
Mutating Aspect-Oriented Models to Test
Cross-Cutting Concerns

Birgitta Lindström∗, Sten F. Andler∗, Jeff Offutt†∗, Paul Pettersson‡, and Daniel Sundmark§
∗ University of Skövde, Skövde, Sweden, {birgitta.lindstrom,sten.f.andler}@his.se

† George Mason University, Fairfax VA, USA, offutt@gmu.edu
‡ Mälardalen University, Västerås, Sweden, paul.pettersson@mdh.se
§ Swedish Institute of Computer Science, Kista, Sweden, dsk@sics.se

Abstract—Aspect-oriented (AO) modeling is used to separate
normal behaviors of software from specific behaviors that affect
many parts of the software. These are called “cross-cutting
concerns,” and include things such as interrupt events, exception
handling, and security protocols. AO modeling allow developers
to model the behaviors of cross-cutting concerns independently
of the normal behavior. Aspect-oriented models (AOM) are then
transformed into code by “weaving” the aspects (modeling the
cross-cutting concerns) into all locations in the code where they
are needed. Testing at this level is unnecessarily complicated
because the concerns are often repeated in many locations and
because the concerns are muddled with the normal code. This
paper presents a method to design robustness tests at the abstract,
or model, level. The models are mutated with novel operators that
specifically target the features of AOM, and tests are designed to
kill those mutants. The tests are then run on the implementation
level to evaluate the behavior of the woven cross-cutting concerns.

Index Terms—Mutation analysis, aspect-oriented modeling,
robustness testing

I. INTRODUCTION AND BACKGROUND

Model-based development is gaining widespread use in to-
day’s software industry. Models provide an intuitive, graphical
view of software behavior. In addition, certain types of models,
such as state charts [1], Petri nets [2], and timed automata
[3], [4] are useful for analysis and verification purposes. Such
models can be used by model checkers to verify properties
such as absence of deadlock, or to ensure the correct ordering
of certain events. Moreover, behavioral models can be used
to generate test suites that cover the software with respect to
model elements or sub paths [5], [6]. Consequently, modeling
software behavior can help developers understand and analyze
complex behavior.

The expressiveness of a model typically depends on the level
of detail in which it is modeled. However, detailed models are
also generally more complex. Thus, more detailed models are
harder to understand and maintain.

A. Aspect-Oriented Modeling

One proposed approach for avoiding overly complex be-
havioral models is to use aspect-oriented modeling of cross-
cutting concerns [7], [8], [9], [10], [11]. A cross-cutting

2015 IEEE Eighth International Conference on Software Testing, Verifica-
tion and Validation Workshops (ICSTW)
10th International Workshop on Mutation Analysis (Mutation 2015)
978-1-4799-1885-0/15/$31.00 c©2015 IEEE

concern applies throughout the software, and may be crucial to
the reliability, performance, security, or robustness of the sys-
tem. Typical examples include events that require immediate
attention, such as intrusion attempts or disturbances. Cross-
cutting concerns have a tendency to clutter models, leading to
complex models that are hard to analyze.

In aspect-oriented modeling, cross-cutting concerns are
modeled as aspects, which are separated from the normal
behavior, thus creating an aspect-oriented model (AOM). The
general idea with an AOM is to model the normal behavior of
the system in a base model, leaving the cross-cutting concerns
to be described in separate aspect models. The base model and
the aspect models are then woven together. By modeling these
concerns separately and then automatically weaving them into
the model later, the behavioral models become cleaner and
less cluttered.

B. Mutation-Based Testing

This paper proposes the use of mutation of aspect-oriented
models to test cross-cutting concerns. In mutation testing, a
software artifact such as a program or a model is modified to
create alternate, usually faulty, versions called mutants [12].
The mutants are created by systematically applying mutation
operators, which are rules for changing syntactic elements.
Tests are then designed to cause the mutants to have different
behavior from the original version, called killing the mutant.
Mutation operators either mimic typical programmer mistakes
or make changes that encourage testers to design particularly
valuable test inputs.

Test suites are run against collections of mutants to deter-
mine the percentage of mutants the tests kill, the mutation
adequacy score. The mutation adequacy score is a coverage
criterion, like statement and data flow coverage, but has been
found to be stronger than other known criteria and is thus
often referred to as a “golden standard” [6]. Mutation is unique
among coverage criteria in that it not only requires a test to
reach a location in the program (the mutated statement), but
it also requires the mutated statement to create an error in the
program state, and then propagate to an output of the program.

Mutation operators have been created for many different
languages, including Fortran, Java, and C [13], [14], [15].
Mutation operators have also been defined for aspect-oriented
software in AspectJ [16], [17], [18], [19], and applied to

AOM recap, Base model

Idle OnePart

NotFullFull

dial()
numActive++numActive==MAX‐1

dial()
numActive++

callDisconnect()
numActive‐‐

numActive==3
callDisconnect()
numActive‐‐

callDisconnect()
numActive‐‐

numActive>3
callDisconnect()
numActive‐‐

numActive<MAX‐1
dial()
numActive++

dial()
numActive++

TwoPart

dial()
numActive++

callDisconnect()
numActive‐‐

Fig. 1. A base model of a video conference system

modeling languages such as finite state machines [20], [21],
[22], statecharts [23], Petri nets [24], and timed automata [25].

Mutation operators for models focus on the modeling ele-
ments and can do things like remove edges or change the target
node for an edge. In this paper we show how mutation testing
can be used to generate tests for aspect-oriented models,
specifically targeting the cross-cutting concerns.

C. Contribution

This paper describes the use of mutation testing for aspect-
oriented models, expressed as extended finite state machines.
Specifically, we describe a fault model for aspect-oriented
models, then use the fault model to define mutation operators.
We provide an example mutant for each mutation operator,
then illustrate the approach using a descriptive application of
a video conference system in a timed automata implementation
for UPPAAL [26].

To our knowledge, there have been no previous attempts to
apply mutation testing to aspect-oriented models, or to define
mutation operators targeting the special constructs that are
found in such models.

The rest of the paper is organized as follows: In the next
section we present a running example of a system model and
example aspects. In Section III, we introduce several mutation
operators for aspects-oriented models, and in Section IV we
present and exemplify how these can be used in an approach
for robustness testing using timed automata in the UPPAAL
tool. Related work is discussed in Section V and Section VI
concludes the paper.

