
Experience Report: Automated System Level Regression Test Prioritization Using
Multiple Factors

Per Erik Strandberg∗, Daniel Sundmark†, Wasif Afzal†, Thomas J. Ostrand† and Elaine J. Weyuker†

∗ Westermo Research and Development AB, Västerås, Sweden
Email: per.strandberg@westermo.se

† Mälardalen University, Västerås, Sweden
Email: {firstname.lastname}@mdh.se

Abstract—We propose a new method of determining an
effective ordering of regression test cases, and describe its
implementation as an automated tool called SuiteBuilder devel-
oped by Westermo Research and Development AB. The tool
generates an efficient order to run the cases in an existing
test suite by using expected or observed test duration and
combining priorities of multiple factors associated with test
cases, including previous fault detection success, interval since
last executed, and modifications to the code tested. The method
and tool were developed to address problems in the traditional
process of regression testing, such as lack of time to run a
complete regression suite, failure to detect bugs in time, and
tests that are repeatedly omitted. The tool has been integrated
into the existing nightly test framework for Westermo soft-
ware that runs on large-scale data communication systems.
In experimental evaluation of the tool, we found significant
improvement in regression testing results. The re-ordered test
suites finish within the available time, the majority of fault-
detecting test cases are located in the first third of the suite,
no important test case is omitted, and the necessity for manual
work on the suites is greatly reduced.

I. INTRODUCTION

Software testing is performed for many reasons. Possible
objectives include giving feedback, finding or preventing
failures, providing confidence and measuring quality. Re-
gression testing is an important part of the maintenance
process for software systems that undergo periodic revision
and enhancement. Whenever a system is updated, either
with fixes or improvements to existing code or with new
functionality, it is necessary to ensure that the system has
not regressed, i.e., that the modifications have not introduced
faults that might affect previously satisfactory operation of
the system. Regression testing aims to detect such faults in
the modified system by running all or some of the existing
test cases that were used to evaluate the system’s former
version.

Because there is frequently not enough time, equipment or
personnel available to rerun the entire test suite, regression
testers focus on selecting the most effective subset of the
test suite, and prioritizing or determining an efficient order
to execute the selected test cases.

Testing requires resources including machine and staff-
hours, hardware, and calendar time, which impacts the time
to market. In our environment, software is automatically
compiled, and regression testing is done nightly when the
software is not being changed.

In this paper we identify problems related to this process,
and describe our solutions. We found that the root cause
for many, but not all, problems was insufficient time. We
therefore propose a new method for prioritizing regression
test cases, describe an industry-quality tool that implements
it, and provide an evaluation of the method and tool as used
at Westermo Research and Development AB (Westermo).

Section II gives an overview of earlier work relating
to prioritization methods for regression testing. Section III
describes the specific problems faced by Westermo in its
original regression testing process. Section IV describes
the prioritization method and the SuiteBuilder tool that
implements it. The method is based on a set of individ-
ual prioritizers that each focus on a single goal, and a
priority merger that combines the separate priorities. The
SuiteBuilder tool facilitates the use of automated test case
prioritization for nightly regression testing, and is part of the
existing continuous integration framework of our software
development environment.

In Section V we give detailed descriptions of the results
of experimental evaluation of SuiteBuilder. In Section VI
we analyze the results of the experimental evaluation, which
indicate that most of the problems that motivated the creation
of the prioritization method and tool were mitigated. Section
VII discusses limitations of SuiteBuilder and presents pos-
sible directions for future work and extensions of the tool.
Section VIII summarizes the regression testing problems, the
solution arrived at, and the contributions of the paper.

II. RELATED WORK

In [21], Yoo and Harman reviewed existing research on
three strategies for coping with regression: Minimization, to
eliminate test cases from a suite if they are redundant with
respect to a given set of test requirements; Selection, to select
the subset of test cases in a test suite that are most relevant to



execute, given knowledge of changes to the software under
test; and Prioritization, the process of reordering the test
cases in a suite to favor some desirable property.

Selection can be based on properties such as code cov-
erage [14], most likely or expected locations of faults
[16], topic coverage [8] or historic test execution data [3].
Prioritization can be viewed as a type of selection, as the
first tests in an ordered suite may be the only ones run.
Overviews of selection and prioritization techniques appear
in [21], [3], and [4].

Mathematical optimization approaches have also been
proposed. Recent examples include work by Herzig et al. [9]
and Mondal et al. [14], where the goal has been to optimize
on cost, code coverage, test diversity and/or test duration.

Walcott et al. [20] proposes using a genetic algorithm
to find the most effective suite order based on estimated
fault detection ability and the expected running time. It is
unknown if the approach is practically usable as the genetic
algorithm was only applied to two small programs (less than
2000 LOC), with seeded faults.

Cost-effective regression testing has become particularly
important due to the increased use of continuous integration
processes. Elbaum et al. [2] note that traditional regression
testing techniques that rely on source code instrumentation
and availability of a complete test set, become too expensive
in continuous integration development environments, partly
because the high frequency of code changes makes code
coverage metrics imprecise and obsolete. Thus recent re-
gression test techniques are based on information sources
that are more readily available and light-weight.

A recent study by Hemmati et al. [8] shows that a
prioritization of test cases based on their prior fault detection
capability improves test effectiveness when moving to a
rapid release environment. Elbaum et al. [2] use a simple
prioritization of test suites based on their prior failure in
a given time window. Their results show large variance in
performance across window sizes, but typically better than
no-prioritization. Our approach includes a similar prioritizer,
as one of our priority variables.

Saff and Ernst [18], consider several strategies for test
prioritization as part of their investigation of continuous test-
ing. Their goal was to reduce the non-productive time that
a developer spends waiting for tests to run to completion.
They compare the original test suite order and random order
to orderings that give highest priority to tests that failed most
recently, to tests that failed most often, and to tests with the
shortest running time. They evaluated the ability of these
different orderings to reduce waiting time on two moderate
size code projects (5700 and 9100 LOC). For the larger
project, all of the orderings performed at approximately the
same level. For the smaller project, giving higher priority
to tests that failed most recently resulted in a significant
reduction in waiting time. A key difference between their
examination of priorities and ours is that they look at each

ranking method independently, while we build a test case
priority by merging multiple independent rankings.

