
Licentiate Thesis Proposal

A resource-efficient event detection algebra

Jan Carlson
Department of Computer Science and Engineering

Mälardalen University, Sweden
jan.carlson@mdh.se

Abstract
Event detection is an important aspect of many application types, ranging from

active databases over digital libraries and stock market agents, to reactive embedded
systems. To allow systems to react to complex events patterns rather than to simple
primitive events, an event algebra can be used.

We have developed an event algebra with formal semantics and a number of useful
algebraic properties. An equivalent operational semantics has been developed, and
we have identified an important subset of event expressions for which the detection
mechanism can be implemented with constant memory.

1 Background and motivation

A wide range of applications, including active databases, traffic monitoring systems and
rule based embedded systems, are based on the detection of events that trigger an appro-
priate response from the system. Events can be simple, e.g., sampled directly from the
environment or occurring within the system, but it is often necessary to react to more so-
phisticated situations involving a number of simpler events that occur in accordance with
some pattern.

A standard way in which to allow systems to react to sophisticated situations is to
introduce complex events by means of an event algebra. These complex events can then
be used to trigger actions just like simple events. A benefit of this method is that the
mechanisms handling event detection are separated from the rest of the system logic.

In order to allow formal reasoning about the behaviour of the system, it is essential that
the algebra has a well-defined semantics. This is particularly important when the algebra
is used in safety-critical applications for which formal verification is required. In addition,
reasoning on a high level of abstraction is facilitated if the designer is provided a number
of formal properties that the algebra conforms to. Such properties include, for example,
laws of associativity and distributivity.

For embedded applications and systems with strict timeliness requirements, it is es-
sential that the event detection can be implemented with limited resources. For a given
complex event, defined in the algebra, one would like to know the maximum memory us-
age, or at least a safe approximation thereof, as well as the worst case execution time of the
detection mechanism for that event.

2 Event Algebras

Complex events are defined by expressions built from primitive events and the operators
of the event algebra. The task of the event detection mechanism is to compute from the
instances of primitive events, the instances of events defined by expressions.

1



In some applications the event detection is performed on a finite set of primitive event
instances that were collected earlier by monitoring the environment or the system. This
allows the detection mechanism to process the data in any order and possibly in several
passes, and typically do not impose hard resource constraints. Contrasting theseoff-line
methods, other applications require events to be detected continually during the entire sys-
tem lifetime. This implies that the detection mechanism have no knowledge of future in-
stances of primitive events, and typically due to resource restrictions, only limited infor-
mation about past events can be stored. This type of event detection can be classified as
on-line, and is the main focus of this work.

The following operations, or variants of them, are found in many event algebras. The
disjunctionof A andB represents that either ofA andB occurs, here denotedA ∨ B.
Conjunctionmeans that both events have occurred, possibly not simultaneously, and is
denotedA + B. Thenegation, denotedA − B, occurs when there is an occurrence ofA
during which there is no occurrence ofB. Finally, asequenceof A andB is an occurrence
of A followed by an occurrence ofB, and is denotedA;B.

2.1 Interval-based event detection

Single point detection means that every complex event, including those that require more
than one occurrence of simpler events in order to occur, is associated with a single time
point (the time of detection, i.e., the time of the last occurrence that was required). Galton
and Augusto [GA02] showed that this results in unintended semantics for some operation
compositions.

For example, using single point detection an instance of the eventB; (A;C) is detected
if A occurs first, and thenB followed by C. The reason is that these occurrences cause
a detection ofA;C which is associated with the occurrence time ofC. SinceB occurred
before this time point, an occurrence ofB; (A;C) is detected. Figure 1 shows this situation,
together with the intuitively correct detection ofA; (B;C). In this diagram, time flows
from left to right, each row showing the detected instances of the corresponding expression.

