
Exploring Timing Model Extractions at EAST-ADL
Design-level using Model Transformations

Alessio Bucaioni∗†, Saad Mubeen∗†, Antonio Cicchetti∗ and Mikael Sjödin∗
∗ Mälardalen Real-Time Research Centre (MRTC), Mälardalen University, Västerås, Sweden

† Arcticus Systems AB, Järfälla, Sweden
∗{alessio.bucaioni, saad.mubeen, antonio.cicchetti, mikael.sjodin}@mdh.se

†{alessio.bucaioni, saad.mubeen}@arcticus-systems.com

Abstract—We discuss the problem of extracting control and
data flows from vehicular distributed embedded systems at
higher abstraction levels during their development. Unambiguous
extraction of control and data flows is vital part of the end-
to-end timing model which is used as input by the end-to-end
timing analysis engines. The goal is to support end-to-end timing
analysis at higher abstraction levels. In order to address the
problem, we propose a two-phase methodology that exploits the
principles of Model Driven Engineering and Component Based
Software Engineering. Using this methodology, the software
architecture at a higher level is automatically transformed to
all legal implementation-level models. The end-to-end timing
analysis is performed on each generated implementation-level
model and the analysis results are fed back to the design-level
model. This activity supports design space exploration, model
refinement and/or remodeling at higher abstraction levels for
tuning the timing behavior of the system.

I. INTRODUCTION

The intrinsic complexity of vehicular embedded systems
demands for development methodologies and technologies that
are able to cope with it. In the last decades, Component-Based
Software Engineering (CBSE) [1], [2], Model-Driven Engi-
neering (MDE) [3] and their crosplay have gained acceptance
due to their ability to both reduce the development complexity,
by raising the abstraction level, and to cope with the most
arduous aspects of these systems such as timing and safety
requirements [2].

EAST-ADL [4] together with its development methodology
has been getting closer and closer towards the status of de-
facto standard within the automotive domain. It defines a
top down development process promoting the separation of
concerns through a four-level architecture, where each level
is designed for hiding details pertaining to higher or lower
levels. At the lowest level, i.e., implementation level, EAST-
ADL makes use of AUTOSAR [5], which is an industrial
initiative to provide standardized software architecture for the
development of vehicular embedded systems. While EAST-
ADL methodology has been successful in raising the software
development abstraction level, it provides few means for
coping with the timing requirements of such software systems.
In the past few years, several initiatives such as TIMMO [6]
and TIMMO2USE [7] and their outcomes including TADL
[8] and TADL2 [9] languages, tried to provide AUTOSAR
with a timing model. Nevertheless, they did not fully succeed

with this goal at various abstraction levels because AUTOSAR
explicitly hides some implementation-level information which
is necessary for building a timing model from the software
architecture.

Nowadays, automotive industry needs development method-
ologies and technologies able to cope with the timing re-
quirements of such software systems. Nevertheless, current
industrial needs push for having such end-to-end timing
analysis earlier during the development process, i.e., at the
design level. Industry is currently reusing most of the software
architecture from previous projects, that means, some crude
software architecture is already available in the early stages
of the software development. In this context, it is beneficial to
perform early timing analysis for Design Space Exploration
(DSE) and software architecture refinements.

A. Paper Contribution

We target core challenges that are faced when end-to-end
timing models are extracted to support end-to-end timing
analysis at higher abstraction levels and earlier stages of
the software development of vehicular distributed embedded
systems. These challenges include extraction of data and
control paths at the implementation level from the design-
level models; transformation of multiple implementation-level
models from a single design-level model; and dealing with
these transformed models from the timing analysis point of
view. In order to deal with these challenges, we propose a
two-phase methodology that exploits the principles of MDE
and CBSE. In the first phase, the software architecture of the
system at the EAST-ADL design level is automatically trans-
formed to all legal implementation-level models, e.g., models
that are build using the Rubus Component Model (RCM) [10].
Whereas in the second phase, the end-to-end timing analyses
are performed on each generated implementation-level model.
The analysis results of all or selected implementation-level
models are fed back to the design-level model. Thus, the
methodology provides a support for DSE and models refine-
ment. Moreover, it supports remodeling at higher abstraction
levels for the purpose of tuning the timing behavior of the
system.



