Composable mode switch for component-based systems

Yin Hang, Hans Hansson
MRTC, Milardalen University, Visterds, SWEDEN
Email: young.hang.yin@mdh.se

Abstract—Component based software development (CBD) re-
duces development time and effort by allowing systems to be built
from pre-developed reusable components. A classical approach
to reduce embedded systems design and run-time complexity is
to partition the behavior into a set of major system modes.
In supporting system modes in CBD, a key issue is seamless
composition of multi-mode components into systems.

In addressing this issue, we present a mode switch logic
and algorithm for component-based multi-mode systems. The
algorithm implements seamless coordination and synchronization
of mode switch in systems composed of independently developed
components. The paper provides formally defined semantics
covering aspects relevant for mode switch, together with algo-
rithms implementing mode switch rules for different types of
components. The approach is illustrated by a simple example.

I. INTRODUCTION

Partitioning system behaviors into different operational
modes is a frequently used approach to reduce complexity of
adaptive systems design and verification, as well as to increase
efficiency in system execution. Typically, for each mode
different subsystems are executing, hence different software
implementing different behaviors is executed.

For instance in a car, operational modes could be off and
engine on. At runtime the system is initially running in the
default mode (e.g., off) and when some condition changes or
a particular event occurs, the system will switch to another
pre-defined mode (e.g., ignition on). Mode switch analysis
can be found in related ongoing researches, including mode
switch protocols [1] and schedulability analysis during mode
switch [2].

We will present a mode switch approach for component-
based software. We consider component-based systems built
by a set of hierarchically organized components. If multi-
ple modes are supported, some components may reconfigure
themselves during mode switch in order to provide different
functionalities. Figure 1 illustrates the component hierarchy of
a simple multi-mode system (used throughout this paper). The
system supports two operational modes: M; and M. At top
level, the system consists of components a and b. Component
a consists of components ¢, d and e. However, Component d
is deactivated (not in use; invisible) in mode M. Similarly,
Component b has two subcomponents: f and g (deactivated in
mode M7). As a and b both have subcomponents, we call them
composite components, and we call components that cannot
be further decomposed (e.g., ¢, d) primitive components. A

* This paper was accepted by the workshop APRES 2011 and some contents
have been updated.

Etienne Borde
Telecom ParisTech, CNRS-LTCI, Paris, FRANCE

primitive component may have different behaviors due to dif-
ferent internal configurations in different modes. In Figure 1,
Component f has one behavior in mode M (distinguished by
black color) and another behavior in mode Ms (grey).

Mode M, Mode M-

System System

Fig. 1. Component hierarchy in different modes

In comparison with traditional component-based single-
mode systems, we take mode switch into consideration and
make rules for component reconfiguration throughout the sys-
tem hierarchy. The main characteristic of Component-Based
Development (CBD) is its focus on reuse. Hence, our mode
switch mechanism should allow reuse of individual compo-
nents in different systems. We will equip each component
with mode-switch support that is independent of the context
in which it is used and allows components to be composed
without modification of the supporting mechanism.

Mode switch problems in CBD have been explored by
various frameworks, including COMDES-II [3] and MyCCM-
HI [4]. Besides, programming languages such as AADL [5]
and programming models such as Giotto [6] and TDL [7], im-
plemented in the Ptolemy II framework [8], provide semantics
for the design of multi-mode systems. However, none of them
comes up with a general mode switch logic (MSL) guiding
the reconfiguration of hierarchically composed components.
In this paper, we present a MSL for multi-mode systems, ex-
plaining how mode switch is triggered and propagated among
related components and how component reconfiguration is
implemented. Since our MSL is independent of applications,
hardware, operating system, programming language or tools,
it can be easily implemented in the CBD of most multi-mode
systems, even though we in this paper assume a pipes-and-
filters (control flow) type of component model.

II. COMPONENT SEMANTICS FOR MODE SWITCH

In order to be compatible with our MSL, a component must
be equipped with explicit interfaces related to mode switch
and it must internally integrate certain rules to control its own
mode switch process.

MSR MSR

MSR p P
Py 4 P

! N U
AR i Mode Switch Logic (MSL)
[Mode Switch Logic (MSL) ol bt s
P Control

Control
Mode 1:

Mode 1:

Running status |

Running status |

Active subcomponents |

Behavior |

Active connections |

Po...px—* T Pk+l...pm

po...px—™ Mode n: T Pk+1...Pm

Running status n

Mode n:

Running status n

Active subcomponents nj

Behavior n

Active connections n

(a) Primitive component
(b) Composite component

Fig. 2. Multi-mode component

In the following we will concentrate on aspects related to
mode switch, i.e., component behavior in a particular mode
will not be covered.