Marijan [13] described a study that used impact of de-
tected failures, test execution time, failure frequency of a
test case and functional coverage to prioritize test cases
efficiently. Although the context is continuous integration,
it is not clear if the proposed approach is integrated into the
nightly build process. In contrast, SuiteBuilder is an integral
part of the Westermo nightly test environment.

Other studies have used historical data for test prior-
itization. Kim and Porter [11] used a test prioritization
technique based on three properties: when a test case was
last executed, if a test case resulted in the identification of a
fault, and the functions exercised by the test case. However,
their approach was not evaluated in an industrial setting.
Following this study, others have investigated history-based
prioritization [3], [5], [10], [17]. However, these approaches
were also neither deployed nor evaluated in industrial set-
tings. The same is true for [5], [10], [17] which used small
programs that provided useful demonstrations of proof of
concept but did not provide evidence of their usefulness in
practice.

While the work reported in [3] is an industrial case study
with a prototype implementation of a tool, the results are
still preliminary and the study was done in an offline mode.
In contrast, our approach provides a fully automated tool
that is integrated in the nightly build and test environment
at Westermo and is being successfully used in production.

III. PROBLEM DESCRIPTION

This paper addresses problems related to regression test
selection and prioritization experienced at Westermo. West-
ermo designs and manufactures robust data communication
devices for harsh environments, providing communication
infrastructure for control and monitoring systems where
consumer grade products are not sufficiently resilient.

A. Context

The focus of this paper is on automated testing of target
devices: controlling and configuring a device running WeOS
(Westermo Operating System), as an embedded system, in
a real network. WeOS includes the Linux kernel, other free
and open source software libraries, as well as proprietary
code, resulting in an interconnected source code base con-
taining millions of lines of code.

To run test cases on one or more devices under test
(DUTs), a test framework has been implemented and main-
tained over a period of several years. The framework pro-
vides an environment for tests to be executed manually by
a human tester, or for automated tests that can run and
have their results recorded by the framework without human
intervention. The automated testing is used in combination
with several other test approaches, e.g., manual exploratory
testing. This combination provides a broad and repetitive



Figure 1. Layers of abstraction from source code method to topology.

regression testing on many hardware platforms by the au-
tomated testing, and also incorporates a critical perspective
by experienced members of the test team, allowing them to
focus on the high risk areas in each WeOS release.

In order to test different scenarios, a number of test sys-
tems with varying physical topologies have been constructed
aimed at test coverage of a certain hardware product, a
software feature or a customer case. The physical topologies
contain from 4 to 25 devices communicating with each
other using traditional Ethernet cables, optical cables, serial
ports etc. Each device is built from physical components
and firmwares, as well as its customized version of WeOS.
The latter consists of many software libraries, which are in
turn composed of source code files, each containing many
methods, functions or classes. See Figure 1 for an example
of a topology and an illustration of this structure.

An automated test case is implemented as a class in
the Python programming language. The class includes a
description of a logical topology that specifies requirements
on the physical topology. The logical topology instructs
the test framework on how many DUTs the test needs
and how they are interconnected, for example, by enabling
or disabling ports or by altering firewall rules. Individual
DUTs are configured according to the instructions in the
test cases. A test class includes methods that create setup,
test execution, and tear down instructions for the test cases,
and is defined with parameters that can be used to build a
large number of specific test cases.

An example of a test case is our test on Power over
Ethernet limits, which is a feature that lets a DUT power
external devices. If the total power consumed by the external
devices is above a certain limit, the DUT disables ports
according to a configured priority. The test case reconfigures
these priorities according to different patterns, verifies that
the port with the lowest priority is disabled and that no other
port is disabled.

The outcome of a test is typically pass or fail. For certain
errors additional outcomes are used, for example when the
test framework is unable to communicate with external
hardware, when unexpected states cannot be recovered from,
or if a logical topology cannot be mapped onto a physical
topology. Depending on the number of WeOS versions to
test, and the types of suites needed, between one and ten
test suites are needed per test system per night.

B. The Problems

1) Nightly testing does not finish on time: Testing re-
quires time and time for testing is limited. An informal study
of durations of different types of testing was performed at
Westermo: Manual testing of a suite of 14 test cases had
been performed for a recent WeOS release. These test cases
required a particularly complicated test setup with virtual
machines running authentication services. Manual testing
required an effort of roughly 1 hour per test case, including
time for configuration, learning about the topic, reporting
and interpreting the results. These test cases were subse-
quently automated. Running the automated cases required
between 1.33 and 7.25 minutes, with an average of 2.96
minutes per test case. This is a speed up of a factor 20
when compared to manual testing. Automated test cases
that can run without an embedded system, but that require
communication, for example with a database, are faster. The
tests for one of the modules used in SuiteBuilder required
3.5 seconds for 5 test cases, or about 0.7 seconds per test
case. Unit tests are even faster. Unit testing of one of the
libraries of SuiteBuilder requires 0.033 seconds for 155 test
cases, or about 0.2 milliseconds per test case.

There are many reasons why testing on target devices is
lengthy. For example, if a DUT needs to reboot, perhaps to
assure that a configuration was stored on the disk, several
seconds are required for this action alone. If the DUT has
hardware such as special ports, the device may need time
to load the firmware before it reaches the desired state.
Tests of common ethernet protocols like Rapid Spanning
Tree Protocol (RSTP) also have intrinsic time consuming
characteristics due to the timing in which the protocol sends
packets between devices on a network.

We gathered statistics of the durations of automated test
cases in the automated test framework for three of the test
systems from the first quarter of 2014 for tests that either
passed or failed. The test durations ranged from 0.2 to 37
minutes, with an average of between 1.6 and 2.5 minutes.
These values are presented in Table I.

Table I
DURATIONS OF TESTS IN MINUTES FROM Q1 2014 FOR NIGHTLY

TESTING.

System Fastest Average Slowest Std.dev.

Test System 1 0.2 1.58 28.8 1.18
Test System 2 0.2 1.58 36.8 1.31
Test System 3 0.2 2.48 29.6 3.34

The nightly test suites for regular testing of WeOS grew
over time as more test cases were implemented. Eventually,
the nightly suites did not finish until after 8am, when
the Westermo work day starts. When a nightly suite did
not finish on time, we sometimes manually stopped it. In
addition to requiring manual labor, this could also lead to



undefined states in the test systems.
2) Manual work and forgotten tests: Due to insufficient

time for nightly testing, we tried to implement a workaround
by manually removing tests to decrease the length of the
suite. The intent was to manually add these tests into the
suites during the weekend. This often led to tests that were
ignored for months, sometimes leading to lost test oppor-
tunities or issues in WeOS not being detected. Moreover,
any manual work with the suites was risky as one might
unintentionally introduce syntax errors, or break the suite in
other ways.

