Towards Shaping ISO 26262-compliant Resources
for OSLC-based Safety Case Creation

Barbara Gallina and Julieth Patricia Castellanos Ardila

Milardalen University,

P.O. Box 883, SE-72123 Visteras, Sweden

Abstract—Traceable documentation management represents
a mandatory activity according to ISO 26262. This activity is
also essential for the creation of an ISO 26262-compliant safety
case, which is defined as a compilation of work products. OSLC
represents a promising integration framework for enabling tool
interoperability and thus seamless traceability and documentation
management, including safety case creation and management. In
this paper, we present a step related to our work aimed at offering
an OSLC-based infrastructure enabling the automatic generation
of safety case fragments. Our step consists of the identification,
representation and shaping of resources needed to create the
safety case. Finally, conclusion and perspectives for future work
are also drawn.

Keywords—ISO 26262, Documentation Management, Safety
Cases, Open Services for Lifecycle Collaboration (OSLC), OSLC-
compatible Constraint Languages.

I. INTRODUCTION

ISO 26262 [1] is a functional safety standard that targets
the automotive domain. ISO 26262 defines a safety life-
cycle to be adopted during the development of automotive
safety-critical systems. As already observed in our previous
work [2], ISO 26262 also proposes/imposes guidelines for
managing hundreds of hundreds of documents. The documen-
tation process is usually tightly coupled with the development
life-cycle. Life-cycle’s work products represent immediate as
well as direct evidence to be used during the safety assess-
ment process to support the claims about system’s safety.
More specifically, the left-hand side work products of the V-
model (e.g., requirement specification) represent immediate
evidence; while the right-hand side work products of the
V-model (e.g., verification results) represent direct evidence.
Improper documentation/evidence management may indirectly
result in certification risk [3]. In the context of ISO 26262,
for instance, the goal of the documentation process is to make
documentation available: 1) during each phase of the entire
safety lifecycle for the effective completion of the phases and
verification activities; 2) for the management of functional
safety, and 3) as an input to the functional safety assessment.
More specifically, in part 10 of the standard it is stated that
“the documents should be: a) precise and concise, b) structured
in a clear manner, c¢) easy to understand by the intended
users, and d) maintainable”. In part 10.4.4, it is stated that
the structure of the entire documentation should consider in-
house procedures and working practices. It shall be organized
to facilitate the search for relevant information. Managing
information properly is crucial to enable the creation of safety
cases. OSLC represents a promising integration framework for

Mattias Nyberg
Scania AB,
Sodertilje, Sweden

enabling tool interoperability and thus seamless traceability
and documentation management, including safety case creation
and management. In this paper, we present a step towards
the concretization of our vision [2] aimed at offering an
OSLC-based infrastructure enabling the automatic generation
of safety case fragments. Our step consists of the identification,
representation and shaping of resources needed to create the
safety case. Our focus is limited to a tiny portion of the ISO
26262 left-hand side of the V-model. Despite the limitation
of our investigation, our findings are generalizable to other
parts of the standard. Thus, this work may be considered
a seed towards the provision of an OSLC-based and ISO
26262-compliant methodological approach for representing
and shaping the crucial resources for safety case creation.

The rest of the paper is organized as follows. In Section II,
we provide background information. In Section III, we identify
the resources that are needed for the safety case compilation
and we explain how they should be represented. In Section IV,
we shape one resource by using three different constraints
languages. In Section V, we discuss our findings and provide
a summarizing comparative table. Finally, in Section VI, we
present our concluding remarks and future work.

II. BACKGROUND

In this section, we present the background information
related to the problem space. In particular, in Section II-A, we
recall ISO 26262 requirements related to software unit design
specifications. In Section II-B, we recall essential information
on OSLC and the semantic stack. In Section II-C, we present
one OSLC compatible way of representing knowledge. Finally,
in Section II-D, we present semantic web-compatible lan-
guages to properly constrain the knowledge to be represented.