This problem can be solved by associating the occurrence of a complex event with the
occurrence interval, i.e., the interval in which all required simpler events occurred, rather
than the time of detection. In this setting, the sequenceA;B can be defined to occur only if
the intervals ofA andB are non-overlapping. In our example, no occurrence ofB; (A;C)
is detected, sinceB occurs within the interval associated with the occurrence ofA;C. The
result of the interval-based version is depicted in Figure 2.

A

B

C

A;C

B;C

A; (B;C)

B; (A;C)

Figure 1: Single point semantics

A

B

C

A;C

B;C

A; (B;C)

B; (A;C)

Figure 2: Interval semantics

2.2 Restricted detection

A very straightforward definition of the sequence operator is that the sequenceA;B should
occur wheneverA occurs and thenB occurs. Using this definition, three occurrences ofA

2



followed by two occurrences ofB would generate six occurrences of the sequence. While
this may be acceptable, or even desirable, in some applications, the memory requirements
(each occurrence ofA must be remembered forever) and the increasing number of simul-
taneous events means that it is unsuitable in many cases. Also, it is argued that many
applications are interested only in a subset of the instances that are generated by this defi-
nition.

One way to deal with this is to define the event algebra in two steps. The operations
are defined in an unrestricted, straightforward way like in our example above. Then a
restriction policy is defined, that acts like a filter so that only a subset of the occurrences
allowed by the unrestricted definition are detected. For example, a restriction policy could
state that only the latest occurrence ofA is allowed to create an occurrence ofA;B when
B occurs, and that once an instance ofA is used it can not be used again in the future.

The restriction policy is sometimes divided into two separate concepts. An instance
selection policy decides which of multiple possible instances to use when constructing a
complex instance, and the consumption policy states whether the same instance can be used
again the in future.

3 Related work

A lot of work, especially formal approaches, on event algebras has been done in the con-
text of active databases. In addition, work in knowledge representation and general event
notification is also of relevance.

3.1 Active databases

One area where event algebras are used is active databases which, unlike passive databases,
react automatically to situations that arise within or outside the database. The reactions are
specified by so calledevent-condition-action rules(ECA rules) stating that when a certain
event occurs, and the condition is satisfied, the given action should be performed. The
event part of a ECA rule can be expressed by an event algebra to allow the database to react
to complex events.

The event expression language uses in the object database Ode has the same expressive
power as regular expressions, which allows the detection mechanism to be implemented
by finite state automata [GJS93]. The definition is based on a global, totally ordered set
of primitive event occurrences, implying that primitive events can not occur simultane-
ously. To allow event occurrences to carry values and composite events that occur only
under given restrictions on the values of the constituent events, the automata mechanism is
extended with data structures that store the values of events that have occurred.

In the active database SAMOS, event detection is implemented using Petri nets [GD93,
GD94]. Event occurrences are associated with a number of parameter-value pairs, and it
can be specified that a complex event should occur only if the constituent event occurrences
have the same value for a given parameter. SAMOS does not allow simultaneous primitive
event occurrences.

Snoop [CM94, CKAK94] is an event specification language for active databases. It
defines four different restriction policies (called parameter contexts) that can be applied
to the operators of the algebra. The unrestricted context is defined formally, but for the
restriction policies only informal descriptions are given. The detection mechanism is based
on trees corresponding to the event expressions, where primitive event occurrences are
inserted at the leaves and propagate upwards in the tree as they cause more complex events
to occur.

None of the algebras described above provide algebraic properties for their respective
operators, and little is said about the memory and time complexity associated with the
detection of complex events.

3



A formalized schema for this type of event detection, including a definition of the op-
erations and restriction policies of Snoop using this schema, has been defined by Mellin
and Andler [MA02]. The operators have definitions parameterised on restriction policies,
which facilitates formal reasoning about the operators with different restriction policies
applied, without requiring explicit definitions for each operator- restriction combination.
They propose, as future work, to extend the operators with temporal constraints, which
would allow an investigation of the temporal complexity of the detection algorithm.