3) No priority for the test cases: Tests are typically
named according to the functional area they aim to test.
Tests were originally ordered alphabetically in the suites, so
if a test had a name late in the alphabet, it was executed
at the end of the test run. This default ordering had two
consequences. First, tests related to a functional area late in
the alphabet were canceled more frequently than tests with
early names. If a late name test was not canceled but failed,
the failure would consistently be noted late in the suite,
providing less rapid feedback and less time for debugging.
It is preferable for failures to occur early in the suite, so that
feedback is faster, and more time is available for debugging.

Second, we discovered previously unknown and unex-
pected failures when the suites were manually reordered,
similar to the observations in [12] and [22]. These failures
indicated insufficient clean up in various state transitions of
the test framework or sometimes also in WeOS products.

IV. THE SUITEBUILDER TOOL

The problems described in the previous section are cer-
tainly not unique to regression testing at Westermo. Others
have noted them and looked for solutions, as surveyed in
Section II. Our goal was to solve all of the above-mentioned
problems while maintaining Westermo’s existing nightly
testing framework and adhering to the following principles:
(i) the solution should be easy to extend, (ii) if the solution
included weighted priorities, then the weights must be easy
to change, (iii) it must be possible to explain the approach
to knowledgeable testers in less than 15 minutes.

These principles reflect the need for the system to be
flexible enough to allow for easy modification as priorities
change.

Our solution was a method that includes a vector of
priorities, each of which can be assigned to a test case
independently. The method merges the priorities of each
test case into a single final value which is used for the
final ordering of the entire regression test suite. Some pri-
orities are assigned statically by humans, others are derived
automatically from historic test outcomes or source code
changes.

The priority merging process is controlled with weights
for each priority that can be adjusted by the test team,

Figure 2. Overview of the workflow of the SuiteBuilder tool.

according to which goals are deemed most important at a
particular time.

A. Approach and Overall Workflow

The fully automated workflow of SuiteBuilder (also illus-
trated in Figure 2) can be summarized in five main steps: (i)
Collection of raw test suites. Upon invocation, SuiteBuilder
parses the files that describe available tests, and builds a
suite that includes all tests currently in use. (ii) Assigning
priorities. Next, a set of prioritizers assign a set of priorities
to each test case in the raw test suite. This process will be
explained in detail in Section IV-B1. (iii) Merging priorities.
Once all test cases have been assigned priorities, each test
case is given a final priority by merging the individual
priorities. The outcome of this step is a list of all test
cases in the raw test suite, sorted based on their assigned
final priority. The priority merging process is described
in Section IV-B2. (iv) Selecting the final suite. Given the
prioritized list of test cases, and the time allotted for testing,
the final suite is selected through a two step process. First,
the list of test cases is filtered based on the capabilities of the
test system in question. Second, the remaining test cases are
placed into the suite in order of priority, as long as the tests
already placed in the suite have not exhausted the allotted
testing time. The time estimated for a partially-built suite is
the sum of the individual test case times, based on their prior
running times. If there is no prior history for a test case, a
default of 3 minutes is used. More details of the selection of
the final suite are provided in Section IV-B3, (v) Executing
the suite. The final suite is executed by the test framework,
and the results from the test session are stored in the test
results database.

The above steps are repeated for each release to be tested,
for each test system, and for each accompanying test suite.

B. Prioritization, Priority Merging and Suite Selection

The following sections explain the prioritization of test
cases using prioritizers, how different priorities are merged
and combined into a final priority for each test case, and
how the list of prioritized test cases are combined into a
final suite.



1) Assigning Priorities: TestPrioritizer assigns a static
prioritization for an individual test, determined by experi-
enced WeOS developers, written in configuration files that
are rarely modified. It assigns a low baseline value for most
tests, an increased priority for tests that can only run on
limited test systems, and a decreased value for tests that can
be run on most or all test systems.

The TagPrioritizer assigns a priority to all members of
a group of tests. Tests are organized into groups by WeOS
developers, based on domain and test framework knowledge
using a tag concept. A detailed example of this concept is
given in Section IV-C2. Like the TestPrioritizer, this is a
static prioritization made with configuration files that are
rarely modified. The TagPrioritizer gives a rough prioritiza-
tion for an entire group of tests, while the TestPrioritizer
provides a fine-tuned priority that works on individual tests.

Failing tests might indicate issues in WeOS, so a test that
has failed recently and/or frequently will have its priority
increased with the FailPrioritizer. By using threshold values,
it increases the priority on test cases with more than a
specific number of failures within a specific number of days,
Section IV-C3 explains this further.

The RecentPrioritizer increases priority for tests that have
not been selected recently. A goal of SuiteBuilder is to assure
test circulation so that no tests consistently have low priority
and hence never get tested.

The software under test control physical machines and
generally do not permit the measurement of code coverage
while the software runs on these target devices. This type
of monitoring would impact the program execution in ways
that would make the value of the test results very low [19].
However, the source code repositories of WeOS and the test
framework provide very detailed logs describing where code
changes are located in the software under test, and also in
the test framework. Two SourcePrioritizers parse these logs
for tags to increase the priority of tests associated with code
areas that have recent changes. Section IV-C3 contains an
example of such a log message.

2) Merging Priorities: The purpose of the PriorityMerger
is to derive a single final priority for each test case,
based on the values provided by the individual prioritizers.
SuiteBuilder uses a weighted average of the prioritizer val-
ues. In case a test lacks a value from a particular prioritizer,
that prioritizer is not included in the weighted average for
that test. This is similar to what was proposed by [3], [5],
[10].

The individual prioritizers use constants with numerical
values for their priorities: LOWEST, LOW, MEDIUM, HIGH
or HIGHEST, with numerical values 1, 3, 5, 7 and 10.