B. Relation with Authors’ Previous Works

In [11], we provide a method to extract timing models
and perform end-to-end timing analysis of component-based
distributed embedded systems. In [12], RCM is presented as
an alternative to AUTOSAR in the EAST-ADL development
methodology and its usage is discussed for enabling end-to-
end timing analysis at the lowest EAST-ADL abstraction level,
i.e., implementation level. In [13], RCM is extended with
a concrete meta-model definition. In [14], the translation of
timing constraints from the design- to the implementation-level
models is provided. However, the translation is done manually
and is limited by the constraint such that it only considers
that implementation-level model which results in worst-case
response times and delays. In comparison with above works,
this paper presents a novel two-phase methodology to auto-
matically transform the software architecture of the system at
the EAST-ADL design level to all legal implementation-level
models (RCM models). The existing analysis engines in the
Rubus analysis framework perform timing analysis on each
generated implementation-level model. The analysis results are
then fed back to the design-level model to support DSE and
models refinement.

II. BACKGROUND AND RELATED WORKS

A. EAST-ADL Development Methodology

EAST-ADL defines a top-down development methodology
that promotes the separation of concerns through the usage
of four different abstraction levels, where each level provides
a complete definition of the system under development for
a specific perspective. Figure 1 shows the abstraction levels
architecture together with the methodologies, models and
languages used at each level.

Fig. 1: EAST-ADL abstraction levels

1) Vehicle level: The vehicle level, also known as end-to-
end level, serves for capturing all the information regarding
what the system is supposed to do, i.e., requirements and
features on the end-to-end functionality of the vehicle. Feature
models and requirements can be used for showing what the
system provides and, eventually, how the product line is
organized in terms of available assets.

2) Analysis level: At this level, the end-to-end function-
alities are expressed using formal notations. Behaviors and
interfaces are specified for each functionality. Yet, design and
implementation details are omitted. At this stage, high-level
analysis for functional verification can be performed.

3) Design level: At this level, the analysis-level artifacts
are refined with more design-oriented details. The architecture
of the system is redefined in terms of software, hardware
and middleware architectures. Also, software functions to
hardware allocation is expressed.

4) Implementation level: The design-level artifacts are en-
riched with implementation details. Component models are
used to model the system in terms of components and their
interconnections. The code for vehicle functions can be syn-
thesized from the software component architecture.

B. The Rubus Component Model (RCM)

Rubus 1 is a collection of methods, theories and tools
for model- and component-based development of resource-
constrained embedded real-time systems. It is developed by
Arcticus Systems in collaboration with Mälardalen University.
Rubus is mainly used for development of vehicles control
functionality by several international companies. The Rubus
concept comprises of RCM and its development environ-
ment Rubus-ICE (Integrated Component development Envi-
ronment), which includes modeling tools, code generators,
analysis tools and run-time infrastructure. RCM has been
recently extended with a concrete meta-model definition [13]
for embracing the MDE vision and streamlining the modeling
language.

RCM is used for expressing the software architecture in
terms of software components and interconnections. A soft-
ware component in RCM is called Software Circuit (SWC) and
represents the lowest-level hierarchical element. Its purpose is
to encapsulate basic functions. RCM distinguishes the SWCs
interactions by separating the data flow from the control flow.
The latter is defined by triggering objects, i.e., clocks and
events. SWCs communicate with each other via data ports.
RCM facilitates analysis and reuse of components in different
contexts by separating functional code from the infrastructure
that implements the execution environment. Within the context
of above-mentioned abstraction levels in Figure 1, RCM is
used at the implementation level.

C. End-to-end Timing Models and Analyses

An end-to-end timing model consists of timing properties,
requirements, dependencies and linking information of all
tasks, messages and task chains in the distributed embedded
system under analysis2. It can be divided into timing and
linking models. For instance, consider a task chain distributed
over three nodes connected by a network as shown in Figure 2.
The system timing model contains all the timing information
about the three nodes and the network. Whereas the system
linking model contains all the linking information in the task
chains, including the control and data paths.

The analysis engines [11] use these models for perform-
ing end-to-end timing analyses. The analyses results include
response-time of tasks and messages as well as system uti-
lization. Also, the analysis engines calculate the end-to-end

1http://www.arcticus-systems.com
2We refer the reader to [12] for details about the timing model.