Zimmer and Unland present a formal restriction framework in which the event algebras
of Snoop, SAMOS, Ode and a few other systems are compared [ZU99]. They also highlight
a number of ambiguities and inconsistencies of the various approaches.

Liu et al. uses Real Time Logic to define a system where composite events are ex-
pressed as timing constraints and handled by general timing constraint monitoring tech-
niques [LMK98]. They present a mechanism for early detection of timing constraint viola-
tion, and show that it is possible to calculate a upper bound on the length of the structures
needed to detect an event. In general, the time complexity of detection is inO(n3), but for
a certain subset of expressions, aO(n) algorithm is possible [ML97a, ML97b].

The algebra presented by Baily and Mikulás [BM01], including four restriction poli-
cies, is defined formally in temporal logic. They identify a class of complex events for
which testing whether two complex events are equivalent is decidable, and show that test-
ing for implication is undecidable.

3.2 Event notification systems

Many systems and frameworks have been developed where clients register their interest in
certain types of events with a central server. The server monitors the environment and, upon
the detection of an event, notifies the concerned clients. As the clients typically perform
monitoring tasks, they are generally interested in particular event sequences rather than
single occurrences. Rather that having each application implement this separately, it is
beneficial to extend the server to allow registration of complex event descriptions. The sys-
tem presented by Hayton et al. [HBBM96] contains a simple event algebra, implemented
using a push down automata.

The event algebra developed by Hinze and Voisard is designed to suit event notifica-
tion service systems in general [HV02b, HV02a]. Their algebra contains time restricted
sequence and conjunction, which permits events likeA occurs less thant time units before
B to be expressed. Following the framework presented by Zimmer and Unland [ZU99],
the algebra is parameterised with respect to policies for event instance selection and con-
sumption.

Additional examples of event notification systems that allow composite events ex-
pressed by an event algebra are the READY system [GKP99] and the event specification
language developed by Zang and Unger [ZU96].

3.3 Knowledge representation

In the area of knowledge representation, similar techniques are used to reason about event
occurrences. Interval Calculus introduce formalised concepts for properties, actions and
events, where events are expressed in terms of conditions for their occurrence [AF94].
Event Calculus [KS86, Kow92] also deals with the occurrences of events, but, as in the
Interval Calculus, the motivation is slightly different from ours. Rather than detecting
complex events as they occur, the focus of Event Calculus is to express formally the fact
that some event has occurred, and to allow inferences to be made from it.

In the area of temporal data mining, event operators similar to those in event detection
are used. A crucial difference is that the task of event detection is to detect patterns that
match a given event description, while in data mining the data is analysed in search for
trends and patterns for which matching descriptions are to be derived [AO01].

4



4 Research description

We have developed an event algebra suitable for applications where the ability to reason
formally about the system is required, and where resources such as memory and time are
limited. The following outlines the proposed approach and the main contributions.

4.1 The approach

In order to allow formal reasoning we believe that a fully formal definition of the algebra
is essential. We use techniques such as interval-based semantics and restriction policies to
handle complexity issues while retaining an intuitive semantics for the operators.

A key factor is the development of a suitable restriction policy. It should be restrictive
enough to permit the formulation of memory consumption bounds, while at the same time
allowing a simple formal relation between the restricted semantics and the unrestricted
version. Since these two objectives are contradictory to some extent, careful investigation
is required to find an optimal balance.

Once the declarative semantics was completed, we developed an operational semantics
for the algebra in order to reason about resource requirements. The operational semantics
will be used to implement the algebra in some suitable language used for embedded system
design.

4.2 The contributions

The main contributions of the work can be summarised as follows.

The algebra The semantics of the event algebra, including the restriction policy, is de-
fined formally. This is a basic requirement in order to perform any formal reasoning about
the algebra or a system that uses utilises it.