Table II shows an example of merging three priorities for
four test cases. Prioritizer A provides values for all four test
cases and assigns priorities with the numerical values 5, 3,
7 and 5 respectively. Prioritizer B only assigns priorities to
two of the test cases and Prioritizer C to three of them.

The final priority for each test case is the weighted average
of its individual priorities. T1, for example, is assigned
a priority by only one prioritizer, so the value from this
prioritizer is used. The test case T2 gets the final priority
9·3+2·1
9+2 = 2.6.

Table II
EXAMPLE TO ILLUSTRATE HOW THE PRIORITYMERGER WORKS.

T1 T2 T3 T4

Prioritizer A (weight 9) 5.0 3.0 7.0 5.0
Prioritizer B (weight 5) - - 5.0 7.0
Prioritizer C (weight 2) - 1.0 5.0 7.0

Final Priority 5.0 2.6 6.1 5.9

In order to get initial weights, we created scenarios where
the prioritizers competed over tests. For example “if a test
is not tested recently and has code changes, then it is more
important than a failing test”. This was a good start, but
led to frequent frustrations when expected tests were not
included in nightly testing. This led to many initial changes
in the weights of the prioritizers, until we reached the
consensus that, for us, the most important tests are the ones
that recently failed. Now that the weights have stabilized,
the FailPrioritizer is the prioritizer with the most impact.
An overview of the weights is presented in Table III.

Table III
RELATIVE WEIGHTS OF THE PRIORITIZERS.

Prioritizer Weight

FailPrioritizer 9.3
SourcePrioritizer (WeOS) 6.1
SourcePrioritizer (Test Framework) 6.1
RecentPrioritizer 4.1
TestPrioritizer 2.6
TagPrioritizer 2.2

3) Selecting the Final Suite: SuiteBuilder uses four main
parameters to select which test cases to include in the final
suite: (i) the raw test suite with test cases ordered by final
priority, (ii) knowledge of which test cases can be run on
which test systems, (iii) the expected execution time of
each test case, and (iv) the desired duration of the suite
in question.

The list of potential test cases is first filtered based on
the capabilities of the test system in question. Filters for
experimental tests and experimental functional areas, as well
as tests with known issues limit the number of test cases to
be considered. We have learned from experience that the
latter two types of tests sometimes cause the test framework
to enter undefined states from which it cannot recover. If
these tests are run first, this sometimes causes the remaining
test results to be lost. Therefore, suites containing these types
of tests are run in isolation, after the regular nightly testing.

Execution times of the test cases are estimated based on



prior execution times. When historic data on test duration is
not available, for example for new tests, a default duration of
3 minutes is used, as this is slightly higher than the average
of all test execution times. This avoids the risk of adding
too many test cases so that a suite generally will finish on
time.

The desired duration of the suite also needs to be pro-
vided. At Westermo, the desired duration of the suite in
question is typically a portion of the full night. Examples
of expected and actual durations are presented in Figure 3.
The duration of a test does not affect the prioritization, but
if slow tests have a high priority then the final suite will
contain fewer tests as the total duration of the suite was
determined a priori. Test cases are placed into the final suite
with a greedy algorithm in priority order, until the allocated
duration is reached. When more than one test case has the
same priority, alphabetical sorting is used as a tie breaker.

C. SuiteBuilder Tool Implementation

The entire SuiteBuilder solution is implemented in Python
as 15 modules with a total of a few thousand lines of code.
This section provides details of the tool, an accompanying
test result database and test suite library.

1) Test Result Database: Originally, the test framework
reported results from nightly testing in conventional log
and report files. In 2012, we started placing results into a
relational database with generous reading rights, to make
it easily accessible by staff and possible future tools. After
about 20 months, we had accumulated more than one million
test outcomes.

The Test Result Database allows us to rapidly answer
questions like: “When was a particular test case last suc-
cessfully run on a specific test system?”, “How many times
has a particular test case failed on a specific test system in
the last few days?”, “What is the long term pass/fail ratio
for a particular product version over time for a particular set
of functional areas?”, or “What is the average duration for
a particular test case?” The result database provides one of
the major sources of data for the prioritizers.

2) Tags: A central concept of SuiteBuilder is the use of
tags to group tests together in a form of key-value pairs,
where the key is a tag and the value is the set of tests
associated with this tag. A hypothetical example could be the
tag backup with the associated tests backup1, backup2 and
backup3. These tag to tests mappings are used by three of
the prioritizers (TagPrioritizer and both SourcePrioritizers),
two of which (both SourcePrioritizers) use them together
with source code history to adjust the priority of the tagged
tests. The set of tags was manually created by inspecting
internal documentation, names of source code files, and by
interviewing developers. A tag can have an assigned priority,
which is inherited by all its associated tests.

A test can be associated with several tags, so that its
priority can be governed by any one of the tags. The tags

are manually configured in a configuration file that contains
entries with a tag and a number of patterns to match test
paths:

- tag: poe
tests:
- src/test/poe/*
- src/test/*/*poe*

3) Prioritizers: All prioritizers share the BasePrioritizer
class as a common base class. It handles information on test
cases, and can be asked what the priority of a test case is.
The idea is to allow a prioritizer to increase the priority of
a test case if the priority is elevated from the perspective of
this prioritizer, for instance if the test recently failed. The
prioritizer may also decrease the priority if the test should
be suppressed, for example, if it has frequently been part of
nightly testing. It is also possible for a prioritizer to remain
silent if the test is unknown from the perspective of this
prioritizer.

This example illustrates how the base class can be ex-
tended into a simple prioritizer with only four Python
statements:

from priority import *

class MyLowPrioritizer(BasePrioritizer):
def get_prio(self, path, params):

return PRIO_LOW

The prioritizers with a static priority (TestPrioritizer and
TagPrioritizer) parse the required configuration files in order
to give their priorities. FailPrioritizer and RecentPrioritizer
instead query the Test Results Database for theirs. The
FailPrioritizer sets the test case priorities based on when
the test last failed. A test that failed within the past 3 days
is assigned a high value. Failures that occurred longer ago
are assigned correspondingly lower priorities, as shown in
Table IV. Test cases with few failures are given a priority
lower than the default in order to avoid spending time on
test cases that seem to consistently pass.

Table IV
PRIORITIES SET BY THE FAILPRIORITIZER.

