 7). And if the feature manifestation point is
modifying parts of the page structure where the feature manifests, then
the dependencies of that feature manifestation are always marked (line
10).

ThemarkGraph function (Algorithm 9) describes the process of graph
traversal with the goal of marking code nodes that influence the selected
vertices. The key point is the selection of the dependencies that will
be followed (getPriorDepends function). In the interpretation phase, all
dependencies have been labeled with the identifiers of the evaluation
position, and the getPriorDepends selects all previous non-traversed de-
pendencies according to the evaluation position.
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15 a: var o1 = new Cont();

16 a: o1.init();

17
18 c: var c2=document.getElementById("c2");

19 bc: var o2 = new Cont(function (){

20 c: c2.textContent +="2" /* feature manifestation */

21 });

22 bc: o2.init();

Listing 6.4: Example illustrating the problem of merging results for three
feature manifestation points. Markings a, b, and c denote the feature
manifestation point that has caused the line inclusion.

The example in Listing 6.4 has 3 feature manifestation points: a) line
10 invoked by the call expression in line 16, b) line 10 invoked by the
call expression in line 22, and c) line 20. From the perspective of the
feature manifestation point a the necessary JavaScript code lines are: 1,
3, 9, 10, 15, 16; from the perspective of feature manifestation point b:
1, 3, 9, 10, 19, 22; and from the perspective of the feature manifestation
point c: 3, 4, 5, 9, 11, 18, 19, 20, 22. For each feature manifestation
point this is the minimum amount of code necessary to replicate it. If
we perform a simple union of the identified code lines, we end up with
the whole JavaScript source code except for lines 6 and 7. However, this
is not correct: the execution of the init function (lines 9–12) caused by
the call expression in line 16 (o1.init()) now contains an error that will
stop application execution – the afterImplement identifier evaluates to
null instead of a function, due to not including line 7 (line 11 is included
in the whole code because of feature manifestation c, and is unnecessary
from the perspective of feature manifestation points a and b).

In general, consider two feature manifestation points a1 and a2, where
it was identified that the necessary control-flow for a1 is a sequence of
expressions 〈. . . , ea, ec, . . .〉, and the control flow of a2 is a sequence of
expressions 〈. . . , ea, eb, ec, . . .〉. When we construct a slice union, the
control-flow for a1 now becomes 〈. . . , ea, eb, ec, . . .〉. Since eb was not
included on behalf of a1, none of its dependencies at this point of execu-
tion were traversed and there is no guarantee that eb will not cause any
problems (e.g. throw a null exception because its initialization was not
included). For this reason, since our end goal is to enable automatic fea-
ture reuse, we will follow the dependencies of eb leading to the execution
of a1, at the expense of including additional code, because having exe-
cutable feature code is more important than having the minimal amount
of code. To do this, in Algorithm 7, line 13, we have to collect the trace

6.5 Graph Marking 77

of all evaluated member expressions and call expressions (exeLog), i.e.
expressions which when evaluated to null can change the control-flow
(e.g by throwing an exception). Notice how this does not have any in-
fluence on the result of the evaluation of a1 since eb has already been
determined as unimportant from the perspective of a1.

6.5 Graph Marking

So far, in the interpretation phase, we have identified points in the execu-
tion where the behavior is manifested, but to identify all relevant code,
we have to track all direct and indirect dependencies of those points.
This part of the process is handled by the graph marking phase, which
is composed of two steps: i) marking of feature code and ii) handling
slice union problems.

6.5.1 Marking Feature Code

The first step of the graph marking phase is the marking of feature code.
As is described in Algorithm 8, the dependency graph is traversed for
all feature manifestation points (lines 2–12) and for all h-vertices (lines
13–19) that match, or are contained within, parts of the page struc-
ture specified by the selectors (fDescriptors). There are two different
kinds of feature manifestation points (UI modifications and server-side
communications), and the process treats them differently. If the fea-
ture manifestation point is communicating with the server-side, then
the graph is traversed, for this point, only if there is a dependency from
the feature manifestation point to the part of the structure where the
feature manifests (lines 6, 7). And if the feature manifestation point is
modifying parts of the page structure where the feature manifests, then
the dependencies of that feature manifestation are always marked (line
10).

ThemarkGraph function (Algorithm 9) describes the process of graph
traversal with the goal of marking code nodes that influence the selected
vertices. The key point is the selection of the dependencies that will
be followed (getPriorDepends function). In the interpretation phase, all
dependencies have been labeled with the identifiers of the evaluation
position, and the getPriorDepends selects all previous non-traversed de-
pendencies according to the evaluation position.
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Algorithm 8 Marking Feature Code

1: function markFeatureCode(dGraph, fManfs, fDescriptors)
2: for all fManf in fManfs do
3: mVertex ← getVertex(fManf )
4: d ← getDependency(fManf )
5: if isServerSideCommunication(fManf ) then
6: if depsOnImprtntNd(mVertex, d, fDescriptors) then
7: markGraph(mVertex, d)
8: end if
9: else

10: markGraph(mVertex, d)
11: end if
12: end for
13: for all hVertex in getHVertices(dGraph) do
14: if matches(getHNode(hVertex ), fDescriptors) then
15: for all d in getDependencies(hVertex ) do
16: markGraph(hVertex, d)
17: end for
18: end if
19: end for
20: end function

Algorithm 9 Marking Graph vertices

1: function markGraph(vertex, dep)
2: markAsIncluded(vertex )
3: for all currDep in getPriorDependencies(vertex, dep) do
4: markAsTraversed(currDep)
5: markGraph(getTargetNode(currDep), currDep)
6: end for
7: end function

Complexity. Let G = 〈V,A〉 be a dependency graph built in the in-
terpretation phase; where V is a set of vertices and A a set of edges; and
let s be a sequence of evaluated expressions in a scenario. The execution
of the algorithm depends on the two for loops. For the first loop, the
length of fManfs is upper bound by |s| – there can not be more fea-
ture manifestations than evaluated expressions, however even though it
is technically possible that all evaluated expressions are feature manifes-
tations, it is often the case that |fManfs| � |s|. Every execution of the
depsOnImprtntNd function can at most go through the whole graph (ev-
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ery arc can be traversed at most once), and the number of executions is
upper bound by |A|. The second loop is executed for each HTML node
in the parts of the page structure where the feature manifests, so the
number of iterations is upper bound by |V |. The markGraph function,
which is called in each loop, can at most (across all invocations) visit all
edges of the graph and thus has an upper bound of |A|. So the upper
bound of the graph marking algorithm is: O(|s||A|2 + |V ||A|).

Example. For the example in Listing 6.2, two feature manifestation
points were identified: one for the execution of the assignment expres-
sion in line 20 (assExpr@20: star.className = dec;) that modifies the
part of the UI, and one for the call expression in line 23 (req.send();),
labeled as an server-side communication feature point. First, the ass-
Expr@20 is marked as important, and its dependencies traversed: the
memberExpr@20 with a dependency to varDecl@16 is also marked as
important, along with the node matching the initialization call expres-
sion (document.getElementById(’star’) – callExpr@16 ) where the cur-
rent value of the identifier was set. Since the call expression is dependent
on the div@12, it is also marked as important. This also causes the mark-
ing of h-nodes: div@10, body@9, html@1 due to structural dependencies,
c-nodes: .noFav@5, #star@6 (which causes the marking of style@3 and
head@2 ). Since div@12 is also dependent on assExpr@18 all of its de-
pendencies are also included. Similarly, for the node matching the right
hand side of the assignment expression in line 20 (identifier@20 ), all the
dependencies are also traversed and marked. Next, the second feature
manifestation point is processed. Since it is an server-side communi-
cation feature manifestation point, first its dependencies are followed in
order to determine if it is in any way dependent on any important part of
the UI. Since it is indirectly dependent on div@12, the graph is traversed,
and all expressions in lines 21–23 are marked as included. The algorithm
then goes through all h-nodes that define the selected parts of the web
page structure, and traverses their dependencies. In this example, this
does not include any more expressions, since everything important was
already included in previous traversals.

1 <html >

2 <head >

3 <style >

4 .fav{background -image: url("fS.png");}

5 .noFav{background -image: url("nS.png");}

6 #star { width: 32px; height: 32px;}

7 </style >
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Algorithm 8 Marking Feature Code

1: function markFeatureCode(dGraph, fManfs, fDescriptors)
2: for all fManf in fManfs do
3: mVertex ← getVertex(fManf )
4: d ← getDependency(fManf )
5: if isServerSideCommunication(fManf ) then
6: if depsOnImprtntNd(mVertex, d, fDescriptors) then
7: markGraph(mVertex, d)
8: end if
9: else

10: markGraph(mVertex, d)
11: end if
12: end for
13: for all hVertex in getHVertices(dGraph) do
14: if matches(getHNode(hVertex ), fDescriptors) then
15: for all d in getDependencies(hVertex ) do
16: markGraph(hVertex, d)
17: end for
18: end if
19: end for
20: end function

Algorithm 9 Marking Graph vertices

1: function markGraph(vertex, dep)
2: markAsIncluded(vertex )
3: for all currDep in getPriorDependencies(vertex, dep) do
4: markAsTraversed(currDep)
5: markGraph(getTargetNode(currDep), currDep)
6: end for
7: end function

Complexity. Let G = 〈V,A〉 be a dependency graph built in the in-
terpretation phase; where V is a set of vertices and A a set of edges; and
let s be a sequence of evaluated expressions in a scenario. The execution
of the algorithm depends on the two for loops. For the first loop, the
length of fManfs is upper bound by |s| – there can not be more fea-
ture manifestations than evaluated expressions, however even though it
is technically possible that all evaluated expressions are feature manifes-
tations, it is often the case that |fManfs| � |s|. Every execution of the
depsOnImprtntNd function can at most go through the whole graph (ev-
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ery arc can be traversed at most once), and the number of executions is
upper bound by |A|. The second loop is executed for each HTML node
in the parts of the page structure where the feature manifests, so the
number of iterations is upper bound by |V |. The markGraph function,
which is called in each loop, can at most (across all invocations) visit all
edges of the graph and thus has an upper bound of |A|. So the upper
bound of the graph marking algorithm is: O(|s||A|2 + |V ||A|).

Example. For the example in Listing 6.2, two feature manifestation
points were identified: one for the execution of the assignment expres-
sion in line 20 (assExpr@20: star.className = dec;) that modifies the
part of the UI, and one for the call expression in line 23 (req.send();),
labeled as an server-side communication feature point. First, the ass-
Expr@20 is marked as important, and its dependencies traversed: the
memberExpr@20 with a dependency to varDecl@16 is also marked as
important, along with the node matching the initialization call expres-
sion (document.getElementById(’star’) – callExpr@16 ) where the cur-
rent value of the identifier was set. Since the call expression is dependent
on the div@12, it is also marked as important. This also causes the mark-
ing of h-nodes: div@10, body@9, html@1 due to structural dependencies,
c-nodes: .noFav@5, #star@6 (which causes the marking of style@3 and
head@2 ). Since div@12 is also dependent on assExpr@18 all of its de-
pendencies are also included. Similarly, for the node matching the right
hand side of the assignment expression in line 20 (identifier@20 ), all the
dependencies are also traversed and marked. Next, the second feature
manifestation point is processed. Since it is an server-side communi-
cation feature manifestation point, first its dependencies are followed in
order to determine if it is in any way dependent on any important part of
the UI. Since it is indirectly dependent on div@12, the graph is traversed,
and all expressions in lines 21–23 are marked as included. The algorithm
then goes through all h-nodes that define the selected parts of the web
page structure, and traverses their dependencies. In this example, this
does not include any more expressions, since everything important was
already included in previous traversals.

1 <html >

2 <head >

3 <style >

4 .fav{background -image: url("fS.png");}

5 .noFav{background -image: url("nS.png");}

6 #star { width: 32px; height: 32px;}

7 </style >
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8 </head >

9 <body >

10 <div class="imageRaterContainer ">

11 <img alt="Image" src="atom.png"/><br/>

12 <div id="star" class="noFav">Note </div >

13 </div >

14
15 <script >

16 var star=document.getElementById("star");

17
18 star.onclick = function () {

19 var dec = star.className == "noFav" ? "fav" : null;

20 star.className = dec;

21 var req = new XMLHttpRequest ();

22 req.open("GET", "d.php?d="+dec , false);

23 req.send();

24
25 };

26 </script >

27 </body >

28 </html >

Listing 6.5: Example application extracted code

With this, the process has identified all code expressions responsible
for the implementation of a feature during the given scenario. In essence,
the process has identified that the first behavior (selecting the image as
favorite) depends on the execution of the assignment expression in line
20, and the second behavior (sending the decision to the server) depends
on the call expression in line 23. By traversing the dependencies of
those two expressions the process identifies code responsible for the whole
feature. By generating code from the nodes marked as important we get
the code shown in Listing 6.5.

Compared to the code from Listing 6.2 the identification process has
identified the HTML element defined in line 14, the variable declaration
in line 17, and the assignment expression in line 24 as code that is not
necessary for the target feature. Notice how the second expression in the
conditional expression in line 19 (“noFav”) is replaced by null, simply
because it was not executed in the demonstrated scenario. In order
to remedy this, the developer would have to change the scenario by
demonstrating another click on the star element (causing the execution
of the second expression).

6.5 Graph Marking 81

6.5.2 Fixing Slice Union problems

After the code of each feature manifestation point has been identified,
in order to extract the feature code in a stand-alone fashion, we have
to create a union of all code expressions that are used by at least one
feature manifestation point. As is explained in Section 6.4, this can lead
to a number of problems. In order to fix these problems we present
Algorithm 10.

Algorithm 10 Fixing Slice Union Problems

1: function fixSliceUnionProblems(exeLog)
2: do
3: hasIncludedNewVertices ← false
4: for all item in exeLog do
5: jVrtx ← getJVertex(item)
6: if isIncluded(jVrtx ) and anyCntxtDepTrvrsd(item) then
7: deps ← getUntraversedDepsFromContext(jVrtx, item)
8: numNewInclVrtxs ← markAllDeps(jVrtx, deps)
9: if numNewInclVrtxs �= 0 then

10: hasIncludedNewVertices ← true
11: end if
12: end if
13: end for
14: while hasFoundNewVertices
15: end function

The main algorithm loop is executed as long as new vertices that will
be included into the final feature code are found. In each iteration (lines
4–13, Algorithm 10), the algorithm goes through all trace items (item)
in the execution log (exeLog, created in Algorithm 7). If the trace item’s
j-vertex is included as part of feature code in previous graph markings,
then the algorithm checks if at least one dependency from the same
context in which the trace item was executed has been traversed (line
6). If it has been, then in the final feature code, the matching code
expression will be executed in this execution context. For this reason,
we have to follow the untraversed dependencies (line 7) of the j-vertex
that exist in the current context (line 8). The functionmarkAllDeps calls
the markGraph function on the jVrtx for each such dependency, with an
addition that it also counts the number of newly included vertices.



80 Chapter 6. Identifying Code of Individual Features

8 </head >

9 <body >

10 <div class="imageRaterContainer ">

11 <img alt="Image" src="atom.png"/><br/>

12 <div id="star" class="noFav">Note </div >

13 </div >

14
15 <script >

16 var star=document.getElementById("star");

17
18 star.onclick = function () {

19 var dec = star.className == "noFav" ? "fav" : null;

20 star.className = dec;

21 var req = new XMLHttpRequest ();

22 req.open("GET", "d.php?d="+dec , false);

23 req.send();

24
25 };

26 </script >

27 </body >

28 </html >

Listing 6.5: Example application extracted code

With this, the process has identified all code expressions responsible
for the implementation of a feature during the given scenario. In essence,
the process has identified that the first behavior (selecting the image as
favorite) depends on the execution of the assignment expression in line
20, and the second behavior (sending the decision to the server) depends
on the call expression in line 23. By traversing the dependencies of
those two expressions the process identifies code responsible for the whole
feature. By generating code from the nodes marked as important we get
the code shown in Listing 6.5.