5 10 15 20 25

Task τ1 PERIOD1 = 25,
WCET1 = 20

Age delay

30

Reaction delay

5 10 15 20 25

Task τ2

0 30

PERIOD2 = 5,
WCET2 = 1

Task1 Task2 Task3 Task4

Network

Sensor Node Computation Node Actuation Node

End-to-end Response Time

Brake 
Pedal 

Sensor

Brake 
Actuator

Fig. 2: Example demonstrating end-to-end response time

response times and delays. The end-to-end response time of a
task chain is equal to the elapsed time between the arrival of
an event, e.g., the brake pedal sensor input in the sensor node
and the response time of task, e.g., the brake actuation signal
in the actuation node as shown in Figure 2.

Within a task chain, if the tasks are triggered by independent
sources, then it is important to calculate different types of
delays such as age and reaction. Such delays are crucial in
control systems and body electronics domains, respectively.
An age delay corresponds to the freshness of data, while the
reaction delay corresponds to the first reaction for a given
stimulus. In order to explain the meaning of reaction and age
delays, consider a task chain in a single-node system as shown
in Figure 3. There are two tasks in the chain denoted by τ1
and τ2 and triggered by independent clocks of periods 25ms
and 5ms respectively. Let the Worst-Case Execution Times
(WCETs) of these tasks be 2ms and 1ms respectively. τ1
reads data from the register Reg-1 and writes data to Reg-2.
Similarly, τ2 reads data from the Reg-2 and writes data to Reg-
3. Since, the tasks are activated independently with different
clocks, there can be multiple outputs (Reg-3) corresponding
to one input (Reg-1) to the chain as shown by several uni-
directional arrows in Figure 4. The age and reaction delays are
also identified in the figure. These delays are equally important
in distributed embedded systems.

5 10 15 20 25

Task 
τ1

0

Age delay

30

Reaction delay

5 10 15 20 25

Task 
τ2

0 30

Task1 Task2 Task3 Task4

Network

Sensor Node Computation Node Actuation Node

End-to-end Response Time

Brake 
Pedal 

Sensor

Brake 
Actuator

5 10 15 20 25

Task τ1 PERIOD1 = 25,
WCET1 = 20 30

Task τ PERIOD = 5

Task1 Task2 Task3 Task4

Network

Sensor Node Computation Node Actuation Node

End-to-end Response Time

Brake 
Pedal 

Sensor

Brake 
Actuator

(a)

Reg-1 τ1

Period = 25

Reg-2 Reg-3τ1

Period = 5

WCET = 2 WCET = 1

Fig. 3: A task chain with independent activations of tasks

5 10 15 20 25

Task τ1 PERIOD1 = 25,
WCET1 = 20

Age delay

30

Reaction delay

5 10 15 20 25

Task τ2

0 30

PERIOD2 = 5,
WCET2 = 1

Task1 Task2 Task3 Task4

Network

Sensor Node Computation Node Actuation Node

End-to-end Response Time

Brake 
Pedal 

Sensor

Brake 
Actuator

Fig. 4: Example demonstrating end-to-end delays

D. Model Driven Engineering (MDE) and Janus Transforma-
tion Language (JTL)

MDE is a discipline which aims to abstract software de-
velopment from the implementation technology by shifting
the focus from the coding to the modeling phase. In this
context, MDE promotes models and model transformations
as first-class citizens. Models are seen as an abstraction of

a real systems, built for a specific purpose [3]. Whereas,
model transformations can be seen as a gluing mechanism
among models [15]. Rules and constraints for the models’
construction are specified in the so-called metamodels, i.e.,
a language definition to which a correct model must conform.

JTL [16] is a declarative model transformation language tai-
lored to support bidirectionality and change propagation. The
JTL transformation engine is implemented by means of the
Answer Set Programming (ASP) [17], that is a form of declar-
ative programming oriented towards difficult search problems
and based on the stable model (answer set) semantics of
logic programming. In JTL, a model transformation between
a source and a target model, is specified as a set of relations
among models, which must hold for the transformation to be
successful. The transformation engine considers such mapping
rules for generating the set of all possible solutions. Then, it
can refine the generated set by applying constraints on the
generated target models, i.e., meta-model conformance rules.

E. MDE for DSE

During the last decades, MDE has been successfully em-
ployed for DSE. In [18], the author exploit JTL for imple-
menting an automatic deployment exploration technique based
on refinement transformations and platform-based design. The
technique is validated upon an automotive case study using an
AUTOSAR-like metamodel. [19] presents a pattern catalog for
categorizing different MDE approaches for DSE. It demon-
strates the usage of the identified patterns with a literature
survey. The work in [20] defines a guided DSE approach based
on selection and cut-off criteria defined using dependency
analysis of transformation rules and an algebraic abstraction.
Cutt-off criteria are used to identify dead-end states, while
selection criteria are used to order applicable rules in a given
state. The methodology has been effectively evaluated upon a
cloud configuration problem.

