
Mälardalen University Dissertations
No. 7

Cache and Compiler Interaction

how to analyze, optimize and time cache behavior

Xavier Vera

2003

Department of Computer Science and Engineering
Mälardalen University

ii ·

Copyright c© Xavier Vera, 2003
ISSN 1651–4238
ISBN 91–88834–27–1
Printed by Arkitektkopia, Väster̊as, Sweden
Distribution: Mälardalen University Press

· iii

A DISSERTATION
PRESENTED TO THE FACULTY

OF MÄLARDALENS HÖGSKOLA
IN CANDIDACY FOR THE DEGREE

OF DOCTOR OF PHILOSOPHY

c© Copyright 2003 by XAVIER VERA

iv ·

· v

With every waking breath I breathe
I see what life has dealt to me

With every sadness I deny
I feel a chance inside me die

Give me a taste of something new
To touch, to hold, to pull me through
Send me a guiding light that shines
Across this darkened life of mine

Breathe some soul in me
Breathe your gift of love to me

Breathe your life to lay ’fore me
Breathe to make me breathe

For every man who built a home
A paper promise for his own

He fights against an open flow
Of lies and failures we all know

To those who have and who have not
How can you live with what you’ve got

Give me a touch of something sure
I could be happy ever more

Breathe some soul in me
Breathe your gift of love to me

Breathe your life to lay ’fore me
Breathe to make me breathe
Breathe your honesty to me

Breathe your innocence to me
Breathe your word and set me free

Breathe to make me breathe

This life prepares the strangest things
The dreams we dream of, what life brings

The highest highs can turn around
To sow love’s seeds on stony ground

Midge Ure – “breathe”

’cause time is what you make of it

vi ·

· vii

Per tu
Pels teus somriures

Perquè un dia la pluja ens acompanyarà

viii ·

Abstract

Caches have become increasingly important with the widening gap between main
memory and processor speeds. Small and fast cache memories are designed to bridge
this discrepancy. However, they are only effective when programs exhibit sufficient
data locality. In addition, caches are a source of unpredictability, resulting in pro-
grams sometimes behaving in a different way than expected.

Detailed information about the number of cache misses and their causes allows
us to predict cache behavior and to detect bottlenecks. Small modifications in the
source code may change memory patterns, thereby altering the cache behavior. Code
transformations which take the cache behavior into account might result in a high
cache performance improvement. However, cache memory behavior is very hard to
predict, thus making the task of optimizing and timing cache behavior very difficult.

This dissertation proposes and evaluates a new compiler framework that analyzes
and tunes cache behavior. The proposed framework is based on a new character-
ization of data reuse across multiple loop nests, which allows analyzing the cache
behavior of whole programs with regular computations. The framework uses an
accurate cost model that describes misses across different cache levels and considers
the effects of other hardware components such as branch predictors, which drives
the application of tiling and padding transformations. In order to select the best
parameter values, we combine the cost model with a genetic algorithm to compute
tile and pad factors that enhance the program performance.

Finally, our method explores the use of cache partitioning and dynamic cache
locking to provide worst-case performance estimates in a safe and tight way for mul-
titasking systems. We use cache partitioning, which divides the cache among tasks
to eliminate inter-task cache interferences. We combine static cache analysis and
cache locking mechanisms to ensure that all intra-task conflicts, and consequently,
memory access times, are exactly predictable.

The results of our experiments demonstrate the capability of our framework
to describe cache behavior at compile time. Extensive validation shows that our

x ·

accurate cost model is appropriate to achieve significant speedups compared to
state-of-the-art techniques. This dissertation also compares our timing approach
with a system with a non-partitioned but statically locked data cache. Our method
outperforms static cache locking for all analyzed task sets under various cache ar-
chitectures, demonstrating that our fully predictable scheme does not compromise
the performance of the transformed programs.