A. ISO 26262-compliant Software Unit Design

In this section, to make the paper self-contained, we
recall essential information related to ISO 26262-compliant
software unit design specification. The software unit design
specification is a mandatory work-product that should be
produced according to the requirements stated in Part 6, 8.4.2-
8.4.4. In this section we focus on a subset of requirements,
those represented in Table 7 of Part 6, 8.4.2. This table is
reproduced in Table I. From this table, it can be inferred that
the work product Software Unit Design Specification should be
characterized by the following properties: ASIL (Automotive
Safety Integrity Level), notation, and recommendation level
(to indicate for instance highly recommended ++ or simply
recommended +). These three properties are closely related:



TABLE 1. NOTATIONS FOR SOFTWARE UNIT DESIGN

Notation A B C D
Natural language =+ | A+ | A+ |
Informal notations ++ | ++ | + +
Semi-formal notations + =+ | 4+ | =+
Formal notations + + + T+

the notation to be selected is constrained by the ASIL value
and the recommendation level. This constraint is one among
many that can be identified by reading the normative clauses
of ISO 26262.

B. OSLC

As already recalled in [2], OSLC is a standard that targets
tools used during a product’s life cycle and enables their
integration and interoperability. OSLC 2.0 [4] is the current
mostly used version of OSLC. Tools for requirements engi-
neering, design, implementation, verification, etc. are expected
to interoperate in a traceable manner i.e. traceability between
the respective work products can be easily retrieved and shown.
To enable interoperability, different specifications, called do-
mains, need to be provided. Requirements Management do-
main (RM) and Architecture Management (AM) represent
samples of these domains. OSLC builds on top of Linked
Data [5], Resource Description Framework (RDF) [6], and
HTTP protocol. Each work product is described as an HTTP
resource, identified via a Uniform Resource Identifier (URI).
Manipulation of work products is performed via GET, PUT,
POST and DELETE HTTP methods. To interoperate via a
work product, a tool that acts as a provider has to associate an
URI to the work product and post it; a tool acting as consumer
can get the work product from the URI itself.

C. RDF-based Knowledge Representation

RDF is a framework that allows expressing information
about resources on the Web in a machine-understandable
format [7]. The RDF model is composed of two key data
structures: RDF graph, also called triple (Fig. 1), and RDF
datasets, which represent multiple data graphs, maintaining
their content separate.

Fig. 1. RDF graphs representation [8].

In RDF terms, the subject is the thing being described (a
resource identified by an URI), the predicate is a property type
of the resource, and the object is equivalent to the value of the
resource property type for the specific subject.

D. OSLC Compatible Constraint Languages

Various constraint languages exist or are being developed
to restrict the content of RDF graphs. These languages support
more or less the formulation of the numerous constraint types
that have been recently identified [9]. Constraints defined
together are called shapes and they are also used to validate
RDF data, document RDF APIs and provide metadata to
tools [10]. As OSLC supporting technologies are based on
Linked Data principles and RDF representation, constraint

languages that shapes RDF data can be explored. In this
paper, we briefly recall information related to three popular
and declarative constraints languages.

Resource Shape (ReSh) [10] is a constraint language that
is part of the OSLC Core 2.0, where grammar rules written
using RDF structure and OSLC terms are defined. The shape
specification consists of one or more properties enclosed in the
construct oslc:property.

Shape Expressions (ShEx) [11] is a constraint language
that has it own syntax (called ShExc). It describes RDF graph
structures, through a series of constraint rules. The rules can
be written as a set of properties on a triple constraint. More
specifically, the rules can be formulated as conjunctions of
constraints separated by commas (,) and enclosed in brackets ({
1. These rules identify predicates, their associated cardinalities
and datatypes, and evaluate the nodes that are referred in the
instance data.

Shapes Constraint Language (SHACL) [12] is a lan-
guage for constraining the content of RDF graphs (called
nodes), grouping constraints into shapes, that specify the
conditions that a RDF node must follow. SHACL has its
own vocabulary (a shape, for example, is specified with the
construct sh:shape), but it uses RDF and RDFS vocabulary to
define types, classes, subclasses, properties, lists and resources.