III. PROBLEM STATEMENT

In order to support the end-to-end timing analysis at the
design level, the end-to-end timing model should be extracted
from the design-level model of the application. Consider the
design-level model of a component chain consisting of three
software components shown in Figure 5. Among other param-
eters, complete control (trigger) and data paths along compo-
nent chains (task chains at run-time) must be unambiguously
captured in the timing model. Unambiguous extraction of
control and data paths from the system are vital for performing
its timing analysis.

A control path captures the flow of triggers along the com-
ponents chain, e.g., control path of the chain in Figure 6(b) can
be expressed as {{Sensor → Controller}, {Actuator}}. This
means that Controller SWC is triggered by Sensor SWC, while
Actuator SWC is triggered independently. Similarly, control
paths of the chains shown in Figure 6(a) and Figure 6(c) can
be expressed as {{Sensor → Controller → Actuator}} and
{{Sensor}, {Controller}, {Actuator}} respectively. It should
be noted that the three component chains shown in Figure 6



are modeled at the implementation level using the Rubus-ICE
tool suite.

(a) (b)

Sensor
software component

Controller 
software component

Actuator
software component

Fig. 5: Design-level model of a component chain

The main challenge faced during the extraction of end-to-
end timing models at the design level is the lack of clear
separation between control and data paths. Although TADL2
augments EAST-ADL with some timing information at the
design level, the support for clear separation and unambiguous
extraction of control and data flows is still missing. At the
implementation level, e.g. in RCM, these paths are clearly
separated from each other by means of trigger and data ports
as shown in Figure 6. A trigger output port of an SWC can
only be connected to the trigger input port(s) of other SWC(s).
Similarly, a data output port of an SWC can only be connected
to the data input port(s) of other SWC(s). Hence, the trigger
and data paths can be clearly identified and extracted in the
timing model. Whereas at the design level, the components
communicate by means of flow ports as shown in Figure 5. A
flow port is an EAST-ADL object that is used to transfer data
between components. It has a single buffer. The data contained
in the port is non-consumable and over-writable. Since there is
no other explicit information available about this object, it can
be interpreted as a data or a trigger port at the implementation
level. There is no support to specify explicit trigger paths
at the design level. Moreover, a component can be triggered
via specified timing constraints on events, modes, or internal
behavior of the component. For example, consider again the
design-level model of a component chain shown in Figure 5.
Assume there is a periodic constraint of 10ms specified on this
chain. There can be three model interpretations of this chain at
the implementation level as shown in Figure 6. Consequently,
there are three different control flows in these models. The
data flow and control flow should be clearly and separately
captured in the end-to-end timing model because the type of
the timing analysis depends upon it. For example, it is not
meaningful to perform end-to-end delay analysis on a trigger
chain as shown in Figure 6(a) [11].

We have considered a very small part of a large system in
the above example. In reality, distributed embedded systems
may contain hundreds of software components and component
chains. The component chains, in turn, may be distributed over
several nodes or Electronic Control Units (ECUs). Intuitively,
there can be a large number of implementation-level model
interpretations of the design-level model of a single distributed
chain. To the best of our knowledge, RCM is the only
model that intends to support high-precision end-to-end timing
analysis at the design level3. However, it considers only that
implementation-level model interpretation of the design-level

3The solution is being prototyped.

10 ms 10 ms 10 ms

Sensor
SWC

Actuator
SWC

Controller
SWC

Data sink
Sensor 
Input

Trigger sink

10 ms
10 ms

Sensor
SWC

Actuator
SWC

Controller
SWC

Data sink
Sensor 
Input

Trigger sink

10 ms

Sensor
SWC

Actuator
SWC

Controller
SWC

Data sink
Sensor 
Input

Trigger sink

Trigger port

Data port

Software Circuit (SWC)
(a)

10 ms 10 ms 10 ms

Sensor
SWC

Actuator
SWC

Controller
SWC

Data sink
Sensor 
Input

Trigger sink

10 ms
10 ms

Sensor
SWC

Actuator
SWC

Controller
SWC

Data sink
Sensor 
Input

Trigger sink

10 ms

Sensor
SWC

Actuator
SWC

Controller
SWC

Data sink
Sensor 
Input

Trigger sink

Trigger port

Data port

Software Circuit (SWC)