Our restriction policy is carefully designed to retain many of the properties of opera-
tors that are intuitive. These include, for example, associativity of sequence, conjunction
and disjunction; commutativity of conjunction and disjunction; and distributative laws.
Additionally, we have investigated the relation between the restricted and the unrestricted
semantics. This facilitates formal reasoning since it allows, for example, properties to be
proved for the simple, unrestricted semantics and then translated into the restricted version
using this relation.

Operational semantics An imperative algorithm has been developed, and we will prove
that it is equivalent to the declarative semantics of the algebra. This algorithm is analysed
with respect to resource requirements, and criteria under which it can be guaranteed to
execute with bounded resources will be given.

Implementation The J2ME Personal Profile implementation illustrates how the algebra
can be used together with existing languages for embedded systems.

4.3 Published and planned papers

A paper describing the declarative semantics of the algebra, together with many algebraic
properties and an imperative algorithm, was presented at the first international workshop
on formal modeling and analysis of timed systems (FORMATS 2003) [CL03].

In a second paper, we intend to extend the algebra with time limited operators. It will
also contain correctness proofs for the algorithm, additional properites of the operators,
and a description of a class of expressions that can be detected by a constant memory
implementation.

5



Additionally, we plan to write a paper that focuses on the Java (or J2ME Personal
Profile) implementation. Whether this is done before the licentiate thesis is finished, or
afterwards, depends on the time it takes to finish the other activities.

5 Thesis outline

The proposed title of the thesis is”A resource-efficient event detection algebra”. This
section presents the planned table of contents.

1 Introduction

This section addresses the relevance of the work, and states the key objectives. Fur-
ther, it describes the approach by which the objectives have been investigated, and
summarises the main contributions of the work.

2 Composite event detection

This section introduces some basic techniques used in event algebras.

3 The event algebra

3.1 Declarative semantics

This section defines the algebra.

3.2 Algebraic properties

Properties that relate the restricted algebra to the unrestricted version are pre-
sented, as well as equality properties of expressions.

3.3 Operational semantics

This section presents an algorithm, and proves that it is equivalent to the declar-
ative semantics.

3.4 Resource requirements

The algorithm is analysed with respect to memory requirements and time, and a
class of event expressions is identified for which the algorithm requires constant
memory.

4 J2ME Personal Profile implementation

This section describes an implementation of the algebra forJ2ME Personal Profile,
a Java application environment for embedded devices.

5 Related work

The section gives an overview of related work, and investigates similarities and dif-
ferences to the proposed algebra.

6 Discussion and future work

The main contributions are summarised and the possible directions of future research
are outlined.

6 Time plan

This section describe the milestones of the licentiate thesis project, and when they are
planned. The declarative and operational semantics of the program, as well as a majority
of the property proofs, are completed [CL03]. The licentiate degree requirement of passed
courses of at least 30 credits is already fulfilled.

6



2003-11-14 Licentiate proposal presented
2003-11-21 Algorithm proven correct and a class of constant expressions defined
2003-12-04 Second paper finished
2004-01-23 J2ME implementation finished
2004-02-06 Experiments finished
2004-02-27 Third paper finished (might be postponed until after the thesis defense)
2004-03-19 Thesis draft ready for review
2004-04-30 Thesis finished and defended

7 Future work

The main weakness of the developed algebra is the memory requirements. The detection
can be performed with constant memory and time for a large subset of events expressions.
For expressions outside this set, it is often possible to derive memory bounds from in-
formation about the frequencies of primitive events. This idea should be formalised and
investigated further. Additional operators might be introduced to increase the expressive-
ness of the algebra. Possible extensions include simultaneous conjunction, periodic events,
etc.

In this work we have not paid much attention to the values associated with the primitive
occurrences. Values of primitive event occurrences are composed and propagated as values
of complex events. In some systems it might be desirable to filter the event streams with
respect to the values. Performing filtering on the primitive streams before they are handled
by the algebra is not always an option, for example if we want to detect occurrences ofA;B
such that the value of the two instances are the same. When filtering is performed on the
result of the proposed algebra, some of the properties do not hold after filtering. It might
be possible to define filtering options that can be performed on subexpressions within an
event expression, while still retaining the algebraic properties.