Compared to the code from Listing 6.2 the identification process has
identified the HTML element defined in line 14, the variable declaration
in line 17, and the assignment expression in line 24 as code that is not
necessary for the target feature. Notice how the second expression in the
conditional expression in line 19 (“noFav”) is replaced by null, simply
because it was not executed in the demonstrated scenario. In order
to remedy this, the developer would have to change the scenario by
demonstrating another click on the star element (causing the execution
of the second expression).

6.5 Graph Marking 81

6.5.2 Fixing Slice Union problems

After the code of each feature manifestation point has been identified,
in order to extract the feature code in a stand-alone fashion, we have
to create a union of all code expressions that are used by at least one
feature manifestation point. As is explained in Section 6.4, this can lead
to a number of problems. In order to fix these problems we present
Algorithm 10.

Algorithm 10 Fixing Slice Union Problems

1: function fixSliceUnionProblems(exeLog)
2: do
3: hasIncludedNewVertices ← false
4: for all item in exeLog do
5: jVrtx ← getJVertex(item)
6: if isIncluded(jVrtx ) and anyCntxtDepTrvrsd(item) then
7: deps ← getUntraversedDepsFromContext(jVrtx, item)
8: numNewInclVrtxs ← markAllDeps(jVrtx, deps)
9: if numNewInclVrtxs �= 0 then

10: hasIncludedNewVertices ← true
11: end if
12: end if
13: end for
14: while hasFoundNewVertices
15: end function

The main algorithm loop is executed as long as new vertices that will
be included into the final feature code are found. In each iteration (lines
4–13, Algorithm 10), the algorithm goes through all trace items (item)
in the execution log (exeLog, created in Algorithm 7). If the trace item’s
j-vertex is included as part of feature code in previous graph markings,
then the algorithm checks if at least one dependency from the same
context in which the trace item was executed has been traversed (line
6). If it has been, then in the final feature code, the matching code
expression will be executed in this execution context. For this reason,
we have to follow the untraversed dependencies (line 7) of the j-vertex
that exist in the current context (line 8). The functionmarkAllDeps calls
the markGraph function on the jVrtx for each such dependency, with an
addition that it also counts the number of newly included vertices.



82 Chapter 6. Identifying Code of Individual Features

Example. Consider the code in Listing 6.6. As was mentioned in
Section 6.4, the union code does not include line 7 where the variable
afterImplement is initialized. When executing the code leading to fea-
ture manifestation a, this causes a null exception for the call expression
in line 11 (included due to the feature manifestation point c). Algo-
rithm 10 fixes this problem by going through the exeLog. When visiting
the call expression in line 11 called by the call expression in line 16, the
algorithm computes that the call expression in line 11 is included and
that there are dependencies created in this context that were traversed.
This means that the dependencies of the call expression in line 11, for
this context, also have to be traversed. By following these untraversed
dependencies, the assignment expression in line 7 is included, and the
slice union problem is fixed.

/*03*/abc: function Cont(afImplement) {

/*04*/c: if(afImplement)

/*05*/c: var afterImplement = afImplement;

/*06*/ else

/*07*/ afterImplement = function (){};

/*08*/

/*09*/abc: this.init = function () {

/*10*/ab: c1.textContent += "1";

/*11*/c: afterImplement ();

/*12*/ };

/*13*/ }

/*14*/

/*15*/a: var o1 = new Cont();

/*16*/a: o1.init();

Listing 6.6: Excerpt from Listing 6.4

6.6 Evaluation

We have performed the evaluation of the feature identification process
with two goals: i) to show that the process is able to identify code that
implements a feature manifested by a scenario, and ii) to compare the
gains that can be achieved by using our method with a baseline obtained
by profiling code. We consider the identification process successful if by
extracting the identified code into a stand-alone web application we get
the same functional and visual results when executing the scenario with
the extracted code as we do with the original code. We compare the
results obtained with our method with the results obtained by profiling
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code. Profiling is a straightforward extraction approach – the idea is to
keep lines executed in a scenario, while maintaining syntactical correct-
ness. The code extracted in this way is still capable of replicating the
scenario.

We have performed three sets of experiments: i) extracting client-
side library features, ii) extracting client-side web application features,
and iii) page optimization. In all cases, scenarios are specified as tests.
We consider the feature identification process successful if the tests can
be successfully executed both in the original application, and in the new
application composed out of the extracted code.

All applications, and the tests describing the scenarios can be down-
loaded from www.fesb.hr/~jomaras/download/FIdEvaluation.zip.

6.6.1 Extracting Library Features

In the first experiment – extracting library features – our goal was to
validate the extraction process against a set of externally defined behav-
iors. For this purpose, we decided to use several widely used JavaScript
libraries, which all come with unit-tests specified by their developers.
While it is true that features do not need to correspond to unit-tests,
and that the purpose of the tests is to reveal errors and not necessarily
specify features, in this experiment we consider unit-tests as externally
defined behavior specification that we use to gain information about
whether the extraction process is correct. The extraction process is suc-
cessful if the extracted code is able to pass the same unit tests as the
original code.

The experiments were performed on six open-source JavaScript li-
braries: Gauss3 – a library for statistics, analytics, and sets; Sylvester4

– a vector and matrix library; Prototype5, Underscore6, MooTools7, and
jQuery8 – widely used general purpose libraries.

The experiment was successful, and in all 469 cases the extracted code
was able to pass the tests. Table 6.1 shows the summary of the experi-
ment results. For each library, we present the range (from minimum to
maximum), the average, and the median of the following metrics: lines of

3https://github.com/stackd/gauss
4https://github.com/jcoglan/sylvester
5http://prototypejs.org/
6http://underscorejs.org/
7http://mootools.net/
8http://jquery.com/
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Table 6.1: Library extraction experiment results summary. LOC (Lines
of Code), Exe (Number of evaluated expressions in thousands), Time in
sec, #FM (Number of feature manifestations), o (original), p (profiled),
and s (sliced). The number before each library name presents the number
of tests.

#33 Gauss: 678 LOC #84 Sylvester: 1756 LOC
Range Avg Med Range Avg Med

oLOC 690-699 692.2 692 1767-1953 1794.2 1788.5
pLOC 79-167 114.9 109 337-702 430.1 405
sLOC 29-86 56.0 56 33-450 141.87 116
pExe 0.25-231 26.0 12.5 4.2-400 16.4 6.3
sExe 0.15-230 18.2 3 0.1-369.5 11.2 2.5
Time 0.34-43.7 4.6 1.8 1.7-553 104.0 2.2
#FM 1-9 2.1 1 1-30 4.6 3

#79 underscore: 1258 LOC #85 prototype: 7036 LOC
oLOC 1268-1493 1285.1 1276.7 7049-7117 7062 7057
pLOC 232-553 274.9 273 1631-1827 1681.1 1664
sLOC 163-262 199.86 198 20-498 117.27 89
pExe 7-19.5 8.1 7.5 48-74.5 50.3 50
sExe 5.4-18.6 6.5 5.8 0.02-26.4 2.0 0.5
Time 1.9-5.3 2.1 2 11.6-53.2 18.3 16.9
#FM 1-23 5.0 4 1-47 8.0 6

#35 mooTools: 5977 LOC #153 jQuery: 9790 LOC
oLOC 5988-6118 6003.4 6004 10,503-10,266 10,079 10,071
pLOC 1564-1724 1610.0 1617 1807-2978 2203.4 2145.5
sLOC 10-550 257.4 210 18-1834 943 873.5
pExe 150.2-168.5 152.6 152.8 33-225.7 52.8 41.6
sExe 0.22-90 35.3 16.9 0.01-150.5 27.1 20.8
Time 23.3-84.8 55.5 48.4 11.6-86.5 18.8 15
#FM 1-34 3.4 2 1-604 32.2 17

#469 Total
oLOC 690-10,266 6003.4 6004
pLOC 79-2978 1272.5 1645
sLOC 10-1628 326.2 196.5
pExe 0.2-396.6 43.8 37
sExe 0.01-369.5 16.3 6
Time 0.3-553 16.1 13.1
#FM 1-604 14.0 5
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code (LOC), number of evaluated expressions in thousands (Exe), slicing
time in seconds (Time), and the number of encountered slicing criteria
(SC). For LOC we present the original number of code lines (oLOC ),
profiled lines of code (pLOC ), and sliced lines of code (sLOC ). When
presenting the number of evaluated expressions, we show how many ex-
pressions where evaluated when executing the test in the context of the
original code (pExe) and in the context of the sliced code (sExe).

As shown in Table 6.1, the average LOC of a single test with the li-
brary included varies from 690 for the smallest, Gauss library, to 10,266
for the biggest, jQuery library. During the execution of each test, the in-
terpreter on average visits around 22 percent of library code (Figure 6.4).

Figure 6.4: Average difference in original, profiled, and sliced lines of
code, for the six test libraries

Out of the profiled code, the feature identification process identifies
as important around 36 percent of the code. So, when compared to
profiling, our method achieves around 63 percent of savings in terms of
code lines (Figure 6.5).

When executing the tests on the sliced code, the experiments have
shown that the behavior that passes the test can be reproduced with,
on average, 60 percent of evaluated expressions. This saving represents
performance gains (Figure 6.6).
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Out of the profiled code, the feature identification process identifies
as important around 36 percent of the code. So, when compared to
profiling, our method achieves around 63 percent of savings in terms of
code lines (Figure 6.5).

When executing the tests on the sliced code, the experiments have
shown that the behavior that passes the test can be reproduced with,
on average, 60 percent of evaluated expressions. This saving represents
performance gains (Figure 6.6).
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Figure 6.5: Average ratio between profiled and sliced lines of code

Figure 6.6: Average ratio between the number of evaluated code expres-
sions in the profiled code and sliced code
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Slice Unions

As can be seen from Table 6.1, the average number of feature manifesta-
tions (slicing criteria) per test is 14. This means that problems with slice
unions can occur. In our experiments, the slice union problems occur in
one test of the Sylvester library, and in 17 tests of the jQuery library.
The comparison of the average code sizes for these tests is shown in Fig-
ure 6.7. On average, in order to resolve the problems of slice unions, the
process has included additional 17.5 percent code.

Figure 6.7: Average difference between the sliced without slice unions,
sliced, profiled, and original code, for the tests failing without taking
into account slice unions

6.6.2 Extracting Features

For the second experiment – extracting features – our goal was to show
that the process is capable of extracting features from standard web
applications, features implemented with HTML, CSS, and JavaScript
code. The experiment was performed on ten medium-sized web appli-
cations (Table 6.2), which were selected because they have multiple,
easily-identifiable features. Each test application has at least two fea-
tures whose code was identified and extracted by the feature identifica-
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Figure 6.6: Average ratio between the number of evaluated code expres-
sions in the profiled code and sliced code

6.6 Evaluation 87

Slice Unions

As can be seen from Table 6.1, the average number of feature manifesta-
tions (slicing criteria) per test is 14. This means that problems with slice
unions can occur. In our experiments, the slice union problems occur in
one test of the Sylvester library, and in 17 tests of the jQuery library.
The comparison of the average code sizes for these tests is shown in Fig-
ure 6.7. On average, in order to resolve the problems of slice unions, the
process has included additional 17.5 percent code.

Figure 6.7: Average difference between the sliced without slice unions,
sliced, profiled, and original code, for the tests failing without taking
into account slice unions

6.6.2 Extracting Features

For the second experiment – extracting features – our goal was to show
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tion process. For each test application, we have manually identified its
features, the parts of the structure where the features manifests, and
have specified the scenarios that capture the feature behavior.

Table 6.2: Web applications used for feature extraction. LOC (Lines of
Code)

PageID Page name LOC #Features

1 ds22 21309 4
2 salleedesign 12394 3
3 mtcdc 13957 3
4 mailboxing 12171 3
5 dunked 12727 3
6 wordpress-virtue 24569 3
7 hipstamatic 12073 2
8 makalu 11998 2
9 nitrografix 12755 2
10 kennymeyers 11931 2

Every scenario that causes a manifestation of a particular feature
is represented as a Selenium9 test. Selenium is a navigation scripting
and testing utility that can be used to automate web applications for
testing purposes. A developer specifies a series of actions and defines UI
properties that have to be satisfied in order for the test to be successful.
We consider that a feature is successfully extracted if the same tests
can be successfully executed both in the original application and in the
application composed out of the extracted code.

For the ten web applications, we have set up 27 experiments, whose
results are shown in Table 6.3. The experiment was successful and in
all cases the extracted code was able to successfully pass the tests. All
applications, their test cases, and experiment results can be downloaded
from www.fesb.hr/~jomaras/download/FIdEvaluation.zip.

On average, during the execution of each scenario the control-flow
went through 30 percent of the application code, and out of that visited
code, the feature identification process calculated that around 56 percent

9http://docs.seleniumhq.org/
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Table 6.3: Experimental results for feature extraction. ID (Page and
Feature), p (Profiled), s (Sliced), o (Original), LOC (Lines of Code),
Time (slicing time in seconds)

ID pLOC sLOC pLoc/oLoc sLOC/pLOC Time

1-1 5408 3552 25% 66% 100
1-2 5471 3606 26% 66% 136
1-3 5552 3629 26% 65% 355
1-4 5412 3495 25% 65% 101
2-1 3159 1716 25% 54% 36
2-2 2921 1144 24% 39% 20
2-3 3156 1826 25% 58% 26
3-1 3477 1658 25% 48% 13
3-2 4544 2710 33% 60% 83
3-3 4770 3070 34% 64% 96
4-1 3909 2539 32% 65% 27
4-2 3815 2530 31% 66% 28
4-3 4090 2688 34% 66% 53
5-1 4417 2826 35% 54% 145
5-2 4501 2293 35% 51% 99
5-3 4406 2303 35% 52% 125
6-1 9072 4947 37% 55% 148
6-2 9080 4744 37% 52% 129
6-3 9640 5042 39% 52% 141
7-1 2645 1264 22% 48% 28
7-2 2662 1283 22% 48% 30
8-1 3253 1746 27% 54% 35
8-2 3251 1697 27% 52% 32
9-1 4549 3160 36% 69% 84
9-2 4486 3149 35% 70% 216
10-1 2388 62 20% 3% 25
10-2 4365 3066 37% 70% 57

Average 4607.3 2657.2 30% 56% 87.7
Median 4406 2688 31% 58% 83
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Code)

PageID Page name LOC #Features

1 ds22 21309 4
2 salleedesign 12394 3
3 mtcdc 13957 3
4 mailboxing 12171 3
5 dunked 12727 3
6 wordpress-virtue 24569 3
7 hipstamatic 12073 2
8 makalu 11998 2
9 nitrografix 12755 2
10 kennymeyers 11931 2

Every scenario that causes a manifestation of a particular feature
is represented as a Selenium9 test. Selenium is a navigation scripting
and testing utility that can be used to automate web applications for
testing purposes. A developer specifies a series of actions and defines UI
properties that have to be satisfied in order for the test to be successful.
We consider that a feature is successfully extracted if the same tests
can be successfully executed both in the original application and in the
application composed out of the extracted code.

For the ten web applications, we have set up 27 experiments, whose
results are shown in Table 6.3. The experiment was successful and in
all cases the extracted code was able to successfully pass the tests. All
applications, their test cases, and experiment results can be downloaded
from www.fesb.hr/~jomaras/download/FIdEvaluation.zip.