(b)
10 ms 10 ms 10 ms

Sensor
SWC

Actuator
SWC

Controller
SWC

Data sink
Sensor 
Input

Trigger sink

10 ms
10 ms

Sensor
SWC

Actuator
SWC

Controller
SWC

Data sink
Sensor 
Input

Trigger sink

10 ms

Sensor
SWC

Actuator
SWC

Controller
SWC

Data sink
Sensor 
Input

Trigger sink

Trigger port

Data port

Software Circuit (SWC)

(c)
Fig. 6: Implementation-level models of the design-level model
of the component chain in Figure 5

model which produces worst-case response-times and delays.
As a result, the calculated response-times and delays may
be very pessimistic (considerably large compared to actual
response times and delays). In order to be less pessimistic
with the analysis results, the end-to-end timing analysis should
be performed on all possible implementation-level model
interpretations of a design-level model. The analysis results
of all these models should be presented to the user. The user
should be able to select the model with respect to the analysis
results. This activity also helps in doing DSE and performing
model refinements earlier during the development. There is a
need for a methodology and corresponding automated model
transformations to deal with this problem.

IV. PROPOSED SOLUTION AND METHODOLOGY

In order to address the problem discussed in the previous
section, we propose a solution methodology as shown in Fig-
ure 7. The input to the methodology is the EAST-ADL design-
level software architecture of the system under development.
Whereas, the output of the methodology consists of the end-
to-end timing analysis results that are fed back to the design-
level software architecture. The methodology comprises of two
major phases (A) transformation phase and (B) timing analysis
phase.

A. Transformation phase

The transformation phase is realized as a model-to-model
transformation between EAST-ADL design-level and RCM
models. The mapping relation between the related metamodels
is a non-surjective relation. We select JTL to implement
the transformation because it is able to deal with partial
information, information loss and uncertainty [16]. To the best
of our knowledge, JTL is the only transformation language
with such characteristics. The JTL transformation requires
the EAST-ADL design-level model and metamodel as well



Fig. 7: Methodology of the proposed solution

as the RCM metamodel as inputs. Exploiting the ASP en-
gine, JTL produces, with a single execution, all the possible
RCM models for the specified EAST-ADL design-level model.
The transformation assumes a one-to-one mapping between
each design- and implementation-level component. Although
a design-level component can be mapped to more than one
implementation-level components, our assumption of one-
to-one mapping is based on common practice in industry,
especially in the segment of construction-equipment vehicles
domain. All the generated implementation-level models have
same data flows but different control flows. For instance,
consider that the EAST-ADL design-level model shown in
Figure 5 along with the EAST-ADL and RCM metamodels are
provided as input to the JTL framework. The corresponding
transformation results into three implementation-level models
as shown in Figure 6. For a complex embedded application,
there can be many such transformations of a design-level
model.

B. Timing analysis phase

In the timing analysis phase, our methodology exploits the
end-to-end timing analysis framework of Rubus-ICE [11]. All
the generated implementation-level models from the previous
phase are provided as inputs to the analysis framework. It
should be noted that the timing analysis framework oper-
ates on the implementation-level models which are annotated
with complete timing information. However, in the generated
models derived from the previous phase, some of the timing
information required to do the timing analysis may be missing.
In this respect, we make assumptions to compensate for the
missing timing information. For example, if worst-, best-
and average-case execution times are not specified at the
design level, they can be estimated at the implementation
level either using estimations by experts, reusing them from
other projects or from previous iterations during the model
refinement process. Further, we assume that the execution

order of design-level components in a chain is specified,
otherwise we make implicit assumption about it. That is, each
component is assumed to execute only after successful exe-
cution of preceding component in the chain, unless specified
otherwise. This means, a data provider component is assumed
to be always executed before the data receiver component.
Since this assumption fixes the execution order, it is safe to
assume the priorities of the components are equal within the
component chain.