II. EXAMPLE AOM SYSTEM

This paper uses a running example of a video conferencing
system. This system has been used by Ali et al. [7], but is
slightly modified here so as to better illustrate our mutation
analysis approach.

We use extended finite state machines (EFSM) to model
the behavior of systems. An EFSM is a tuple 〈L, l0, A, V,E〉,
where L is a set of vertices (or nodes), l0 ∈ L is the initial
vertex, A is a set of events, V is a set of (finite domain)
integer variables, B(V) is the set of Boolean combinations
(or guards) of simple constraints over V , U(V) is a set of

V3 AOM recap, Guard Aspect

Pointcut selecting subset of nodes
such that there is an outgoing edge
with an event named dial()

Pointcut selecting subset of nodes
such that there is an incoming edge
with an event named dial()

Pointcut selecting subset of edges such
that there is a triggering event named dial()
Before advice: add guard “number.size==4”
After advice: add action “number.size=0”

number.size==4
number.size=0

Fig. 2. A simple example of an aspect adding a guard to a subset of edges

arithmetic updates (or actions) over V , and E ⊆ L×B(V)×
A×U(V)×L is the set of edges. For an edge e = 〈l, g, a, u, l′〉,
we use e.event to denote the event a, and we say that e is
l.outgoing and l’.incoming. In the figures, a filled circle points
at the initial vertex.

The basic operation of the video conferencing system is
shown as an EFSM in the behavioral base model in Figure 1.
However, a video conference system needs to be robust
enough to handle disturbances during a conference session.
For example, whenever the frequency of video frame loss
exceeds a certain threshold, the system should recover that
session. Instead of cluttering the model with recovery behavior
that applies to most of its states, this behavior can best be
modeled as an aspect. An aspect consists of pointcuts, advice,
and introductions [7].
• A pointcut describes where the aspect applies, or con-

nects to the base model. The pointcut is usually a select
query that selects a set of elements such as nodes or
edges, called joinpoints from the base model. For exam-
ple, consider the aspect model in Figure 2. This aspect
will add a guard (conjunct) and append an assignment
to any edge in the base model where there is an event
’dial()’. This aspect has three pointcuts, which can be
defined as follows:

– select vertex v where v.outgoing is labeled with event
’dial()’

– select edge e where e.event = ’dial()’
– select vertex v where v.incoming is labeled with event

’dial()’
• An advice describes a change to be made for a pointcut.

For example, the aspect in Figure 2 adds a guard and an
action to the selected edges. There can be at most three
advice components for each pointcut, a before, around,
and after advice component.

– A before advice component adds something to the
selected elements, such as an extra guard on selected
edges to be evaluated before traversing any of the
selected edges (see Figure 2).

– An around advice component replaces the selected
elements with a new element.

– An after advice component adds something to the
selected element. For example, an extra action might
be added to selected edges to be executed after the
transition is triggered (see Figure 2).

• An introduction introduces a new element such as a node
or an edge to the model. For example, consider the aspect
model in Figure 3. This aspect represents recovery for a
media failure. The leftmost pointcut selects all nodes in
the base model where the event must be handled if it
occurs. The rightmost pointcut selects a node to restart
the system from when a timeout occurs. Apart from the
two pointcuts selecting elements from the base model,
there are four additional elements, three edges and one
node. These additional elements are introductions and are
not part of the base model.

To get a complete model of the system behavior that can
be analyzed by a tool, the base model and the aspect models
have to be combined by a weaver. Figure 4 shows the resulting
woven model.

III. FAULT MODEL AND MUTATION OPERATORS FOR
ASPECT-ORIENTED MODELS

In this work, we assume that aspects already exist in the
developed system under test or can be developed from speci-
fications to create a test model to design tests for cross-cutting
behaviors such as robustness. Robustness is an example of an
emergent system property that needs to be addressed in all
parts of the system. A tester who tries to design tests to cover
robustness has little opportunity to distinguish robustness code
from normal code. If the tester instead focuses on the behavior
and separates normal and robustness behavior into different
models, then it becomes easier to design the robustness tests.
This can be done as a black-box approach, freeing the tester
to design the models of robustness aspects based on his or her
interpretation of what the system should be able to cope with
in terms of disturbances and erroneous input events. This work
assumes that aspects can be used or developed for software
testing in one of three different approaches:

1) The software under test is already modeled as a finite
state machine using aspect-orientation in a model-based
development environment. The tester can apply mutation
to the aspects to create a test suite that properly tests
these aspects.

2) The tester only has access to a finite state machine of
the normal behavior of the system. The cross-cutting
behavior is handled by other parts of the system, such
as the runtime system. The tester can use this model as
a base model and then create a test model by designing
aspects to be used together with this base model.

V3 AOM recap, Recovery Aspect

after time
disconnectAll()mediaFailure

recovered

Recovery
Mode

Pointcut selecting subset of nodes
such that (node.name==TwoPart OR
node.name==NotFull OR node.name==Full)

Pointcut selecting one node
such that node.name==“Idle”

Fig. 3. A simple example of an aspect adding recovery behavior

V3 After Weaving the AOM

Idle OnePart

NotFullFull

after time
disconnectAll()

numActive==MAX‐1
AND number.size==4
dial()
numActive++, number.size=0

callDisconnect()
numActive‐‐

callDisconnect()
numActive‐‐

callDisconnect()
numActive‐‐

numActive>3
callDisconnect()
numActive‐‐

numActive<MAX‐1 AND number.size==4
dial()
numActive++, number.size=0

after time
disconnectAll()

mediaFailure mediaFailure

number.size==4
dial()
numActive++, number.size=0

recoveredrecovered

TwoPart
recovered

mediaFailure

numActive==3
callDisconnect()
numActive‐‐

after time
disconnectAll()

number.size==4
dial()
numActive++, number.size=0

number.size==4
dial()
numActive++
number.size=0

Fig. 4. The resulting model after weaving. Elements that come from the
aspects are highlighted in the figure by dotted lines or italics.

3) The tester does not have a behavioral model to start with,
and has to create the entire aspect-oriented test model
from specifications.