Figure 2 illustrates multi-mode primitive and composite
components, for which a few points need to be mentioned:

o A component typically has one or more input and output
ports. Each port is externally connected to a neighboring
component, its parent or subcomponents.

« For a primitive component, a MSR(Mode Switch Request)
is received/sent via the input/output port pS¥, dedicated
to its mode switch related interactions with its parent.
A composite component has the same type of port p5R
and it also has another port p!/*R that is dedicated to
the communication with its subcomponents during mode
switch.

e The internal MSL defines how the component performs
its own mode switch and also controls its own behavior.
It will be described by algorithms in Section III.

o The configuration of a primitive component consists of
its running status (executing or deactivated) and mode-
specific behavior/code. The configuration of a compos-
ite component consists of its running status, executing
subcomponents, connections in use between ports of its
subcomponents and connections in use between its own
ports and the ports of its subcomponents.

Each ¢ € PC (the set of primitive components) is a tuple:

< P,M,B,MB, S, MSL >

where P is the set of ports of ¢; M is the set of operational
modes supported by c; B is the set of behaviors of c; the
function MB : M — B defines the behavior associated with a
certain mode; the function S : M — {Executing, Deactivated}
indicates if c is executing or not in a certain mode; and MSL is
the mode switch logic integrated in ¢, described by Algorithm
1 in Section III.

Let C'C' denote the set of composite components. Each ¢ €
CC is a tuple:

< P,SC, Con,M, S, ESC, ACon, MSL >

where P is the set of ports of ¢ partitioned into the disjoint
subsets of input ports P;, and output ports P,,;; SC is the set

mode M;:

(i)

Input
(i)

Output

Fig. 3.

System overview illustrating component connections

of subcomponents of ¢; Con C (Pgyp U P) X (Psyp U P) is
the set of connections between the subcomponents in SC and

connections between ¢ and SC, where Py, is the set of ports
of SC:

Psub:

U »

compeSC
PEPcomp

M is the set of operational modes supported by c; the function
S : M — {Executing, Deactivated} indicates for each mode
m € M if c is executing or not in m; the function ESC :
M — 25€ defines the set of executing subcomponents in each
mode; the function ACon : M — 29" defines the set of active
connections (connections in use) in each mode; and MSL is
the mode switch logic integrated in ¢, described by Algorithm
2 in Section III.

As an illustration, Figure 3 extends the example in Figure 1
with component connections. The sample system gets data
from the input, processes data and generates output. Using
1 to denote component input, the behavior of each component
is a simple numerical calculation, e.g., Component f calculates
4% 10 in mode M7, and 7 * 20 in mode M>. The flow of data
is indicated by arrows. In Figure 3, Component f is defined
by the tuple,

<Py,My,By,MBy,S;,MSL; >

where MSL; follows Algorithm 1 and:

Py = {pi3,p1a}

My = {My, M}

By = {By(M),Bs(M2)}

MBy = {My — {By(Mi)}, M2 — {By(M2)}}
Sy = {M; — {Executing}, M5 — {Executing}}

Similarly, Component a is defined by the tuple

< P,,SC,,Cong, My, S, ESC,, ACon,, MSL, >

where MSL,, follows Algorithm 2 and:

P, - {p37P4}
SCG. = {C7 d? 6}
Cong = {(ps;po), (Pro,P11); (Ps, p11);
(p3,p7); (P12, 1)}
M, = {M, M}
Sa = {M; — {Executing}, M5 — {Executing}}
ESC, = {M; — {c,d,e}, My — {c,e}}
ACon, =

My — {(ps,p11), (P3,P7), (P12, D4) } }

Note that, each pair of connections (e.g., (ps, pg)) implies
a data flow from first to second element (e.g., ps to pg).

III. MODE SWITCH PROCESS

After the static structures have been defined, it is time
to consider the dynamic mode switch process. The local
reconfiguration of a primitive component is quite straightfor-
ward, but to coordinate and synchronize the reconfigurations
of all related components throughout the system hierarchy
is more challenging. The mode switch must be performed
such that severe problems and anomalies (e.g. mode or data
inconsistency, and mode switch failure) are avoided. Our Mode
Switch Logic (MSL) is designed to eliminate these potential
problems during mode switch by applying appropriate rules,
and is based on the following assumptions:

« In each mode, all components are well-formed, e.g., there
are no inconsistencies due to mis-matched ports, and no
circular sequences of connections between components.

o Component reconfigurations and communication between
components related to mode switch are fault free.

o At any time, at most one MSR is processed.