On average, during the execution of each scenario the control-flow
went through 30 percent of the application code, and out of that visited
code, the feature identification process calculated that around 56 percent

9http://docs.seleniumhq.org/
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Table 6.3: Experimental results for feature extraction. ID (Page and
Feature), p (Profiled), s (Sliced), o (Original), LOC (Lines of Code),
Time (slicing time in seconds)

ID pLOC sLOC pLoc/oLoc sLOC/pLOC Time

1-1 5408 3552 25% 66% 100
1-2 5471 3606 26% 66% 136
1-3 5552 3629 26% 65% 355
1-4 5412 3495 25% 65% 101
2-1 3159 1716 25% 54% 36
2-2 2921 1144 24% 39% 20
2-3 3156 1826 25% 58% 26
3-1 3477 1658 25% 48% 13
3-2 4544 2710 33% 60% 83
3-3 4770 3070 34% 64% 96
4-1 3909 2539 32% 65% 27
4-2 3815 2530 31% 66% 28
4-3 4090 2688 34% 66% 53
5-1 4417 2826 35% 54% 145
5-2 4501 2293 35% 51% 99
5-3 4406 2303 35% 52% 125
6-1 9072 4947 37% 55% 148
6-2 9080 4744 37% 52% 129
6-3 9640 5042 39% 52% 141
7-1 2645 1264 22% 48% 28
7-2 2662 1283 22% 48% 30
8-1 3253 1746 27% 54% 35
8-2 3251 1697 27% 52% 32
9-1 4549 3160 36% 69% 84
9-2 4486 3149 35% 70% 216
10-1 2388 62 20% 3% 25
10-2 4365 3066 37% 70% 57

Average 4607.3 2657.2 30% 56% 87.7
Median 4406 2688 31% 58% 83
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of executed code lines is necessary for the implementation of the target
feature.

6.6.3 Page optimization

For the third experiment – page optimization – the goal was to show
that the process is capable of identifying code of all features offered by
the application. In the experiments the process identifies and removes
code that does not contribute to any behavior. In order to do this, we
have to know all application behaviors. For this reason, we have chosen
8 demo web applications that describe their behavior, and 2 standard
web applications where it was easy to identify all application behaviors.
Similar to the feature extraction experiment, based on the application
behaviors, we have defined Selenium tests, and we consider that the
extraction is successful if the extracted code is able to pass the predefined
tests the original application has passed.

Table 6.4: Experimental results for page optimization. o (Original),
p (Profiled), s (Sliced), LOC (Lines of Code), Exe (Executions), LT
(Loading Time)

Page oLOC pLOC sLOC pExe sExe LT sLT

codaBubble 9611 2838 1383 39598 19488 204 79
fncyChckbx 117 117 108 1491 1235 36 36
hmnTypst 9480 2017 605 31629 12016 204 34
idtPride 10621 3981 2537 114283 58479 285 165
password 149 149 149 7047 7047 10 10
tinyslider 260 254 248 20704 20690 27 27
tabs 9514 2520 1234 36599 19525 200 65
fourandthree 10564 3664 2393 30523 15513 247 200
suckerFish 9663 2623 1352 75952 36152 205 75
jSlideshow 9859 3273 1944 101472 66917 232 116
average 6984 2144 1195 45930 25706 165 80

Tables 6.4 and 6.5 show the selected pages and all data gathered
during the experiment. The experiment was successfull, i.e. for all test
applications, the extracted code was able to pass the Selenium tests. The
table shows that the optimized page generates 38%–100% executions
(savings from 0%–62%), resulting in 0%–83% gains (1 - s/p LT) in page
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loading time. The savings are greatest in applications that use client-side
libraries, while they are almost non-existent in small demo applications
(where there is no dead code). All applications, their test cases, and
experiment results can be downloaded from: www.fesb.hr/~jomaras/

download/FIdEvaluation.zip.

Table 6.5: Comparison between original (o) code, profiled (p) code, and
sliced (s) code. LOC (Lines of Code), Exe (Executions), LT (Loading
Time), Time (Feature location time in seconds)

Page p/o LOC s/p LOC s/p Exe s/p LT Time

codaBubble 30% 49% 49% 39% 27
fncyChckbx 100% 92% 83% 100% 3
humanTypist 21% 30% 38% 17% 23
idtPride 37% 64% 51% 58% 74
password 100% 100% 100% 100% 3
tinyslider 98% 98% 100% 100% 135
tabs 26% 49% 53% 32% 25
fourandthree 35% 65% 51% 81% 27
suckerFish 27% 52% 48% 37% 82
jSlideshow 33% 59% 66% 50% 52
average 50.7% 65.8% 63.9% 61.4% 45

It is important to note that the goal of the evaluation was to show
that the method is capable of identifying code responsible for a behavior,
and not to determine how much unnecessary code is usually included
in web applications. However, the results indicate that web applica-
tions contain more code than is actually needed for their behavior, and
that considerable savings could be achieved by applying this extraction
method.

6.6.4 Threats to validity

There are several issues that might occur when attempting to generalize
the experiment results. One concern is whether the selected applications
are representative of real-world web applications. We tried to tackle this
concern by performing experiments on a wide range of applications: from
JavaScript libraries ranging from 690 to 10,000 lines of code, all the way
to full web pages built from around 25,000 lines of code, that use different
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of executed code lines is necessary for the implementation of the target
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code that does not contribute to any behavior. In order to do this, we
have to know all application behaviors. For this reason, we have chosen
8 demo web applications that describe their behavior, and 2 standard
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Tables 6.4 and 6.5 show the selected pages and all data gathered
during the experiment. The experiment was successfull, i.e. for all test
applications, the extracted code was able to pass the Selenium tests. The
table shows that the optimized page generates 38%–100% executions
(savings from 0%–62%), resulting in 0%–83% gains (1 - s/p LT) in page
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loading time. The savings are greatest in applications that use client-side
libraries, while they are almost non-existent in small demo applications
(where there is no dead code). All applications, their test cases, and
experiment results can be downloaded from: www.fesb.hr/~jomaras/

download/FIdEvaluation.zip.

Table 6.5: Comparison between original (o) code, profiled (p) code, and
sliced (s) code. LOC (Lines of Code), Exe (Executions), LT (Loading
Time), Time (Feature location time in seconds)
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fncyChckbx 100% 92% 83% 100% 3
humanTypist 21% 30% 38% 17% 23
idtPride 37% 64% 51% 58% 74
password 100% 100% 100% 100% 3
tinyslider 98% 98% 100% 100% 135
tabs 26% 49% 53% 32% 25
fourandthree 35% 65% 51% 81% 27
suckerFish 27% 52% 48% 37% 82
jSlideshow 33% 59% 66% 50% 52
average 50.7% 65.8% 63.9% 61.4% 45

It is important to note that the goal of the evaluation was to show
that the method is capable of identifying code responsible for a behavior,
and not to determine how much unnecessary code is usually included
in web applications. However, the results indicate that web applica-
tions contain more code than is actually needed for their behavior, and
that considerable savings could be achieved by applying this extraction
method.

6.6.4 Threats to validity

There are several issues that might occur when attempting to generalize
the experiment results. One concern is whether the selected applications
are representative of real-world web applications. We tried to tackle this
concern by performing experiments on a wide range of applications: from
JavaScript libraries ranging from 690 to 10,000 lines of code, all the way
to full web pages built from around 25,000 lines of code, that use different
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wide-spread JavaScript libraries.
Another important threat to validity is whether or not our method

is capable of extracting all of the code that implements a feature. Since
our method is based on dynamic analysis of web application code in
a particular scenario, we are aware that the quality of the scenarios is
vital for the correct identification of feature code. This is why we are
not claiming that our method is capable of identifying the full code of a
feature, but the code of the feature manifested by the specified scenarios.

6.7 Conclusion

In this chapter, we have presented a method for identifying the imple-
mentation details of features that manifest on particular parts of the web
page structure, for a certain scenario. During application execution, the
process constructs a dependency graph and identifies the points in the
execution where the feature manifests (feature manifestations). The im-
plementation details of a feature are then identified by traversing the
dependency graph for all feature manifestations. We have defined algo-
rithms for finding feature manifestations and marking feature code.

The main advantages of the approach are: i) it does not require
any formal specification of the feature (something that is rarely done in
web application development) and the user can specify the desired fea-
ture behavior; and ii) it enables dynamic tracking of code dependencies
(something that can not be accurately done statically for a language as
dynamic as JavaScript). The limitations of the approach are: i) that
it is primarily suited for functional features with observable behaviors
(non-functional features, such as security or maintainability do not have
determinable feature manifestations), and ii) the accuracy and the com-
pleteness of the captured feature is dependent on the quality of the
scenarios.

We have evaluated the approach by performing three sets of experi-
ments on a range of web applications, and have reached two conclusions:
i) the method can correctly identify stand-alone behaviors by analyzing
web application event traces, and ii) considerable savings in terms of
number of executions, page loading time, and code size can be achieved
while still being able to reproduce the demonstrated behavior.

Chapter 7

Integrating Features

Once the code of the target feature has been identified, in order to achieve
reuse, we often have to integrate the feature code into the code of an
already existing application. Merging two code bases can lead to a num-
ber of problems that have to be detected and fixed. In this chapter, we
present an automatic feature integration process. We identify problems
that can occur when integrating code from one application into another
application; and present a set of algorithms that detect and resolve those
problems, perform the actual code merging and verify that the integra-
tion is performed successfully.

7.1 Overview

In this section, we define the goal and successfulness criteria for feature
integration, and we present an overview of the whole process.

7.1.1 Goal

Let A and B be two client-side web applications, each defined with its
HTML code, CSS code, JavaScript code, and resources – 〈HA, CA, JA, RA〉
for application A and 〈HB , CB , JB , RB〉 for application B. Let fa be a
feature from A that manifests when a scenario sa is performed, and that
is implemented by a subset of A’s code and resources 〈ha, ca, ja, ra〉,
identified by the Feature Identification process (Chapter 6).
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plementation details of a feature are then identified by traversing the
dependency graph for all feature manifestations. We have defined algo-
rithms for finding feature manifestations and marking feature code.

The main advantages of the approach are: i) it does not require
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(something that can not be accurately done statically for a language as
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ber of problems that have to be detected and fixed. In this chapter, we
present an automatic feature integration process. We identify problems
that can occur when integrating code from one application into another
application; and present a set of algorithms that detect and resolve those
problems, perform the actual code merging and verify that the integra-
tion is performed successfully.

7.1 Overview

In this section, we define the goal and successfulness criteria for feature
integration, and we present an overview of the whole process.

7.1.1 Goal

Let A and B be two client-side web applications, each defined with its
HTML code, CSS code, JavaScript code, and resources – 〈HA, CA, JA, RA〉
for application A and 〈HB , CB , JB , RB〉 for application B. Let fa be a
feature from A that manifests when a scenario sa is performed, and that
is implemented by a subset of A’s code and resources 〈ha, ca, ja, ra〉,
identified by the Feature Identification process (Chapter 6).
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The goal of the integration process is to create a new application B′

that offers both the feature fa from A and the features FB from B. We
do this by integrating the code and resources of fa into application B.

We consider that the integration process is successful if, in the final
B′ application, the scenario sa causing the manifestation of fa can be
repeated with the same presentational and behavioral characteristics as
in A, and all scenarios SB of B with the same presentational and behav-
ioral characteristics as in B. This implies that there should not be any
feature “spilling” – the feature fa, in the context of B′, should not oper-
ate on parts of application originating from B (nor should features from
B operate on parts of the application originating from A). With regard
to the behavior, this means that JavaScript code ja, when included in
JB′ , should not interact with HB , CB , or RB , nor should JB interact
with ha, ca, or ra. For the preservation of presentation, CSS rules ca
should not be applied to HB (nor CB to ha).

7.1.2 Process Overview

Once the Feature Identification process (Chapter 6) has been performed,
i.e. an execution summary has been gathered, the dependency graph con-
structed, and the graph vertices responsible for the feature implementa-
tion identified, we have to integrate the identified feature code with the
code of the target application. Since introducing code of one application
into another application can lead to a number of different problems, these
problems have to be detected and fixed. For these reasons, the process
of feature integration is composed of two mandatory phases (Figure 7.1):
i) Conflict Resolution and ii) Merging; and one optional phase: Verifi-
cation. In the context of the whole reuse process shown in Figure 3.2,
Figure 7.1 presents the details of the Feature Integration activity.

As input, the process receives the Feature Execution Summary (EA)
and the Feature Dependency Graph (GA); the Application Execution
Summary (EB) and the Application Dependency Graph (GB); the Reuse
Position that specifies where the feature will be reused; the scenario that
causes the manifestation of the feature (sa) and the scenarios that cap-
ture the behavior of the application (SB). The feature execution sum-
mary and graph are obtained with the Feature Identification process
(Chapter 6), and the application execution summary and the applica-
tion dependency graph are obtained in the Application Analysis phase
(Chapter 3).
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Figure 7.1: The process of extracting and reusing features

Conflict Resolution

The purpose of the integration process is to merge the identified feature
code into application B. Since merging two code bases can lead to a
number of errors, potential problems have to be detected and resolved.
Moreover, these problems can occur both statically and dynamically, and
the conflict detection has to take this into account. For this reason, the
conflict resolution phase (1. Conflict Resolution) is based on the analysis
of the execution summaries of both applications. Once the conflicting
positions are identified, by using the dependency graphs of both applica-
tions, the conflicts are resolved, and the process moves to the next phase
– merging.
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– merging.
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Merging

In order to achieve reuse, the identified and conflict-resolved feature code
〈ha′ , ca′ , ja′ , ra′〉 is merged with the conflict-resolved code of application
B (2. Merging), and a new application B′ – 〈HB′ , CB′ , JB′ , RB′〉 is cre-
ated. The merging is performed by appending the head HTML nodes
from fa to the head HTML node from B, and the body nodes from fa
to the body node of B. Once this is done, the HTML nodes that define
the structure of the feature ha′ are moved to the target reuse position.
This move can also cause certain kinds of problems, which are detected
and fixed.

Verfication

In the final, optional, step of the process (3. Verification), the goal is
to check that the behavior of the resulting application is the same as
the behavior in the originating applications. When executing a certain
scenario in the context of the final B′ application, code constructs caus-
ing the observable behaviors should only influence the nodes originating
from the same application (e.g. ja should only modify ha).

7.1.3 Running Example

Consider the two applications: A, which has a feature fa of toggling
between image sources on image clicks (Listing 7.1 shows the feature
code, identified by the feature identification process), and B (Listing 7.2)
with a feature of changing image sources on mouse over and a feature
of displaying how many times the images were changed (the source code
of application A is colored in red and of application B in blue, to make
the origin of code more clear, when the result is presented later).