Mutation operators are often designed to mimic typical mis-
takes such as using the wrong operator or the wrong variable
name. The type of mistakes that developers make with cross-
cutting concerns vary. Given approach 1, mistakes such as
forgetting a pointcut, misinterpreting where a pointcut applies,
are common mistakes and therefore used to design mutation
operators for AspectJ [19], [27], [28], [18]. Moreover, any
mistakes to the design of an aspect will propagate to all parts
of the woven model or the resulting code where that aspect
applies. However, the fault model is slightly different when the
tester creates the aspects, as with approach 2 or 3. It is possible
that the behavior that is modeled as an aspect by the tester is
implemented incorrectly at one location in the software, but
correctly at another. Hence, this is also addressed in our work.

Mutation operators that delete aspect elements such as
pointcuts and advice elements ensure that these elements are
covered by tests. For example, consider a mutant that changes
the leftmost pointcut in Figure 3 so that it selects an empty
set of nodes. Killing the mutant ensures that at least one test
follows a path that includes a transition to a recovery mode.
Again, coverage can be achieved by covering the modified
element at some site where the aspect applies or by ensuring
that all of the sites are covered by modifying one joinpoint at
a time in different mutants. For example, mutants can remove
node Full, NotFull, and TwoPart from the leftmost pointcut in
Figure 3. This approach is useful with approaches 2 or 3.

Mutants for approach 1 can often be created by making
small syntactic changes to the aspect models, but creating
mutants for approach 2 and 3 might require more effort. This
is because a syntactic change made in an aspect applies to
all sites in the woven model where the aspect is applied. To
make a syntactic change at a single joinpoint, it is necessary to
iterate over the joinpoints and treat them in isolation. Hence,
a large change to the aspect-oriented model might result in
a small syntactic change at a single element in the resulting

woven model.

A. Suggested Mutation Operators for Aspects

This section suggests several mutation operators for aspect-
oriented models. The idea is to focus on the aspects and the
elements (pointcuts, advice and introductions) that they may
consist of. These are syntactic elements or structures that we
do not find in other models and hence are not specifically
targeted by other mutation-based approaches for models. We
describe the semantics of each mutation operator and then
show examples of the resulting mutants. The example mutants
are all shown after weaving to show their affect on the woven
model. Actually, however, the mutants are applied to the aspect
models before weaving.

The goal with these mutation operators is not just to identify
tests that detect faults related to robustness, but also to identify
a test suite that covers robustness. This includes tests that
reach and trigger execution of robustness code (including the
code for recovery). Different mutation operators will exercise
coverage in different detail.

B. Mutation Operators for Pointcuts

Mutation operators for pointcuts focus on the select queries
(or pointcut descriptors [29]) that define the pointcuts.

Pointcut deletion (PCD): This operator has the semantics
of not selecting any element for the pointcut. For example,
consider the aspect in Figure 3. This aspect has two pointcuts,
so PCD will create two mutants. Figures 5 and 6 show the
result after weaving with these mutated aspects. The mutant
in Figure 5 has a recovery mode that cannot be reached. This
mutant will be killed by any test where a media failure occurs
when a session has at least two participants. The mutant in
Figure 6 has a recovery mode that can only be exited if the
recovery is successful. This mutant will be killed by any test
where a media failure occurs when a session has at least two
participants and the system fails to recover within the given
time frame.

V3 Pointcut Deletion, Example 1

Idle OnePart

NotFullFull

number.size==4
dial()
numActive++
number.size=0

numActive==MAX‐1
AND number.size==4
dial()
numActive++, number.size=0

callDisconnect()
numActive‐‐

callDisconnect()
numActive‐‐

callDisconnect()
numActive‐‐

numActive>3
callDisconnect()
numActive‐‐

numActive<MAX‐1
AND number.size==4
dial()
numActive++, number.size=0

after time
disconnectAll()

number.size==4
dial()
numActive++, number.size=0

TwoPart

number.size==4
dial()
numActive++
number.size=0

numActive==3
callDisconnect()
numActive‐‐

Fig. 5. The resulting woven mutant when applying PCD to the leftmost
pointcut in the recovery aspect

Pointcut strengthening (PCS): We can strengthen a point-
cut if the select query uses any of the operators OR, ≤, or ≥.

V3 Pointcut Deletion, Example 2

Idle OnePart

NotFullFull

number.size==4
dial()
numActive++
number.size=0

numActive==MAX‐1
AND number.size==4
dial()
numActive++, number.size=0

callDisconnect()
numActive‐‐

callDisconnect()
numActive‐‐

callDisconnect()
numActive‐‐

numActive>3
callDisconnect()
numActive‐‐

numActive<MAX‐1
AND number.size==4
dial()
numActive++, number.size=0

mediaFailure
mediaFailure

number.size==4
dial()
numActive++, number.size=0

recovered

recovered

TwoPart

number.size==4
dial()
numActive++, number.size=0

recovered

mediaFailure

numActive==3
callDisconnect()
numActive‐‐

Fig. 6. The resulting woven mutant when applying PCD to the rightmost
pointcut in the recovery aspect

An OR is replaced by an AND, ≤ is replaced by <, and ≥
is replaced by >. Furthermore, for each operand in an OR-
expression there should be a mutant where that operand is
left out. If elements of the correct type exist that are selected
by the original pointcut but not by the mutated pointcut, this
will result in a reduced set of joinpoints in the mutant. Figure
7 shows the resulting mutant when the pointcut that selects
nodes where node.name==TwoPart OR node.name==NotFull
OR node.name==Full has been mutated to select nodes where
node.name==NotFull OR node.name==Full. This mutant will
be killed by a test that triggers error handling in the original
but not in the mutant, that is, when media failure occurs during
a two part session.V3 Poincut strengthening, Example

Idle OnePart

NotFullFull

after time
disconnectAll()

number.size==4
dial()
numActive++
number.size=0

numActive==MAX‐1
AND number.size==4
dial()
numActive++, number.size=0

callDisconnect()
numActive‐‐

callDisconnect()
numActive‐‐

callDisconnect()
numActive‐‐

numActive>3
callDisconnect()
numActive‐‐

numActive<MAX‐1
AND number.size==4
dial()
numActive++, number.size=0

after time
disconnectAll()

mediaFailure mediaFailure

number.size==4
dial()
numActive++, number.size=0

recovered

recovered

TwoPart

number.size==4
dial()
numActive++
number.size=0

numActive==3
callDisconnect()
numActive‐‐

Fig. 7. Resulting woven mutant when applying PCS to the leftmost pointcut
in the recovery aspect

Pointcut weakening (PCW): We can weaken a pointcut
if the select query uses any of the operators AND, <, or >.
An AND is replaced by an OR, < is replaced by ≤, and >
is replaced by ≥. Furthermore, for each operand in an AND-
expression there should be a mutant where that operand is
deleted. Given elements of the correct type for which the
original select query is false and the mutated is true, this will

result in more joinpoints in the mutant. This mutant will be
killed by a test that executes the aspect due to the weaker
condition in the mutant model but not in the original model.