Last fail Priority

1-3 days ago avg(highest, high)
4-5 days ago high
6-7 days ago avg(high, medium)
8-10 days ago medium
11-13 days ago avg(medium, low)
14-16 days ago low
17-20 days ago avg(low, lowest)
>20 days ago lowest

The RecentPrioritizer protects against two extreme situa-
tions: test cases that are in danger of never being executed
as their priority is pushed lower and lower, and test cases
that have been executed repeatedly without failing in recent
days. This prioritizer searches for test results and assigns



a priority based on how many days in the past a test last
passed. The lowest priority on a given test system is assigned
to test cases that have been selected three nights in a row
on this system.

The two SourcePrioritizers (one for changes in WeOS
code and a second for test framework changes) parse the
news feed from the source code repositories, extract details
on the names of files altered, and also parse the messages
of the change sets. A typical content of such a feed entry
is illustrated below. The entry is treated as plain-text, and
the search is a plain-text scan for an occurrence of the tag.
Because this entry contains the word poe, it will affect any
tests that are in the group with tag “poe”.

Date: October 11, 2016
Author: Per Erik Strandberg
Message: Fixed a bug in the POE wrapper.

Changed files:
+ src/lib/POE.py

This illustrates how the tag key is also used as a trigger
word. In this case, all tests associated with the tag poe can
expect a priority increase since we have detected changes
relevant to the poe tag. Like the Fail and RecentPrioritizers
the SourcePrioritizers set their priority based on how far
back in time they need to search. The highest priority is
given to a tag that has received changes within one day, as
shown in Table V.

Table V
PRIORITIES SET BY THE SOURCEPRIORITIZERS.

Last code change Priority
1 day ago avg(highest, high)
2-3 days ago high
4-7 days ago avg(high, medium)
8-14 days ago medium
>14 days ago (no priority assigned)

4) Suite Handler Library: Partial suites and test system
capabilities are input data to SuiteBuilder. These specify
what test cases each test system can run and may limit
the number of possible tests for each test system, based
on hardware requirements. This processing of configuration
files, and export to suite file is implemented in a Suite
Handler Library.

V. EXPERIMENTAL EVALUATION

Our experimental evaluation of SuiteBuilder examines the
extent to which the proposed method implemented by the
tool solves Westermo’s original regression testing problems.

A. Nightly testing does not finish on time

The first, and most problematic, issue addressed by
SuiteBuilder concerns the selection of test cases given that a
limited amount of time was allocated for nightly regression
testing. To address this problem, SuiteBuilder selects test

cases based on the prioritization algorithm. The expected
running time for an individual test case is based on the times
of previous runs of the case. A potential test suite is allocated
a certain amount of running time, and test cases are added to
the suite in order of priority as long as there is at least some
time left. When the suite is completed, its expected duration
is the sum of the expected times of all its test cases. Since
the expected time of the last test case added can be longer
than the suite’s remaining time, the final expected duration
of the suite is typically longer than its allocated duration.

In order to determine if the suites created by SuiteBuilder
finish on time, we compared the actual running time dura-
tions of 701 test suites created by the tool during one of
the months after SuiteBuilder began nightly usage to the
expected durations of those suites.

Figure 3 shows the expected and actual durations of the
701 suites. The expected durations are plotted as a blue line,
and the actual durations as red dots. The running time of
the great majority of suites was very close to their expected
time. For some suites, the actual time is significantly lower
than the expected time (red dots that are far below the blue
curve). These are typically suites for which no test cases
could be found (such as an experimental suite when there
are no experimental tests), suites that crashed, were aborted
or suites that had poor estimates, perhaps because they had
one of the above issues in the past.

We found that no suite took more than 120% of its ex-
pected duration. The largest underestimation in absolute time
between an expected and an actual time was 50 minutes. Of
the 701 investigated suites, 12 required between 105% and
120% of the expected duration, 433 required between 95%
and 105% of the expected duration, 211 required less than
95% of the expected duration, and 45 had no duration at all.
Suites in the last category were either empty or aborted at
the start.

This evaluation has given us positive feedback that most
test suites are now finishing close to their expected time and
therefore typically run to completion without having to be
aborted at start of business the following day.

B. Manual work and omitted tests

The second problem addressed by SuiteBuilder concerned
the need for substantial manual effort for preparing suites
for nightly testing, and the risk of removing and eventually
totally omitting certain tests in this process.

In order to investigate whether tests had been omitted
from the test suites by SuiteBuilder, we first collected all
the tests that had been part of the regular nightly testing
for nine months preceding and three months following
the introduction of SuiteBuilder. We then compared this
12-month set of tests against all the tests generated by
SuiteBuilder in the second month after its introduction.

By comparing the two sets of test cases, we can assess to
what extent tests are omitted by SuiteBuilder, as they often



Figure 3. Actual and expected durations of suites.

were when the manual process was used. In particular, if
many of the test cases in the 12-month set are missing from
the tests generated by SuiteBuilder in a single month, this
would indicate that SuiteBuilder’s selection process has not
solved the omitted test case problem. Conversely, if none or
very few test cases from the 12-month set are missing in the
SuiteBuilder set, this would indicate that SuiteBuilder does
not tend to systematically omit test cases over a long period
of time.

On initial examination, it appeared that almost 100 test
cases that were present in the 12-month set had been
omitted from the SuiteBuilder set. However, after careful
examination we discovered that in fact no test case had really
been systematically omitted by SuiteBuilder. The missing
test cases were explained as follows.

Forty-one test cases in the 12-month set that at first
seemed to be missing from the SuiteBuilder set turned
out to be actually identical to tests in the SuiteBuilder
set, except for inconsequential changes such as parameter
order. Nine test cases in the 12-month set had either been
deliberately renamed or removed. Eight tests were blocked
due to changes in WeOS. These tests had been modified
and reintroduced in the nightly suites after the investigated
period ended. Six test cases, or the features in WeOS they
covered, had become unstable. These tests had been moved
to the experimental suites for investigation.

Two test cases belonged to test scripts where unique
identifiers had accidentally been duplicated so that they were
not included in database queries. One test case was blocked
due to physical wear and tear; it rewrites a memory area
on a physical disk device that can only withstand a few
hundred rewrites, and the test should not have been included
in the nightly testing. Another test case had been blocked
due to special topology needs. It was later reintroduced.
One test case was missing due to manual labor prior to
the implementation of SuiteBuilder. It had been moved

around in the suite to investigate if the suite order was
significant for an infrequent and sporadic error to occur. In
this manual shuffling, it had accidentally been removed and
later forgotten.