1 <html >

2 <head >

3 <style >

4 img{border: solid; }

5 .mI{ width: 200px; }

6 </style >

7 <script >

8 SRCS = ["img/C.jpg", "img/D.jpg"];

9 Array.prototype.next=function(c){

10 var i = this.indexOf(c)

11 var next = 0

12 if(i>=0 && i<this.length -1)
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13 next = i+1

14 return this[next]

15 }

16 iProto=HTMLImageElement.prototype

17 iProto.toggleSrc = function(s){

18 this.src=s.next(this.src)

19 }

20 window.onload = function (){

21 var im = document.querySelectorAll(’img ’)

22 for(var i=0; i<im.length; i++)

23 im[i]. onclick = function (){

24 this.toggleSrc(SRCS)

25 }

26 }

27 </script >

28 </head >

29 <body >

30 <div id=" imCont">

31 <img class="mI" src="img/C.jpg"/>

32 <img class="mI" src="img/D.jpg"/>

33 </div >

34 </body >

35 </html >

Listing 7.1: Example feature fa

1 <html >

2 <head >

3 <style >

4 img{border:dashed ;}

5 .mI{width :300px;}

6 </style >

7 <script >

8 history =[], doc=document;

9 SRCS = ["img/P.jpg", "img/T.jpg"]

10 proto = HTMLImageElement.prototype

11 proto.toggleSrc=function(srcs , c){

12 this.src=this.src.indexOf(srcs [0]) ==-1? srcs [0]: srcs [1]

13 history.push(this.src)

14 var summ = {}

15 for(var i in history){

16 var item = history[i]

17 if(!summ[item]) summ[item] = 0

18 summ[item ]++

19 }

20 c.textContent=JSON.stringify(summ)

21 };

22 window.onload = function (){

23 var im=doc.querySelectorAll ("img")
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24 var inf=doc.querySelector ("# info")

25 for(var i=0; i<im.length; i++)

26 im[i]. onmouseover = function (){

27 this.toggleSrc(SRCS , inf)

28 }

29 }

30 </script >

31 </head >

32 <body >

33 <div id=" imCont">

34 <img class="mI" src="img/P.jpg"/>

35 <img class="mI" src="img/T.jpg"/>

36 <div id="info"></div >

37 </div >

38 </body >

39 </html >

Listing 7.2: Example Application B

If a naive merge would be performed by simply merging the head and
body child nodes from A to B, several problems would occur:

1. the img and .mI CSS selectors from A (@4, 5, A) would override
the img and .mI CSS selectors from B (@4, 5, B);

2. the SRCS array @8, A would override the SRCS array @9, B;

3. the extension of the Array prototype in A (@9, A) would cause
problems in the for-in loop in B (@15, B), because the for-in loop
would also iterate over the next property from the Array prototype;

4. the extension of theHTMLImageElement prototype (@17, A) would
override the HTMLImageElement prototype extension @11, B;

5. the function set as an onload handler in A (@20, A) would override
the onload assignment in B (@22, B);

6. both applications query the DOM of the page for all image elements
(@21, A and @23, B), and since the structure of the page has
changed (from the perspective of each application, two new images
have been added) both queries would return more elements than in
the original applications (images from B would respond to clicks,
and images from A would respond to mouse hovering);

7. two nodes with the same imCont identifier would exist (@30, A
and @33, B).
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These two applications, even though they use some frowned-upon
language features (e.g. extending the prototypes of built-in objects), were
chosen to illustrate problems that can occur when integrating code of
two different code bases. A non-naive, automatic feature integration
approach has to take into account all conflicts that can occur when
merging the code and resources of two different web applications. In
the following section we specify different types of possible conflicts.

7.2 Conflict Types

Merging the code and resources of fa into B creates a new page whose
DOM is different from the DOM expected by the code of each appli-
cation. This can create a number of problems that are complicated by
the fact that the web application code is heavily interdependent and
that any change can influence a number of different places. Moreover,
because JavaScript is highly dynamic, both the positions on which the
problems arise, and the positions to where they are propagated can not
be accurately determined statically.

Table 7.1: Types of conflicts in client-side Web applications

Type Error source Potential errors introduced

DOM
HTML node nam-
ing attribute

CSS rules applied to differ-
ent HTML nodes (visual layout
changed)
Different values of JavaScript ex-
pressions accessing node visual
properties
Different values of DOM query
expressions

JavaScript Global variables Naming conflicts

Built-in object ex-
tensions

Naming conflicts in extended ob-
jects; Errors when iterating over
object properties

Event-handling
properties

Event-handler overriding

HTTP Requests Cross-site HTTP request errors

Resource File names Resource overriding
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Overall, there are three broad types of conflicts: DOM conflicts,
JavaScript conflicts, and resource conflicts (Table 7.1). Throughout this
section, we will in more detail discuss each of the conflict types, the
sources of the errors and their effects on the behavior and presentation
of the web application.

7.2.1 DOM conflicts

From the DOM perspective, the merging of HTML code can lead to con-
flicts in naming attributes of HTML nodes (class, id, and name). Since
HTML is an error tolerant language, this won’t lead to any problems in
the DOM itself. However, node naming attributes are referenced in CSS
and JavaScript code, and the main problem with DOM conflicts is that
they propagate to CSS and JavaScript code.

Conflicts that propagate to CSS – CSS rules are applied to HTML
nodes based on CSS selectors, and if CSS conflicts occur, CSS rules
designed to target HTML nodes of one application could, in the final
application, be applied to HTML nodes of the other application. This
can lead to changes in the visual layout of the page.

Conflicts that propagate to JavaScript – JavaScript code interacts
with the DOM and accesses HTML nodes by using queries similar to
CSS selectors. This means that if there are DOM conflicts, JavaScript
expressions that query the DOM of the page can return different results
in the context of the final application than in the original application.
Also, if DOM conflicts propagate to CSS code, and CSS rules from one
application are applied to HTML nodes from the other application, the
results of evaluating certain code expressions that access the element’s
visual properties could be changed. These conflicts change the internal
state of the application, which can result with changes in the intended
behavior of the application.

DOM conflicts can occur both statically, by being directly present in
the HTML code of the applications, and dynamically with evaluation of
JavaScript expressions (e.g. the evaluation of an expression changes an
attribute value to a conflicting one).

7.2.2 JavaScript conflicts

Alongside conflicts that propagate from the DOM, JavaScript code can
introduce a number of errors, caused by the use of different types of
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global variables, or messages exchanged with the server.

In JavaScript there are different types of global variables, and from
the perspective of conflict-handling they can be divided into three groups:
i) Standard global variables, defined by declaring variables in the global
scope, or by extending the global window object, which can cause nam-
ing conflicts; ii) Built-in object extensions, defined by extending built-in
objects (e.g. Object, String, Array prototypes, the Math object) which
can lead to naming conflicts within the extended objects, and errors
can be introduced when iterating over object properties; and iii) Event-
handling variables, created by registering event handlers (e.g. onload,
onmousemove properties of the global window object), which can lead
to problems with property overriding.

During the life-cycle of a web application, the client-side can exchange
a number of messages with the server-side. Due to security reasons, a
client-side application is not allowed to exchange messages with a server-
side application hosted on another domain. If the code responsible for
the communication is transfered to another server, all attempts to com-
municate with the server-side will fail, and errors will be introduced into
the application.

7.2.3 Resource conflicts

Conflicts can also occur between resources (images, fonts, videos, files,
etc.) if there exist resources with the same identifiers in both appli-
cations. These types of conflicts can propagate to HTML, CSS, and
JavaScript code, and can lead to problems in the visual layout and pre-
sentation of the application.

7.3 Resolving Conflicts

The process of resolving conflicts is composed of two steps: i) resolv-
ing conflicts that arise due to changes in the DOM structures of both
applications, and ii) resolving problems that happen when combining
two JavaScript code bases. Since conflicts can occur both statically and
dynamically, all possible conflicts can not be accurately detected with
static analysis, and conflict resolutions performed with simple string re-
namings, without taking into consideration the semantics of the changed
expressions, can only resolve a subset of possible problems (and even



100 Chapter 7. Integrating Features

Overall, there are three broad types of conflicts: DOM conflicts,
JavaScript conflicts, and resource conflicts (Table 7.1). Throughout this
section, we will in more detail discuss each of the conflict types, the
sources of the errors and their effects on the behavior and presentation
of the web application.

7.2.1 DOM conflicts

From the DOM perspective, the merging of HTML code can lead to con-
flicts in naming attributes of HTML nodes (class, id, and name). Since
HTML is an error tolerant language, this won’t lead to any problems in
the DOM itself. However, node naming attributes are referenced in CSS
and JavaScript code, and the main problem with DOM conflicts is that
they propagate to CSS and JavaScript code.

Conflicts that propagate to CSS – CSS rules are applied to HTML
nodes based on CSS selectors, and if CSS conflicts occur, CSS rules
designed to target HTML nodes of one application could, in the final
application, be applied to HTML nodes of the other application. This
can lead to changes in the visual layout of the page.

Conflicts that propagate to JavaScript – JavaScript code interacts
with the DOM and accesses HTML nodes by using queries similar to
CSS selectors. This means that if there are DOM conflicts, JavaScript
expressions that query the DOM of the page can return different results
in the context of the final application than in the original application.
Also, if DOM conflicts propagate to CSS code, and CSS rules from one
application are applied to HTML nodes from the other application, the
results of evaluating certain code expressions that access the element’s
visual properties could be changed. These conflicts change the internal
state of the application, which can result with changes in the intended
behavior of the application.

DOM conflicts can occur both statically, by being directly present in
the HTML code of the applications, and dynamically with evaluation of
JavaScript expressions (e.g. the evaluation of an expression changes an
attribute value to a conflicting one).

7.2.2 JavaScript conflicts

Alongside conflicts that propagate from the DOM, JavaScript code can
introduce a number of errors, caused by the use of different types of

7.3 Resolving Conflicts 101

global variables, or messages exchanged with the server.

In JavaScript there are different types of global variables, and from
the perspective of conflict-handling they can be divided into three groups:
i) Standard global variables, defined by declaring variables in the global
scope, or by extending the global window object, which can cause nam-
ing conflicts; ii) Built-in object extensions, defined by extending built-in
objects (e.g. Object, String, Array prototypes, the Math object) which
can lead to naming conflicts within the extended objects, and errors
can be introduced when iterating over object properties; and iii) Event-
handling variables, created by registering event handlers (e.g. onload,
onmousemove properties of the global window object), which can lead
to problems with property overriding.

During the life-cycle of a web application, the client-side can exchange
a number of messages with the server-side. Due to security reasons, a
client-side application is not allowed to exchange messages with a server-
side application hosted on another domain. If the code responsible for
the communication is transfered to another server, all attempts to com-
municate with the server-side will fail, and errors will be introduced into
the application.

7.2.3 Resource conflicts

Conflicts can also occur between resources (images, fonts, videos, files,
etc.) if there exist resources with the same identifiers in both appli-
cations. These types of conflicts can propagate to HTML, CSS, and
JavaScript code, and can lead to problems in the visual layout and pre-
sentation of the application.

7.3 Resolving Conflicts

The process of resolving conflicts is composed of two steps: i) resolv-
ing conflicts that arise due to changes in the DOM structures of both
applications, and ii) resolving problems that happen when combining
two JavaScript code bases. Since conflicts can occur both statically and
dynamically, all possible conflicts can not be accurately detected with
static analysis, and conflict resolutions performed with simple string re-
namings, without taking into consideration the semantics of the changed
expressions, can only resolve a subset of possible problems (and even



102 Chapter 7. Integrating Features

then, we can not be sure if they are applied to correct expressions).
For this reason, the conflict detection process is based on the analysis
of execution summaries and client-side dependency graphs. Once the
conflicting positions are located, by following the dependencies in the
dependency graphs, it is possible to make accurate modifications of the
correct code constructs.

7.3.1 Resolving DOM conflicts

When resolving DOM conflicts, the first step is to identify all static and
dynamic code positions that can cause conflicts when a new page is cre-
ated by merging the DOMs of two applications. Once these positions
are identified, conflicted HTML attributes are renamed, new HTML at-
tributes are added, and CSS rules and JavaScript DOM queries are mod-
ified in order to localize them in a way that they only interact with nodes
from their respective applications. Algorithm 11 describes the process
of handling both the DOM conflicts and their propagation to CSS and
JavaScript. As input the algorithm receives the dependency graph GA

and execution summary EA of A for scenario sa, and the dependency
graph GB and the execution summary EB of B for scenarios SB .

Algorithm 11 resolveDOM(GA, EA, GB , EB)

1: attrConflicts ← getHtmlAttrsConflicts(EA, EB)
2: resourceConflicts ← getResourceConflicts(GA)
3: for all item : concat(attrConflicts, resourceConflicts) do
4: new ← genName(item, EA, EB)
5: for all pos : getUsagePos(item, EA) do
6: if isInHtml(pos) or isInCss(pos) then
7: replaceVal(pos, item, new)
8: else if isInJs(pos) then
9: replaceDomStrLit(pos, item, new, GA)

10: end if
11: end for
12: end for
13: expandNodes(genName(’f’, EA, EB), GA, EA)
14: expandNodes(genName(’b’, EA, EB), GB , EB)

The algorithm finds all conflicting HTML node name attributes and
all conflicting resources (lines 1, 2), and for each found item a new,
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non-conflicting name is generated. An item can be used in a number
of different positions: in HTML code as node attributes, in CSS code
as selectors or key values, and in JavaScript code as assignment or call
expressions (e.g. assignment expressions that modify node attributes, or
DOM querying call expressions). If the usage position is in HTML or
CSS code then the old value in the feature code is simply replaced with
the new, non-conflicting value. If the usage position is in JavaScript
code, the process traverses the dependency graph and attempts to find
the string literal that matches the old value and replace it with the
new value (if the string literal can not be found, e.g. is constructed
by concatenating strings, a comment notifying that a conflict was not
resolved is added to the access position).

Example. There are two conflicts caused by attribute namings (List-
ing 7.3): the id imCont (@30, A and @33, B); and class attributes mI
(@31, 32 A and @34, 35 B), which are resolved by renaming access posi-
tions in application A: i) attribute imCont is used only in HTML code,
so imCont (@30, A) is replaced with r imCont ; ii) mI is used both in
HTML code (@31, 32 A) and CSS code (@5, A), and is in both places
replaced with r mI.

................ A .................

05 A:.mI{ width: 200px; }

30 A:<div id=" imCont">

31 A: <img class="mI" src="img/C.jpg"/>

32 A: <img class="mI" src="img/D.jpg"/>

33 A: </div >

................ B ................

33 B:<div id=" imCont">

34 B: <img class="mI" src="img/C.jpg"/>

35 B: <img class="mI" src="img/D.jpg"/>

36 B: </div >

................ B’ ................

B’:.r_mI{ width: 200px; }

B’:<div id=" r_imCont" o=r>

B’: <img class ="r_mI" src="img/C.jpg"/>

B’: <img class ="r_mI" src="img/D.jpg"/>

B’: </div >

Listing 7.3: Excerpts from applications A and B and the final result
when resolving attribute conflicts

The process continues in line 13, Algorithm 11, by handling selector
conflicts in CSS and JavaScript code. The goal is to make the selectors
more specific by limiting them only to parts of the DOM that match the
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originating application. Non-conflicting names are generated with calls
to the genName function and are added as attributes to enable differ-
entiation between nodes originating from different applications. Type
selectors are expanded so they target only nodes they have targeted
in the originating applications (both for CSS selectors, and JavaScript
DOM queries).

Example. There are two selector caused conflicting expressions (List-
ing 7.4): CSS selector img (@4, A andB), and doc.querySelectorAll(’img’)
(@21, A and @23, B). Failing to resolve the CSS selectors would cause
the wrong styles to be applied to images from application B, and fail-
ing to resolve the querySelectorAll call would result in more elements
returned by the query in the context of the final application than in the
context of each application. For this reason, the body descendants in
application A (@29, A) are expanded with an additional attribute (e.g.
attribute origin with value reuse, represented by o = r). This is followed
with the expansion of CSS selectors: for A, the img selector is replaced
with img[o=r] (@4, A); and for B (@4, B) with img:not([o=r]) (the
CSS rule in application B becomes: img:not([o=r]) { border: dashed;},
meaning apply dashed border to img elements that do not have the o
attribute with a value of r). With this change, instead of styles that are
applied to HTML nodes from the other application, we have obtained
CSS rules that target only the HTML nodes from their respective ap-
plications. Finally, DOM querying conflicts in JavaScript are resolved
by replacing the query arguments with the same values as in the CSS
replacement.

................ A .................

