
Early timing analysis of vehicular systems: the
road from single-core to multi-core

Alessio Bucaioni

Mälardalen University, Väster̊as, Sweden
alessio.bucaioni@mdh.se

Arcticus Systems AB, Järfälla, Sweden
alessio.bucaioni@arcticus.se

Abstract. In the software development for vehicular embedded sys-
tems, timing predictability is paramount for the development of the ve-
hicles’ safety features and for reaching a satisfactory customer value.
Modern vehicles’ features require new level of computational power. On
the one hand, multi-core platforms can provide efficient support for these
features. On the other hand, multi-core platforms complicate the soft-
ware development of vehicular embedded systems as timing predictabil-
ity is still an open issues for these platforms. In this paper we present
a PhD work defining a model-based software development methodology
which supports early timing analysis for vehicular embedded systems on
multi-core.

Keywords: Model-driven engineering, model-based software develop-
ment, vehicular embedded systems, timing analysis, multi-core

1 Problem Formulation
In the automotive domain, a cost-effective software development is nowadays
paramount as the largest share of vehicle’s innovation comes from features which
are realised by means of distributed embedded systems [10].

The complexity of vehicular embedded software is constantly increasing, re-
sulting in a growth in size from the few hundreds lines of code of the late 1970s
to the 200-300 million lines of code running on modern vehicles [14]. However,
size is only one dimension of complexity. Vehicular embedded software is, in
fact, characterised by extra-functional properties whose verification complicates
software and its development. In the automotive domain, for instance, timing
predictability is paramount both for the development of the vehicles’ safety fea-
tures and for reaching a satisfactory customer value. Its importance has also
been acknowledged by several international projects and industrial initiatives,
e.g., TIMMO [4], TIMMO2USE [3], Rubus ICE [6]. In order to better deal with
the increasing complexity of the software and its properties, new paradigms,
focusing on abstraction, separation of concerns and automation, have been pro-
posed and adopted. This is the case of model-driven engineering (MDE) [20].

MDE aims at mitigating the complexity of software and its development by i)
shifting the focus from the coding to the modelling activities and by ii) automat-
ing error-prone development tasks. In the automotive domain, the adoption of
MDE led to the definition of several model-based methodologies [2][1][11] for
the development of predictable embedded software. Among others, the EAST-
ADL development methodology has been acknowledged as the de-facto standard



2 Alessio Bucaioni

in the automotive domain. It relies on a development process which makes use
of four abstraction levels for ensuring abstraction and separation of concerns.
Typically, the embedded software architecture is represented by a set of func-
tional models from which implementation models are derived. In turn, timing
models1, essential for running schedulability analysis2 [21], are derived from the
implementation models.

Currently, the majority of model-based methodologies allow the development
of predictable embedded software for single-core platforms only. Nevertheless,
single-core platforms can not provide efficient computational support for mod-
ern vehicles’ functions which employ data-intensive sensors (e.g., cameras and
ultra-sonic sensors) and complex coordination. Contrariwise, multi-core plat-
forms can successfully provide additional processing power for running these
computational-intensive functions. However, surveys [8] showed that multi-core
software projects can have up to 25% longer schedules and can demand almost 3
times as many software engineers making the projects 4,5 times more expensive.
In fact, how to support timing predictability and the extraction of timing mod-
els are still open issues for multi-core platforms. Moreover, multi-core platforms
also introduce novel concerns such as, e.g., software to hardware allocation.

In this context, model-based techniques can be successful adopted for aiding
the software development of vehicular embedded systems for multi-core plat-
forms. For instance, models and model transformations can be employed for
raising the development abstraction reducing the need for further expertise and
for automating transition among the development phases, respectively. Further-
more, model transformations can ease the extraction of timing models and pro-
vide support for the software to hardware allocation.

In this paper we present a PhD work defining a model-based software develop-
ment methodology which supports early timing analysis of vehicular embedded
systems on multi-core. The goal of the presented methodology is to contribute to
the achievement of a cost-effective development for vehicular embedded software.

2 Related Works
In the last decades, several model-based methodologies have been proposed for
the software development of vehicular embedded systems.