Populärvetenskaplig

Vem har inte drömt om att äga en Ferrari? Detta italienska märke har alltid varit
känt för glamour och prestanda. Dock är tillförlitligheten ett problem. Tänk dig,
för ett ögonblick, att du äger en luxuös F40. Hur l̊ang tid skulle det ta att köra tvärs
över USA? Mitt svar är: “det beror p̊a hur fort du kan f̊a fram reservdelar varje g̊ang
bilen g̊ar sönder”. Om vi har en l̊angsam lastbil som transporterar reservdelarna, s̊a
är det i själva verket lastbilens hastighet som bestämmer tiden. Ett sätt att f̊a fram
delarna snabbare är att ha en snabbare bil (säg, en BMW) som transporterar delar
fr̊an lastbilen. Problemet är att den har ett litet bagageutrymme. Denna lösning
är allts̊a effektiv bara om vi kan förutsäga vilka problem v̊ar Ferrari kommer att f̊a,
s̊a vi kan lasta rätt reservdelar fr̊an början. Om den snabba bilen kommer fram till
Ferrarin utan rätt reservdelar, s̊a måste b̊ada vänta p̊a den l̊angsamma lastbilen i
alla fall.

Problemet är att denna information är sv̊ar att f̊a. Vädret, resrutten, trafiken,...
Alla dessa faktorer kan p̊averka bilens tillförlitlighet och allts̊a vilka reservdelar vi
bör lägga i bagageutrymmet för att slippa vänta mer än nödvändigt p̊a lastbilen.
Men kan man förutsäga dessa faktorer kan man dels förutsäga bättre hur l̊ang tid
resan tar, och dels förkorta restiden genom att lasta rätt reservdelar.

Denna avhandling handlar dock inte om bilar, utan om datorer och hur man
kan f̊a dem att g̊a med förutsägbar, hög hastighet. Ferrarin motsvarar den snabba
processor (t.ex. en Pentium-4) som sitter i en dator idag. Den l̊angsamma lastbilen
svarar mot datorns primärminne: ett problem i dagens datorer är att minnena är
mycket l̊angsammare än processorn, gör man ingenting kommer allts̊a processorns
hastighet att begränsas av hur snabbt man f̊ar fram data fr̊an minnet. BMW:n
svarar mot datorns cacheminne: ett litet, snabbt minne där man sparar de data
som man tror att processorn kommer att använda härnäst. Kan processorn ta
sina data därifr̊an behöver den inte vänta p̊a de l̊angsamma vanliga minnet. Vad
avhandlingen handlar om är metoder för att analysera hur cacheminnet används i
en dator, för att därigenom kunna generera programkod som utnyttjar det bättre

xii ·

och därför f̊ar bättre prestanda. Resultaten kan tillämpas b̊ade i högpresterande
och i säkerhetskritiska datorsystem.

Acknowledgments

I’ll try to be quick. Sincere thanks once again to:
Björn Lisper, my main supervisor, who gets to see my eccentricities up close;
My parents, for buying that first computer when I was a kid; and very especially

for encouraging me to continue my studies in Computer Science;
My wonderful brother and sister, for making me feel at home even though I was

on the other side of the world;
My good friends, Toni Palau, Xavi Magŕı, MAT, Manel Fernández, notably

Jaume Abella (whom I’ve had the pleasure to work with during all these years), and
to Nerina Bermudo for accompanying me on our extraordinary trip;

A special mention to Antonio González, Jan Gustafsson, Josep Llosa and Jingling
Xue, who generously gave of their time and assisted me with part of the research of
this thesis;

And finally, once again, thanks to everyone at IDt/MDH. Thanks to my room-
mate, Jan Carlson, “let’s grumble” mate Markus Bohlin, and badminton (among
others)-dude Baran. And of course, as always, to Harriet for the countless hours
spent arranging all my trips and administrative problems (and they’re not few).

To anyone who knows a PhD student, never underestimate the power of your
encouragement.

All right! Now on with the show...