Eventually, the analysis framework performs end-to-end
response-time and delay analyses on each implementation-
level model separately. Once again, consider the three gen-
erated implementation-level models shown in Figure 6. We
assume the WCET of each component to be equal to 1ms. Here
we are interested in the end-to-end response times, reaction
and age delays among all timing analysis results. These times
for the three component chains are (a) 3ms, 3ms, 3ms; (b) 3ms,
10ms, 10ms; and (c) 3ms, 29ms, 19ms respectively. These
analysis results are provided to the filter module which selects
optimal result(s) depending upon the specified constraints (e.g.
constraints on timing or constraints on activation of individual
components in a chain, i.e., dependent or independent trig-
gering). The filter can be considered as the designer who
selects optimal implementation-level model interpretation of
the design-level model based on the analysis results. The filter
can also be a logical block making such decisions based on
the specified constraints (the process of automating the filter
is a future work).

The translation from the design- to the implementation-level
models is automatic. Moreover, the translation is not limited by
the constraint of considering that implementation-level model
which results in worst-case timing behavior. For example, in
the case of constrained translation, the design-level model in
Figure 5 is only translated to implementation-level model of
Figure 6 (c) because that chain results in worst-case delays.
On the other hand, the timing analysis phase in our current



methodology provides all possible implementation-level model
interpretations of the design-level model. For example, the
filter module can select the chain in Figure 6(a) or Figure 6(b)
as optimal because of lower end-to-end delays and provide the
corresponding analysis results back to the design level. Based
on this feedback, better decisions can be made during DSE or
the refinement of the system model. Moreover, the system can
be remodeled or decisions can be made such that the timing
analysis results in the next iteration are less pessimistic. This
can help in fine tuning the timing behavior of the system.

C. Proof of concept

As a proof of concept we instantiate the above presented
methodology within Rubus-ICE as depicted in Figure 8. In
Rubus-ICE tool suite, Rubus-EAST tool supports modeling
of applications with EAST-ADL. There are two options to
start the modeling at the design level: i) model directly
in Rubus-EAST, or ii) import XMI formats of EAST-ADL
models of the application from any other EAST-ADL de-
signer. The transformation phase of the methodology can be
implemented as a plug-in for Rubus-ICE denoted as DL-JTL
plug-in, where DL stands for Design Level. According to the
proposed methodology, this plug-in calls the JTL framework
that generates all feasible RCM models corresponding to the
design-level model and provides them back to the plug-in.
Consequently, the DL-JTL plug-in calls the HRTA and E2EDA
plug-ins [11] and provides all generated implementation-level
models to them. The HRTA and E2EDA plug-ins, in turn,
perform end-to-end response time and delay analyses of all
the input models and provide their analysis results back to
the DL-JTL plug-in. Finally, the DL-JTL plug-in selects the
optimal analysis results and feeds them back to the design-
level model of the application in the Rubus-EAST tool. The
sequence of above mentioned steps are identified in Figure 8.

Fig. 8: Methodology instantiated within Rubus-ICE

V. CONCLUSION

In this work we target core challenges arising when end-to-
end timing models are extracted to support end-to-end timing
analysis at the design level of the EAST-ADL development
methodology. Towards such goal we propose a two-phase
methodology that exploits MDE, CBSE and their crossplay.
Within the proposed methodology, the design-level model of
the system under development is automatically transformed
to all possible implementation-level models. Further, End-
to-end timing analyses are performed on each generated
implementation-level model; analyses results are filtered based

on specified constraints and eventually the analysis results are
fed back to the design-level model. Due to lack of needed
information, timing model(s) can not be unambiguously ex-
tracted from a design-level model. More precisely, more than
one timing model may correspond to a single design-level
model, as shown in Section III. One way to deal with this issue
might be to consider a priori mapping between the design-level
model and one of the feasible implementation-level model. In
contrast, the proposed methodology is able to generate and
manage all the feasible implementation-models (transforma-
tion phase) and it is able to choose the implementation-model
which better meets the timing requirements, based on the tim-
ing analysis results (timing analysis phase). Such methodology
naturally supports DSE and model refinements. As a proof of
concept, we instantiate the proposed methodology within the
Rubus-ICE industrial tool suite. As a future investigation di-
rection, we will, together with our industrial partners, validate,
and possibly refine, such methodology upon real industrial
design-level models. In this context, it is important to evaluate
the performance and scalability of the proposed methodology
when the number of alternatives may grow remarkably.

ACKNOWLEDGEMENT

This work is supported by the Swedish Research Council
(VR) and the Swedish Knowledge Foundation (KKS) within
the projects SynthSoft and FEMMVA respectively. The authors
would like to thank the industrial partners Arcticus Systems
and Volvo Construction Equipment, Sweden.