04 A: img { border: solid; }

05 A: .mI { width: 200px; }

21 A: var im = document.querySelectorAll(’img ’)

29 A:<body >

30 A: <div id=" imCont">

31 A: <img class="mI" src="img/C.jpg"/>

32 A: <img class="mI" src="img/D.jpg"/>

33 A: </div >

34 A: </body >

................ B ................

04 B: img { border: dashed; }

05 B: .mI { width: 300px; }

23 B: var im = document.querySelectorAll ("img")

36 B: </div >

................ B’ ................

B’:img[o=r] { border: solid; }
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B’:.mI { width: 200px; }

B’:img:not([o=r]) { border: dashed; }

B’:.mI:not([o=r]) { width: 300px; }

B’: var im = document.querySelectorAll(’img[o=r]’)

B’: var im = document.querySelectorAll(’img:not([o=r]) ’)

B’: <div id=" imCont" o=r>

B’: <img class ="mI" src="img/C.jpg" o=r/>

B’: <img class ="mI" src="img/D.jpg" o=r/>

B’: </div >

Listing 7.4: Excerpts from applications A and B and the final result
when resolving selector conflicts

7.3.2 Resolving JavaScript conflicts

When resolving JavaScript conflicts, the goal is to detect and resolve
JavaScript problems that arise due to i) global variable naming conflicts,
ii) the modifications of the globally accessible objects that can change the
behavior of additionally included code, and because of the iii) possible
migration of source code to another server. Since conflicts can occur
both dynamically and statically, as input the Algorithm 12 receives the
dependency graphs and execution summaries from both applications.

The first step of the algorithm is finding conflicts related to standard
global variables (lines 1–4): for each conflicted identifier, a new non-
conflicting name is generated, and all usage positions of that identifier
in the feature code are replaced by traversing the dependency graph (a
warning is added, if this is not possible, e.g. the property name is created
by string manipulations).

Next, the algorithm resolves conflicts that arise by extending built-in
objects (lines 5–11). For each object extension in the feature code (line
5), the algorithm traverses all code positions in application B that iter-
ate over the properties of extended objects and adds a statement that
will skip the iteration over the properties extended by the feature. The
algorithm proceeds by checking if there are any conflicts with the object
extensions done in application B (lines 7–9), and if there are, the prop-
erty names in the feature code are replaced with non-conflicting names.
The process goes similarly for application B (lines 12–14) with the excep-
tion that there is no need for handling naming conflicts (since they have
already been handled). Next, the event handler conflicts are resolved
(lines 15–20) by inserting code that creates an event-handler-tracker ob-
ject that keeps track of all registered handlers, replacing conflicting code
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originating application. Non-conflicting names are generated with calls
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JavaScript problems that arise due to i) global variable naming conflicts,
ii) the modifications of the globally accessible objects that can change the
behavior of additionally included code, and because of the iii) possible
migration of source code to another server. Since conflicts can occur
both dynamically and statically, as input the Algorithm 12 receives the
dependency graphs and execution summaries from both applications.

The first step of the algorithm is finding conflicts related to standard
global variables (lines 1–4): for each conflicted identifier, a new non-
conflicting name is generated, and all usage positions of that identifier
in the feature code are replaced by traversing the dependency graph (a
warning is added, if this is not possible, e.g. the property name is created
by string manipulations).

Next, the algorithm resolves conflicts that arise by extending built-in
objects (lines 5–11). For each object extension in the feature code (line
5), the algorithm traverses all code positions in application B that iter-
ate over the properties of extended objects and adds a statement that
will skip the iteration over the properties extended by the feature. The
algorithm proceeds by checking if there are any conflicts with the object
extensions done in application B (lines 7–9), and if there are, the prop-
erty names in the feature code are replaced with non-conflicting names.
The process goes similarly for application B (lines 12–14) with the excep-
tion that there is no need for handling naming conflicts (since they have
already been handled). Next, the event handler conflicts are resolved
(lines 15–20) by inserting code that creates an event-handler-tracker ob-
ject that keeps track of all registered handlers, replacing conflicting code
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Algorithm 12 resolveJs(GA, EA, GB , EB)

1: for all conflict : getStandardGlobalCnflicts(EA, EB) do
2: decl ← getDeclaration(conflict, GA)
3: renameIdDependencies(decl, genName(conflict, EA, EB))
4: end for
5: for all objExt : getBuiltInObjExtensions(EA) do
6: addSkipIterToPropIters(getPropIters(objExt, EB))
7: if hasConflicts(objExt, EB) then
8: decl ← getDeclaration(objExt, GA)
9: renameIdDependencies(decl, genName(objExt, EA, EB))

10: end if
11: end for
12: for all objExt : getBuiltInObjExtensions(EB) do
13: addSkipIterToPropIters(getPropIters(objExt, EA))
14: end for
15: conflicts ← getConflictedHandlers(EA, EB)
16: if nonEmpty(conflicts) then
17: addInitConflictHandlerObjectAsTopNode(GB)
18: expandWithConflictHandlerCode(conflicts, GB)
19: addHandlerInvokerCodeAsLastBodyNode(GB)
20: end if
21: for all httpRequest : getServerCommunications(EA) do
22: logRequestInfo(httpRequest)
23: end for

expressions in both applications with code that reroutes the handler reg-
istration and deregistration to the event-handler-tracker, and inserting
code that invokes the necessary handlers.

Finally, the problems related to server-side requests from the feature
code are addressed (lines 21–23). Since these problems can not be re-
solved on the client-side, during the execution of the feature we gather
information about each request and notify the developer, who can then
manually migrate the server-side code to the new server, or can enable
cross-site HTTP requests on the original server.

Example. There is one standard conflicting global variable (List-
ing 7.5): SRCS (@8, A and B), two related to extending built-in ob-
jects: next (@9, A) and toggleSrc (@17, A and @11, B), and one related
to registering event-handlers: onload (@20, A and @22,B). According
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to Algorithm 12, the global variable SRCS in A will be replaced with
r SRCS. Next, conflicts caused by extending built-in objects are resolved:
i) the property next defined on the array prototype (@9, A is handled
by adding a skip iteration statement to all iterations over the extended
objects in application B (the for-in loop @15, B); ii) the property tog-
gleSrc on the HTMLImageElement (@17, A) is resolved by traversing
property dependencies in the feature, and replacing the identifiers with
the newly generated name. Finally, the window.onload properties are
resolved by inserting event-handler-tracker object code, and rewriting
the event property access code.

................ A .................

08 A: SRCS = ["img/C.jpg", "img/D.jpg"]

09 A: Array.prototype.next = function (){...}

17 A: iProto.toggleSrc = function(s){...}

20 A:window.onload = function (){...}

24 A:this.toggleSrc(SRCS)

................ B ................

08 B: SRCS = ["img/P.jpg", "img/T.jpg"]

11 B: proto.toggleSrc = function (srcs , c) {...}

15 B: for(var i in history){

16 B: var item = history[i];

22 B: window.onload = function () {...}

................ B’ ................

B’:var HNDLR = {aApp:{}, bApp :{}}

B’: R_SRCS = ["img/C.jpg", "img/D.jpg"]

B’: iProto.r_toggleSrc = function(s){...}

B’: HNDLR.aApp.onload = function () {...}

B’:this.r_toggleSrc(R_SRCS)

B’: for(var i in history){

B’: if(i == ’next ’) continue;

B’: var item = history[i];

B’: HNDLR.bApp.onload = function (){...}

B’: window.onload = function () {

B’: HNDLR.aApp.onload ();

B’: HNDLR.bApp.onload ();

B’:}

Listing 7.5: Excerpts from applications A and B and the final result
when resolving JavaScript conflicts
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Algorithm 12 resolveJs(GA, EA, GB , EB)

1: for all conflict : getStandardGlobalCnflicts(EA, EB) do
2: decl ← getDeclaration(conflict, GA)
3: renameIdDependencies(decl, genName(conflict, EA, EB))
4: end for
5: for all objExt : getBuiltInObjExtensions(EA) do
6: addSkipIterToPropIters(getPropIters(objExt, EB))
7: if hasConflicts(objExt, EB) then
8: decl ← getDeclaration(objExt, GA)
9: renameIdDependencies(decl, genName(objExt, EA, EB))

10: end if
11: end for
12: for all objExt : getBuiltInObjExtensions(EB) do
13: addSkipIterToPropIters(getPropIters(objExt, EA))
14: end for
15: conflicts ← getConflictedHandlers(EA, EB)
16: if nonEmpty(conflicts) then
17: addInitConflictHandlerObjectAsTopNode(GB)
18: expandWithConflictHandlerCode(conflicts, GB)
19: addHandlerInvokerCodeAsLastBodyNode(GB)
20: end if
21: for all httpRequest : getServerCommunications(EA) do
22: logRequestInfo(httpRequest)
23: end for

expressions in both applications with code that reroutes the handler reg-
istration and deregistration to the event-handler-tracker, and inserting
code that invokes the necessary handlers.

Finally, the problems related to server-side requests from the feature
code are addressed (lines 21–23). Since these problems can not be re-
solved on the client-side, during the execution of the feature we gather
information about each request and notify the developer, who can then
manually migrate the server-side code to the new server, or can enable
cross-site HTTP requests on the original server.

Example. There is one standard conflicting global variable (List-
ing 7.5): SRCS (@8, A and B), two related to extending built-in ob-
jects: next (@9, A) and toggleSrc (@17, A and @11, B), and one related
to registering event-handlers: onload (@20, A and @22,B). According
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to Algorithm 12, the global variable SRCS in A will be replaced with
r SRCS. Next, conflicts caused by extending built-in objects are resolved:
i) the property next defined on the array prototype (@9, A is handled
by adding a skip iteration statement to all iterations over the extended
objects in application B (the for-in loop @15, B); ii) the property tog-
gleSrc on the HTMLImageElement (@17, A) is resolved by traversing
property dependencies in the feature, and replacing the identifiers with
the newly generated name. Finally, the window.onload properties are
resolved by inserting event-handler-tracker object code, and rewriting
the event property access code.

................ A .................

08 A: SRCS = ["img/C.jpg", "img/D.jpg"]

09 A: Array.prototype.next = function (){...}

17 A: iProto.toggleSrc = function(s){...}

20 A:window.onload = function (){...}

24 A:this.toggleSrc(SRCS)

................ B ................

08 B: SRCS = ["img/P.jpg", "img/T.jpg"]

11 B: proto.toggleSrc = function (srcs , c) {...}

15 B: for(var i in history){

16 B: var item = history[i];

22 B: window.onload = function () {...}

................ B’ ................

B’:var HNDLR = {aApp:{}, bApp :{}}

B’: R_SRCS = ["img/C.jpg", "img/D.jpg"]

B’: iProto.r_toggleSrc = function(s){...}

B’: HNDLR.aApp.onload = function () {...}

B’:this.r_toggleSrc(R_SRCS)

B’: for(var i in history){

B’: if(i == ’next ’) continue;

B’: var item = history[i];

B’: HNDLR.bApp.onload = function (){...}

B’: window.onload = function () {

B’: HNDLR.aApp.onload ();

B’: HNDLR.bApp.onload ();

B’:}

Listing 7.5: Excerpts from applications A and B and the final result
when resolving JavaScript conflicts
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7.4 Merging code

Once all conflicts have been detected and resolved, the process moves to
the second phase – merging the code of the feature and the application.
Algorithm 13 describes the steps necessary to merge the code of the
feature with the target application.

Algorithm 13 merge(GA, GB , rSelector)

1: for all hChild : getHeadChildren(GA) do
2: appendToHeadNode(hChild, GB)
3: end for
4: for all bChild : getBodyChildren(GA) do
5: appendToBodyNode(bChild, GB)
6: end for
7: fNds ← getFeatureNodes(GA)
8: for all pos : getStructuralSelectorsPositions(fNds, GA) do
9: replaceSelector(pos, generateNewQuery(pos, rSelector))

10: end for
11: moveNodes(rSelector, fNds, GB)
12: scripts ← getFeatureScriptsAffectedPos(fSelector, rSelector, GB)
13: updatePosition(rSelector, scripts, fNds, GB)

The main idea of the algorithm is to perform the merge of the head
and body nodes of each application, and then to move the feature nodes
to the designated position, without introducing errors. The algorithm
works by first taking the head children and the body children of the
feature graph from application A and appending them to the head and
the body node of application B. Next, the HTML nodes that define the
feature are selected from the graph with the goal of moving them to a new
position defined by the rSelector selector (Reuse Position, Figure 7.1).
Some CSS selectors that apply styles to feature nodes, or JavaScript
DOM queries, can depend structurally on the position of the feature
nodes in the page hierarchy, which can introduce errors when the feature
nodes are moved. For this reason, similar fixes as in Algorithm 11 have
to be applied (lines 8–10, new selectors are created to replace possibly
conflicting ones). Also, due to DOM queries, when moving feature nodes
it is necessary to maintain the relative position of the feature script nodes
towards the feature HTML nodes (line 11), because the source code can
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have implicit dependencies towards the position in the DOM.
Example. The goal is to append the feature defined by the div node

with the imCont id from A to the div node with the id imCont from B.
First, the nodes style and script (starting @3 and @7, A) are appended
to the head node of B, and the div node (@30, A) is appended to the
body node @32, B. Next, the feature node (@30, A) is moved to the
div node @33, B. This does not cause any errors, nor does it change the
relative position of any feature script nodes, and the integration process
is finished. Listing 7.6 shows the final result of the process (a labels lines
from A, b from B, and n new lines that do not come from either A or B;
m denotes that the line has been modified).

1b: <html>

2b: <head>

3n: <script>

4n: var HNDLR={aApp:{}, bApp:{}}
5n: </script>

6b: <style>

7bm: img:not([o=r]) {border:dashed;}
8bm: .mI:not([o=r]) { width: 300px; }
9b: </style>

10b: <script>

11b: SRCS=[’img/P.jpg’, ’img/T.jpg’],

12b: history=[], doc = document;

13b: proto=HTMLImageElement.prototype

14b: proto.toggleSrc=function(srcs,c){
15b: this.src=this.src.indexOf(srcs[0]) == -1 ? srcs[0] : srcs[1]

16b: history.push(this.src)

17b: summ = {}
18b: for(var i in history){
19n: if(i == ’next’) continue;

20b: var item = history[i];

21b: if(!summ[item]) summ[item] = 0

22b: summ[item]++

23b: }
24b: c.textContent=JSON.stringify(summ)

25b: }
26bm: HNDLR.bApp.onload=function() {
27bm: var im=doc.querySelectorAll("img:not(o=r)")

28b: var inf=doc.querySelector("#info")

29b: for(var i=0; i<im.length; i++)

30b: im[i].onmouseover = function(){
31b: this.toggleSrc(SRCS, inf)

32b: }
33b: }
34b: </script>

35a: <style>
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7.4 Merging code

Once all conflicts have been detected and resolved, the process moves to
the second phase – merging the code of the feature and the application.
Algorithm 13 describes the steps necessary to merge the code of the
feature with the target application.