III. RESOURCES IDENTIFICATION AND REPRESENTATION

The background has set the stage and introduced the main
characters and their context. From the background, we have
learnt that to enable tool interoperability and ultimately semi-
automatic creation of safety cases, first of all the right re-
sources to be exchanged have to be identified, represented and
properly shaped. To identify and represent the right resources,
we adopt the same approach that was discussed by Gallina
et al. [13]. Briefly, this approach consists of translating into
OSLC-resources all the mandatory work products including
all their properties, described in the normative parts. In this
paper, the result of this adoption, limited to the tiny portion
of the ISO 26262 life-cycle, is depicted in Fig. 2. The reader
may refer to [14] for a complete resources identification and
representation related to ISO 26262, Part 6, clauses 8.4-6.
More specifically, resources are offered within a new AM-like
OSLC-domain (called is026262am) that targets ISO 26262.

SoftwareUnitDesignSpecification
+asil: ASIL
+designNotationType: SoftwareUnitDesignNotation
+desingNotationRationale: string

«enumeration:
SoftwareUnitDesignNotation

NaturalLanguage
Informalnotations.
SemiformalNotations
FormalNotations
TailoredNotations

«enumeration

«enumeration»
ASIL Recommendationlevel

HighlyRecommended
Recommended

FEGEES

Fig. 2. Work Product Software Unit Design Specification (partial definition).

A. Constraint Definition

As pointed out in Section II-A, the work product Software
Unit Design Specification, whose UML-like representation is
depicted in Fig. 2, has three normative attributes. The attribute
designNotationType shall have exactly one value, and this
value shall be one among those listed in the enumeration



SoftwareUnitDesignNotation. In our representation, the enu-
meration is not limited to the values of Table I but includes
an additional value to embrace industry best practices that
can be negotiated or simply tailoring decisions. According
to Table I, there are highly recommended and recommended
notations, depending on the ASIL assigned to the software
unit design specification (the attribute asil is exactly one value
and it corresponds with one listed in the enumeration ASIL).
If the designNotationType selected is not one of the highly
recommended, the attribute designNotationRationale becomes
mandatory. This attribute is added to ease self-assessment
and arguments formulation. This attribute also enables fault
tolerance in case of faulty normative tables. This constraint cor-
responds to the constraint called Conditional property in [15].
A conditional property can have several forms, including the
following: if specific properties are present, then specific other
properties also have to be present.

B. Constraint Formulation

The above information is used to formulate target groups,
where nine sub-constraints are identified: two constraints (one
that targets highly recommended and a second that targets
recommended design notations) for each ASIL (A, B, C and
D), and one constraint for ASIL QM (for this ASIL all the
design notations are considered Highly Recommended).

IV. SHAPING ISO 26262-COMPLIANT RESOURCES

In this section, we present our solution. In Section IV-A, we
present the shaping performed via Resource Shape. Then, in
Section IV-B, we present the shaping performed via Shape Ex-
pressions, while the shaping performed via Shapes Constraint
Language is presented in Section IV-C.

A. Shaping in Resource Shape (ReSh)

To define enumerations and cardinalities for the prop-
erties, Resh provides the constructs oslc:allowedValues and
oslc:occurs. However, constructs for formulating property-
values depending on other property-values (for example, the
existence of the property-value designNotationRationale, de-
pends on the property-value of designnotationType) do not
exist in ReSh. As a workaround solution, we assign cardi-
nality Zero-or-one the property designNotationRationale. The
following commented RDF/XML-based fragment shows the
ReSh definition for softwareUnitDesignSpecification.

