
Vertical Test Reuse for Embedded Systems:
A Systematic Mapping Study

Daniel Flemström, Daniel Sundmark and Wasif Afzal
School of Innovation, Design and Engineering

Mälardalen University, Västerås, Sweden
{daniel.flemstrom | daniel.sundmark | wasif.afzal}@mdh.se

Abstract—Vertical test reuse refers to the the reuse of test
cases or other test artifacts over different integration levels in
the software or system engineering process. Vertical test reuse has
previously been proposed for reducing test effort and improving
test effectiveness, particularly for embedded system development.
The goal of this study is to provide an overview of the state of
the art in the field of vertical test reuse for embedded system
development. For this purpose, a systematic mapping study has
been performed, identifying 11 papers on vertical test reuse for
embedded systems. The primary result from the mapping is
a classification of published work on vertical test reuse in the
embedded system domain, covering motivations for reuse, reuse
techniques, test levels and reusable test artifacts considered, and
to what extent the effects of reuse have been evaluated.

I. INTRODUCTION

Test and verification activities are widely known to account
for a major part of the development cost for software. Since
testing of embedded systems pose additional challenges com-
pared to testing of regular software [1], the same statement can
be safely made regarding such systems as well. Moreover, as
the complexity and size of embedded software increases, the
cost and effort for testing naturally follow. In this situation,
there is a need for reducing the test activity effort while still
ensuring that the same, or even an increased quality assurance
is attained by these activities.

The above argumentation can be more specifically illus-
trated with recent trends in the development of embedded
systems in the automotive industry, where an increasing num-
ber of features rely on complex interaction between different
subsystems. Many of these features are also autonomous, and
should function with little or no driver intervention. This
growth of complex features must not compromise vehicle
safety, and occurs in parallel with the introduction of new
development standards such as ISO26262 [2], posing numer-
ous requirements on testing, verification, and documentation.
Consequently, cost-effective methods for quality assurance are
needed.

For traditional software development, reduction of test effort
(often with maintained level of quality assurance as an implic-
itly or explicitly stated constraint) is a widely studied field [3],
[4]. Reduction of test effort commonly focuses on reducing
time and cost for regression testing, as it is a frequently
occurring activity in contemporary software development.
Regression testing traditionally concerns reuse of test cases
over different software versions, primarily with the purpose

of establishing that software changes do not inadvertently also
affect parts of the software not intended to be changed.

While not explicitly focusing test reuse, Runeson and En-
gström [5] describe software product line testing as a three-
dimensional regression testing problem. The regression testing
dimensions are versions, variants and levels. Here, regression
testing between versions has been thoroughly studied [6], [7],
and regression testing between product variants has gained
quite a bit of recent attention [8], [9], [10]. However, the level
dimension of regression testing has received limited attention,
and in contrast to test reuse between versions and variants,
no summarizing literature surveys exist on this topic. We call
this dimension of regression testing as vertical test reuse. By
vertical test reuse, we refer to reuse of test cases or other test
artifacts between different levels of integration. For example,
test cases designed for component- or unit-level testing can
(with or without modifications) be reused at the subsystem
integration or system test levels.

In this paper, we provide an overview of the body of
knowledge within vertical test reuse in development of embed-
ded systems. We do this by means of a systematic mapping
study. Our results indicate that relatively few papers have been
published on vertical test reuse for embedded systems, and
that most of these papers have been published within the last
five years. In these published papers, a number of different
approaches for vertical test reuse of embedded systems have
been proposed, and the primary application domain has been
the automotive sector. However, the actual gains or drawbacks
of using vertical test reuse in real-life industrial projects are
sparsely evaluated and therefore poorly understood.

The rest of the paper is organized as follows. Section 2
describes the process we followed while conducting this
systematic mapping study. Section 3 presents our study results,
answering our stated research questions. Validity threats are
given in Section 4 while the paper is concluded in Section 5.

II. THE SYSTEMATIC MAPPING PROCESS

According to Kitchenham and Charters [11], a systematic
mapping study gives a broad review of primary studies in a
research area. Further, guidelines for undertaking systematic
mapping studies in software engineering have been proposed
by Petersen et al. [12]. Based on these two sources, this section
describes the process followed in conducting the mapping
study.

Data base Papers Papers 2005-2015
IEEE Xplore 1776 1024
Scopus 1898 1307
WoS 1334 858
Total 5008 3189

TABLE I
DATABASES SEARCHED AND RESULTS.