Finally, because the period covered by the 12-month set
extended beyond the one month period of the SuiteBuilder
set, 28 new test cases that were created during that additional
time could not have been included in a regression suite by
SuiteBuilder because they didn’t exist yet.

Table VI summarizes these omitted tests.

Table VI
TESTS EXCLUDED BY SUITEBUILDER

Reason for exclusion Number of
excluded tests

SuiteBuilder tests identical up to parameter order 41
Tests were renamed or removed from regular testing 9
Blocked tests 8
Unstable features; tests moved to experimental suite 6
Non-executable tests due to duplicate identifiers 2
Test blocked due to potential physical equipment wear 1
Test blocked due to topology requirement 1
Test case missing because of incorrect manual removal 1
Tests introduced after Suitebuilder application period 28

TOTAL of excluded cases 97

The conclusion from this experiment is that during the
single month, SuiteBuilder selected all tests it should have
from the preceding nine months, and did not allow any test
to be systematically omitted for months at a time.

In order to determine if the need for manual work had
decreased, we relied on expert opinion by interviewing test
specialists who have spent a lot of time manually working
with the suites. Some relevant answers were: (i) “There is
still manual work, for example when introducing a new test
or when moving tests between suite types.” (ii) “Before
the implementation of SuiteBuilder, suites were manually
altered to allow more testing during the weekends. This
was not always done. Tests were easier to forget before
the implementation of SuiteBuilder. Another improvement
is that the length of the suites are changed dynamically
depending on how much time we have available.” (iii) “An
inconvenience that existed before SuiteBuilder was when
developers or testers came in to the office in the morning,
looked at partially complete test suites and wanted the rest of
the tests aborted, so that debugging could start on a particular
test system. Suites finish on time now and there is no need
to perform these steps.” (iv) “Yet another issue was when
developers came to work in the morning and tests they were
particularly interested in were still in queue.”

The feedback given by the test specialists show an obvious
reduction in the risky manual work, which is a positive result
for Westermo.



C. No test case priority

The third and final problem addressed by SuiteBuilder is
the lack of a meaningful prioritization of test cases within a
test suite. Consequently, one of the SuiteBuilder goals is to
have different priorities associated with test cases in order
to reflect their relative importance.

We first examine how rankings set by all prioritizers in
one suite on one test system for one night are merged to a
single test case priority, thus yielding a prioritized test suite.
Second, we evaluate the meaningfulness of the prioritization
by investigating how the final priority correlates with fault
detection.

The plot in Figure 4 illustrates the actual priorities on test
cases in the one night/one test system test suite mentioned
above. Tests in the suite now have a concept of priority,
and the test cases with the highest priorities are the ones we
determined to be most relevant in our environment.

Figure 4. Priority of test cases of a test suite of 203 test cases.

Figure 5. Normalized fail distributions before and after the introduction
of SuiteBuilder. The top row includes all test suites. In the bottom row,
short and broken suites have been removed from the data set.

In order to determine if SuiteBuilder had altered the
distribution of the failing tests, we gathered test results from
nearly four years of regular nightly testing, excluding any
experimental test suites. We compared the distribution of
failing tests in the 6758 suites that were run during the 23
months before the introduction of SuiteBuilder against the
distribution of failures in the 8930 suites run during the 23
months once we began using SuiteBuilder.

Our goal is to measure the percent of all failures that are
detected by tests relative to their positions in a suite. The
suites are typically not of the same length, so in order to
get the failure distribution of all suites, we scaled the index
of each failing test to a number between 0 and 1, so that
the normalized position can be expressed as pnorm = p

len ,
where p represents the test’s position in the suite and len
the number of tests in the suite.

Figure 5 shows the failure distributions of the pre- and
post-SuiteBuilder test cases. Each bar represents the failures
detected by 1/20 of all the test cases. The first bar is the
failures that are detected by the first 5% of test cases that
run in all suites over the relevant 23 month period.

Imagine that the execution period of each suite is divided
into 20 segments with equal numbers of test cases in each
segment (the segments don’t have to use equal time), and
consider the bars to be numbered from 1 to 20. Bar i
represents all of the tests from all suites that ran in segment
i of their suite. The height of the bar represents the percent
out of all failing tests over the entire 23 month period that
occurred in segment i.

These distributions are illustrated in plots 1 and 3 in
Figure 5. Before SuiteBuilder, the first third of the tests in
the suites contained fewer than a third of the failures. Once
SuiteBuilder was used, the first third contained half of the
failures.

Sometimes the nightly testing was prematurely aborted.
This could happen when WeOS was left in an unstable state
before nightly testing. This also might occur when the test
framework is in an unstable state, or that the test framework
had not compensated for recent changes in WeOS. The
effect is typically a “broken suite”, that is either aborted
prematurely, or cause all or many of the test cases in the
suite to fail. Since short suites with many failures would
result in failures all over the distribution once the position
is normalized, we suspected that these initial distributions
(plots 1 and 3 in Figure 5) might hide more meaningful
distributions.

Therefore, in order to determine the performance of
SuiteBuilder in terms of failing test distribution, we removed
“broken suites” from the data set used for this assessment.
This was done in a two step process. We first eliminated
suites containing fewer than 20 tests, and second, we
removed any of the remaining suites with a higher than
40% failure rate. This “cleaning” process removed a sizable
percent of the failures so that the cleaned suites contained



54% of the original failures in the pre-SuiteBuilder period,
and 39% of the original failures in the post-SuiteBuilder
period.

The failure distribution of the cleaned suites before
SuiteBuilder was introduced remained poor, with only about
27% of the failures in the first third of the suites. However,
after the introduction of SuiteBuilder, the cleaned suites
identify just above two thirds of the failures in the first third
of the suites. The cleaned distributions are illustrated in plots
2 and 4 in the bottom row of Figure 5.

Our conclusion is that SuiteBuilder has clearly improved
the failure distribution, leading to much earlier identification
of failures in a typical suite and therefore these failing
test cases are far more likely to be included in the nightly
regression test suite.

VI. DISCUSSION

As shown by the evaluation in the previous section,
SuiteBuilder has effectively addressed most of the problems
related to lack of time in nightly regression testing at
Westermo. The evaluation also shows the feasibility of an
automated nightly regression test selection process in an
industrial environment.