Sydney, August 2003
Barcelona, September 2003
Väster̊as, November 2003

xiv ·

Contents

Populärvetenskaplig x

Abstract viii

Acknowledgments xiii

Contents xiv

List of Figures xix

List of Tables xxiv

Publications xxvi

1 Introduction 1
1.1 Motivation . 3

1.1.1 Compiler Cache Optimizations 4
1.1.2 Timing Cache Behavior . 5

1.2 Problem Statement . 6
1.2.1 Static Analysis of Whole Programs 7
1.2.2 Considering Complex Architectures 7
1.2.3 Applying Compiler Techniques in Concert 8
1.2.4 Timing Memory Performance 8

1.3 Contributions . 9
1.4 Organization . 11

2 Data Cache Analysis 13
2.1 Memory Hierarchy . 15

2.1.1 Cache Memories . 17

xvi · CONTENTS

2.1.2 Cache Organization . 18

2.1.3 Replacement Policies . 20

2.1.4 Writing to the Cache . 20

2.1.5 Locking Caches . 21

2.2 Locality Analysis . 21

2.2.1 Iteration Space . 22

2.2.2 Reuse Vectors . 24

2.2.3 Uniformly Generated References 24

2.2.4 Classifying Reuse . 24

2.2.5 Computing the Reuse Vector Space 25

2.3 Cache Miss Equations (CMEs) . 27

2.3.1 Compulsory Equations . 27

2.3.2 Replacement Equations . 29

2.3.3 Solving CMEs . 30

3 Underlying Model 35

3.1 Architecture Model . 37

3.2 Program Model . 38

3.3 Compilation Model . 39

3.3.1 Loop Sinking . 39

3.3.2 Loop Nest Normalization . 40

3.4 Statistical Model . 40

3.4.1 Discrete Random Variables . 41

3.4.2 Modeling the Cache Behavior with Random Variables 42

3.4.3 Estimation of Parameters . 42

3.5 Framework Overview . 43

4 Experimental Framework 47

4.1 High-Performance Architectures . 49

4.1.1 Pentium-4 . 49

4.1.2 Alpha-21264 . 50

4.1.3 UltraSparc-III . 50

4.1.4 Itanium . 51

4.2 Embedded Processors . 52

4.3 Summary of Characteristics . 53

4.4 Applications . 53

4.5 Environment . 54

CONTENTS · xvii

5 Whole-Program Analysis 57
5.1 Abstract Inlining . 59

5.1.1 Transforming Array References 60
5.2 Iteration Vectors . 64
5.3 Reference Iteration Spaces . 65
5.4 Reuse Analysis . 66

5.4.1 Parametric Reuse Analysis . 67
5.4.2 Group Reuse Among Different RISs 68
5.4.3 Discussion . 70

5.5 Cache Behavior Modeling . 71
5.5.1 Forming Equations . 72
5.5.2 FindMisses and EstimateMisses 73

5.6 Locking Caches . 75
5.7 Multi-level Caches . 76
5.8 Validation . 77

5.8.1 Loop Kernels . 77
5.8.2 Whole Programs . 78

5.9 Related Work . 83
5.10 Chapter Summary . 85

6 Data Cache Optimization 87
6.1 Compiler Cache Transformations . 89

6.1.1 Tiling Overview . 90
6.1.2 Padding Overview . 91

6.2 Performance Modeling . 94
6.2.1 Tiling and Padding Model . 94
6.2.2 Branch Model . 96
6.2.3 Cost Model . 97
6.2.4 Compiler Strategy . 97
6.2.5 Choosing Tile and Pad Factors 98
6.2.6 How to Solve Non-Linear Integer Problems 99

6.3 Implementing a Genetic Algorithm 100
6.3.1 Genetic Algorithm Parameters 101

6.4 Example of a Genetic Algorithm . 105
6.4.1 Setting Up the GA . 105
6.4.2 Iterating the GA . 106

6.5 Experiments Setup . 107
6.5.1 Padding . 108

xviii · CONTENTS

6.5.2 Tiling . 108
6.6 Evaluation . 108

6.6.1 Padding . 108
6.6.2 Tiling . 113
6.6.3 Tiling and Padding . 119
6.6.4 Compile-Time Overhead . 121
6.6.5 Summary . 122