Joinpoint deletion (JPD): This operator has the semantics
of excluding one joinpoint at a time from the pointcut before
weaving. For example, consider the leftmost pointcut in the
aspect shown in Figure 3. This pointcut selects three nodes
in the base model. Hence, there will be three mutants for this
specific pointcut: (i) M1, where the aspect model cannot be
reached from state TwoPart, (ii) M2, where the aspect model
cannot be reached from state NotFull, and (iii) M3, where the
aspect cannot be reached from the state Full. M3 can only be
killed by a test where media failure occurs when there is a
maximum number of connected calls. M1 can only be killed
by a test where media failure occurs where the current session
has exactly two participants. Similarly, applying JPD to the
pointcut that adds a guard and an action in the aspect shown
in Figure 2, will give five mutants that all miss the guard and
action on one of their edges. This type of mutation operator is
useful for cases where the software under test is not already
modeled with aspect orientation, so the implementation may
differ at the various joinpoints (cf. JPI and JPR).

Joinpoint introduction (JPI): This mutation operator adds
extra joinpoints to the pointcut. It applies to all elements
of the same type as the joinpoints included in the original
pointcut. For example, the original pointcut that selects all
edges such that there is a trigger named dial(), selects five of
the ten edges in the base model (see Figure 1). Five mutants
are created, one for each edge that are not selected by the
original pointcut. For example, there will be a mutant where
the guard number.size==4 is added to the edge from state
OnePart to state Idle as well as to all edges included in the
original pointcut.

Joinpoint replacement (JPR): This mutation operator
combines JPD and JPI by creating all pair-wise combinations
with respect to elements that are selected by a pointcut and
the rest of the elements that are of the same type. Each mutant
differs from the original by having one joinpoint replaced
by an element of the same type. For example, the leftmost
pointcut in the recovery aspect (Fig. 3) selects three of the five
nodes. Hence, there will be six JPR mutants for this pointcut.
Figure 8 shows an example of a JPR mutant where the node
OnePart is selected instead of node TwoPart.

C. Mutation Operators for Advice

We have two approaches for designing advice mutation
operators: (i) the advice is mutated at all its sites in a single
mutant, and (ii) one mutant is created for each place where
the advice applies. If a pointcut has more than one piece of
advice, for example, a before advice and after advice, these
will be mutated separately regardless of the approach. When
the first approach is used, at most three mutants will be created
for each pointcut (one per advice) and the mutation operator
will apply at all elements pointed out by the pointcut. With
the second approach, the advice should only be mutated at
one of the sites pointed out by the pointcut at a time. Given

V3 JPR example

Idle OnePart

NotFullFull

after time
disconnectAll()

numActive==MAX‐1
AND number.size==4
dial()
numActive++
number.size=0

callDisconnect()
numActive‐‐

callDisconnect()
numActive‐‐

callDisconnect()
numActive‐‐ numActive>3

callDisconnect()
numActive‐‐

numActive<MAX‐1
AND number.size==4
dial()
numActive++, number.size=0

after time
disconnectAll()

mediaFailure mediaFailure

number.size==4
dial()
numActive++, number.size=0

recovered

recovered

TwoPart

recovered mediaFailure

numActive==3
callDisconnect()
numActive‐‐

after time
disconnectAll()

number.size==4
dial()
numActive++
number.size=0

number.size==4
dial()
numActive++
number.size=0

Fig. 8. One of the JPR woven mutants

J joinpoints, the second approach means that there will be at
most 3*J mutants.

Advice deletion at pointcut (ADP): Consider Figure 2.
The pointcut with advice selects five edges and applying ADP
to this aspect model will create two mutants, one for the
before advice and one for the after advice. The first will not
add the guard number.size==4 to any of the five edges. A
test can kill this mutant if any of the calls tries to connect
with an incorrect number. The second mutant will not add
the assignment number.size=0 to any of the five edges. This
mutant is trivial since it will be killed by any test that visit
any of these edges.

Advice deletion at joinpoint (ADJ): Consider Figure 2
again. Applying ADJ to this aspect model will give ten
mutants. Five mutants will delete the guard number.size==4 on
one of their edges and five mutants will delete the assignment
number.size=0 on one of their edges. For example, one mutant
will delete the guard on the edge (TwoPart, NotFull). This
mutant can be killed by a test if any of the calls tries to connect
with an incorrect number when the session has exactly two
participants.

Advice introduction at pointcut (AIP): Consider Figure 2
again. This is the only aspect model in our example that has
a pointcut with advice. It has a before and an after advice. It
is also the only pointcut that selects a set of edges. Assume
that there is a second pointcut that also selects a set of edges
and has no before or after advice. AIP would then create
one mutant where the before advice is copied to the second
pointcut and one mutant where the after advice is copied to
the second pointcut. AIP applies to any pair of pointcuts that
are of the same type (i.e., selecting the same type of model
elements), in the same scope, and with a type of advice (e.g.,
before) that originally only existed in one of them.

Advice introduction at joinpoint (AIJ): AIJ is the same
as AIP except it applies to a single joinpoint in each mutant.