A. Research Questions

The purpose of this study is to identify available evidence
of research within vertical test reuse for embedded systems.
We are particularly interested in research trends with respect
to time, publication fora and research methods used. We also
seek to identify available approaches of vertical test reuse, and
how their impact (efficiency and effectiveness) is measured.
We, therefore, pose the following research questions:
RQ1: What is the distribution of primary studies on vertical

test reuse over time, fora of publication and research
type?

RQ2: What are the justifications given for vertical test reuse,
items of test reuse and proposed approaches?

RQ3: What is the extent of evaluation of the identified vertical
test reuse approaches?

The above research questions partly reflect the PICOC crite-
ria for structuring research questions as mentioned in [11]. We
do not restrict our research questions in terms of ‘comparison’,
but have the following elements:

• Population: software.
• Intervention: testing, verification and validation.
• Outcomes: reuse approaches.
• Context: embedded systems.

B. Search strategy

After defining the research questions, the search for rel-
evant primary studies starts with designing a search string
to be used in well-known electronic databases. We started
piloting our search strategy using two databases: IEEE Xplore
and Scopus. After a number of trial searches, adjusting
for both scope and relevancy, we finalized the following
search term: Software AND (test* OR validation
OR verification) AND reuse). We used the above
search string in three databases: IEEE Xplore, Scopus and Web
of Science (WoS). Other relevant databases (such as the ACM
Digital Library, ScienceDirect and SpringerLink) are covered
by the two citation databases we searched (Scopus and WoS)
and were therefore not individually searched.

C. Selecting studies

The search in IEEE Xplore, Scopus and WoS resulted in a
total of 5008 references (including duplicates). Initially, we did
not restrict the search in terms of year of publication, rather
used the default year setting. Later, we realized that it will
be useful to narrow-down on papers published in and after
year 2005. This decision was based on the fact that a recent
literature survey on approaches for reducing test effort [4]

IEEEXplore, Web of Science,
Scopus

Paper count = 5008

Paper count = 3189

Paper count = 2259

Paper count = 616

Paper count = 84

Paper count = 15

11 papers selected

1819 papers
excluded after year

restriction

930 duplicate papers
excluded

1643 papers
excluded after
reviewing titles

532 papers excluded
after reading

abstracts

69 papers excluded
based on full-text

read

3 papers added by
forward-backward

snowballing

Paper count = 18

7 papers excluded
by data extraction

Fig. 1. Study selection process.

covers very few papers published in and after year 2005.
Secondly, the papers covered prior to 2005 could be excluded
using the same criteria as for the collected papers, as described
later in this section. Therefore restricting to year 2005 and
later was considered to present a more recent and relevant
state-of-the-art. However, to ensure completeness of search,
a snowballing step was added to explicitly look for evidence
prior to year 2005.

Restricting the year of publication to year 2005 and later
gave us 3189 papers (Table I) and were further reduced to
2259 papers after duplicate removal.

After duplicate removal, the next step in study selection was
to exclude papers by reading titles that were obviously not
relevant. We also removed references that represented confer-
ence titles and standards. The abstracts of the remaining 616
references were read in detail to reduce the set of references to
84. During this, and the subsequent full-text inspection phase,
we aimed to identify studies that relate to test reuse between
different test levels in embedded systems development. Conse-
quently, papers meeting the following following criteria were
excluded in the screening process:

• Papers that did not relate to software engineering/
computer science.

• Papers that did not relate to the embedded systems
domain.

• Papers that did not relate to software testing.

Authors Ref Year Title Forum Research Type
Pérez and Kaiser [13] 2010 Bottom-up Reuse for Multi-Level Testing. Journal Evaluation Research
Benz [14] 2007 Combining Test Case Generation for Component Workshop Solution Proposal

and Integration Testing
Schätz and Pfaller [15] 2010 Integrating Component Tests to System Tests Workshop Solution Proposal
Pérez and Kaiser [16] 2009 Integrating Test Levels for Embedded Systems Conference Solution Proposal
Pérez and Kaiser [17] 2010 Multi-Level Test Models for Embedded Systems Conference Solution Proposal
Rodrigues et al. [18] 2011 Refactoring VeriSC Testbenches to Improve the Conference Evaluation Research

Functional Verification during the Integration Phase
Pérez and Kaiser [19] 2009 Reusing Component Test Cases for Integration Testing Conference Solution Proposal

of Retarding Embedded System Components
Pérez and Kaiser [20] 2010 Top-Down Reuse for Multi-level Testing Conference Solution Proposal
Asaithambi and Jarzabek [21] 2013 Towards Test Case Reuse: A Study of Redundancies Conference Solution Proposal

in Android Platform Test Libraries
Choi and Bunse [22] 2011 Design Verification in Model-Based µ-Controller Journal Evaluation Research

Development using an Abstract Component
Schultz et al. [23] 2002 Multilevel Testing for Design Verification of Journal Solution Proposal

Embedded Systems

TABLE II
LIST OF INCLUDED PAPERS.