<oslc:ResourceShape
rdf:about="http: //example.com/is026262provider/shapes/
SoftwareUnitDesignSpecificationShape™
<dcterms:title>Software Unit Design Specification Shape</dcterms:title>
<oslc:describes rdf:resource="http://open—services.net/ns/is026262am#
SoftwareUnitDesignSpecification”/>
<-——Property 1: asil—>
<oslc:property>
<oslc:Property>
<!—property name definition—>
<oslciname>asil</oslc:iname>
<!'—property cardinality definition—>
<oslc:occurs rdf:resource="http: //open—service.net/ns/core#Exactly—one” />
<L —Property identification definition—>
<oslc:propertyDefinition rdf:resource="http://open—services.net/ns/is026262am#
asil”/>}
<L —Range and associated properties of the resource—>
<oslc:valueType rdf:resource="http://open—services.net/ns/core#LocalResource ”/>
<oslc:representation rdf:resource="http://open—services.net/ns/core#Inline”/>
<oslc:range rdf:resource="http://open—services.net/ns/core#Any” />
<!—List of values provided by the enumeration ASIL—>
<oslc:allowedValue rdf:resource="http: //open—services.net/ns/is026262am#A” />
... <t—values for asil B, C, D and QM are defined in the same way—>
</oslc:Property>
</oslc:property>
<t—Property 2: designNotationType—>
<oslc:property>
... <—similar structure that the given for asil—>

</oslc:property>
<-—Property 3: designNotationType—>
<oslc:property>
<oslc:Property>
<t—property cardinality Zero or one, for flexible use—>
<oslcioccurs rdfiresource="http: //open—services.net/ns/core#Zero—or—one” />

</oslc:property>
</oslc:ResourceShape>

B. Shaping in Shape Expressions (ShEx)

In ShEx, the conditional property cannot be expressed as
such. However, an alternative way to express that type of
constraint exists i.e., by using the context-specific Exclusive
OR, which outputs true whenever both inputs differ [15]. For
exemplification purposes, we present a commented SHEXc-
based fragment that constrains software units with Asil A.

<SoftwareUnitDesignSpecification> {
# Assigns ASIL A to the software unit
(shex_iso26262am:havingAsilA (shex_iso26262am:true) ,
# Assigns highly Recommended type to the software unit
shex_iso26262am:recommendationLevel (shex_iso26262am:highlyRecommended) ,
# Restricts the selection of design notation type to those allowed for highly
recommended
shex_is026262am:designNotationType (shex_iso26262am:naturalLanguage
shex_iso26262am:informalNotations)| Operator Exclusive Or (|)
# Assigns ASIL A to the software unit
shex_is026262am:havingAsilA (shex_is026262am:true) ,
# Assigns Recommended type to the software unit
shex_iso26262am:recommendationLevel (shex_iso26262am:recommended) ,
# Restricts the selection of design notation type to those allowed for
recommended type
shex_is026262am:designNotationType (shex_iso26262am:semiformalNotations
shex_iso026262am:formalNotations shex_iso26262am:TailoredNotations) ,
#Makes the property designNotationRationale mandatory
shex_is026262am:designNotationRationale xsd:string |
#(...Same kind of constraints for ASIL B,C and D are defined here, QM restricts only
to highly recommended level)
}

When ASIL A is selected, the value of the property havin-
gAsilA has to be true. When highlyRecommended is assigned
to RecommendationLevel, the designNotationType can only
take a value within the subset constituted of natural language
and informal notations. In case that the value recommended
is assigned to recommendationLevel, the designNotationType
can only take a value within the subset constituted of semifor-
malNotations, formalNotations and TailoredNotations, and the
property designNotationRationale becomes mandatory.