Advice replacement at pointcut (ARP): It is possible
to replace a before advice by another before advice. The
replacing advice should be an existing advice of the same type

R3x <= limit

R2x <= limit

R1x <= limit

Full
numActive==MAX

NotFull
2<numActive<MAX

TwoPart
numActive==2

OnePart
numActive==1Idle

numActive==0

mediaFailure[video]?
x=0

mediaFailure[video]?
x=0

mediaFailure[video]?
x=0

recovered == ok and x <= limit

mediaFailure[audio]?
x=0

recovered == ok
and x <= limit

mediaFailure[audio]?
x=0

recovered == ok
and x <= limit

mediaFailure[audio]?
x=0

recovered!=ok
and x>=limit
disconnectAll!
numActive=0

recovered!=ok
and x>=limit
disconnectAll!
numActive=0

recovered!=ok
and x>=limit
disconnectAll!
numActive=0

numActive < MAX-1 and
numberSize==4
dial?
numActive++,
numberSize=reset()

numActive>3
callDisconnect?
numActive--

callDisconnect?
numActive--

callDisconnect?

numActive--

callDisconnect?

numActive--
callDisconnect?
numActive--

numActive == MAX-1 and
numberSize==4
dial?
numActive++,
numberSize=reset()

numberSize==4
dial?
numActive++,
numberSize=reset()

numberSize==4
dial?
numActive++,
numberSize=reset()

numberSize==4
dial?
numActive++,
numberSize=reset()

Fig. 9. A timed automata model of the woven system

as the advice being replaced. For example, a before advice for
a pointcut selecting a set of nodes is replaced by the before
advice for another pointcut that selects sets of nodes, has a
before advice, and is in the same scope.

Advice replacement at joinpoint (ARJ): ARJ is the same
as ARP except it applies to a single joinpoint in each mutant.

Traditional operators: Several traditional mutation op-
erators could also apply to advice elements. Three likely
candidates are (i) ROR, which replaces relational operators in
constraints and guards by other relational operators, (ii) COR,
which replaces logic operators in constraints and guards by
other logic operators, and (iii) AOR, which replaces arithmetic
operators in actions by other arithmetic operators. We do not
define these mutation operators here since they already exist
and would apply to an aspect model in exactly the same
way as to existing languages. Ferrari et al. [30] defined some
mutation operators for source code generated from aspect-
oriented source code. However, the syntax as well as the
semantics of an advice in an aspect-oriented model differ
depending on what type of model element it is applied to, and
whether the advice is a before, around or after advice. Hence,
these mutation operators would usually generate mutants that
are syntactically incorrect.

D. Mutation Operators for Introductions

Introduction deletion (IDL): An IDL mutant deletes each
introduction element in the aspect model in turn. IDL mutants
are killed by any test that visits the deleted element. Our
aspect-oriented model has four introductions–three edges and
one node. Hence, IDL will give four mutants. For example,
there will be one mutant where the only edges leading from
a recovery mode lead to a timeout.

Discussion: Just as advice elements, introductions can come
with constraints, guards, actions etc. containing relational,
arithmetic or logic expressions. The same traditional mutation

Ok2dial

Connected

Idle

dial!

connected=true

nextCall?

numberSize=mySize

disconnectAll?

callDisconnect!

Fig. 10. A timed automata model of a conference participant

operators that we suggest for advice therefore, also apply to
introductions. Since there is no overlap between introductions
and pointcuts, there is no redundancy between applying e.g.,
ROR both to advice and to introductions.

We have discussed the possibility of applying mutation
operators to single joinpoints rather than the pointcut. This
is fairly straightforward since a pointcut describes a set of
joinpoints and each advice is mapped to a specific pointcut. It
is therefore possible to iterate over a set of joinpoints and treat
them differently by modifying the aspect models. However,
introductions are elements in the aspect model that have no
corresponding elements in the base model, so there is no
set to iterate over before the weaving process. A more fine-
grained mutation approach for introductions therefore requires
integration with or at least control of the weaver and is not
addressed here. Mutating an introduction will therefore affect
all parts of the woven model where that element is introduced.

IV. APPLICATION TO ROBUSTNESS TESTING

This section discusses the use of our suggested approach
for robustness testing of a system modeled in timed automata.
Timed automata are finite state machines that are extended
with clocks. Timed automata models can be executed and
therefore tested as well as verified by model checkers. We

wait4connection setRecoveryResultIdle

connected

nextCall!

connected=false

r : int[ok,m]
recovered = r

f: int[1,m]
mediaFailure[f]!

failureType=f,
recovered=0

Fig. 11. A timed automata model of a driver triggering new calls and
generating disturbances

translated the video conference system to timed automata for
UPPAAL (Figure 9) and used the UPPAAL model checker to
verify its behavior [26]. In addition to the woven system, we
also have models that implement the system’s environment,
including calls and disturbances that cause media failures
(Figures 10 and 11). We used the UPPAAL simulator to execute
the test scenarios and to generate the traces that we discuss in
our examples.

Robustness is defined as ”The degree to which a sys-
tem or component can function correctly in the presence
of invalid inputs or stressful environment conditions” [31].
Systems can be stressed in many different ways. Examples
of such disturbances are frame loss, noise, synchronization
mismatches and lost connections [7]. Each type should of
course be identified and addressed by the aspect models.
A major difference between the previous examples and the
timed automata model used here is, therefore, that the timed
automata model distinguishes between two types of failures:
audio and video failure. This example, with two types of
failures, is used to illustrate the approach. With all types of
media failures included, a fully woven model would be too
cluttered to show in a figure.

A. Example System

Figure 9 shows a timed automata model of the woven
video conference system. Figure 10 shows a timed automata
model that describes the behavior of participants in the video
conference. A participant connects to the system by taking
the transition labeled dial! from Ok2dial to Connected. This
transition is synchronized with a transition labeled dial? in
the system shown in Figure 9. In the same way, a transition
from Connected to Idle is triggered by a synchronization on
callDisconnect. A disconnectAll is a broadcast signal triggered
by the system. All participants that are connected when this
broadcast occurs will take a transition to their Idle state.

Figure 11 shows a timed automata model of a simple driver
for the video conference system. The driver triggers new calls
as well as media failures of different types. failureType is
set by selecting a value between 1 and m, where m is the
number of failure types. Each possible value of failureType can
be mapped to a specific type of disturbance that this system
should handle. As mentioned, our example system has only
two types of disturbances, audio and video. When the driver
triggers a media failure, it immediately continues by setting
the variable recovered to a value between 0 and m, where

Fig. 12. A graphical view of a trace

0 == ok. A trace where failureType is set to 1 maps to a
trace with an audio failure. A trace where recovered is set
to 1 maps to a test where the audio failure persists to verify
that the system implemented a timeout and can handle it by
resetting the system. A trace where failureType is set to 2 and
recovered is set to 1 maps to a test where there is a video
failure followed by an audio failure that is persistent.