Algorithm 13 merge(GA, GB , rSelector)

1: for all hChild : getHeadChildren(GA) do
2: appendToHeadNode(hChild, GB)
3: end for
4: for all bChild : getBodyChildren(GA) do
5: appendToBodyNode(bChild, GB)
6: end for
7: fNds ← getFeatureNodes(GA)
8: for all pos : getStructuralSelectorsPositions(fNds, GA) do
9: replaceSelector(pos, generateNewQuery(pos, rSelector))

10: end for
11: moveNodes(rSelector, fNds, GB)
12: scripts ← getFeatureScriptsAffectedPos(fSelector, rSelector, GB)
13: updatePosition(rSelector, scripts, fNds, GB)

The main idea of the algorithm is to perform the merge of the head
and body nodes of each application, and then to move the feature nodes
to the designated position, without introducing errors. The algorithm
works by first taking the head children and the body children of the
feature graph from application A and appending them to the head and
the body node of application B. Next, the HTML nodes that define the
feature are selected from the graph with the goal of moving them to a new
position defined by the rSelector selector (Reuse Position, Figure 7.1).
Some CSS selectors that apply styles to feature nodes, or JavaScript
DOM queries, can depend structurally on the position of the feature
nodes in the page hierarchy, which can introduce errors when the feature
nodes are moved. For this reason, similar fixes as in Algorithm 11 have
to be applied (lines 8–10, new selectors are created to replace possibly
conflicting ones). Also, due to DOM queries, when moving feature nodes
it is necessary to maintain the relative position of the feature script nodes
towards the feature HTML nodes (line 11), because the source code can
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have implicit dependencies towards the position in the DOM.
Example. The goal is to append the feature defined by the div node

with the imCont id from A to the div node with the id imCont from B.
First, the nodes style and script (starting @3 and @7, A) are appended
to the head node of B, and the div node (@30, A) is appended to the
body node @32, B. Next, the feature node (@30, A) is moved to the
div node @33, B. This does not cause any errors, nor does it change the
relative position of any feature script nodes, and the integration process
is finished. Listing 7.6 shows the final result of the process (a labels lines
from A, b from B, and n new lines that do not come from either A or B;
m denotes that the line has been modified).

1b: <html>

2b: <head>

3n: <script>

4n: var HNDLR={aApp:{}, bApp:{}}
5n: </script>

6b: <style>

7bm: img:not([o=r]) {border:dashed;}
8bm: .mI:not([o=r]) { width: 300px; }
9b: </style>

10b: <script>

11b: SRCS=[’img/P.jpg’, ’img/T.jpg’],

12b: history=[], doc = document;

13b: proto=HTMLImageElement.prototype

14b: proto.toggleSrc=function(srcs,c){
15b: this.src=this.src.indexOf(srcs[0]) == -1 ? srcs[0] : srcs[1]

16b: history.push(this.src)

17b: summ = {}
18b: for(var i in history){
19n: if(i == ’next’) continue;

20b: var item = history[i];

21b: if(!summ[item]) summ[item] = 0

22b: summ[item]++

23b: }
24b: c.textContent=JSON.stringify(summ)

25b: }
26bm: HNDLR.bApp.onload=function() {
27bm: var im=doc.querySelectorAll("img:not(o=r)")

28b: var inf=doc.querySelector("#info")

29b: for(var i=0; i<im.length; i++)

30b: im[i].onmouseover = function(){
31b: this.toggleSrc(SRCS, inf)

32b: }
33b: }
34b: </script>

35a: <style>
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36am: img[o=r] { border: solid; }
37am: .r mI[o=r] { width: 200px; }
38a: </style>

39a: <script>

40am: R SRCS=[’img/C.jpg’,’img/D.jpg’]

41a: Array.prototype.next=function(c){
42a: var i = this.indexOf(c)

43a: var next = 0

44a: if(i>=0 && i<this.length-1)

45a: next = i+1

46a: return this[next]

47a: }
48a: iProto=HTMLImageElement.prototype

49am: iProto.r toggleSrc=function(s){
50a: this.src=s.next(this.getAttribute(’src’))

51a: }
52am: HNDLR.aApp.onload = function(){
53am: var im = document.querySelectorAll(’img[o=r]’)

54a: for(var i=0; i<im.length; i++)

55a: im[i].onclick = function(){
56am: this.r toggleSrc(R SRCS)

57a: }
58a: }
59a: </script>

60b: </head>

61b: <body>

62bm: <div id=’imCont’>

63b: <img class="mI" src="img/P.jpg"/>

64b: <img class="mI" src="img/T.jpg"/>

65b: <id id="info"></div>

66am: <div id=’r imCont’ o=r>

67am: <img class=r mI src=img/C.jpg o=r>

68am: <img class=r mI src=img/D.jpg o=r>

69a: </div>

70b: </div>

71n: <script>

72n: window.onload=function(){
73n: HNDLR.aApp.onload()

74n: HNDLR.bApp.onload()

75n: }
76n: </script>

77b: </body>

78b:</html>

Listing 7.6: Reuse Result
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7.5 Verification

Once the feature code has been integrated into the code of the target
application, the final step is to verify the correctness of the integration.
As stated in the beginning of the chapter: the feature fa should not op-
erate on parts of the application originating from B, nor should features
from B operate on parts of application originating from A. Since client-
side web applications are UI applications, their behavior is observable
as modifications to the structure and presentation of the page. For this
reason, in order to verify the correctness of integration, for a particular
scenario, we check all observable behaviors in B′, and study both the
modified HTML nodes and the code constructs causing the modification.
The observable behavior is correct if the modified nodes and the code
constructs are originating from the same application.

The process of verification is shown in Algorithm 14, and is executed
for the scenario causing the manifestation of the feature sa, and for all
scenarios SB capturing the behavior of application B. As input, the
algorithm receives the source code of the final B′ application, and the
current scenario that is being verified.

Algorithm 14 verify(code, s)

1: s′ ← updateScenario(s)
2: exeInfo ← executeScenario(code, s′)
3: for all ob ← getObservableBehaviors(exeInfo) do
4: hNodes ← getAffectedConstructs(ob)
5: constructs ← getAffectingConstructs(ob)
6: if notFromSameApp(hNodes, constructs) then
7: reportWarning(hNodes, constructs)
8: end if
9: if communicatesWithUnavailableServer(constructs) then

10: reportWarning(constructs)
11: end if
12: end for

For each scenario, the algorithm first updates the scenario info in
order to compensate for the changes done in the conflict resolution phase
(so that the events are executed on correct elements). Next, the scenario
is executed in the context of the final B′ application (line 2). The HTML
nodes (line4) and code constructs (line 5) involved in each observable
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36am: img[o=r] { border: solid; }
37am: .r mI[o=r] { width: 200px; }
38a: </style>

39a: <script>

40am: R SRCS=[’img/C.jpg’,’img/D.jpg’]

41a: Array.prototype.next=function(c){
42a: var i = this.indexOf(c)

43a: var next = 0

44a: if(i>=0 && i<this.length-1)

45a: next = i+1

46a: return this[next]

47a: }
48a: iProto=HTMLImageElement.prototype

49am: iProto.r toggleSrc=function(s){
50a: this.src=s.next(this.getAttribute(’src’))

51a: }
52am: HNDLR.aApp.onload = function(){
53am: var im = document.querySelectorAll(’img[o=r]’)

54a: for(var i=0; i<im.length; i++)

55a: im[i].onclick = function(){
56am: this.r toggleSrc(R SRCS)

57a: }
58a: }
59a: </script>

60b: </head>

61b: <body>

62bm: <div id=’imCont’>

63b: <img class="mI" src="img/P.jpg"/>

64b: <img class="mI" src="img/T.jpg"/>

65b: <id id="info"></div>

66am: <div id=’r imCont’ o=r>

67am: <img class=r mI src=img/C.jpg o=r>

68am: <img class=r mI src=img/D.jpg o=r>

69a: </div>

70b: </div>

71n: <script>

72n: window.onload=function(){
73n: HNDLR.aApp.onload()

74n: HNDLR.bApp.onload()

75n: }
76n: </script>

77b: </body>

78b:</html>
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7.5 Verification

Once the feature code has been integrated into the code of the target
application, the final step is to verify the correctness of the integration.
As stated in the beginning of the chapter: the feature fa should not op-
erate on parts of the application originating from B, nor should features
from B operate on parts of application originating from A. Since client-
side web applications are UI applications, their behavior is observable
as modifications to the structure and presentation of the page. For this
reason, in order to verify the correctness of integration, for a particular
scenario, we check all observable behaviors in B′, and study both the
modified HTML nodes and the code constructs causing the modification.
The observable behavior is correct if the modified nodes and the code
constructs are originating from the same application.

The process of verification is shown in Algorithm 14, and is executed
for the scenario causing the manifestation of the feature sa, and for all
scenarios SB capturing the behavior of application B. As input, the
algorithm receives the source code of the final B′ application, and the
current scenario that is being verified.

Algorithm 14 verify(code, s)

1: s′ ← updateScenario(s)
2: exeInfo ← executeScenario(code, s′)
3: for all ob ← getObservableBehaviors(exeInfo) do
4: hNodes ← getAffectedConstructs(ob)
5: constructs ← getAffectingConstructs(ob)
6: if notFromSameApp(hNodes, constructs) then
7: reportWarning(hNodes, constructs)
8: end if
9: if communicatesWithUnavailableServer(constructs) then

10: reportWarning(constructs)
11: end if
12: end for

For each scenario, the algorithm first updates the scenario info in
order to compensate for the changes done in the conflict resolution phase
(so that the events are executed on correct elements). Next, the scenario
is executed in the context of the final B′ application (line 2). The HTML
nodes (line4) and code constructs (line 5) involved in each observable
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behavior encountered while executing the scenario are studied. In order
for the reusable behavior to be correct, both the HTML nodes and the
code constructs causing the observable behaviors have to originate from
the same application (lines 6–8). The algorithm also reports a warning
if the application is trying to establish an HTTP connection with an
unavailable server (lines 9–11).

Example. In the example applications let scenario sa = [〈click, .mI〉]
(click on an element specified by a CSS selector “.mI”) and let SB =
[〈onmouseover, .mI〉] (move mouse over the element specified by a selec-
tor “.mI”). There are seven feature manifestations in fa for sa: four from
the application of CSS rules to image elements (Listing 7.7): CSS@4 →
img@31, CSS@5 → img@31, CSS@4 → img@32, CSS@5 → img@32; the
registration of the onclick handler for both image elements @23; and the
modification of the “src” attribute of the first image by executing the
JavaScript assignment expression @18. Similarly, application B for the
scenarios SB has eight observable behaviors: four by applying the CSS
rules @4, 5, B to nodes @34, 35, two by setting the onmouseover prop-
erty of two image elements @26; one by modifying the “src” attribute
of the first image with a JavaScript expression @12, and one by chang-
ing the value of the “textContent” property of the element @36 with a
JavaScript expression @20.

................ A .................

04A: img{border: solid; }

05A: .mI{ width: 200px; }

18A: this.src=s.next(this.src)

23A: im[i]. onclick = function () {...}

31A: <img class="mI" src="img/C.jpg"/>

32A: <img class="mI" src="img/D.jpg"/>

................ B ................

04B: img{border:dashed ;}

05B: .mI{width :300px;}

12B: this.src=this.src.indexOf(srcs [0]) ==-1? srcs [0]: srcs [1]

20B: c.textContent=JSON.stringify(summ)

26B: im[i]. onmouseover = function () {...}

34B: <img class="mI" src="img/P.jpg"/>

35B: <img class="mI" src="img/T.jpg"/>

36B: <div id="info"></div >

Listing 7.7: Excerpts from applications A and B showing code relevant
for feature manifestations

Exercising the scenario sa in the context of the resulting B′ applica-
tion (Listing 7.6) results with eight observable behaviors related to the
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application of CSS rules to image elements (CSS@7 → img@63, CSS@8
→ img@63, CSS@7 → img@64, CSS@8 → img@64, CSS@36 → img@63,
CSS@37 → img@63, CSS@36 → img@64, CSS@37 → img@64); two ob-
servable behaviors by setting the onmouseover property @30 on the im-
age elements @63, 64; two observable behaviors by setting the onclick
property @55 on the image elements @67, 68; and one by modifying the
“src” attribute @50 of the image element @63.

When verifying the correctness of the behavior of sa, first we update
the scenario info into sa = 〈click, .r mI〉 (because the class attribute was
renamed), and then we check all observable behaviors. In this case all
observable behaviors in B′ occur correctly, every HTML node is modified
by either a CSS rule or a JavaScript expression originating from the same
application. The process continues similarly for SB .

7.6 Experiments

The evaluation of the approach is based on six case study applications
divided into three groups, and in each group we have one A applica-
tion and one B application (Table 7.3). In the first group, we have
applications 1 and 2 that were developed without third-party JavaScript
libraries; in the second group applications 3 and 4 that use the most
wide-spread third-party JavaScript library – jQuery; and in the third
group applications 5 and 6 that were developed with the second most-
wide spread JavaScript library – MooTools1. With these six applica-
tions we have created a set of experiments with a goal to test whether
our method is capable of performing automatic feature code integra-
tion in different situations (e.g. is the process able to include a feature
developed with the jQuery library into the application developed with
the MooTools library, and vice versa), and in total, we investigate the
9 combinations. Based on the feature scenarios generated by the sce-
nario generation method (Chapter 5) we have specified Selenium tests2

that test the correctness of the features in the final application. The
case study applications, their tests, and the results are available at:
www.fesb.hr/~jomaras/download/reuseCaseStudies.zip.

Table 7.3 shows the experiment results. For each case, we present
the total number of lines of code in the application from which a feature

1w3techs.com/technologies/history_overview/javascript_library/all
2http://docs.seleniumhq.org/
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behavior encountered while executing the scenario are studied. In order
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the same application (lines 6–8). The algorithm also reports a warning
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................ A .................
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05A: .mI{ width: 200px; }

18A: this.src=s.next(this.src)

23A: im[i]. onclick = function () {...}
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32A: <img class="mI" src="img/D.jpg"/>

................ B ................
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34B: <img class="mI" src="img/P.jpg"/>
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36B: <div id="info"></div >
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Table 7.2: Case study web applications. Lines of code (LOC)

# Group Application LOC Feature LOC

1 1 TinySlider 316 242
2 1 Fancy buttons 180 N/A
3 2 PrIDE 10,554 1083
4 2 Mailboxing 12,031 N/A
5 3 Tab panels 5,112 1253
6 3 Login panel 8,813 N/A

Table 7.3: Experiment results: HTML modifications (H), CSS modifica-
tions (C), JavaScript modifications (J) ; Time – process execution time
in seconds

# A B H (A;B) C (A;B) J (A;B;B’) Time

1 1 2 22;0 2;5 1;1;2 15
2 1 4 23;0 3;7 0;0;0 55
3 1 6 23;0 3;2 0;0;0 42
4 3 2 30;0 1;5 0;0;0 14
5 3 4 39;0 14;7 9;0;0 54
6 3 6 29;0 1;2 9;0;0 41
7 5 2 22;0 5;5 0;0;0 50
8 5 4 22;0 5;7 4;12;0 90
9 5 6 22;0 5;2 310;0;0 77

was extracted (A-LOC), lines of code of the application where the feature
will be integrated into (B-LOC), total LOC of the feature extracted with
the feature identification process (F-LOC), number of changes done to
the HTML code (H), CSS code (C), and JavaScript code (J) that were
performed by the process to resolve conflicts; and the total running time
of the process3. All experiments have been performed with the Firecrow4

tool, further described in Chapter 8, which implements the algorithms
described in the paper.

In all cases the method was able to introduce a feature from one
application into another. However, in order to achieve this, some mod-
ifications of the application source code were necessary. As can be seen

3Phantom Js 1.9, Intel Xeon 3.7 GHz, 16 GB RAM
4https://github.com/jomaras/Firecrow

7.7 Conclusion 115

from the Table 7.3 the majority of these modifications was concerned
with resolving HTML naming attributes conflicts, and conflicts that
arose due to overriding CSS styles. As far as JavaScript conflicts go,
there are three interesting types of cases: Case 1 – both applications
use the onload property of the window object to schedule the execution
of a function after the page has been loaded; in order to prevent over-
riding, event-handling conflict code was inserted into both applications,
and conflict-free handler caller code was added to the final B’ applica-
tion;and Cases 5, 6, 8 – where conflicts in the library methods have
been found and fixed; and Case 9 which has a much larger number of
JavaScript modifications, compared to other cases. Case 9 deals with
reusing a feature from an application developed with the MooTools li-
brary into an application also developed with the MooTools library. The
MooTools library creates a large number of global JavaScript variables,
and makes considerable modifications to the built-in objects. For this
reason, when performing feature integration, a large number of conflicts
is detected and handled. From a practical perspective, it does not make
much sense to integrate parts of the library, obtained from feature code,
with the full library. However, in this experiment, our goal was to test
the feature integration process, and this case shows that the process is
able to accurately handle a large number of conflicts.