C. Shaping in SHACL (Shapes Constraint Language)

SHACL provides the construct sh:filterShape, which can
be used to limit the scope of the nodes that are required
to be validated [12]. This characteristic allows the creation
of nine filters that meet the requirements mentioned before.
The below-given and commented RDF/XML snippet shows
the shape for a software unit design specification in SHACL,
where the ASIL is A, recommended design notation is selected,
and thus the design notation rationale becomes mandatory.

shacl_is026262am:DesignNotationShape_AsilARecommendedLevel
rdf:type sh:Shape ;
rdfs:label "DesignNotationShape_AsilARecommendedLevel”"" xsd:string

sh:description “ASIL A, recommended notations and rationale must be provided” :
sh:filterShape [
rdf:type sh:Shape ;
sh:property [
sh:hasValue shacl_is026262am:A ;
sh:predicate shacl_is026262am:asil ; ] ;
sh:property [
sh:hasValue shacl_is026262am:Recommended ;
sh:predicate shacl_iso26262am:recommendationLevel ; ] : ] :
sh:property [
sh:datatype xsd:string
sh:minCount 1 ;
sh:predicate shacl_iso26262am:designNotationRationale ; ] ;
sh:property [
sh:in (
shacl_is026262am:SemiformalNotations
shacl_is026262am:FormalNotations
shacl_is026262am:TailoredNotations) ;
sh:minCount 1 ;
sh:predicate shacl_is026262am:designNotationType ; ] :
sh:scopeClass shacl_is026262am:SoftwareUnitDesignSpecification ;



V. DISCUSSION

Shapes composed of separately-defined properties in ReSh,
make this language limited in its expressiveness. Instead,
ShEx and SHACL present a structure that allows for defining
properties in a more flexible way. When storing the informa-
tion, the serialization used by ReSh and SHACL is totally
compatible with the one used by OSLC Resouces: RDF/XML
serialization, while ShEx presents its own serialization called
ShExc, that requires a transformation for being able to use as
a schema of OSCL resource (or convert the OSCL resources
from RDF/XML in ShExc). The testing environment for ShEx
and SHACL (Fancy Shex Demo [16] for the first one, and
Top Braid Composer [17] for the second one) allows the
implementation and assessment of the resources, while the
lack of one for ReSh makes this task more difficult. These
comparative elements are summarized in Table II.

TABLE II. COMPARATIVE STUDY OF RDF CONSTRAINT LANGUAGES
Comparative element ReSh ShEx SHACL
Expressiveness Low High High
RDF/XML syntax Yes No Yes
Testing environment No Yes Yes
Declarative representation Yes Yes Yes
Tool support Yes Yes Yes

Other comparative elements that are taken into account
are the tools support and the declarative representation of
the constraints. All the languages can be expressed using
declarative constructs, but SHACL, additionally, supports na-
tive SPARQL constraints embedded into SHACL constructs
like sh:constraint. The three languages also are tool-supported.

VI. CONCLUSION AND FUTURE WORK

In this paper, we have presented a first step towards the
concretization of our vision consisting of enabling the semi-
automatic creation of ISO 26262-compliant safety cases thanks
to the provision of an OSLC-based infrastructure. Our first step
has focused on the identification, representation and shaping of
a single resource. More specifically, we have identified an es-
sential resource within ISO 26262-Part 6, we have represented
it as an RDF graph and shaped according to three different
constraint languages. Given the types of constraints that can
be retrieved from the normative parts of the standards, we
believe that SHACL should be preferred. The goal of this work
was not completeness but moving forward our pioneering and
explorative work. Despite the limitations of our investigation,
we believe that our work may constitute a seed for the creation
of ISO 26262-compliant and OSLC-based domains.

In the future, as presented by Gallina [18], we aim at
moving an additional step forward by merging the results of
this work (centred on the left-hand side of the V-model) with
the work [13] centred on the right-hand side of the V-model.
The intention is to exploit query-mechanisms to retrieve the
necessary information from the resources in order to formulate
a tiny argument-fragment aimed at arguing about a chunk
of traceability between a software unit requirement and its
corresponding testing results. The argument is expected to
not only argue about process-based compliance (by showing
that the required immediate evidence is connected to the
corresponding and required direct evidence) but also argue
about product-safety by showing that the traceable evidence

is indeed effective in showing a product behaviour free from
intolerable risk.

Acknowledgments: This work has been partially financially
supported by the Swedish Foundation for Strategic Research
via the SSF Gen&ReuseSafetyCases project [19] project. This
work has also benefited from the discussions held in the
context of the ECSEL Joint Undertaking project AMASS (No
692474) [20].