EAST-ADL [2] is layered architectural description language for automotive
embedded systems. Its development methodology is a top down development
methodology where the software architecture is refined with implementation-
oriented details as it navigates down trough the abstraction levels stack. Unlike
our methodology, EAST-ADL does not provide any automation means for shift-
ing among the abstraction levels. Furthermore, EAST-ADL modelling notations
do not focus on timing. Finally, EAST-ADL does not explicetely support multi-
core platforms. AUTOSAR [1] is an industrial initiative to provide standardised
software architecture for the development of vehicular embedded systems. As a

1 A timing model contains timing, communication and implementation information of
the software system.

2 Schedulability analyses [21] are a priori mechanism for predicting the timing be-
haviour of a system. In our work, we use end-to-end timing analysis [22].



Title Suppressed Due to Excessive Length 3

modelling language, AUTOSAR supports multi-core platforms. However, as AU-
TOSAR is designed for complementing EAST-ADL at the last abstraction level,
such a support occurs at late stages of the development only. There are several
commercial tools which implement the EAST-ADL and AUTOSAR develop-
ment methodology. DaVinci Developer3 by Vector offers a convenient graphical
designer for assisting the developer in specifying the AUTOSAR ECUs software
architecture. Arctic Studio by ArcCore4 also supports the specification of AU-
TOSAR ECUs software architectures and it includes a set of commercial plugins
for the Eclipse Modelling Framework. However, both DaVinci Developer and
Arctic Studio tool suites only support single-core platforms.

Additional model-based methodologies have been proposed for the software
development of cyber-physical systems. AADL [16] is a design language for the
model-based software development of real-time distributed embedded systems.
AADL has been recently extended for supporting multi-core and partitioned ar-
chitectures. AADL proposes a development methodology where the software and
hardware architectures are i) modelled, ii) complemented with multi-core aspects
(e.g., cores’ shared resources) and iii) complemented with the so-called isolation
specification (e.g., time allocation, memory isolation). Unlike our methodology,
in the AADL development methodology timing predictability is only one of the
software properties of interest. Therefore, no explicit focus and support is pro-
vided. Furthermore, transitions between the architectures are manual and there
is no automatic support for software to hardware allocation.

UML-MAST [19] is a methodology and a tool suite for the modelling and
analysing of real-time systems expressed in UML. It leverages the UML [7] and
MARTE [5] modelling languages. Similarly to our methodology, UML-MAST
focuses on the software timing predictability and its verifications and it supports
timing analyses for multi-core platforms. Unlike our methodology, it does not
provide support for modelling the hardware platform nor software to hardware
allocation. Also, its usage is constrained by some restrictions5.

3 Proposed Solution and Intended Contributions

The contribution of the PhD work presented in this paper is the definition of a
model-based methodology for the development of predictable software for vehic-
ular embedded systems on multi-core platforms. One uniqueness of the method-
ology is that timing predicability verification is enabled at early stages of the
development. This is achieved by i) leveraging the Rubus Component Model [17]
(RCM) and ii) generation of models, model-based analysis, back-propagation
of the results through model transformations. RCM is a component model for
the development of predictable embedded real-time software which explicitly fo-
cuses on and supports high-precision timing analysis. Another uniqueness of the
methodology is the explicit support for designing and modelling design uncer-
tainty. In fact, the methodology leverages a unique notation for representing sets

3 http://www.vector.com
4 http://www.arccore.com
5 The interested reader may refer to http://mast.unican.es/umlmast/



4 Alessio Bucaioni

of models with a single model with uncertainty. Models, differences and com-
monalities can be grasped without inspecting each model individually. Figure 1
depicts the workflow of the methodology. The workflow starts with a functional

Functional Model
RubusMM_SW

Platform Model
RubusMM_HW

M2M Transformation

Execution Models
μ-RubusMM_SW+Timing

Model-based Timing Analysis 

Are the timing 
requirements 

met?

End

Yes

No

Is it a single-
core platform? Yes

Modify the functional model
RubusMM_SW

No

Start

Modify the allocation model
RubusMM_Allocation

Are all the 
allocation 

models checked?

No

Yes

Code generation

Fig. 1. Model-based methodology for the software development of vehicular embedded
systems on multi-core platforms
model of the software system representing the main software functions and their
logic connections. The modelling language leveraged for this task is the software
package of the RCM metamodel [13] (RubusMM). At this stage, the model rep-
resenting the hardware platform is defined too. To this end, the methodology
leverages the RubusMM hardware package. Although possible, we assume that



Title Suppressed Due to Excessive Length 5

the platform model is fixed and does not undergo changes during the workflow. A
non-bijective model-to-model transformation is run on the functional model and
generates a set of execution models equipped with timing information. The set
contains all the execution models which are meaningful for the leveraged timing
analysis. This step is paramount for enabling timing predicability verification
at early stages of the development6. In order to ease the visualisation of the
set of generated execution models, the methodology entails a compact notation
able to represent a solution space by means of a model with uncertainty [12]
(u-Rubus) where execution models, their commonalities and differences are rep-
resented by means of uncertainty points. Please note that, such a representation
is obtained automatically via a model-to-model transformation by employing a
metamodel-independent technique [15] and it is transparent to the engineer.