REFERENCES

[1] T. A. Henzinger and J. Sifakis, “The Embedded Systems Design
Challenge,” in Proceedings of the 14th International Symposium on
Formal Methods (FM), Lecture Notes in Computer Science. Springer,
2006, pp. 1–15.

[2] I. Crnkovic and M. Larsson, Building Reliable Component-Based Soft-
ware Systems. Norwood, MA, USA: Artech House, Inc., 2002.

[3] J. Bézivin and O. Gerbé, “Towards a precise definition of the omg/mda
framework,” in Proceedings of the 16th IEEE International Conference
on Automated Software Engineering, 2001.

[4] “EAST-ADL Domain Model Specification, Deliverable D4.1.1, 2010,”
http://www.atesst.org/home/liblocal/docs/ATESST2 D4.1.1 EAST-
ADL2-Specification 2010-06-02.pdf.

[5] “AUTOSAR Techincal Overview, Release 4.1, Rev. 2, Ver. 1.1.0., The
AUTOSAR Consortium, Oct., 2013,” http://autosar.org.

[6] “TIMMO Methodology, Version 2, Deliverable 7, Oct. 2009.”
[7] “TIMMO-2-USE,” http://www.timmo-2-use.org/.
[8] “TADL: Timing Augmented Description Language, Version 2, Deliver-

able 6, Oct. 2009,” The TIMMO Consortium.
[9] Timing Augmented Description Language (TADL2) syntax, semantics,

metamodel Ver. 2, Deliverable 11, Aug. 2012.
[10] K. Hänninen et.al., “The Rubus Component Model for Resource Con-

strained Real-Time Systems,” in 3rd IEEE International Symposium on
Industrial Embedded Systems, 2008, Jun. 2008.

[11] S. Mubeen, J. Mäki-Turja, and M. Sjödin, “Support for end-to-end
response-time and delay analysis in the industrial tool suite: Issues,
experiences and a case study,” in Computer Science and Information
Systems, vol. 10, no. 1, pp 453-482, Jan. 2013.

[12] S. Mubeen, J. Mäki-Turja and M. Sjödin, “Towards Extraction of Inter-
operable Timing Models from Component-Based Vehicular Distributed
Embedded Systems,” in International Conference on Information Tech-
nology: New Generations (ITNG), Apr. 2014.

[13] A. Bucaioni, A. Cicchetti, and M. Sjödin, “Towards a metamodel
for the rubus component model,” in 1st International Workshop on
Model-Driven Engineering for Component-Based Software Systems,
Sep. 2014. [Online]. Available: http://www.es.mdh.se/publications/3676-



[14] S. Mubeen, J. Mäki-Turja, and M. Sjödin, “Translating timing con-
straints during vehicular distributed embedded systems development,”
in 1st International Workshop on Model-Driven Engineering for
Component-Based Software Systems, Sep. 2014.

[15] S. Sendall and W. Kozaczynski, “Model transformation: The
heart and soul of model-driven software development,” IEEE
Softw., vol. 20, no. 5, pp. 42–45, 2003. [Online]. Available:
http://dx.doi.org/10.1109/MS.2003.1231150

[16] A. Cicchetti, D. Di Ruscio, R. Eramo, and A. Pierantonio, “Jtl: A bidi-
rectional and change propagating transformation language,” in Software
Language Engineering, 2011, vol. 6563, pp. 183–202.

[17] M. Gelfond and V. Lifschitz, “The stable model semantics for logic
programming.” MIT Press, 1988, pp. 1070–1080.

[18] J. Denil, A. Cicchetti, M. Biehl, P. D. Meulenaere, R. Eramo, S. De-
meyer, and H. Vangheluwe, “Automatic deployment space exploration
using refinement transformations,” Electronic Communications of the
EASST, vol. Recent Advances in MPM, no. 50, Jun. 2012.

[19] K. Vanherpen, J. Denil, P. De Meulenaere, and H. Vangheluwe, “Design-
space exploration in model driven engineering,” SOCS-TR-2014.4,
McGill University, Tech. Rep., 2014.

[20] A. Hegedus, A. Horvath, I. Rath, and D. Varro, “A model-driven
framework for guided design space exploration,” in Proceedings of
the 26th IEEE/ACM International Conference on Automated Software
Engineering, ser. ASE ’11, 2011.