• Papers that did not relate to software reuse.
We also excluded papers focusing on regression testing.

Although regression testing does represent a form of reuse,
we do not include such papers because they focus on reuse
in different versions of the same product or variants of the
product. In contrast, our scope is limited to reuse between
different test levels, regardless of version or variant of a
software.

The remaining 84 papers were then read in full-text, further
reducing the number of papers meeting the inclusion criteria to
15. In order to make sure we do not miss any relevant papers
prior to year 2005, we added a forward-backward snowballing
stage [24] for the 15 references. The references of these 15
papers were merged and we applied our exclusion criteria on
this set. The only difference now is that we included papers
older than 10 years to catch relevant papers prior to year
2005. We read the titles and if required, read the abstracts and
the full-text. Further, for each reference of the 15 papers, we
checked their reference lists and also used Google Scholar to
find the citing papers. The step added 3 more relevant papers
not identified in the initial search. The remaining 18 papers
were used to perform the data extraction. The data extraction
further revealed 7 papers that were irrelevant. Ultimately, we
were left with 11 references as our set of primary studies. The
study selection process is shown in its entirety in Figure 1.

D. Study quality assessment

No quality assessment of included primary studies was
conducted after the study selection phase. The reason for this
choice was that we wanted to be as inclusive as possible with
respect to the vertical test reuse approaches.

E. Data extraction

In order to extract relevant data from the set of primary
studies, a data extraction form was created. The form was de-
signed in such a way that the extracted data would correspond
to the information needed to address the research questions.

Specifically, we extracted the following information from the
included primary studies:

• Year of publication.
• Forum of publication.
• Research method used.
• Reusable test items, levels and dimensions.
• Selection criteria for reusing items.
• Arguments in favor of reusing items.
• Approaches of test reuse.
• Means of evaluation and measures of effectiveness and

efficiency.
• Practical implications and limitations.

III. RESULTS

This section presents the results of the systematic mapping
on vertical test reuse. First we present the list included papers,
and provide information on how different authors and groups
have contributed to this field over the last 13 years. This is
followed by the motivation for vertical test reuse stated in the
included papers. In Section III-C we classify each proposed
reuse approach into one of three conceptual categories. The
final section covers how the proposed reuse methods have
been evaluated, particularly related to the aforementioned
motivation for vertical test reuse.

A. Published work on vertical test reuse for embedded systems

Table II shows a complete list of the primary studies
identified in the search process. Most of the papers (6 out
of 11) are conference papers while three are journal articles.
To categorize the research type, we make use of a classifi-
cation scheme proposed by Wieringa et al. [25]. A majority
of the papers (8 out of 11) are solution proposals (i.e., a
presentation of an approach or method to solve a problem,
often accompanied by a small proof-of-concept example or
supporting arguments), while the rest are evaluation research
(i.e., a study where a technique is implemented in practice
and its drawbacks or benefits are evaluated). Consequently,
a majority of the examples in the primary studies, although

relevant and from the automotive domain, were rather small
(less than 10 components). Table III shows the distribution of
primary studies with respect to year of publication. 2010 saw
the highest number of publications, however this does not truly
reflect increased activity within the area since it was mostly
two distict groups of researchers publishing in year 2010. In
order to visualize this, the studies from the same authors were
given a darker color in Table III, and the number of duplicate
authors were put within parentheses in column 2. The most
activity was found between years 2008 and 2011 and we found
nothing published after year 2013.

Year Count Published Papers
2002 1 [23]
2007 1 [14]
2009 2(1) [16][19]
2010 4(2) [13][15][17][20]
2011 2 [18][22]
2013 1 [21]

11

TABLE III
PAPERS PUBLISHED ON VERTICAL TEST REUSE PER YEAR.

B. Motivation for reuse, items of reuse, and test levels involved

Each method for vertical test reuse proposed in the literature
is designed with a particular purpose in mind. In this section
we present findings from the primary studies concerning the
motivations we found for vertical test reuse, what test items are
reused and at what test levels. Table IV presents the different
purposes of vertical test reuse, as stated in the included primary
studies. In general, four main motivations for vertical test
reuse is possible to identify in the included studies:

• Avoiding rework for similar test cases
Many of our primary studies argue that a significant
number of test cases share commonalities with respect to
different test levels [13], [16], [17], [18], [19], [20], [21].
A reason for this is that different test levels are performed
by different departments, while much of the test behavior
is similar. Therefore, there is an opportunity to reduce
rework when testing at different test levels by leveraging
on such commonalities. Details on such approaches are
presented in section III-C.