At this point, model-based timing analysis can run and the analysis results
can be checked against the inherited timing constraints. To this end, the analysis
engine considers the generated execution models together with the platform
model and calculates possible software to hardware allocations satisfying the
aforesaid requirements. The software to hardware allocations will be expressed
using the allocation package of RubusMM and made available to the engineer
for inspection and modification.

If the analysis results do not satisfy the timing requirements, the engineer
has to consider the hardware platform, i.e., single- or multi-core. In the case of
a single-core platform, the engineer is required to modify the functional model
and run the process again as the current functional model does not have any
corresponding execution model satisfying the given timing requirements. In the
case of a multi-core platform, the engineer is required to modify the allocation
model, if another allocation is possible, and run the timing analysis again. If no
different allocation is possible, the engineer is required to modify the functional
model and run the process again.

If more than one execution model has satisfactory timing performances, the
engineer is required to select one and to proceed with the code generation and
deployment 7.

4 Preliminary Work and Current Status
In [13] we provided a metamodel definition for RCM, namely RubusMM, focusing
on the definition of metamodeling elements for representing the software archi-
tecture. We extended the aforesaid metamodel definition in a work which is cur-
rently under review at IEEE Access. The extension introduces new architectural
elements together with modelling elements for describing timing information.
We are working on a further extension of RubusMM which introduces modelling
elements for describing the hardware platform and the software to hardware al-
location. As Fig 2 shows, we plan to complete the extension of RubusMM by
November 2016. In [11] we discussed a methodology for the extraction of timing
models from EAST-ADL design level models with the aim of anticipating timing

6 The interested reader may refer to [11] for further details
7 The interested reader may refer to [6] [13] for further details on the code generation

and deployment.



6 Alessio Bucaioni

July 2016 November 2016 March 2017 October 2017

RubusMM Extension M2M Transformations
Industrial Automotive 

Applications

Fig. 2. Timeline for the completion

analysis at design level. The methodology automatically translates the software
architecture at design level to all meaningful RCM models. End-to-end timing
analysis is performed on each generated model and the analysis results are an-
notated back to the design level model. In the same work, we demonstrated the
applicability of the methodology by exploiting a set of industrial automotive
applications. In [12] we extended the methodology with a compact notation for
conveniently representing the set of generated models as a single model with
uncertainty. Models, commonalities and differences are represented by means of
uncertainty points; therefore, the engineer can easily grasp them and consistently
make decisions without manually inspecting each model individually. Currently,
the methodology only supports single-core platforms. We are working on an ex-
tension of the methodology for supporting multi-core platforms. The extension
comprises of a refinement of the model-to-model transformation (M2M Trans-
formation in Fig. 1) for the generation of a tree of models with uncertainty and
an enhancement of the analysis algorithm for running timing analysis directly
on the tree of models with uncertainty. As Fig 2 shows, we plan to complete
these enhancements by March 2017. Finally, we are planning to demonstrate the
applicability of the new methodology by leveraging a set of industrial automo-
tive applications. We are going to present the results of each of the three above
mentioned activities in conference papers and journals.

5 Research Methodology
The research described by this PhD work is a collaborative research between
industry and accademia. Accordingly, the research methodology leveraged by
this research is the engineering method given in [9], that is: ”observe existing
solutions, propose better solutions, build/develop, measure and analyze, and re-
peat the process until no more improvements appear possible”. We are planning
to validate and evaluate this PhD work following the hybrid methods described
in [18]. In particular, we will demonstrate the applicability of the extended meta-
models and model transformations by leveraging a set of industrial automotive
applications. We will leverage a knowledge base of expert opinion which will
complement the quantitative data gathered as results of the application of the
extended techniques.

Acknowledgments
This work is supported by the Swedish Research Council (VR) through the
SynthSoft project. We thank our industrial partners Arcticus Systems AB and
Volvo CE, Sweden. Moreover, the authors are grateful to Antonio Cicchetti,
Federico Ciccozzi, Saad Mubeen and Mikael Sjödin for their insights during
technical discussions.