The key aspects and benefits of the SuiteBuilder project
are: (i) System Level Regression Testing: The Westermo test
framework runs testing on target device topologies. Tests are
run nightly to test for regressions. (ii) Automated Regression
Test Selection: SuiteBuilder is implemented as a system of
a few Python modules. It rapidly builds suites for many test
systems by using requirements for suites, a set of test prior-
ities, and properties of hundreds of existing automated tests.
The time required to build the suites is small compared to
the time needed to run the test cases. (iii) Automated Testing:
The outputs, and some of the inputs, of the SuiteBuilder are
suite files that are used by the test framework without human
intervention. (iv) Industrial Context: SuiteBuilder solves real
problems in an eco-system of build servers, test systems
with topologies of target devices, source code management
systems, a test result database, and human beings.

SuiteBuilder was placed in production at Westermo in the
late spring of 2014. Since then it has been used continuously
to build suites for nightly testing.

A number of significant changes have been made as we
gained experience: (i) We reconfigured the PriorityMerger
to increase the impact of the FailPrioritizer. (ii) Indices in
the database tables and other optimizations in the database
queries were introduced to speed up queries. (iii) The
SourcePrioritizer for the test framework was introduced.

The majority of the issues with SuiteBuilder have been
of the following types: (i) Unbalanced priority merging:
“Test X failed on test system Y last night - why was it
not tested tonight?”. This has been mitigated by altering the
balance of the prioritizers. Or (ii) Syntax Errors: If a test is
added in a suite file it is now more complicated to realize

if there are issues. This is because the suites are now built
by an automated system some time in the evening and not
manually as soon as tests are added. This has been mitigated
with thorough self tests of SuiteBuilder, as well as gated
commits that rejects code changes with syntax errors.

The building of suites is not time critical, as it can be
done some time before the nightly testing is to start. The
time needed to build a typical suite is less than 15 seconds,
and factors such as database caching can reduce this further.
This duration is low (seconds) in comparison to the length
of the suites (hours).

The architecture of the SuiteBuilder allows for reduction,
but also extensions. We believe that similar approaches, per-
haps as simple as a system of one prioritizer, may be useful
for many organizations. We would like to see more studies
on topics like: “How to best merge priorities for other types
of suites?”, “What other prioritizers could be useful?”, “Are
suite characteristics altered with different PriorityMergers?”,
“How does one best incorporate minimization?”, and “Is
this framework general enough to support plug-and-play of
prioritizers and flow-modules such as minimizers?”

VII. LIMITATIONS AND FUTURE RESEARCH

While the method detailed in this paper has shown
positive effects, and its evaluation can be seen as a first
indication of feasibility, there are several extensions that
could be considered to further improve the performance of
SuiteBuilder.

A. Other Possible Suite types

Internal discussions on possible usages of SuiteBuilder
has proposed that we could modify the configuration to
allow other types of suites, for example: Smoke Test Suite:
A short suite for the continuous integration framework to be
executed after a source code commit. Perhaps the approach
in [1] and the SourcePrioritizers are of particular interest?
Weekend Test Suite: Perhaps tests that are particularly slow
should be included only in the weekend suites. Release Test
Suite: Perhaps certain test cases should only be included
once per release cycle?

B. Other Possible Prioritizers

We speculate that other prioritizers could be of interest.
A LockPrioritizer could include certain tests in every suite.
A ReleasePrioritizer could focus on the new features in a
code branch.

Discussions of where in the source code to invest the
test effort are presented in for example [15], [16], where
the authors make significant use of an issue tracker. The
SuiteBuilder tool is trying to solve a related problem without
connection to an issue tracker, instead we use a tag heuristic
and SourcePrioritizers to focus test effort on certain parts
of the test suite. However, given an explicit issue tracker
connection, one could conceive of an IssuePrioritizer that



directly targets bug fixes. If an issue is resolved, or later
reopened, we want the associated tests to get an increased
priority.

In [3] the authors use what could correspond to an
AgePrioritizer. It is used to decrease the priority of old test
cases. This is an interesting concept, also supported by [6],
that seems to overlap with the SourcePrioritizers and the
FailPrioritizer. A test that rarely fails and that has not had
its source code altered for a long time could be considered
old, and have its priority decreased over time.

C. Minimization and Diversification

The SuiteBuilder does not include minimization, we
believe that a SuiteMinimizer could easily be added. We
investigated the number of outcomes from test classes, as
opposed to test cases, and found that some were over-tested.
The most over-tested class outnumbers most others by a
factor of 10, some by a factor of 100.

Over-testing is perfectly normal in many scenarios as we
want high-priority tests run more often. In our case the
reason was the ability of the test class to handle many
parameter combinations, and that it could be executed on
most test systems.

In addition, preliminary evidence suggests that there might
be some value in altering the order of the tests in the suites.
We discovered this when suites were no longer testing from
A to Z. The authors of [14] and [7] suggest that the concept
of diversification is a promising approach. We speculate that
diversification somehow overlaps with minimization and that
if one implements one concept, then you also get the other.

D. Other Approaches for Priority Merging

Using a weighted average in the PriorityMerger is an
intuitive and flexible way of merging the priorities. What
advantages and disadvantages come with this approach
compared to a mathematical optimization approach such as
the one investigated in [9], or approaches including a cost-
benefit ratio analysis such as the one investigated in [14]?

VIII. CONCLUSIONS

In this paper we describe an implementation and evalua-
tion of the SuiteBuilder tool that aims at solving problems
we encountered at Westermo with nightly regression testing.
These problems included: (i) Nightly testing did not finish on
time: SuiteBuilder addressed this problem adequately so that
time allotted for the nightly run, typically closely matched
the time needed to run the generated regression suite. This is
shown in Figure 3. Consequently, nightly testing generally
finishes prior to the start of business, and we no longer need
to manually interrupt testing. (ii) Manual work and omitted
tests: We have seen that the test circulation is now adequate.
Test cases no longer go for extended periods of time without
being included in the test suite. As a result, most of the
risky manual work has been removed. There are, however,

a few manual tasks that remain such as the introduction of
new test cases. We emphasize here that while SuiteBuilder
automatically generates regression test suites, it does this by
selecting from among existing test cases. It does not generate
new test cases. This must be done manually, (iii) No priority
for the test cases: We now have a priority distribution, as
illustrated in Figure 4. The output from SuiteBuilder is one
or more suite files with tests that are sorted in priority order
based on the criteria our team determined were most relevant
to our needs. The majority of the failing tests are now located
in the first third of the suites, as illustrated in Figure 5.