• Increasing quality of test cases Pérez and
Kaiser [13],[19] argue that the organizational separation
between the people performing tests in the different test
levels is problematic. This paves way for the argument
that vertical test reuse might increase collaboration
across test levels and thus yield better test case quality.
A few of our primary studies argue that the separation
of test levels prevents synergies and collaborations, thus
missing out on opportunities to improve test case quality.

• Avoiding costly creation of new environments In con-
temporary embedded system development, subcontract-
ing of components is commonly used. However, before
integrating third party components into a system there
may be a need for internal testing on the component

level [15]. Since this sometimes requires new, potentially
tailor-made testing environments for the third party com-
ponents, the cost for creating these new environments on
the component level cannot be justified. In Section III-C
we describe an approach found in [15] that addresses this
problem.

• Reducing test case complexity
The number of possible test cases increases rapidly as
the state space increases [22], [14]. Benz [14] argues
that raising the abstraction using interaction modeling and
component model reuse has a positive effect on the size
of the state space and that this would indirectly reduce the
complexity. Other studies that indirectly or directly claim
complexity reduction as a reason for resuse are [14],
[17], [20], [21], [23]. Section III-C covers the approaches
found for reducing test case complexity in the included
papers.

Scanning the included primary studies for information re-
garding which particular test items that were considered for
vertical test reuse, we found that the following items were
subject to reuse:

• Abstract test cases or test models.
• Concrete test cases.
• Test Environment.
• Component specification/component model.

Table V describes the distribution of items reused with
respect to the primary studies. We found that the most common
item of reuse are the abstract test cases or test models [13],
[16], [17], [18], [19], [20]. An abstract test case is not directly
executable on a specific test level. Instead, it constitutes a
higher level textual description or a model that describes the
test behavior and is used for generating test cases that can be
executed with or without adaptations to the environment or
the test object.

Another common reuse item is the concrete test case
code [13], [15], [16], [19], [20], [21]. Concrete test cases can
be executed directly at one or more specific test levels with
or without adaptations to the environment or test object. For
the sake of this mapping, it is possible to argue that a number
of studies (i.e., [13], [16], [19], [20]) propose reuse of both
abstract and concrete test cases, since the approaches reuse
test behavior between several tests levels. A test case may be
reused from the test level where it is executable to a level
where it is more abstract, since the direct dependencies to the
test object and environment on that level has been abstracted
away. However, it may also be reused to yet another level,
which means that an abstract test case is reused. For some
applications (e.g., [18]), test bench components was one of
the candidates for reuse. In this case, the testing environment
consists of a number of test bench components that are used
for testing at sub levels of the integration test level. Here, each
level of composition, when integrating components, requires
substantial effort for writing new test bench components. The
concept of test benches are further described in Section III-C2.

[13] [14] [15] [16] [17] [18] [19] [20] [21] [22] [23]
Avoiding rework for similar test cases x x x x x x x
Increase in quality of test cases x x
Avoiding creating new costly component
environments x

Reduction in test case complexity x x x x x x

TABLE IV
PURPOSE OF VERTICAL TEST REUSE.

[13] [14] [15] [16] [17] [18] [19] [20] [21] [22] [23]
Abstract test cases or test model x x x x x x x
Concrete test cases x x x x x x
Component specification or component model x x
Test bench components x

TABLE V
TEST ITEMS SUBJECT TO REUSE.

Benz [14] propose reuse of the component specification /
model itself for testing purposes, together with formal descrip-
tions of the different activities and relations between activities
such as starting or stopping a playback on a car entertainment
system.

It should be noted that all test items are not suitable for
reuse on all test levels, since the test levels address different
abstraction levels and different aspects of testing. Not all
papers discuss in what situations reuse was most efficient,
however a few ideas are presented by Pérez and Kaiser [17].
Here, abstract test cases are divided into disjoint sets, each
set suitable for one level of integration. This approach may
also be applicable for other papers using the same underlying
approach such as [13], [16], [19], [20]

Another approach to determine which items to reuse, is to
use set theory to deduce which items to include (see, e.g.,
Rodrigues et al. [18]). There are however very few details
on how the items and their relations should be specified.
Asaithambi and Jarzabek [21] use a clone detection tool in
order to determine which test cases, or parts of test cases, that
are most beneficial to reuse.