6.7 Related Work . 122
6.8 Chapter Summary . 123

7 Timing Cache Behavior 125
7.1 Motivation . 127
7.2 A WCET Tool Overview . 129

7.2.1 Estimating WCET . 129
7.2.2 Task Model and Schedulability Analysis 130
7.2.3 Extended Program Model . 130
7.2.4 Flow Analysis . 131
7.2.5 Merging Operator . 132
7.2.6 Merging Operator Placement 134

7.3 Predictable Cache Behavior . 135
7.4 Cache Partitioning (CreatePartitions) 137
7.5 Dynamic Cache Locking (LockAndLoad) 138

7.5.1 Path Merging (LockMergingPoints) 138
7.5.2 Data Cache Locking (LockDataDependent) 140
7.5.3 Optimizing Placement of Lock/Unlock Instructions (Optimize-

Lock) . 141
7.5.4 Selecting Data to Lock in the Cache (LoadData) 143
7.5.5 Putting It All Together . 146

7.6 Experimental Results . 148
7.6.1 Accuracy of FindMisses . 150
7.6.2 Performance of Data Cache Locking 152
7.6.3 WCMP . 154
7.6.4 Dynamic Locking: Summary 156
7.6.5 Performance of Cache Partitioning 157
7.6.6 Optimizations . 159
7.6.7 Worst-Case Performance: Schedulability 159
7.6.8 High-Performance Systems . 160
7.6.9 Cache Partitioning: Summary 161

CONTENTS · xix

7.7 Related Work . 161
7.8 Chapter Summary . 163

8 Related Work 165
8.1 Cache Analysis . 167
8.2 Compiler Optimizations . 169
8.3 Genetic Algorithms . 170
8.4 Path Information . 170

9 Conclusions 171
9.1 Thesis Contributions . 173
9.2 Future Work . 175

A Codes – Analysis 177

B Codes – Optimization 185

Bibliography 197

Credits 213

xx · CONTENTS

List of Figures

2.1 Memory hierarchy. 16
2.2 How data is stored in both main memory and cache. 17
2.3 Mapping of such a 2-way set-associative cache. 19
2.4 A running example: matrix multiplication algorithm. 22
2.5 Diagram representing the iteration space of Figure 2.4 when (N=3). . 23
2.6 Cold Miss Equations . 28
2.7 Cold Miss Bounds . 29
2.8 J set. 30
2.9 Studying iteration points through a reuse vector. 33

3.1 Loop sinking transformation. 39
3.2 General framework. 44

4.1 Instrumentation framework. 55

5.1 Abstract inlining of a subroutine call. 60
5.2 Propagation and renaming of actual parameters. All actuals but the

last are propagated. The last actuals in both calls are renamed to b1
and b2, respectively. After inlining, @b = @b1 = @b2. 63

5.3 Iteration vectors for statements. 64
5.4 Some commonly occurring RISs (in dotted areas). 66
5.5 Spatial reuse across array rows (L=4). 70
5.6 Derivation of group-reuse vectors. 71
5.7 An algorithm for estimating cache misses. 73
5.8 Algorithms to compute cache misses with different trade-offs between

accuracy and execution time. 74
5.9 Our approach for analyzing multi-level caches. 76
5.10 Predicted and simulated miss ratios for (C,L)=(8KB, 64B) with three

different k. 79

xxii · LIST OF FIGURES

5.11 Predicted and simulated miss ratios for (C,L)=(16KB, 32B) with three
different k. 80

5.12 Predicted and simulated miss ratios for (C,L)=(32KB, 32B) with three
different k. 81

5.13 Predicted and simulated miss ratios for #C × #L × #k = 96 cache
configurations. 82

6.1 Matrix multiply algorithm after applying tiling and padding. 90

6.2 Example of tiled iteration space. 92

6.3 Data layout: (a) before inter-variable padding, (b) after inter-variable
padding (c) before padding, (d) after padding, (e) 2-D array, (f) 2-D
array after intra-variable padding . 93