B. Example Mutants and Tests

Here, we show three example robustness mutants and dis-
cuss their use. The mutants can be used to create tests or to
evaluate a set of tests with respect to their mutation score. In
both approaches, it is the trace from the environment (driver
and participants) that are used. Consider the trace in Figure
12. This is a graphical view of a trace of an execution of the
processes P, D, P0 and P1, where P is the system shown in
Figure 9 and D is the driver shown in Figure 11. P0 and P1
are instances of the template participant shown in Figure 10.
The boxes in Figure 12 show states, the vertical arrows show
transitions, and the horizontal arrows show synchronization
between processes. In the upper left corner of the figure is a
list of variables and their values after the last transition, where
x is a clock variable that models the timer. The time limit is
set to four. This specific trace shows two connections followed

R3x <= limit

R2x <= limit

R1x <= limit

Full
numActive==MAX

NotFull
2<numActive<MAX

TwoPart
numActive==2

OnePart
numActive==1Idle

numActive==0

mediaFailure[video]?
x=0

mediaFailure[video]?
x=0

mediaFailure[video]?
x=0

recovered == ok and x <= limit

mediaFailure[audio]?
x=0

recovered == ok
and x <= limit

mediaFailure[audio]?
x=0

recovered == ok
and x <= limit

mediaFailure[audio]?
x=0

recovered!=ok
and x>=limit
disconnectAlld !
numActive=0mActive

recovered!=ok ered!=o
and x>=limitand
disconnectAll!nne
numActive=0e=0

recovered!=ok
and x>=limit
disconnectAll!
numActive=0

numActive < MAX-1 and
numberSize==4
dial?
numActive++,
numberSize=reset()

numActive>3
callDisconnect?
numActive--

callDisconnect?
numActive--

callDisconnect?

numActive--

callDisconnect?

numActive--
callDisconnect?
numActive--

numActive == MAX-1 and
numberSize==4
dial?
numActive++,
numberSize=reset()

numberSize==4
dial?
numActive++,
numberSize=reset()

numberSize==4
dial?
numActive++,
numberSize=reset()

numberSize==4
dial?
numActive++,
numberSize=reset()

X X X

Fig. 13. Timed automata mutant where a pointcut is deleted (PCD)

R3x <= limit

R2x <= limit

R1x <= limit

Full
numActive==MAX

NotFull
2<numActive<MAX

TwoPart
numActive==2

OnePart
numActive==1Idle

numActive==0

mediaFailure[video]?
x=0

mediaFailure[video]?
x=0

mediaFailure[video]?
x=0

recovered == ok and x <= limit

mediaFailure[audio]?
x=0

recovered == ok
and x <= limit

mediaFailure[audio]?
x=0

recovered == ok
and x <= limit

mediaFailure[audio]?
x=0

recovered!=ok
and x>=limit
disconnectAll!
numActive=0

recovered!=ok
and x>=limit
disconnectAll!
numActive=0

recovered!=ok
and x>=limit
disconnectAll!
numActive=0

numActive < MAX-1 and
numberSize==4
dial?
numActive++,
numberSize=reset()

numActive>3
callDisconnect?
numActive--

callDisconnect?
numActive--

callDisconnect?

numActive--

callDisconnect?

numActive--
callDisconnect?
numActive--

numActive == MAX-1 and
numberSize==4
dial?
numActive++,
numberSize=reset()

numberSize==4
dial?
numActive++,
numberSize=reset()

numberSize==4
dial?
numActive++,
numberSize=reset()

numberSize==4
dial?
numActive++,
numberSize=reset()

_________ __

Fig. 14. Timed automata mutant where an advice is deleted at a single joinpoint (ADJ)

by an audio failure (failureType=1) that persists (recovered=1)
and leads to a timeout (x >= 4) and a disconnectAll.

The trace in Figure 12 is a result of executing a test scenario
in the UPPAAL simulator. Consider the PCD robustness mutant
in Figure 13. The crossed and grayed out portions in the figure
are deleted in the mutant. Enforcing the same trace in the
mutant model will lead to a deadlock since it is not possible
to take the last transition (P:R3,Idle) in the mutant model so
neither P0 or P1 can receive the broadcast signal and take the
transition to their Idle states. Hence, this trace represents a test
that kills this mutant.

Consider the ADJ robustness mutant in Figure 14. The
mutant does not have the guard numberSize==4 (grayed out
and struck over) on the edge between NotFull and Full. Hence,

it is possible to get a trace to a state where the system is at node
Full and numberSize!=4 when executing the mutant. This state
is not reachable in the original model and the test scenario
would actually lead to a deadlock state. On the other hand,
the mutant cannot reach this deadlock state. By translating
candidate test scenarios to traces and enforcing these traces on
the original and mutant models, we can identify which traces
kill which mutants and create a strong test suite or evaluate an
existing test suite with respect to its mutation adequacy score.

Finally, consider the IDL robustness mutant in Figure 15.
This mutant does not have an edge to recovery mode for the
failure type video (again showed in figure as grayed out and
marked). Hence, this mutant is killed by a test with a media
failure of this type when at least two participants are active.

R3x <= limit

R2x <= limit

R1x <= limit

Full
numActive==MAX

NotFull
2<numActive<MAX

TwoPart
numActive==2

OnePart
numActive==1Idle

numActive==0

mediaFailure[video]?
x=0

mediaFailure[video]?lure
x=0

mediaFailure[video]?
x=0

recovered == ok and x <= limit

mediaFailure[audio]?
x=0

recovered == ok
and x <= limit

mediaFailure[audio]?
x=0

recovered == ok
and x <= limit

mediaFailure[audio]?
x=0

recovered!=ok
and x>=limit
disconnectAll!
numActive=0

recovered!=ok
and x>=limit
disconnectAll!
numActive=0

recovered!=ok
and x>=limit
disconnectAll!
numActive=0

numActive < MAX-1 and
numberSize==4
dial?
numActive++,
numberSize=reset()

numActive>3
callDisconnect?
numActive--

callDisconnect?
numActive--

callDisconnect?

numActive--

callDisconnect?

numActive--
callDisconnect?
numActive--

numActive == MAX-1 and
numberSize==4
dial?
numActive++,
numberSize=reset()

numberSize==4
dial?
numActive++,
numberSize=reset()

numberSize==4
dial?
numActive++,
numberSize=reset()

numberSize==4
dial?
numActive++,
numberSize=reset()

X

X

X

Fig. 15. Timed automata mutant where an introduction is deleted

V. RELATED WORK

Lemos et al. [29] discuss testing for joinpoints that are
unintended or neglected, which is part of what we do. How-
ever, their strategy is based on a step-wise integration of the
joinpoints at the source-code level while we are focusing on
aspect models before they are integrated to the base model.