Different primary studies have different focus in terms of
between what test levels reuse can be applied. The different
levels discussed in the papers were: system level, integration
level and unit/component test level as depicted in Table VI. The
table describes the test levels of interest in our primary studies
together with the distribution of studies addressing each level.
For example, the mark ‘x’ in ‘Integration level(s) reuse’ and
another in ‘Unit/component level reuse’ denotes that the paper
discuss reuse between these two levels. In the special case
of ‘x’ only at ‘Integration level(s) reuse’, reuse is addressed
between different sub-levels of the integration test level1. The
most general approaches (e.g. [13], [17], [20], [22], [23])
focus on reuse between all levels. In embedded systems, it
is common to have several levels within the integration test
level where reuse can be applied. This helps to explain why a

1The integration level often consists of different sub-levels, such as com-
ponent integration and software-hardware integration.

number of primary studies (e.g. [14], [16], [19]) are focusing
on this level. Reusing test items from unit or component level
to integration level(s) is addressed in [18], [21].

It should be noted that unit-, component-, integration-, and
system-level testing are not uniquely defined concepts and may
have slightly different interpretations in different domains,
contexts and companies. The above summary on test level
focus rests upon the terminology used in the included primary
studies.

C. Approaches to Vertical Test Reuse

On a conceptual level, we found three classes of reuse
approaches proposed in the primary studies: adapter-, formal
methods- and clone mining-based approaches. Within these
classes, we found that the different primary studies slightly
differ in their details. In the forthcoming sections we will
describe each approach and the variations found in primary
studies within each approach.

1) Adapter Based Approaches: The first class of ap-
proaches, adapter-based approaches, represents the largest
number of primary studies [13], [16], [17], [18], [19], [20].
The approach is based on the assumption that each test
level may have a different level of abstraction and may also
differ in the way that the test object can be accessed. In the
approaches found, the test cases were either written entirely
at the component level (bottom-up reuse) or the system level
(top-down reuse). At the level where the test cases were
written, the test cases may be concrete, i.e directly executable.
However at other test levels, adapters are needed to overcome
the differences with respect to level of abstraction as well
as interface issues. The proposed solution is thus to create
test cases that are concrete on the level where they were
written and more abstract on the other levels. On these other
levels the test case code only communicates with the test
environment, and the object under test, through adapters, tailor
made for each test level. The approach is described in a few
different flavors (multi-level test cases, bottom up- and top
down reuse) which will be described below. The first variant

[13] [14] [15] [16] [17] [18] [19] [20] [21] [22] [23]
System level reuse x x x x x x
Integration level(s) reuse x x x x x x x x x x
Unit/component level reuse x x x x x x x x

TABLE VI
REUSE ACROSS TEST LEVELS IN PRIMARY STUDIES.

of the adapter-based approaches is multi-level test cases [16]
(with a model based version presented in [17]). For each test
level, there will be a set of test cases that are specific to this
level but also a set of test cases that may be directly reused
between different levels. The approach is to abstract away
the test environment dependencies on each level to form a
level-independent test core interface. The test teams use this
interface to interact with the test object while focusing on test
case behavior. Such an abstract test case consists of a test
stimulation part, a set of test parameters and an evaluation
part. Each of these parts use the test core interface to interact
with the environment and the test object. For each test level,
there are adapters that convert the test core interface to the
required level of abstraction. In cases where some test objects
introduce delays at higher test levels where more components
are integrated. Pérez and Kaiser [19] suggest that the input and
output adapters can be complemented with delay balance and
delay compensation components to preserve the order of test
object stimuli. The purpose of these compensation components
is to preserve the order of the event sequences that are at risk
to be out of order if a signal is delayed on one level, but
not on another (e.g due to functional simulations of some
components). Depending on which level the test cases are
written at, the bottom-up approach [13] allows for writing all
test cases at the component level (and then reused in higher
test levels using the aforementioned adapters on each level),
while the top-down approach [20] is designed for writing all
test cases at the system level.

2) Formal Methods: Rodrigues et al. [18] also use adapters,
but combine it with formal methods. In their approach test
bench components are reused using adapters and intelligent
partitioning of test cases and reference models. A set of test
benches in this methodology can be mapped to the test level
integration level in table VI but divided into sub levels where
components are gradually integrated and tested on each sub
level. Adapters are created for each in and out interface of a
test object. A test object in this sense can be one individual
component (at one sub level) or any number of integrated
components (at another sub level). In practice, this means that
testing an individual component A with two in interfaces, Ia1
and Ia2, require two adapters. Similar to the other adapter
based approach, the test source is abstract with respect to
the test level, since the test cases only use the adapters to
interact with the test object. The same stimuli can thus be
fed to the test object and a reference model that describes
the expected behavior. The major difference from the other
adapter based approach is the partitioning of the test cases
and adapters. While other adapter approaches such as [17]

and [13] partition with respect to the V-model test level, this
approach partitions the test source into disjunct sets, each set
testing one interface. Furthermore, the reference model, that is
used as an oracle, is also divided accordingly. After selecting
a coverage criteria, set theory is applied at particular test (sub)
levels, thus inferring which interfaces, adapters, tests and parts
of the reference model that satisfies the desired criteria.