The event detection algorithm has been implemented in Java, and we would like to in-
corporate it in additional languages. The functional reactive language suite AFRP, includ-
ing the robot programming language FROB [PNH02], is based on time varying behaviours
and discrete events [WH00, NCP02]. We belive that an efficient implementation of the
event algebra in AFRP would facilitate development as well as formal reasoning about
AFRP programs.

Timber is an object-oriented reactive language with a purely functional core, designed
to target embedded systems in particular [CNK03]. It should be reasonably straightforward
to develope a Timber implementation of the algebra from the current, object-oriented, Java
implementation.

Another possibility is to combine the algebra with the synchronous language Esterel.
Esterel is built around a notion of discrete time intervals during which a number of events
can occur that should be reacted to [Ber99, Ber00]. Incorporating the event algebra so that
the Esterel program reacts to occurrences of complex events rather than primitive would
separate pure event detection from the rest of the application logic, which would hopefully
increase readability and provability of programs.

References

[AF94] J. F. Allen and G. Ferguson. Actions and events in interval temporal logic.
Journal of Logic and Computation, 4(5):531–579, October 1994.

[AO01] C. M. Antunes and A. L. Oliveira. Temporal data mining: An overview. In
KDD Workshop on Temporal Data Mining, pages 1–13, San Francisco, CA,
26 August 2001.

7



[Ber99] G. Berry.The Esterel-V5 Language Primer. CMA and Inria, Sophia-Antipolis,
France, v 5.21, release 2.0 edition, May 1999.

[Ber00] G. Berry. The foundations of esterel. In G. Plotkin, C. Stirling, and M. Tofte,
editors,Proof, Language, and Interaction: Essays in Honour of Robin Milner,
pages 425–454. MIT Press, 2000.

[BM01] J. Bailey and S. Mikuĺas. Expressiveness issues and decision problems for
active database event queries. InDatabase Theory - ICDT 2001, 8th Interna-
tional Conference, volume 1973 ofLecture Notes in Computer Science, pages
68–82, London, UK, 4–6 January 2001. Springer.

[CKAK94] S. Chakravarthy, V. Krishnaprasad, E. Anwar, and S.-K. Kim. Composite
events for active databases: Semantics, contexts and detection. In20th In-
ternational Conference on Very Large Data Bases, pages 606–617, Santiago,
Chile, 12–15 September 1994. Morgan Kaufmann Publishers.

[CL03] J. Carlson and B. Lisper. An interval-based algebra for restricted event detec-
tion. InProceedings of First International Workshop on Formal Modeling and
Analysis of Timed Systems (FORMATS 2003), Marseille, France, 6–7 Septem-
ber 2003.

[CM94] S. Chakravarthy and D. Mishra. Snoop: An expressive event specification lan-
guage for active databases.Data Knowledge Engineering, 14(1):1–26, 1994.

[CNK03] M. Carlsson, J. Nordlander, and D. Kieburtz. The semantic layers of Timber.
In Proceedings of the First Asian Symposium on Programming Languages and
Systems (APLAS’2003), Beijing, China, 26–29 November 2003. To appear.

[GA02] A. Galton and J. C. Augusto. Two approaches to event definition. InProc.
of Database and Expert Systems Applications 13th International Conference
(DEXA’02), volume 2453 ofLecture Notes in Computer Science, pages 547–
556, Aix-en-Provence, France, 2–6 September 2002. Springer-Verlag.

[GD93] S. Gatziu and K. R. Dittrich. Events in an active object-oriented database
system. InProc. 1st Intl. Workshop on Rules in Database Systems (RIDS),
Edinburgh, UK, September 1993. Springer-Verlag.