REFERENCES

[1] 1SO26262, “Road vehicles Functional safety. International Standard,
November,” 2011.

[2] B. Gallina and M. Nyberg, “Reconciling the iso 26262-compliant and
the agile documentation management in the swedish context,” in Critical
Automotive applications: Robustness & Safety (CARS), Matthieu Roy,
Faris, France, HAL, September 2015.

[3]1 S. Nair, J. de la Vara, A. Melzi, G. Tagliaferri, L. de-la Beaujardiere,
and F. Belmonte, “Safety evidence traceability: Problem analysis and
model,” in Requirements Engineering: Foundation for Software Quality,
ser. Lecture Notes in Computer Science, C. Salinesi and I. van de Weerd,
Eds. Springer International Publishing, 2014, vol. 8396, pp. 309-324.

[4] Open Services for Lifecycle Collaboration Core Specification Version
2.0, “http://open-services.net/bin/view/main/oslccorespecification.”

[5] Linked Data, “http://www.w3.org/designissues/linkeddata.html.”
[6] RDF Primer, “http://www.w3.org/tr/rdf-primer/.”

[71 S. Powers, Practical RDF. OReilly Media, 2003. [Online].
Available:  https://www.safaribooksonline.com/library/view/practical-
rdf/0596002637/index.html

[8] W3C, “RDF 1.1 Concepts and Abstract Syntax,” 2014.
[Online]. Available: https://www.w3.0org/TR/2014/REC-rdf11-concepts-
20140225/

[9] T. Bosch and K. Eckert, “Guidance, Please! Towards a Framework for
RDF-based Constraint Languages,” in DCMI International Conference
on Dublin Core and Metadata Applications, Sao Paulo, Brazil, Septem-
ber, 2015.

[10] A. Ryman, “Resource Shape 2.0,” 2014. [Online]. Available:
https://www.w3.org/Submission/shapes/

[11] E. Prud’hommeaux, J. E. Labra Gayo, and H. Solbrig, “Shape expres-
sions: An RDF validation and transformation language,” in the 10th

International Conference on Semantic Systems (SEM), 2014, pp. 32—
40.

[12] W3C, “Shapes Constraint Language (SHACL),” 2016. [Online].
Available: https://www.w3.0org/TR/2016/WD-shacl-20160128/

[13] B. Gallina, K. Padira, and M. Nyberg, “Towards an iso 26262-compliant
oslc-based tool chain enabling continuous self-assessment,” in [0th
International Conference on the Quality of Information and Communi-
cations Technology- Track: Quality Aspects in Safety Critical Systems
(QUATIC), Lisbon, Portugal, 6-9 September, 2016.

[14] J. P. Castellanos Ardila, “Investigation of an OSLC-domain targeting
ISO 26262, Master’s thesis, Milardalen University, School of Innova-
tion, Design and Engineering, Visterdas, Sweden, to appear in 2016.

[15] T. Bosch, A. Nolle, E. Acar, and K. Eckert, “RDF validation
requirements - evaluation and logical underpinning,” CoRR, vol.
abs/1501.03933, 2015.

[16] Fancy Shex Demo, “https://www.w3.0rg/2013/shex/fancyshexdemo.”

[17] SHACL Tutorial, “http://www.topquadrant.com/technology/shacl/tutorial/.”

[18] B. Gallina, “Reconciling the ISO 26262-compliant and the Agile Docu-
mentation Management in the Swedish Context. In the 4th Scandinavian
Conference on SYSTEM & SOFTWARE SAFETY, Stockholm, March
17, 2016.

[19] Gen&ReuseSafetyCases-SSF,
genreusesafetycases.”

[20] AMASS (Architecture-driven, Multi-concern and Seamless Assur-
ance and Certification of Cyber-Physical Systems), “http://www.amass-
ecsel.eu.”

“http://www.es.mdh.se/projects/393-