6.4 LoopCost algorithm. 97

6.5 Different implementations of a Genetic algorithm. 101

6.6 Example of mapping between representation values and tile factors. . 102

6.7 Schematic of simple crossover. 104

6.8 Miss ratio before and after inter-variable padding for a set of direct-
mapped caches. 110

6.9 Miss ratio for different tomcatv loop nests before and after inter-
and intra-variable padding. 112

6.10 L1 and L2 miss ratios before and after intra-padding for the Pentium-4.113

6.11 Speedups of the padded versions compared to the original programs.
∆ stands for the relative speedup of our method compared to Rivera
and Tseng’s. 114

6.12 Speedups of the padded versions compared to the original programs.
∆ stands for the relative speedup of our method compared to Rivera
and Tseng’s. 115

6.13 Miss ratio before and after tiling for a set of direct-mapped caches.
Cache line is 32B. 116

6.14 Impact of branch miss-prediction overhead for the Pentium-4 proces-
sor. Results are normalized to our estimated penalty, µMP = 20. . . . 117

6.15 Run-time information of the three different tiling algorithms for the
execution on the Pentium-4 platform. 117

6.16 Speedups for 5 different loop orders of the matmul kernel. 118

6.17 Speedup obtained by our approach compared with lrw and tss algo-
rithms. 119

6.18 Speedup of all approaches w.r.t. the original program. 120

LIST OF FIGURES · xxiii

7.1 Non-analyzable codes. 132
7.2 Merging operator for paths. 133
7.3 Control-flow graph for examples in Figure 7.1. Dashed boxes repre-

sent entry/exit nodes. 134
7.4 Basic merge situations. 135
7.5 An algorithm for obtaining a predictable set of tasks on a multitasking

system. 136
7.6 An algorithm for obtaining a predictable program. 138
7.7 Control-flow graphs with lock/unlock nodes for examples in Figure 7.3.

Black boxes represent the lock/unlock nodes with the lock/unlock in-
structions. 139

7.8 Non-analyzable codes with lock instructions. 140
7.9 Application of OptimizeLock on the code in Figure 7.8(c). 142
7.10 Algorithm for selective loading. 144
7.11 Algorithm for issuing load instructions for analyzable variables. . . . 145
7.12 Algorithm for issuing load instructions for non-analyzable variables. . 146
7.13 A code before and after applying LockDataDependent andOptimizeLock.147
7.14 Detailed steps for the LoadData execution for region 1. 148
7.15 Transformed code with lock/unlock and load instructions. 149
7.16 A framework for worst-case performance computation. 149
7.17 Overall overhead of the cache locking. S stands for microSPARC-IIep,

P for PowerPC 604e, M for MIPS R4000, I for IDT 79RC64574. . . . 154
7.18 Overhead of cache locking for the ndes program after further optimiz-

ing lock/unlock instructions placement. S stands for microSPARC-
IIep, P for PowerPC 604e, M for MIPS R4000, I for IDT 79RC64574. 155

7.19 Estimates of the WCMP. 156
7.20 Estimates of the WCMP for the NEC V850E/ME2 high-performance

microcontroller. 157
7.21 Cache partitioning impact: comparison of performance degradation

for a system with a partitioned cache and a system without a cache. . 158

A.1 mgrid k. 180
A.2 hydro k. 181
A.3 mmt. 182
A.4 mmi. 182
A.5 lwsi k. 183

B.1 tomcatv: loop number 1. 188

xxiv · LIST OF FIGURES

B.2 tomcatv: loop number 2. 189
B.3 tomcatv: loop number 3. 189
B.4 tomcatv: loop number 4. 190
B.5 tomcatv: loop number 5. 190
B.6 swim: loop number 1. 191
B.7 swim: loop number 2. 191
B.8 swim: loop number 3. 192
B.9 swim: loop number 4. 193
B.10 swim: loop number 5. 193
B.11 swim: loop number 6. 194
B.12 matmul . 194
B.13 t2d . 195
B.14 adi . 195
B.15 matvec . 196
B.16 vpenta . 196