Title Suppressed Due to Excessive Length 7

References

1. AUTOSAR Techincal Overview, Version 2.2.2. AUTOSAR – AUTomotive Open
System ARchitecture, Release 3.1, The AUTOSAR Consortium, Aug., 2008.
http://autosar.org.

2. EAST-ADL Domain Model Specification, Deliverable D4.1.1, 2010.
http://www.atesst.org/home/liblocal/docs/ATESST2 D4.1.1 EAST-ADL2-
Specification 2010-06-02.pdf.

3. TIMMO-2-USE. https://itea3.org/project/timmo-2-use.html.
4. TIMMO Methodology, Version 2, Deliverable 7, Oct. 2009.
5. The UML Profile for MARTE: Modeling and Analysis of Real-Time and Embedded

Systems, 2010. OMG Group, January 2010.
6. Rubus-ICE: Integrated component Development Environment, 2013.

http://www.arcticus-systems.com.
7. Introduction To OMG’s Unified Modeling Language (UML). OMG Group, May

2016.
8. S. Balacco and C. Rommel. Next generation embedded hardware architectures:

Driving onset of project delays, costs overruns and software development chal-
lenges. Klockwork, Inc., Tech. Rep, 2010.

9. V. R. Basili. The experimental paradigm in software engineering. In Experimental
Software Engineering Issues: Critical Assessment and Future Directions, pages 1–
12. Springer, 1993.

10. M. Broy, I. H. Kruger, A. Pretschner, and C. Salzmann. Engineering automotive
software. Proceedings of the IEEE, 95(2):356–373, 2007.

11. A. Bucaioni, A. Cicchetti, F. Ciccozzi, R. Eramo, S. Mubeen, and M. Sjödin. An-
ticipating implementation-level timing analysis for driving design-level decisions in
east-adl. In International Workshop on Modelling in Automotive Software Engi-
neering, September 2015.

12. A. Bucaioni, A. Cicchetti, F. Ciccozzi, S. Mubeen, M. Sjödin, and A. Pierantonio.
Handling uncertainty in automatically generated implementation models in the
automotive domain. In 42nd Euromicro Conference series on Software Engineering
and Advanced Applications, September 2016.

13. A. Bucaioni, A. Cicchetti, and M. Sjödin. Towards a metamodel for the rubus
component model. In 1st International Workshop on Model-Driven Engineering
for Component-Based Software Systems, Sep. 2014.

14. R. N. Charette. This car runs on code. IEEE Spectrum, 46(3):3, 2009.
15. R. Eramo, A. Pierantonio, and G. Rosa. Managing uncertainty in bidirectional

model transformations. In Proceedings of the 2015 ACM SIGPLAN International
Conference on Software Language Engineering, pages 49–58. ACM, 2015.

16. P. H. Feiler, D. P. Gluch, and J. J. Hudak. The architecture analysis & design
language (aadl): An introduction. Technical report, DTIC Document, 2006.

17. K. Hänninen, J. Mäki-Turja, M. Sjödin, M. Lindberg, J. Lundbäck, and K.-L.
Lundbäck. The rubus component model for resource constrained real-time systems.
In 3rd IEEE International Symposium on Industrial Embedded Systems, June 2008.

18. B. Kitchenham, S. Linkman, and D. Law. Desmet: a methodology for evaluat-
ing software engineering methods and tools. Computing & Control Engineering
Journal, 8(3):120–126, 1997.

19. J. Medina, J. Drake, and M. G. Harbour. Uml-mast: modeling and analysis
methodology for real-time systems developed with uml case tools. In Proceedings
of the Euromicro Conference on Real-Time Systems, 2001.

20. D. C. Schmidt. Guest Editor’s Introduction: Model-Driven Engineering. Computer,
39(2):25–31, Feb. 2006.

21. L. Sha, T. Abdelzaher, K.-E. Årzén, A. Cervin, T. Baker, A. Burns, G. Buttazzo,
M. Caccamo, J. Lehoczky, and A. K. Mok. Real time scheduling theory: A historical
perspective. Real-time systems, 28(2-3):101–155, 2004.

22. K. Tindell and J. Clark. Holistic schedulability analysis for distributed hard real-
time systems. Microprocessing and microprogramming, 40(2):117–134, 1994.