Due to space limitations we will in this paper make the
following additional simplifying assumptions:

« The execution of primitive components can be aborted at
any time (to allow immediate response to a MSR).

o All components support the same modes (to avoid the
need for a mode mapping mechanism).

Our MSL consists of a MSR propagation mechanism and
dependency rules.

Mode switch request propagation: A MSR is initially issued
by some component and then propagated to other compo-
nents until all the components get notified. All composite
components propagate the MSR to their subcomponents and
parents. Only the primitive component which is the MSR
source propagates the MSR to its parent.

Let’s demonstrate the MSR propagation mechanism using
the example in Figure 3. Suppose the MSR is initiated from
Component ¢ in both modes. Component ¢ is primitive and
propagates the MSR to its parent a and itself to trigger mode
switch. Once Component a receives the MSR, it propagates
it in two directions: to its subcomponents rather than the
triggering source Component ¢ (d and e) and to its parent,
which is the top level system. Since the subcomponents d and e
are primitive, there is no further MSR propagation from them.
The top level system has no parent, and will only propagate the
MSR to its subcomponent b, which only needs to propagate

the MSR to its subcomponents f and g. Since f and g are
primitive, the MSR propagation is finally terminated. Once a
component completes its MSR propagation, it can start its own
mode switch process. The entire MSR propagation process is
depicted in Figure 4.

Dependency rules: The mode switch completion of a com-
ponent may have dependency on other components. To prevent

{My = {(ps,p9); (P10: P11); (P3,P7); (P12, P4) Imode inconsistency, unpredictable results or other related

mode switch problems, we require the coordination of mode
switches between different components to comply with the
following dependency rules:

1) A composite component cannot complete its mode
switch before the completion of the corresponding mode
switch in its subcomponents.

2) A component cannot complete its mode switch before
the mode switch completion of all components con-
nected to its ingoing ports.

3) For components with parents, Rule 2 cannot be applied
until the parent has updated the component connections
for the new mode.

Components that cannot proceed with the mode switch due
to a dependency rule are temporarily blocked until the corre-
sponding condition is satisfied.

Algorithms for primitive and composite components: Before
presenting the algorithms, we will introduce some notations.

e m,; denotes the initial mode of a component.

o AP(m) denotes the set of ports in use, i.e. ports that in
mode m are included in ACon(m).

o Wait and Signal are blocking primitives for receiving
input and sending output on a specific port.

e MSR is the mode switch request signal, carrying the
identity of the new mode and the sending component.

e Prepare_for_new_mode(moyiq, Mpew) changes run-
ning status and behavior for a primitive component. For
a composite component, it changes running status and
connection. It may also include some cleaning up in the
old mode and preparation for the new mode.

e c.p denotes the port p of Component c.

« top is a boolean variable only set to true for the top level
composite component.

e last(c) evaluates to true only if all ports in
APS, . (Mpew) are connected to ports of the enclosing

composite component.

o parentOK is a signal used to tell subcomponents that the
parent reconfiguration is completed; a parameter indicates
if a response is required.

o ms_done signals completion of mode switch.

We assume that the MSR originates from one of the primi-
tive components and that component execution is aborted upon
reception of a MSR. Details and description of this are outside
the scope of this paper.

Algorithm 1 and 2 describe the mode switch processes of
primitive and composite components respectively. These two
algorithms have integrated mode switch request propagation
mechanisms and dependency rules guiding a successful global

Top system b f g

MSR
MSR

MSR
MSR
MSR
parentOK ¢
parentOK
| parentOK
ms_done F ms_done

parentOK.

e
I MSR

parentOK parentOK
t‘

ms_done

< ms _done

. Mode switch of a primitive component

ms_done ms _done

MS [Elrruc!

Mode switch of a composite component D Blocked due to dependencies

Fig. 4. MSR propagation and mode switch activity (from Mz to M7)

Algorithm 1 AlgPC.mode_switch(x € PC,m; € M)

Algorithm 2 AlgCC.mode_switch(x € CC,m; € M,,top)

current_mode := m;;
loop
W ait(pMSR, MSR(m e, origin));
Prepare_for_new_mode(current_mode, Myew);
Wait(p"R parentOK (resp_required));
Vp € APE (Mypew) : Wait(p, ms_done(Mpew));
Vp € APY(Mpew) : Signal(p, ms_done(Mpew));
if resp_required then
Signal (p™Sk, ms_done);
end if
current_mode := Mpew;
if S;(Mpew) = Executing then
exec(MB” (Mpew));
end if
end loop

mode switch. A few points deserve further explanation:

« Upon reception of a MSR, the currently executing com-
ponent software is aborted and control is handed over to
the MSL as defined by either Algorithm 1 or 2.

o If a composite component receives the MSR from its
parent, it will propagate it to all its subcomponents.
However, if the MSR comes from a child, it will propagate
it to all other subcomponents rather than this child and
to its own parent if it has one, because it is not efficient
to propagate the same MSR to any component more
than once. When a composite component propagates the
MSR to its subcomponents, each subcomponent ¢ € SC'
receives the MSR via the dedicated port pMSk,

o exec(MB”(mpew)) means that x starts to execute its
behavior defined for mode m,,¢q-

IV. CONCLUSION AND FUTURE WORK

We have presented a Mode Switch Logic (MSL) for
component-based systems with multiple operational modes.
We first defined component semantics and configuration, and
then proposed rules to guide the dynamic mode switch process,
including a mode-switch request propagation mechanism and
dependency rules. Most key concepts and rules are also

current_mode := my;
loop
W ait(pMSE A\ pMSR MSR(m e, 0rigin));
if origin = parent then
Ve € SC, : Signal(c.p!R MSR(myew, T));
else
Ve € (SC, \ {origin}) :
Signal (c.p5R MSR(m e, T));
if —top then
Signal (p™SR, MSR(mMpew, T));
end if
end if
Prepare_for_new_mode(current_mode, Muyew);
Ve € SC, : Signal(c.pR parentOK (last(c)));
if —top then
W ait(p"R parentOK (resp_required));
end if
Vp € (AP}, (mnew) V i) :
Wait(p, ms_done(mupew));
Vp € APZ . (Mpew) : Signal(p, ms_done(Mpew));

if resp_required AND —top then

Signal (PR, ms_done(Mmpew));
end if
current_mode := Myew;
end loop

demonstrated by a small example throughout the paper. We
finally gave algorithms showing how to implement our MSL.

In future work we intend to generalize our results by
lifting some of the simplifying assumptions, e.g., by restricting
the interruptibility of components and by allowing different
components to have different modes. We will additionally
develop timing analysis for multi-mode systems, verify the
correctness of proposed algorithms, as well as implement and
evaluate the techniques in our component model ProCom [9],
which is targeting real-time embedded systems.

ACKNOWLEDGMENT

The anonymous reviewers, Jan Carlson and Cristina Sece-
leanu are acknowledged for valuable feedback. This work is

supported by the Swedish Research Council.

(1]

(2]

(3]

[4]

(51

(6]

(71
(8]

[9]

REFERENCES

J. Real and A. Crespo, “Mode change protocols for real-time systems:
A survey and a new proposal,” Real-Time Systems, vol. 26, no. 2, pp.
161-197, 2004.

P. Pedro and A. Burns, “Schedulability analysis for mode changes in
flexible real-time systems,” Real-Time Systems, 1998. Proceedings. 10th
Euromicro Workshop on, pp. 172-179, 1998.

X. Ke, K. Sierszecki, and C. Angelov, “COMDES-II: A component-based
framework for generative development of distributed real-time control
systems,” 13th IEEE International Conference on Embedded and Real-
Time Computing Systems and Applications (RTCSA 2007), 2007.

E. Borde, G. Haik, and L. Pautet, “Mode-based reconfiguration of critical
software component architectures,” Proceedings of the Conference on
Design, Automation and Test in Europe, pp. 1160-1165, 2009.

P. H. Feiler, D. P. Gluch, and J. J. Hudak, “The architecture analysis
& design language (AADL): An introduction,” Software engineering
institute, MA, Tech. Rep. CMU/SEI-2006-TN-011, Feb. 2006.

T. A. Henzinger, B. Horowitz, and C. M. Kirsch, “Giotto: A time-
triggered language for embedded programming,” in PROCEEDINGS OF
THE IEEE. Springer-Verlag, 2001, pp. 166—184.

J. Templ, “TDL specification and report,” Department of Computer
Science, University of Salzburg, Tech. Rep., Nov. 2003.

P. D. S. Resmerita and W. Pree, “Timing definition language (TDL)
modeling in ptolemy II,” Department of Computer Science, University
of Salzburg, Tech. Rep., Jun. 2008.

A. Vulgarakis, J. Suryadevara, J. Carlson, C. Seceleanu, and P. Pettersson,
“Formal semantics of the ProCom real-time component model,” 2009
35th Euromicro Conference on Software Engineering and Advanced
Applications, pp. 478-485, 2009.