List of Tables

2.1 Reuse vectors for references in Figure 2.4. R stands for READ, W for
WRITE. 26

3.1 Different front-ends used in this thesis. 45

4.1 High-performance processors used for the experimentation. C stands
for cache size in KB, L stands for cache line size in bytes, and k stands
for the degree of associativity. H/M is the hit/miss cycles for each
cache level. P is the misprediction penalty. 52

4.2 Microprocessors and microcontrollers used for the experimentation. C
stands for cache size in KB, L stands for cache line size in bytes, and
k stands for the degree of associativity. H/M is the hit/miss cycles
for each cache level. 52

4.3 Benchmarks used to evaluate our optimization framework. 53

4.4 Real-time benchmarks used. 54

5.1 Statistics for the actual parameters and calls in SPECfp95 and Perfect
benchmarks. T stands for the total number of calls, whereas A stands
for all analyzable calls. 61

5.2 Average absolute errors when compared against simulation for the
experiments from Figures 5.10, 5.11 and 5.12. 77

5.3 Execution times for (32KB,32B,2) illustrated in Figure 5.12. 78

5.4 Three whole programs. 78

5.5 Absolute errors and execution times compared against simulation for
(8KB, 64B) from Figure 5.13. 83

5.6 Comparison with Fraguela et al’s probabilistic method using mmt.
∆p denotes the relative error between the estimated and real miss
ratios for the probabilistic method and ∆E for our EstimateMisses. . 85

xxvi · LIST OF TABLES

6.1 Average miss ratios for tomcatv and swim for a set of direct-mapped
caches. Cache line is 32B. 109

6.2 Problem sizes for evaluating tiling. 113
6.3 Compile-time overhead when selecting tile and pad factors on a Pentium-

4 running at 1.6GHz. 121

7.1 Comparison of performance between an unlocked cache and a locked
cache loaded with the most frequently accessed lines for programs
in Table 4.4. Increase (Degradation) represents the average increase
in miss ratios (cycles) of “Locked+Load” over “Unlocked” across all
cache architectures. 128

7.2 Task Sets used. 150
7.3 Dynamic results for data caching. S stands for microSPARC-IIep, P

for PowerPC 604e, M for MIPS R4000, I for IDT 79RC64574. 151
7.4 Memory cost in cycles for the lock & load algorithm. S stands for

microSPARC-IIep, P for PowerPC 604e, M for MIPS R4000, I for
IDT 79RC64574. (∆U=loss of performance without loading the cache,
∆L=loss of performance when loading the cache). 153

7.5 Performance of static cache locking and our cache analysis. 160
7.6 Performance of static cache locking and our cache analysis for a high-

performance system. 160

Publications

Papers Included in the Thesis

The following is a list of all publications subject to peer review that are part of this
thesis.

Cache Analysis

• “Let’s Study Whole-Program Cache Behaviour Analytically”, Xavier Vera,
Jingling Xue. Proceedings of 8th International Symposium on High-Performance
Computer Architecture (HPCA-8).

• “Efficient and Accurate Analytical Modeling of Whole-Program Data Cache
Behavior”, Jingling Xue, Xavier Vera. To Appear in IEEE Transactions on
Computers.

• “Efficient Compile-Time Analysis of Cache Behaviour for Programs with IF
Statements”, Xavier Vera, Jingling Xue. Proceedings of International Confer-
ence on Algorithms and Architectures for Parallel Processing (ICAAPP02).