There is also an approach that uses hierarchical task mod-
els [14]. These models describe, in a formal way, the pos-
sible interactions between the user and the system using the
ConcurTaskTree (CTT) notation [26], thus trying to reduce
the state space for testing the system on lower levels. Such
tasks and their subtasks also describe how different functions
relate from a users point of view and also include possible
timing constraints. There are also formal models for each
components. Each task has pre and post conditions on required
underlying component models which makes it possible to
generate test cases using different coverage criteria.

Another formal approach is to use abstract components with
the MARMOT model as in [22]. These abstract components
and their interactions are formally specified using the notation
of π-calculus and labeled transition systems. These models are
refined during the whole development process and the way
they are specified allows formal verification throughout the
entire software development process. Test reuse is thus per-
formed indirectly by reusing the specification of the abstract
components, since that specification is used for the verification
activities.

Schulz et al [23] uses formal descriptions together with an
abstract system model to be able to generate consistent test
scenarios (derived from specification) from the system level
down to integrated-implementation level.

For third party components, where creating a component
level testing environment is a problem, formal methods has
been used to translate component tests so they can be per-
formed using only the system level interfaces, thus making
it possible to run (some of the) component tests in the
system level test environment [15]. The idea is to describe the
components and all interactions between the components and
the environment as well as state transitions in a formal way.
Using these formal specifications, test cases are generated. In
addition, an analysis is performed to identify which behaviors
can be satisfactorily tested using the system level interfaces.

3) Clone Mining: The last class of vertical test reuse is
clone mining. In this class, we found several studies that were
dismissed because they did not fall in the embedded domain.
However, one study [21] focusing on embedded systems was
found. The purpose of clone mining is to show how (and how

Approach

Clone Mining[21]

Formal[23]

Comp Transl.[15]

Task-Models[14]

Testbench[18]

Adapter[19]

Testbench[18]

Top-Down[20]

Bottom-Up[13]

Model-Based[17]

Multi-Level[16]

Fig. 2. Approaches to reuse.

much) test case code is really duplicated in a software project
rather than proposing a new reuse method. An existing set of
test cases were scanned for clones or partial clones. A clone in
this sense would mean test cases that either are equal line by
line or that the test case code could be reused by abstracting the
differences into parameters, allowing the original test cases to
be generated from the one common source file. In the study
they found both test cases that were identical but they also
found other variants which were classified as identical test
clones, parametric test clones, reordered test clones (same
steps but in different order) and intertwined test clone. The
parameterized test cases found were successfully rewritten to
obtain generic adaptable test cases.

D. Evaluation of vertical test reuse approaches

In this section, we present a classification of the evaluation
of the proposed vertical test reuse approaches along two
dimensions:

• Scale of evaluation (toy example, down-scaled real ex-
ample, industrial, not mentioned/none) [27].

• Means of evaluation (proof-of-concept, comparative eval-
uation, none).

We present the results of this classification in Table VII. It
is evident that most of the primary studies present a proof-of-
concept validation (i.e., a descriptive example implementaition
of the proposed approach) using either a down-scaled real
example or an industrial scale example. Only two primary
studies [13], [18] comparatively evaluate their approach with
respect to its objective on an industrial scale.

Paper [17] is purely theoretical, and does not provide any
experimental evaluation, while [16], [19], [20] only show a
small example (less than 5 components) from the automotive
industry that the approach works. Two papers [13], [18] mea-
sure test effort reduction while only [13] actually measure the
percentage of reused test cases and compare to the number of

expected test cases to be reused after performing a reusability
analysis of the test cases. The largest and most thorough
evaluation was found in the journal paper by P’erez and
Kaiser [13], where four different sizes of test objects were
evaluated. The largest test object in the evaluation had 164
inputs which we regard as industrial sized in this context.
The evaluation in two other studies [18], [21] were also
industrial sized. The first measured reduced effort and the
second measured test code redundancy and number of test
clones.