These problems were solved by implementing
SuiteBuilder, a framework of prioritizers that provide
priorities based on different characteristics of the test
cases. The individual priorities are merged into one overall
prioritized suite where tests are selected in order until
the allocated time has been consumed. In Figure 2 we
illustrate the overall flow through this process of nightly
testing. Steps could be added or removed depending on
the needs of the organization. We believe that SuiteBuilder
is an extendable framework that could be used by many
organizations in many different scenarios.

ACKNOWLEDGMENTS

The authors thank colleagues at Westermo R&D, for their
cooperation and assistance. Thanks in particular to Johan
Beijnoff for eliciting requirements, discussing the design and
evaluating the outcome of SuiteBuilder; and also to Raimo
Gester and Peter Johansson for encouragement.

This work was in part supported by the Swedish Research
Council through grant 621-2014-4925 and the Swedish
Knowledge Foundation through grants 20130258 and
20130085.

REFERENCES

[1] E. Dunn Ekelund and E. Engström, “Efficient regression
testing based on test history: An industrial evaluation” in Pro-
ceedings of the 2015 International Conference on Software
Maintenance and Evolution (ICSME’15), 2015.

[2] S. Elbaum, G. Rothermel, and J. Penix, “Techniques for
improving regression testing in continuous integration devel-
opment environments” in Proceedings of the 22nd Interna-
tional Symposium on Foundations of Software Engineering
(FSE’14), 2014.

[3] E. Engström, P. Runeson and A. Ljung, “Improving regres-
sion testing transparency and efficiency with history-based
prioritization–An industrial case study” in Proceedings of the
5th International Conference on Software Testing, Verification
and Validation (ICST’11), 2011.

[4] E. Engström, P. Runeson and M. Skoglund, “A systematic
review on regression test selection techniques” in Information
and Software Technology 52.1 (2010): 14–30.



[5] Y. Fazlalizadeh, A. Khalilian, M. Abdollahi Azgomi and S.
Parsa, “Prioritizing test cases for resource constraint environ-
ments using historical test case performance data” in Pro-
ceedings of the 2nd International Conference on Computer
Science and Information Technology (ICCSIT’09), 2009.

[6] R. Feldt, “Do system test cases grow old?” in Proceedings
of the 7th International Conference on Software Testing,
Verification, and Validation (ICST’14), 2014.

[7] H. Hemmati, A. Arcuri and L. Briand, “Achieving scalable
model-based testing through test case diversity” in ACM
Transactions on Software Engineering and Methodology 22.1
(2013): 6:1–6:42.

[8] H. Hemmati, Z. Fang and M. V. Mäntylä, “Prioritizing manual
test cases in traditional and rapid release environments” in
Proceedings of the 8th International Conference on Software
Testing, Verification and Validation (ICST’15), 2015.

[9] K. Herzig, M. Greiler, J. Czerwonka and B. Murphy, “The art
of testing less without sacrificing quality” in Proceedings of
the 37th International Conference on Software Engineering
(ICSE’15), 2015.

[10] A. Khalilian, M. Abdollahi Azgomi and Y. Fazlalizadeh, “An
improved method for test case prioritization by incorporating
historical test case data” in Science of Computer Program-
ming 78.1 (2012): 93–116.

[11] J-M. Kim and A. Porter, “A history-based test prioritization
technique for regression testing in resource constrained envi-
ronments” in Proceedings of the 34th International Confer-
ence on Software Engineering (ICSE’02), 2002.

[12] Q. Luo, F. Hariri, L. Eloussi and D. Marinov, “An empirical
analysis of flaky tests” in Proceedings of the 22nd Interna-
tional Symposium on Foundations of Software Engineering
(FSE’14), 2014.

[13] D. Marijan, “Multi-perspective regression test prioritization
for time-constrained environments” in Proceedings of the
2015 International Conference on Software Quality, Relia-
bility and Security (QRS’15), 2015.

[14] D. Mondal, H. Hemmati and S. Durocher, “Exploring test
suite diversification and code coverage in multi-objective
test case selection” in Proceedings of the 8th International
Conference on Software Testing, Verification and Validation
(ICST’15), 2015.

[15] T. J. Ostrand and E. J. Weyuker, “The distribution of faults
in a large industrial software system” in ACM SIGSOFT
Software Engineering Notes 27.4. (2002): 55–64.

[16] T. J. Ostrand, E. J. Weyuker and R. M. Bell, “Predicting
the location and number of faults in large software systems”
in IEEE Transactions on Software Engineering, 31.4 (2005):
340–355.

[17] H. Park, H. Ryu and J. Baik, “Historical value-based approach
for cost-cognizant test case prioritization to improve the
effectiveness of regression testing” in Proceedings of the 2nd
International Conference on Secure System Integration and
Reliability Improvement (SSIRI’08), 2008.

[18] D. Saff and M.D. Ernst, “Reducing wasted development
time via continuous testing” in Proceedings of the 24th
International Symposium on Software Reliability Engineering
(ISSRE’03), 2003.

[19] M. Tikir and J. Hollingsworth, “Efficient Instrumentation
for Code Coverage Testing”, in Proceedings of the 2002
International Symposium on Software Testing and Analysis
(ISSTA’02), 2002.

[20] K. Walcott, M. Soffa, G. Kapfhammer and R. Roos, “Time-
Aware Test Suite Prioritization”, in Proceedings of the 2006
International Symposium on Software Testing and Analysis
(ISSTA’16), 2006.

[21] S. Yoo and M. Harman, “Regression testing minimization,
selection and prioritization: a survey” in Software Testing,
Verification and Reliability 22.2 (2012): 67–120.

[22] S. Zhang, D. Jalali, J. Wuttke, K. Muşlu, W. Lam, M. D.
Ernst, and D. Notkin, “Empirically revisiting the test indepen-
dence assumption” in Proceedings of the 2014 International
Symposium on Software Testing and Analysis (ISSTA’14),
2014.