[GD94] S. Gatziu and K. R. Dittrich. Detecting composite events in active database
systems using petri nets. InResearch Issues in Data Engineering (RIDE ’94),
pages 2–9, Los Alamitos, Ca., USA, February 1994. IEEE Computer Society
Press.

[GJS93] N. Gehani, H. V. Jagadish, and O. Shmueli. COMPOSE: A system for com-
posite specification and detection. InAdvanced Database Systems, volume
759 ofLecture Notes in Computer Science. Springer, 1993.

[GKP99] R.E. Gruber, B. Krishnamurthy, and E. Panagos. The architecture of the
READY event notification service. InProceedings of the 19th IEEE Interna-
tional Conference on Distributed Computing Systems, Middleware Workshop,
Austin, TX, USA, May 1999.

[HBBM96] R. Hayton, J. Bacon, J. Bates, and K. Moody. Using events to build large
scale distributed applications. InProceedings of the ACM SIGOPS European
Workshop, 1996.

[HV02a] A. Hinze and A. Voisard. Composite events in notification services with ap-
plication to logistics support. Technical Report tr-B-02-10, Freie Universitaet
Berlin, 2002.

8



[HV02b] A. Hinze and A. Voisard. A parameterized algebra for event notification ser-
vices. InProceedings of the 9th International Symposium on Temporal Repre-
sentation and Reasoning (TIME 2002), Manchester, UK, July 2002. Springer-
Verlag.

[Kow92] R. Kowalski. Database updates in the event calculus.The Journal of Logic
Programming, 12:121, January 1992.

[KS86] R. A. Kowalski and M. J. Sergot. A logic-based calculus of events.New
Generation Computing, 4:67–95, 1986.

[LMK98] G. Liu, A. Mok, and P. Konana. A unified approach for specifying timing
constraints and composite events in active real-time database systems. In4th
IEEE Real-Time Technology and Applications Symposium (RTAS ’98), pages
199–209, Washington - Brussels - Tokyo, June 1998. IEEE.

[MA02] J. Mellin and S. F. Adler. A formalized schema for event composition. InProc.
8th Int. Conf on Real-Time Computing Systems and Applications (RTCSA
2002), pages 201–210, Tokyo, Japan, 18–20 March 2002.

[ML97a] A. Mok and G. Liu. Early detection of timing constraint violation at runtime.
In The 18th IEEE Real-Time Systems Symposium (RTSS ’97), pages 176–186,
Washington - Brussels - Tokyo, December 1997. IEEE.

[ML97b] A. Mok and G. Liu. Efficient run-time monitoring of timing constraints. In
Proceedings of the Third IEEE Real-Time Technology and Applications Sym-
posium (RTAS ’97), pages 252–262, Washington - Brussels - Tokyo, June
1997. IEEE.

[NCP02] H. Nilsson, A. Courtney, and J. Peterson. Functional reactive programming,
continued. InProceedings of the 2002 ACM SIGPLAN Haskell Workshop
(HASKELL-02), pages 51–64, New York, October 3 2002. ACM Press.

[PNH02] I. Pembeci, H. Nilsson, and G. Hager. Functional reactive robotics: an exer-
cise in principled integration of domain-specific languages. InProc. 4th ACM
SIGPLAN Conference on Principles and Practice of Declarative Program-
ming (PPDP-02), pages 168–179. ACM Press, October 6–8 2002.

[WH00] Z. Wan and P. Hudak. Functional reactive programming from first principles.
ACM SIGPLAN Notices, 35(5):242–252, May 2000.

[ZU96] R. Zhang and E. Unger. Event specification and detection. Technical Report
TR CS-96-8, Department of Computing and Information Sciences, Kansas
State University, June 1996.

[ZU99] D. Zimmer and R. Unland. On the semantics of complex events in active
database management systems. InProceedings of the 15th International Con-
ference on Data Engineering, pages 392–399. IEEE Computer Society Press,
1999.

9