7.7 Conclusion

This chapter describes how to achieve automatic integration of features
from one client-side web application into an already existing client-side
application, in order to achieve feature reuse. We have specified what
exactly feature integration is, and when can it be considered successful.
Naturally, when attempting to introduce code from one application into
another application a number of conflicts can occur – we have identified
different types of conflicts and have developed algorithms capable of
detecting and resolving them. Once the conflicts are resolved, in order to
achieve reuse, we have defined an algorithm that merges the code of the
feature with the target application. We have also defined an algorithm
that verifies the correctness of the process. In the end, by testing the
method on a suite of non-trivial applications, we have shown that the
method is capable of identifying and handling conflicts, and performing
feature integration.
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Chapter 8

Firecrow tool

In order to support the process of of automatic feature reuse, we have
developed a prototype tool – Firecrow1. In this chapter, we describe
different subsystems composing the tool, and discuss their roles in sup-
porting the various steps of the process.

8.1 Tool organization

The Firecrow tool is composed out of five subsystems: i) DoppelBrowser,
a JavaScript library that processes and interprets web application code,
creates a dependency graph, and is capable of creating execution sum-
maries for a particular execution of a client-side web application; ii) Fea-
ture Locator, a JavaScript library that traverses the dependency graph,
analyzes the execution summary, and identifies the code implementing
a certain feature; iii) Scenario Generator, an application for automatic
generation of scenarios; iv) Feature Integrator, a JavaScript library that
locates and fixes potential feature integration errors, and performs the
merging of the feature code and target application code. The function-
alities provided by these subsystems can be used from a Firefox plugin.

Figure 8.1 shows a screenshot of the tool, when used as a plugin
to the Firefox’s Developer Tools2. Mark A shows the structure of the
feature chosen for reuse, and mark B the tool.

1https://github.com/jomaras/Firecrow
2https://developer.mozilla.org/en/docs/Tools
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Figure 8.1: A screenshot of the Firecrow tool used within the Firefox
browser; A – structure of the feature chosen for extraction; B – Firecrow
within Firefox’s Web Developer Tools

8.1.1 DoppelBrowser

DoppelBrowser is a JavaScript library that evaluates web application
code according to standard rules of client-side web application evalua-
tion. It includes a newly developed JavaScript interpreter that, besides
evaluating JavaScript code, also keeps track of relationships between
variable values and code expressions from where the values originate
from. This additional interpreter feature enables us to construct a client-
side dependency graph (Chapter 4) that accurately captures the depen-
dencies that exist in a client-side application. In addition, the library can
be used to gather execution summaries that capture important run-time
information used in the process of automatic testing, as well as in the
reuse process itself – the DoppelBrowser library is an integral component
in all steps of the automatic reuse process. The library is browser agnos-
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tic, and we have used it to evaluate web application code from different
browsers: Firefox, Chrome, Safari, and PhantomJs browsers.

8.1.2 Feature Locator

Feature Locator is a JavaScript library developed with the purpose of
identifying code that implements a particular feature. It works by an-
alyzing the dependency graph and the execution summary gathered by
the DoppelBrowser, and performs the graph marking algorithms (Chap-
ter 6.5). As the DoppelBrowser library, it can be run inside different
browsers.

Figure 8.2: Feature Locator used as a Firefox plugin. A – action toolbar;
B – DOM viewer; C – Slicing Criteria; D – Scenario description

Figure 8.2 shows the UI of the Feature Locator subsystem, when ac-
cessed through a Firefox plugin. Mark A indicates the toolbar that allows
browsing though application source code, recording scenarios, and initi-
ating the feature identification process; mark B shows the DOM viewer
which enables easy specification of parts of web page structure where the
feature manifests; mark C shows a container with slicing criteria (either
points in the source code, or CSS selectors that point to certain parts of
the page); mark D shows a list of all events for the recorded scenario.

8.1.3 Scenario Generator

Scenario Generator is a stand-alone application that makes use of the
DoppelBrowser library. It implements the algorithms described in Chap-
ter 5. The tool systematically explores the value and the event space of
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a client-side web application and generates scenarios that cover the be-
haviors of a client-side web application.

Figure 8.3: Scenario Generator used as a Firefox plugin. A – toolbar; B
– web application code; C – Generated Scenarios; D – Kept scenario

Figure 8.3 shows the UI of the Scenario Generator subsystem, when
accessed though a Firefox plugin. Mark A indicates the toolbar that
is used to specify feature selectors, prioritization function, and start
the process; mark B shows the source code of the application, where
the bold text denotes parts of the source code that was executed by at
least one scenario; mark C shows all scenarios that were generated in
the process, while mark D shows the scenarios that were kept after the
scenario filtering phase.

8.1.4 Feature Integrator

The Feature Integrator is a JavaScript library that provides the func-
tionality of integrating feature code identified with the Feature Locator
subsystem into an already existing application. The subsystem imple-
ments algorithms presented in Chapter 7.

Figure 8.4 shows the UI of the Feature Integrator subsystem, used as
a Firefox plugin. Marks A, B, and C indicate the toolbar that allows the
user to select the feature page and specify parts of the page structure
where the feature manifests, and the page where the feature will be
reused into, as well as the exact position in the page structure where
the feature will be integrated; mark D shows the feature scenarios, and
mark E the scenarios of the target application.

8.2 Conclusion 121

Figure 8.4: Feature Integrator used as a Firefox plugin. A – toolbar; B –
Setting the feature and the target page; C – Specifying the parts of the
page structure that define the feature and the position where the feature
will be reused; D – Feature scenarios; E – application scenarios

8.2 Conclusion

In this chapter, we have given an overall description of the Firecrow tool,
a tool that implements the processes and algorithms described through-
out the thesis. The tool was developed in order to provide easy access
to the functionalities of scenario generation, feature identification, and
feature integration. Since the tool is developed as a JavaScript library,
it can be adjusted to allow usage from browsers other than Firefox (e.g.
Chrome, Opera). In addition, the tool is extensible, and some of the
extensions that we are considering are debugging and program under-
standing.
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Chapter 9

Related Work

Throughout this thesis, we have described the process of automatic fea-
ture reuse in client-side web application development. We have discussed
different steps needed to support reuse: automatic scenario generation
(Chapter 5); locating the implementation details of particular features
and performing slicing in order to extract the feature code (Chapters 4
and 6); and integrating the extracted feature code into an already exist-
ing application (Chapter 7). In this chapter, we present work related to
each of these sub-problems, as well as to the general problem of software
reuse.

9.1 Software Reuse

Software reuse, as the process of creating new software systems from ex-
isting software artifacts, has long been advocated a way to reduce defect
density and increase developer productivity. Overall, the approaches to
software reuse can be divided into two groups [29]: i) preplanned reuse
approaches, where software artifacts that will be reused are explicitly
constructed with reuse in mind; and ii) pragmatic approaches, where
reused software artifacts are not necessarily constructed for reuse.

Over the years, a number of approaches that support reuse have been
developed: Hunter Gatherer [53], Internet Scrapbook [57], HTMLview-
Pad [58], and Web Mashups [44] in the web application domain; and
G&P [31], Jigsaw [16], and CodeGenie [39] in the Java domain.
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HunterGatherer [53], Internet Scrapbook [57], and HTMLviewPad [58]
are similar approaches mostly related to clipping and reusing fragments
of Web pages. They enable the creation of personalized pages that ag-
gregate data or “information components” from different sources. Since
these approaches were developed in 1990’s and early 2000, when web
page development was not so dynamic on the client-side, their usability
in the current web development is quite limited. These approaches are
mostly limited to reusing HTML elements such as text fragments and
forms, and make no attempts to also include CSS and JavaScript.

Further work has lead to the development of Web Mashups [44],
which are web applications that combine information and services from
multiple sources on the web. The main advantage of Mashups is that
they enable the creation of new applications by integrating services of-
fered by third-party providers. The main difference between Mashups
and our approach is that Mashups address reuse on a service-level, while
we specifically target reuse on the code level.

In the more general domain of Java applications, G&P [31] is a reuse
environment composed of two tools, Gilligan and Procrustes, that facili-
tates pragmatic reuse tasks. Gilligan allows the developer to investigate
dependencies from a desired functionality and to construct a plan for its
reuse, while Procrustes automatically extracts the relevant code from the
originating system, transforms it to reduce the compilation errors and
inserts it into the developer’s system. In this domain there is also a tool
called Jigsaw [16] which facilitates small-scale reuse of source code. The
main difference between our approaches is that G&P and Jigsaw are
approaches that statically analyze Java applications. While the ideas
and end goals are similar, their methods can not be used in the highly
dynamic, multi-paradigm environment of client-side web applications.

Recently, an increasing amount of open source code is being made
available on the Internet, and a number of approaches that search the
openly available code repositories have been developed. CodeGenie [39]
presents a tool and an approach to code search and pragmatic reuse
based on test cases. The test cases have two main purposes: i) they
define the behavior of the desired functionality, and ii) they test the
reuse result for suitability in the local context. First, the code search for
the functionality described by the tests is performed, next the matching
source code is sliced from the originating system, and finally the sliced
code can be integrated into the target application. Compared to our
approach, CodeGenie is focused on reusing auxiliary functions, and is not
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designed to support reuse of higher-level, complex UI features. Similar
to G&P, CodeGenie is designed for the domain of Java applications.

9.2 Automatic Testing of Web Applications

One of the contributions of this thesis is a method for automatic gener-
ation of scenarios. This is closely related to the discipline of automatic
testing for web applications.

In [43], Mesbah et al. describe their approach for automatic testing.
The method is based on a crawler [42] that infers a state-flow graph
for all client-side user interface states. New states and transitions are
created by executing existing event handlers, analyzing the structure of
the application and determining if it is changed enough to warrant a new
state. The crawling phase is directed either with randomly generated
input values or with user-specified values. Various errors are detected
(DOM validity, error messages, etc.) by analyzing possible client-side
user interface states.

Saxena et al. [52] present a method and a tool – Kudzu. The approach
explores the application’s event space with GUI exploration (searches the
space of all event sequences with a random exploration strategy), and the
application’s value space by using dynamic symbolic execution. In the
process, they have developed a string constraint solver capable of tak-
ing into account the specifics of string constraints present in JavaScript
programs.

Artemis [5] is an approach for feedback directed testing of JavaScript
applications from which we have derived most insights when developing
our approach. The approach is based on dynamic analysis of web appli-
cation execution – the application execution is monitored and all event
registrations logged. New test cases are created by extending already
existing tests with event registrations and by generating variants of the
event input parameters. For generating new event input parameters they
use randomly chosen values, and constants collected during the dynamic
execution. They also introduce prioritization functions which influence
the order in which generated test cases are analyzed.

None of the introduced client-side web application testing approaches
enable developers to target specific client-side features, nor do they
provide filtering of generated scenarios in order to minimize the num-
ber of usage scenarios. Also, in order to improve coverage, we use
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the application and determining if it is changed enough to warrant a new
state. The crawling phase is directed either with randomly generated
input values or with user-specified values. Various errors are detected
(DOM validity, error messages, etc.) by analyzing possible client-side
user interface states.

Saxena et al. [52] present a method and a tool – Kudzu. The approach
explores the application’s event space with GUI exploration (searches the
space of all event sequences with a random exploration strategy), and the
application’s value space by using dynamic symbolic execution. In the
process, they have developed a string constraint solver capable of tak-
ing into account the specifics of string constraints present in JavaScript
programs.

Artemis [5] is an approach for feedback directed testing of JavaScript
applications from which we have derived most insights when developing
our approach. The approach is based on dynamic analysis of web appli-
cation execution – the application execution is monitored and all event
registrations logged. New test cases are created by extending already
existing tests with event registrations and by generating variants of the
event input parameters. For generating new event input parameters they
use randomly chosen values, and constants collected during the dynamic
execution. They also introduce prioritization functions which influence
the order in which generated test cases are analyzed.

None of the introduced client-side web application testing approaches
enable developers to target specific client-side features, nor do they
provide filtering of generated scenarios in order to minimize the num-
ber of usage scenarios. Also, in order to improve coverage, we use
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the systematic exploration of the application’s event-space (similar to
Artemis [5]) and combine it with symbolic execution (similar to Sax-
ena’s approach [52]). On top of this, we track application dependencies
by the means of a dependency graph (Chapter 4), which enables us to
accurately capture dependencies between different events, and to create
event chains.

In the domain of testing server-side web applications, there exists
the SWAT tool [3], which uses search-based testing. In their approach,
random inputs to the web application are generated with additionally in-
corporated constant seeding (gathered by statically analyzing the source
code), and by dynamically mining values from the execution. Although
some parts of the approach could be adopted to fit the domain of client-
side applications, their method is specifically developed to deal with
constraints inherent in server-side applications.

9.3 Feature Location

In our approach, we dynamically analyze the application execution and
the dependency graph to locate the code that implements a particular
feature. In this section, we present some of the most important dynamic
feature location techniques, as well as the use of dependency graphs for
feature location.

Chen and Rajlich [13] present a version of a system dependence graph
(SDG) [33] called an abstract system dependence graph (ASDG) is pre-
sented. The ASDG is used in a feature location computer-assisted search
process. In each step of the search, one component (functions and global
variables) is chosen for visit. All visited components and their neighbors
constitute a search graph. Each visit to a component expands the search
graph, and the process continues until all components implementing a
feature are located.

One of the earlies dynamic feature location techniques, proposed by
Wilde [63], was based on the idea of comparing execution traces obtained
by exercising the feature of interest with those obtained while the fea-
ture was not exercised. The execution traces are obtained by executing
sets of test cases that invoke application features. For each feature, the
approach then groups components into sets according to how specific the
components are to the feature.

Eisenbarth and Koschke [20] have developed a semiautomatic tech-
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nique that reconstructs the mapping for features that are triggered by
the user and exhibit an observable behavior. The method works by an-
alyzing execution traces and static program dependence graphs whose
nodes are methods, data fields, classes, etc. and whose edges are func-
tion calls, data access links and other types of relationships obtained
by static analysis. Then they use formal concept analysis, where com-
putation units are objects, scenarios attributes, and where relationships
indicate if an object was visited during a scenario, to create a concept
lattice, which is then manually analyzed by the analyst. Information
about how specific the computational unit to a feature are then derived.

Compared to these methods, our method takes into account the fact
that client-side web applications are UI applications where features man-
ifest on certain parts of the web page structure. Then, by analyzing
application executions in which the feature manifests and traversing the
dependency graph, we can locate the code that implements the feature
that manifests on a certain part of web page structure, for a particular
scenario.

There are also two tools that facilitate the understanding of dynamic
web page behavior: Script InSight [40] and FireCrystal [45]. Script In-
Sight helps to relate the elements in the browser with the lower-level
JavaScript syntax. It uses the information gathered during the script’s
execution to build a dynamic, context-sensitive, control-flow model that
summarizes tracing information. FireCrystal facilitates the understand-
ing of interactive behaviors in dynamic web pages by recording interac-
tions and logging information about DOM changes, user input events,
and JavaScript executions. After the recording phase, the user can use
an execution time-line to see the code that is of interest for the particular
behavior. Compared to our approach they make no attempts to track
data dependencies between different code expressions, nor to identify
individual features in the analyzed code.