Fault models for aspect-oriented programs have been sug-
gested [28], [27], [19] and mutation operators have been
defined for AspectJ [17], [18], [16]. The major difference be-
tween our work and theirs is that we define mutation operators
fit to use at a model-level and which can be applied in a black-
box manner without knowledge of the actual implementation.

Ali et al. [7], applies aspect-oriented modeling to reduce the
complexity of robustness modeling in the context of UML state
machines. A RobUstness Modeling Methodology (RUMM) for
modeling of robustness behavior as aspects is presented. Ali et
al. [32] used the methodology together with search algorithms
in an industrial case study. We adopt their aspect-oriented
methodology for robustness modeling but we put our focus
on suitable mutation operators for testing of robustness in a
mutation-based testing framework.

Related work on model-based testing of finite state and
timed automata include Springintveld et al. [33], that showed
the problem of timed trace equivalence testing of (determin-
istic) timed automata to be theoretically possible. In [34],
Nielsen and Skou proposed a model-based test technique for
event-recording automata and in [35] Hessel et al., present a
model-based technique for generating optimal tests coverage
criteria using the UPPAAL tool. Our work is related to these
works as we use timed automata and UPPAAL-generated traces
for test generation, but different in the sense that we generate
test based on mutants rather than coverage criteria.

VI. CONCLUSIONS

This paper presents a novel technique to test software
developed with aspect-oriented models. The technique works
by mutating cross-cutting concerns at the model level. Thirteen
novel mutation operators are defined that modify the model.
The operators are based on the unique features of aspect-
oriented modeling and for the most part induce changes that
mirror mistakes that AO modelers make. Tests are designed
at the abstract level to kill the mutants, then transformed to
concrete tests to run on the software. These tests evaluate both
the modeling of the cross-cutting concerns, and the weaving
process that creates the resulting implementation. This paper
defines the mutation operators and illustrates how they are
used to design tests.

This technique is novel and useful for the same reason that
AO modeling is effective: it allows the tester to design tests to
evaluate the cross-cutting concerns independently of the rest
of the software. Instead of designing tests for the software,
and mixing the evaluation of the cross-cutting concerns with
the evaluation of the primary behavior, the tester can focus on
one thing at a time. It is therefore also possible for the tester
to adjust the test effort for different aspects, depending on the
criticality of the cross-cutting concern it addresses. Thus, this
is a classic divide and conquer strategy. Additionally, even
though the cross-cutting behaviors are repeated potentially
many times in the implementation, the tester only has to design
tests once. Tests that are designed based on one single point
in an aspect model can test multiple points distributed in the
software.

A. Future Work

This paper proposes an approach to test cross-cutting con-
cerns by mutating aspect-oriented models. This paper illus-
trates the approach to robustness testing by applying it to a

video conferencing system. The approach and the mutation
operators need to be valided empirically, so we plan a larger-
scale industrial case study to evaluate the mutation operators
with respect to their effectiveness and efficiency for robustness
testing. Based on prior work [27], [19], we already plan one
additional operator to replace one pointcut with another.

Another question that we plan to address empirically is
whether each AspectJ mutation operator should result in multi-
ple code changes or in just one code change. For example, the
PCD mutant in Figure 13 deletes one pointcut in the model,
which windes up removing three edges in the graph. Such large
scale changes might result in easy to kill mutants (trivial), so
we plan experiments to decide whether to turn this into three
separate mutants. This could be done by applying the mutation
operators during the weaving.

In addition, the mutation operators for aspect-oriented
models defined in this paper will be evaluated with respect
to feasibility for test generation using the UPPAAL model
checker. This process is currently semi-automatic. To scale
to larger systems, a fully automated tool to weave the mutants
and generate the mutation-based tests is required.

VII. ACKNOWLEDGMENT

This work was funded by The Knowledge Foundation
(KKS) through the project 20130085 Testing of Critical Sys-
tem Characteristics (TOCSYC).

REFERENCES

[1] D. Harel, “Statecharts: A visual formalism for complex systems,”
Science of computer programming, vol. 8, no. 3, pp. 231–274, 1987.

[2] J. L. Peterson, Petri net theory and the modeling of systems. Prentice
Hall PTR, 1981.

[3] R. Alur and D. L. Dill, “A theory of timed automata,” Theoretical
Computer Science, vol. 126, no. 2, pp. 183–235, apr 1994.

[4] J. Bengtsson and W. Yi, “Timed Automata: Semantics, Algorithms and
Tools,” in Lecture Notes on Concurrency and Petri Nets, W. Reisig and
G. Rozenberg, Eds. Springer-Verlag, 2004.

[5] S. Pimont and J. Rault, “A software reliability assessment based on a
structural behavioral analysis of programs,” in Proceedings of the Second
International Conference on Software Engineering, 1976, pp. 486–491.

[6] P. Ammann and J. Offutt, Introduction to Software Testing. Cambridge
University Press, 2008.

[7] S. Ali, L. Briand, and H. Hemmati, “Modeling robustness behavior
using aspect-oriented modeling to support robustness testing of industrial
systems,” Softw. Syst. Model, vol. 11, no. 4, pp. 633–670, 2012.

[8] A. Aldini, R. Garrieri, F. Martellini, and J. Jürjens, “Model-based
security engineering with UML,” Springer, 2005.

[9] J. Péreza, N. Ali, J. Carsi’b, I. Ramosb, B. Álvarezc, P. Sanchez,
and J. Pastorc, “Integrating aspects in software architectures: PRISMA
applied to robotic tele-operated systems,” Inf. Softw. Technol., vol. 50,
no. 9-101, pp. 969–990, 2008.