IV. THREATS TO VALIDITY

There can be several threats to the validity of this study. One
of the more obvious ones is the possibility of the existence of
relevant papers that we failed to identify by our search. How-
ever our search covered the most commonly used electronic
databases in software engineering and computer science. We
complemented the electronic search with forward-backward
snowballing to increase the completeness of our search. Other
potential sources to lack of completeness of our search concern
the paper exclusion process. We excluded papers on other
two forms of reuse: in the context of regression testing and
software product line testing. There is a threat that papers
discuss vertical test reuse in these contexts are applicable in
our context too. Moreover we limited our selection of studies
to the context of embedded systems. There are studies in other
domains (e.g., in web services [28]) where vertical test reuse
has been discussed. We also face the threat of bias in study se-
lection as only one researcher applied the inclusion/exclusion
criteria. However the study selection criteria were discussed
among the authors to promote a common understanding.

V. CONCLUSION AND FUTURE WORK

This study presents an overview description of the body of
knowledge on vertical test reuse in development of embed-
ded systems. Specifically, we have focused on the following
research questions:
RQ1: What is the distribution of primary studies on vertical

test reuse over time, fora of publication and research
methods used?

This study identified 11 primary studies on vertical test
reuse for embedded systems, published in the period of 2002
to 2013. Most published work (8 out of 11 included studies)
focus on solution proposals, but three studies target evaluation
of vertical test reuse.
RQ2: What are the proposed approaches, items of reuse and

motivations given for vertical test reuse?
The primary motivation for vertical test reuse seems to be

reduction of test effort by means of avoiding test rework over
test levels. Other motivations include reduction of test case
complexity, increased quality of test cases, and less costly test
environment creation. The primary thing being reused between
test levels is abstract test cases or test models, and reuse
is acheived through using adapters, formal methods or clone
mining.

TABLE VII
CLASSIFICATION OF VERTICAL TEST REUSE APPROACHES WITH RESPECT TO SCALE AND MEANS OF EVALUATION.

Toy example Down-scaled real example Industrial Not mentioned/None
Proof-of-concept [16], [19], [20] [14], [21], [22], [23] [15]
Comparative evaluation [13], [18]
None [17]

RQ3: What is the extent of evaluation of the identified vertical
test reuse approaches?

Majority of the primary studies use proof-of-concept as a
means to evaluate their approaches on either down-scaled real
or industrial-scaled examples. Few comparative evaluations
exist in the field, with the exception of two primary studies
that use industrially-scaled examples with sound comparative
evaluation.

As for future work, we intend to further investigate the
feasibility and practical applicability of applying different
approaches to vertical test reuse in embedded systems devel-
opment in general, and in automotive system development in
particular. Further, by means of industrial cases studies and
experimentation, we intend to evaluate effects in terms of
test efficiency and fault detecting effectiveness of vertical test
reuse, as compared to a non-reuse approach.

ACKNOWLEDGMENT

This work was supported by the Swedish Innovation Agency
(VINNOVA) through grant 2014-03397 (IMPRINT).

REFERENCES

[1] J. Varnell-Sarjeant, A. A. Andrews, J. Lucente, and A. Stefik, “Com-
paring development approaches and reuse strategies: An empirical
evaluation of developer views from the aerospace industry,” Information
and Software Technology, vol. 61, no. 0, pp. 71 – 92, 2015.

[2] R. Nörenberg, R. Reißing, and J. Weber, “ISO 26262 conformant
verification plan,” in 8th Workshop on Automotive Software Engineering,
Lecture Notes in Informatics, GI, 2010.

[3] F. Elberzhager, A. Rosbach, J. MüNch, and R. Eschbach, “Reducing test
effort: A systematic mapping study on existing approaches,” Information
and Software Technology, vol. 54, no. 10, pp. 1092–1106, 2012.

[4] R. Tiwari and N. Goel, “Reuse: Reducing test effort,” SIGSOFT Software
Engineering Notes, vol. 38, no. 2, pp. 1–11, 2013.

[5] P. Runeson and E. Engström, “Software product line testing – A 3D
regression testing problem,” in Proceedings of the 5th International
Conference on Software Testing, Verification and Validation (ICST’12),
IEEE Computer Society, 2012.

[6] E. Engström, P. Runeson, and M. Skoglund, “A systematic review on
regression test selection techniques,” Information and Software Technol-
ogy, vol. 52, no. 1, pp. 14–30, 2010.

[7] S. Yoo and M. Harman, “Regression testing minimization, selection and
prioritization: A survey,” Journal of Software, Testing, Verification and
Reliability, vol. 22, no. 2, pp. 67–120, 2012.

[8] E. Engström and P. Runeson, “Software product line testing - A sys-
tematic mapping study,” Information and Software Technology, vol. 53,
no. 1, pp. 2–13, 2011.

[9] P. A. Da Mota Silveira Neto, I. D. Carmo Machado, J. D. Mcgregor, E. S.
De Almeida, and S. R. De Lemos Meira, “A systematic mapping study
of software product lines testing,” Information and Software Technology,
vol. 53, no. 5, pp. 407–423, 2011.