9.4 Program Slicing

Our work is closely related to program slicing, defined by Weiser [62] as
a method that, for a given subset of a program’s behavior, reduces that
program to a minimal form which still produces that behavior. In its
original form, a program is sliced statically, for all possible program in-
puts. Static slicing can be difficult, and can lead to slices that are larger
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by static analysis. Then they use formal concept analysis, where com-
putation units are objects, scenarios attributes, and where relationships
indicate if an object was visited during a scenario, to create a concept
lattice, which is then manually analyzed by the analyst. Information
about how specific the computational unit to a feature are then derived.

Compared to these methods, our method takes into account the fact
that client-side web applications are UI applications where features man-
ifest on certain parts of the web page structure. Then, by analyzing
application executions in which the feature manifests and traversing the
dependency graph, we can locate the code that implements the feature
that manifests on a certain part of web page structure, for a particular
scenario.

There are also two tools that facilitate the understanding of dynamic
web page behavior: Script InSight [40] and FireCrystal [45]. Script In-
Sight helps to relate the elements in the browser with the lower-level
JavaScript syntax. It uses the information gathered during the script’s
execution to build a dynamic, context-sensitive, control-flow model that
summarizes tracing information. FireCrystal facilitates the understand-
ing of interactive behaviors in dynamic web pages by recording interac-
tions and logging information about DOM changes, user input events,
and JavaScript executions. After the recording phase, the user can use
an execution time-line to see the code that is of interest for the particular
behavior. Compared to our approach they make no attempts to track
data dependencies between different code expressions, nor to identify
individual features in the analyzed code.

9.4 Program Slicing

Our work is closely related to program slicing, defined by Weiser [62] as
a method that, for a given subset of a program’s behavior, reduces that
program to a minimal form which still produces that behavior. In its
original form, a program is sliced statically, for all possible program in-
puts. Static slicing can be difficult, and can lead to slices that are larger
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than necessary, especially in the case of pointer usage. Further research
has lead to development of dynamic slicing [2] in which a program slice
is composed of statements that influence the value of a variable occur-
rence for specific program inputs – only the dependencies that occur in
a specific execution of a program are studied.

Program slicing is usually based on some form of a dependency graph
that captures dependencies between code constructs. Depending on the
area of application, it can have different forms: a Flow Graph in Weiser’s
original form, a Program Dependence Graph (PDG) [34] representing
both data and control dependencies for each evaluated expression, or a
System Dependence Graph (SDG) [33] which extends the PDG to sup-
port procedure calls rather than only monolithic programs. The SDG
has also been later expanded in order to support object-oriented pro-
grams [38]. None of these graphs is fully suitable to support a multi-
language dynamic environment that is the client-side of the web appli-
cation.

In the web domain, Tonella and Ricca [59] define web application slic-
ing as a process which results in a portion of a web application which still
exhibits the same behavior as the initial application in terms of informa-
tion of interest to the user. They present a technique for web application
slicing in the presence of dynamic code generation by building an SDG for
server-side web applications. Even though the server-side and the client-
side applications are parts of the same whole, they are based on different
development paradigms, and cannot be treated equally. Nowadays, the
client-side applications are highly dynamic, event-driven environments
where the interplay of three different languages (HTML, JavaScript, and
CSS) produces the end result displayed in the browser. For this reason,
server-side analysis techniques, such as Tonella and Ricca’s, can not be
applied to client-side applications.

Chapter 10

Conclusion

In this thesis, we have described an automated approach to feature reuse
in client-side web application development. We have specified a method
composed of three distinct phases: i) automatic scenario generation,
ii) identifying feature implementation details, and iii) integrating the
feature code into an existing application, thereby achieving reuse. In this
chapter, we summarize the results with respect to the research questions
and contributions presented in Chapter 1, and we present possible future
work.

10.1 Identification of feature implementa-
tion details

RQ1: How can we identify the subset of the web application source code
and resources that implement a particular feature?

In order to answer this question, we have studied the state of the art
and state of the practice of feature location and program slicing tech-
niques. We have defined a client-side dependency graph (Chapter 4) that
is capable of capturing the dependencies that exist in a client-side web
application, and have specified an algorithm that creates the dependency
graph by dynamically analyzing application execution.

We have also defined a process of identifying feature implementa-
tion details (Chapter 6). The process dynamically analyzes application
execution and identifies points in the execution where the feature mani-
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than necessary, especially in the case of pointer usage. Further research
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feature code into an existing application, thereby achieving reuse. In this
chapter, we summarize the results with respect to the research questions
and contributions presented in Chapter 1, and we present possible future
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10.1 Identification of feature implementa-
tion details

RQ1: How can we identify the subset of the web application source code
and resources that implement a particular feature?

In order to answer this question, we have studied the state of the art
and state of the practice of feature location and program slicing tech-
niques. We have defined a client-side dependency graph (Chapter 4) that
is capable of capturing the dependencies that exist in a client-side web
application, and have specified an algorithm that creates the dependency
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execution and identifies points in the execution where the feature mani-
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fests. Based on these feature manifestation points the feature code and
resources are identified by traversing the dependency graph. In order
to validate the correctness of the feature identification process, we have
performed three sets of experiments (Section 6.6). In all cases, the sce-
narios that capture the behavior of a feature are specified as tests, and
the identification process is considered successful if the extracted code
is able to pass the same test as the original code. We have also com-
pared our approach with profiling, which is a straightforward extraction
approach where all executed expressions are treated as important. The
experiments have shown that the process is able to successfully identify
feature code (i.e. the identified and extracted code can pass the same
tests as the original code), and that considerable savings, in terms of
code lines and improved performance can be achieved.

10.2 Integration of feature code

RQ2: How can we introduce the source code and resources of a feature
into an already existing application, without breaking the functionality of
neither the feature nor the target application?

Once the code of the feature has been identified, in order to achieve
reuse we have to integrate it into an existing application. Naively merg-
ing the code of the feature with the code of the target application can
lead to a number of different conflicts that have to be detected and re-
solved. We have identified the types of conflicts that can occur, and
have developed algorithms that detect and resolve those conflicts. After
conflict resolution, in order to achieve reuse, we often have to integrate
the code of the feature with the code of the target application. We have
defined algorithms capable of integrating code, as well as verifying the
correctness of that integration. The process has been tested on a suite
of web applications, and the evaluation has shown that the process can
introduce feature code into an already existing application.

10.3 Automatic Scenario Generation

RQ3: How can we automatically generate scenarios that cause the man-
ifestation of a client-side feature?

Both the method for identifying implementation details of an indi-
vidual feature and the method for integrating feature code rely on the
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existence of scenarios that capture the behavior of either the feature or
the whole application. Specifying these scenarios manually can be a dif-
ficult and error prone activity. For this reason, we have developed an
automatic method for scenario generation. The method works by sys-
tematically exploring the event and value space of the application. For
some applications this causes the exploration of a large number of sce-
narios. For this reason, our method also includes the scenario filtering
phase, where scenarios that do not contribute to the overall application
coverage are removed. We have evaluated the method based on four
experiments, which have shown that the method is able to generate sce-
narios that target specific application features, and that an increased
coverage can be achieved, when compared to other, similar approaches.

10.4 Future Work

In this section, we discuss possible extensions to the research presented
in the thesis.

10.4.1 The client-side dependency graph

One contribution of this thesis is the client-side dependency graph, which
we have used to establish dependencies between the execution of events
in order to create scenarios that achieve high coverage, to identify the
code of individual features, and to establish and resolve conflicts that
occur when integrating feature code into an already existing applica-
tion. These are only some of the usages for the dependency graph.
Since the dependency graph accurately captures dependencies that exist
in an application, it can also be used to facilitate code understanding,
dependency analysis, and debugging. One possible direction in further
research is to investigate some of these possibilities, especially in the area
of facilitating the understanding of dynamic behaviors in client-side web
applications.

10.4.2 Automatic Scenario Generation

In this thesis, we have defined a method for automatic generation of
feature scenarios that creates high-coverage scenarios by systematically
exploring the event and value space of the application. In our approach,
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to validate the correctness of the feature identification process, we have
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code lines and improved performance can be achieved.
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neither the feature nor the target application?

Once the code of the feature has been identified, in order to achieve
reuse we have to integrate it into an existing application. Naively merg-
ing the code of the feature with the code of the target application can
lead to a number of different conflicts that have to be detected and re-
solved. We have identified the types of conflicts that can occur, and
have developed algorithms that detect and resolve those conflicts. After
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of web applications, and the evaluation has shown that the process can
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existence of scenarios that capture the behavior of either the feature or
the whole application. Specifying these scenarios manually can be a dif-
ficult and error prone activity. For this reason, we have developed an
automatic method for scenario generation. The method works by sys-
tematically exploring the event and value space of the application. For
some applications this causes the exploration of a large number of sce-
narios. For this reason, our method also includes the scenario filtering
phase, where scenarios that do not contribute to the overall application
coverage are removed. We have evaluated the method based on four
experiments, which have shown that the method is able to generate sce-
narios that target specific application features, and that an increased
coverage can be achieved, when compared to other, similar approaches.

10.4 Future Work

In this section, we discuss possible extensions to the research presented
in the thesis.

10.4.1 The client-side dependency graph

One contribution of this thesis is the client-side dependency graph, which
we have used to establish dependencies between the execution of events
in order to create scenarios that achieve high coverage, to identify the
code of individual features, and to establish and resolve conflicts that
occur when integrating feature code into an already existing applica-
tion. These are only some of the usages for the dependency graph.
Since the dependency graph accurately captures dependencies that exist
in an application, it can also be used to facilitate code understanding,
dependency analysis, and debugging. One possible direction in further
research is to investigate some of these possibilities, especially in the area
of facilitating the understanding of dynamic behaviors in client-side web
applications.

10.4.2 Automatic Scenario Generation

In this thesis, we have defined a method for automatic generation of
feature scenarios that creates high-coverage scenarios by systematically
exploring the event and value space of the application. In our approach,
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we consider all event types and all created event-chains as equally prob-
able. One idea for possible improvement is to study both the event types
and event chains that occur when users interact with the application, and
then create heuristics that would increase the achieved code coverage.

We also plan to perform an empirical investigation to compare the
scenarios generated by our method with the scenarios specified by appli-
cation users and developers. This would help us to evaluate the quality of
generated scenarios, and it would possibly provide further insights that
could be used to improve our automatic scenario generation method.

10.4.3 Identifying Feature Code

The feature identification process, based on the feature manifestation
points and the dependency graph, identifies the code of the target fea-
ture. Similar techniques could also be used to identify code based on
some other criteria, e.g. by substituting feature manifestation points with
error manifestation points, a technique for identifying code that leads to
an error could be developed. For this reason, we plan to investigate the
application of the feature identification process to debugging.

Apart from debugging, the fact that we are able to identify code of
all application features could be used to facilitate a number of software
engineering activities, for example, feature understanding or software
measurement (e.g. metrics that capture application complexity or main-
tainability could be derived). We plan to study some of these possibili-
ties.

During our experiments (Chapter 6) we have noticed that the test
web applications contain more code than is actually needed by their be-
havior. Since significant savings, in terms of code size and increased
performance, can be made by removing unnecessary code, one of our
plans is to make a wide, empirical study to investigate do web applica-
tions, in general, include more code than actually needed.

10.4.4 Firecrow

The algorithms and processes used to implement automatic feature reuse
are currently implemented by our tool – Firecrow (Chapter 8), which is
a JavaScript library. While this offers benefits in terms of easy exten-
sibility and the ability to mimic different browsers, it also suffers from
performance problems. For this reason, as part of future work, we plan
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to implement the developed processes and algorithms directly into open-
source browsers (e.g. Firefox, Chrome). This would enable us to perform
extensive experiments on the most complex currently available applica-
tions.

10.4.5 Extending the approach to server-side appli-
cations

Web applications are composed out of two distinct parts: the server-
side, which is a usually a procedural application implementing data-
access and business logic, and the client-side, an event-driven application
implementing the UI. In this thesis, we have developed methods for
automatic reuse on the client-side. However, since the client-side and
server-side are parts of the same whole, in order to increase the usability
of the developed methods, we plan to extend the approach to also include
the server-side. In order to do this, we will have to make adjustments to
the dependency graph, and extend the algorithms for automatic scenario
generation, feature identification, and feature integration in a way that
they also take into account the specifics of the server-side.

10.4.6 Extending the approach to other domains

Even though the processes described in this thesis were specifically de-
veloped to address the domain of client-side web applications, some of
the ideas could also be adapted to fit other, similar domains. For exam-
ple, other UI domains, such as the domain of mobile applications, or the
domain of standard desktop applications, have certain underlying prin-
ciples that make them similar to the client-side web application domain.
For this reason, we think that one viable aspect of future work could be
the modifications of the developed procedures to other domains, or even
the development of a general framework for automatic feature reuse.
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we consider all event types and all created event-chains as equally prob-
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then create heuristics that would increase the achieved code coverage.

We also plan to perform an empirical investigation to compare the
scenarios generated by our method with the scenarios specified by appli-
cation users and developers. This would help us to evaluate the quality of
generated scenarios, and it would possibly provide further insights that
could be used to improve our automatic scenario generation method.

10.4.3 Identifying Feature Code

The feature identification process, based on the feature manifestation
points and the dependency graph, identifies the code of the target fea-
ture. Similar techniques could also be used to identify code based on
some other criteria, e.g. by substituting feature manifestation points with
error manifestation points, a technique for identifying code that leads to
an error could be developed. For this reason, we plan to investigate the
application of the feature identification process to debugging.

Apart from debugging, the fact that we are able to identify code of
all application features could be used to facilitate a number of software
engineering activities, for example, feature understanding or software
measurement (e.g. metrics that capture application complexity or main-
tainability could be derived). We plan to study some of these possibili-
ties.

During our experiments (Chapter 6) we have noticed that the test
web applications contain more code than is actually needed by their be-
havior. Since significant savings, in terms of code size and increased
performance, can be made by removing unnecessary code, one of our
plans is to make a wide, empirical study to investigate do web applica-
tions, in general, include more code than actually needed.

10.4.4 Firecrow

The algorithms and processes used to implement automatic feature reuse
are currently implemented by our tool – Firecrow (Chapter 8), which is
a JavaScript library. While this offers benefits in terms of easy exten-
sibility and the ability to mimic different browsers, it also suffers from
performance problems. For this reason, as part of future work, we plan
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to implement the developed processes and algorithms directly into open-
source browsers (e.g. Firefox, Chrome). This would enable us to perform
extensive experiments on the most complex currently available applica-
tions.

10.4.5 Extending the approach to server-side appli-
cations

Web applications are composed out of two distinct parts: the server-
side, which is a usually a procedural application implementing data-
access and business logic, and the client-side, an event-driven application
implementing the UI. In this thesis, we have developed methods for
automatic reuse on the client-side. However, since the client-side and
server-side are parts of the same whole, in order to increase the usability
of the developed methods, we plan to extend the approach to also include
the server-side. In order to do this, we will have to make adjustments to
the dependency graph, and extend the algorithms for automatic scenario
generation, feature identification, and feature integration in a way that
they also take into account the specifics of the server-side.

10.4.6 Extending the approach to other domains

Even though the processes described in this thesis were specifically de-
veloped to address the domain of client-side web applications, some of
the ideas could also be adapted to fit other, similar domains. For exam-
ple, other UI domains, such as the domain of mobile applications, or the
domain of standard desktop applications, have certain underlying prin-
ciples that make them similar to the client-side web application domain.
For this reason, we think that one viable aspect of future work could be
the modifications of the developed procedures to other domains, or even
the development of a general framework for automatic feature reuse.
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