[10] T. Cottenier, A. Berg, and T. Elrad, “Stateful aspects: The case for
aspect-oriented modeling,” in 10th International Workshop on Aspect-
Oriented Modeling. ACM, 2007.

[11] K. Hameed, R. Williams, and J. Smith, “Separation of fault tolerance
and non-functional concerns: Aspect oriented patterns and evaluation,”
Journal of Software Engineering and Applications, vol. 2, no. 4, pp.
303–311, 2010.

[12] R. DeMillo, R. J. Lipton, and F. G. Sayward, “Hints on test data
selection: Help for the practicing programmer,” IEEE Computer, vol. 11,
no. 4, pp. 34–41, April 1978.

[13] K. N. King and A. J. Offutt, “A Fortran language system for mutation-
based software testing,” Software Practice & Experience, vol. 21, no. 7,
pp. 685–718, jun 1991.

[14] Y. S. Ma, Y. R. Kwon, and J. Offutt, “Inter-class mutation operators for
Java,” in Proceedings of the 13th International Symposium on Software
Reliability Engineering (ISSRE). IEEE Computer Society, 2002, pp.
352–363.

[15] S. Kim, J. A. Clark, and J. A. McDermid, “Class mutation: Mutation
testing for object-oriented programs,” in Proceedings of ObjectDays,
2000, pp. 9–12.

[16] F. Ferrari, J. Maldonado, and A. Rashid, “Mutation testing for aspect-
oriented programs,” in 1st International Conference on Software Testing,
Verification and Validation, April 2008, pp. 52–61.

[17] M. Mortensen and R. T. Alexander, “An approach for adequate testing
of AspectJ programs,” in 2005 Workshop on Testing Aspect-Oriented
Programs (held in conjunction with AOSD 2005), 2005.

[18] P. Anbalagan and T. Xie, “Efficient mutant generation for mutation
testing of pointcuts in aspect-oriented programs,” in Proceedings of the
2nd Workshop on Mutation Analysis (MUTATION06), 2006, pp. 3–8.

[19] F. Wedyan and S. Ghosh, “On generating mutants for AspectJ programs,”
Information and Software Technology, vol. 54, no. 8, pp. 900–914, 2012.

[20] S. P. F. Fabbri, M. E. Delamaro, J. C. Maldonado, and P. Masiero, “Mu-
tation analysis testing for finite state machines,” in Fifth International
Symposium on Software Reliability, November 1994, pp. 220–229.

[21] S. Batth, E. Vieira, A. Cavalli, and M. Uyar, “Specification of timed
EFSM fault models in SDL,” in 27th IFIP WG 6.1 International Con-
ference on Formal Techniques for Networked and Distributed Systems,
June 2007, pp. 50–65.

[22] R. M. Hierons and M. G. Merayo, “Mutation testing from probabilistic
and stochastic finite state machines,” Journal of Systems and Software,
vol. 82, no. 11, pp. 1804–1818, 2009.

[23] M. Trakhtenbrot, “New mutations for evaluation of specification and
implementation levels of adequacy in testing of statecharts models,” in
Third IEEE Workshop on Mutation Analysis (Mutation 2007). IEEE
Computer Society, 2007, pp. 151–160.

[24] S. C. P. F. Fabbri, J. C. Maldonado, P. C. Masiero, M. E. Delamaro, and
W. E. Wong, “Mutation testing applied to validate specifications based
on Petri nets,” in Proceedings of the IFIP TC6 Eighth International
Conference on Formal Description Techniques VIII, 1996, pp. 329–337.

[25] R. Nilsson, J. Offutt, and S. F. Andler, “Mutation-based testing criteria
for timeliness,” in Proceedings of the 28th International Conference on
Computer Software and Applications (COMPSAC). IEEE, 2004, pp.
306–311.

[26] K. G. Larsen, P. Pettersson, and W. Yi, “UPPAAL in a Nutshell,” Int.
Journal on Software Tools for Technology Transfer, vol. 1, no. 1-2, pp.
134–152, Oct. 1997.

[27] R. Delamare, B. Baudry, S. Ghosh, and Y. Le Traon, “A test-driven
approach to developing pointcut descriptors in AspectJ,” in International
Conference on Software Testing, Verification, and Validation (ICST
2009). IEEE, 2009, pp. 376–385.

[28] J. Bsekken and R. T. Alexander, “A candidate fault model for AspectJ
pointcuts,” in Software Reliability Engineering, 2006. ISSRE’06. 17th
International Symposium on. IEEE, 2006, pp. 169–178.

[29] O. A. L. Lemos, F. C. Ferrari, P. C. Masiero, and C. V. Lopes, “Testing
aspect-oriented programming pointcut descriptors,” in Proceedings of
the 2nd workshop on testing aspect-oriented programs. ACM, 2006,
pp. 33–38.

[30] F. Ferrari, A. Rashid, and J. Maldonado, “Design of mutant operators
for the AspectJ language,” Technical report Version 1.0, University of
Sao Carlos, Sao Carlos, 2011.

[31] “IEEE Standard glossary of software engineering terminology,” IEEE
Std 610.12-1990, 1990.

[32] S. Ali, L. C. Briand, A. Arcuri, and S. Walawege, “An indus-
trial application of robustness testing using aspect-oriented modeling,
UML/MARTE, and search algorithms,” in Model Driven Engineering
Languages and Systems. Springer, 2011, pp. 108–122.

[33] J. Springintveld, F. Vaandrager, and P. R. D’Argenio, “Testing
timed automata,” Theor. Comput. Sci., vol. 254, no. 1-2, pp. 225–
257, Mar. 2001. [Online]. Available: http://dx.doi.org/10.1016/S0304-
3975(99)00134-6

[34] B. Nielsen and A. Skou, “Testing timed automata,” Software Tools for
Technology Transfer, vol. 5, no. 1, pp. 59–77, 2003.

[35] A. Hessel, K. G. Larsen, M. Mikucionis, B. Nielsen, P. Pettersson, and
A. Skou, “Formal methods and testing,” R. M. Hierons, J. P. Bowen,
and M. Harman, Eds. Berlin, Heidelberg: Springer-Verlag, 2008, ch.
Testing Real-time Systems Using UPPAAL, pp. 77–117. [Online].
Available: http://dl.acm.org/citation.cfm?id=1806209.1806212