[10] I. D. C. Machado, J. D. Mcgregor, Y. a. C. Cavalcanti, and E. S.
De Almeida, “On strategies for testing software product lines: A sys-
tematic literature review,” Information and Software Technology, vol. 56,
no. 10, pp. 1183–1199, 2014.

[11] B. Kitchenham and S. Charters, “Guidelines for performing systematic
literature reviews in software engineering,” Tech. Rep. EBSE 2007-001,
Keele University and Durham University Joint Report, 2007.

[12] K. Petersen, R. Feldt, S. Mujtaba, and M. Mattsson, “Systematic
mapping studies in software engineering,” in Proceedings of the 12th
International Conference on Evaluation and Assessment in Software
Engineering (EASE’08), British Computer Society, 2008.

[13] A. Marrero Pérez and S. Kaiser, “Bottom-up reuse for multi-level
testing,” Journal of Systems and Software, vol. 83, no. 12, pp. 2392–
2415, 2010.

[14] S. Benz, “Combining test case generation for component and integration
testing,” in Proceedings of the 3rd International Workshop on Advances
in Model-based Testing (A-MOST’07), ACM, 2007.

[15] B. Schätz and C. Pfaller, “Integrating component tests to system tests,”
in Proceedings of the 5th International Workshop on Formal Aspects of
Component Software (FACS’08), Elsevier B.V., 2008.

[16] A. Marrero Pérez and S. Kaiser, “Integrating test levels for embedded
systems,” in Proceedings of the 2009 Testing: Academic and Industrial
Conference - Practice and Research Techniques (TAIC PART’09), 2009.

[17] A. M. Pérez and S. Kaiser, “Multi-level test models for embedded sys-
tems,” in Software Engineering 2010 - Fachtagung des GI-Fachbereichs
Softwaretechnik, 22.-26.2.2010, 2010.

[18] C. Rodrigues, K. da Silvay, E. Melcherz, J. de Figueiredoz, and
D. Guerreroz, “Refactoring VeriSc testbenches to improve the functional
verification during the integration phase,” in Proceedings of the 37th
Annual Conference on IEEE Industrial Electronics Society (IECON’11),
2011.

[19] A. Marrero Pérez and S. Kaiser, “Reusing component test cases for
integration testing of retarding embedded system components,” in Pro-
ceedings of the 1st International Conference on Advances in System
Testing and Validation Lifecycle (VALID’09), 2009.

[20] A. Marrero Pérez and S. Kaiser, “Top-down reuse for multi-level
testing,” in Proceedings of the 17th IEEE International Conference
and Workshops on Engineering of Computer Based Systems (ECBS’10),
2010.

[21] S. Asaithambi and S. Jarzabek, “Towards test case reuse: A study of
redundancies in android platform test libraries,” in Safe and Secure
Software Reuse (J. Favaro and M. Morisio, eds.), vol. 7925 of Lecture
Notes in Computer Science, pp. 49–64, Springer Berlin Heidelberg,
2013.

[22] Y. Choi and C. Bunse, “Design verification in model-based µ-controller
development using an abstract component,” Software & Systems Mod-
eling, vol. 10, no. 1, pp. 91–115, 2011.

[23] S. Schulz, K. Buchenrieder, and J. W. Rozenblit, “Multilevel testing
for design verification of embedded systems,” IEEE Design & Test of
Computers, vol. 19, no. 2, pp. 60–69, 2002.

[24] C. Wohlin, “Guidelines for snowballing in systematic literature studies
and a replication in software engineering,” in Proceedings of the 18th
International Conference on Evaluation and Assessment in Software
Engineering (EASE’14), 2014.

[25] R. Wieringa, N. Maiden, N. Mead, and C. Rolland, “Requirements
engineering paper classification and evaluation criteria: a proposal and
a discussion,” Requirements Engineering, vol. 11, no. 1, pp. 102–107,
2006.

[26] F. Paterno, Model-based design and evaluation of interactive applica-
tions. Springer Science & Business Media, 2000.

[27] M. Ivarsson and T. Gorschek, “Technology transfer decision support
in requirements engineering research: A systematic review of REj,”
Requirements Engineering, vol. 14, no. 3, pp. 155–175, 2009.

[28] F. Xie and J. Browne, “Verification of component-based software appli-
cation families,” in Component-based software engineering (I. Gorton,
G. Heineman, I. Crnković, H. Schmidt, J. Stafford, C. Szyperski, and
K. Wallnau, eds.), vol. 4063 of Lecture Notes in Computer Science,
pp. 50–66, Springer Berlin Heidelberg, 2006.