Cache Optimization

• “Optimizing Program Locality Through CMEs and GAs”, Xavier Vera, Jaume
Abella, Antonio González, Josep Llosa. Proceedings of 12th International Con-
ference on Parallel Architectures and Compilation Techniques (PACT03).

• “Near-Optimal Padding for Removing Conflict Misses”, Xavier Vera, Anto-
nio González, Josep Llosa. Proceedings of 15th International Workshop on
Languages and Compilers for Parallel Computing (LCPC02).

• “Near-Optimal Tiling by means of Cache Miss Equations and Genetic Algo-
rithms”, Jaume Abella, Antonio González, Josep Llosa, Xavier Vera. Pro-
ceedings of 31st International Conference on Parallel Processing Workshops
(ICPP02).

xxviii · Publications

Cache Timing

• “Data Caches in Multitasking Real-Time Systems”, Xavier Vera, Björn Lisper,
Jingling Xue. Proceedings of 24th International Real-Time Systems Sympo-
sium (RTSS03).

• “Data Cache Locking for Higher Program Predictability”, Xavier Vera, Björn
Lisper, Jingling Xue. Proceedings of International Conference on Measurement
and Modeling of Computer Systems (SIGMETRICS03).

Published Papers not Included in the Thesis

The following is a list of publications subject to peer review that are not part of
this thesis and which are related to this dissertation.

• “A Fast and Accurate Approach to Analyze Cache Memory Behavior”, Xavier
Vera, Josep Llosa, Antonio González, Nerina Bermudo. Proceedings of 6th
International Euro-Par Conference (EuroPar 2000).

• “An Efficient Solver for Cache Miss Equations”, Nerina Bermudo, Xavier Vera,
Antonio González, Josep Llosa. Proceedings of 1st IEEE International Sym-
posium on Performance Analysis of Software and Systems (ISPASS00).

• “A Fast and Accurate Framework to Analyze and Optimize Cache Memory
Behavior”, Xavier Vera, Nerina Bermudo, Josep Llosa, Antonio González. To
Appear in ACM Transactions on Programming Languages and Systems.

• “Code Tiling for Improving the Cache Performance of PDE Solvers”, Qin-
guang Huang, Jingling Xue, Xavier Vera. Proceedings of 32nd International
Conference on Parallel Processing (ICPP03).

1

Introduction

CHAPTER 1

INTRODUCTION

With ever-increasing clock rates and the use of new architectural features, the speed
of processors increases dramatically every year. However, memory speeds have
lagged behind, thus increasing memory latency [68]. This wide performance gap
affects all computer systems, and is a key obstacle to achieve high processor utiliza-
tion due to memory stalls. The basic solution that almost all systems rely on is the
use of cache memories.

Memory is organized hierarchically in such a way that the lower levels are smaller
and faster. In order to fully exploit the memory hierarchy, one has to ensure that
most of the memory references are handled by lowest levels of cache. Programmers
spend a significant amount of time improving locality, which is tedious and error
prone. Compilers apply useful loop transformations and data layout transformations
to take better advantage of the memory hierarchy. In all cases, a fast and accurate
assessment of a program’s cache behavior is needed at compile time to make an
appropriate choice of transformation parameters.

Unfortunately, cache memory behavior is hard to predict. That makes it very
difficult to statically analyze the interaction between a program’s referencing pattern
and the memory subsystem. This thesis describes a static approach to characterizing
whole programs’ cache memory behavior. This framework is used to implement
efficient compiler transformations and to time memory performance. The rest of
this chapter provides a detailed motivation for this work and introduces the goals
that have been achieved. Finally, we list the contributions of this work and present
a road map for the remainder of the thesis.

1.1 Motivation

Data caches are widely used to bridge the increasing gap between processor and
main memory speeds. The effectiveness of a cache memory depends not only on the
hardware structure, but also on the code generated by the compiler.

4 · Chapter 1. Introduction

Various hardware approaches have been proposed for increasing the effectiveness
of the memory hierarchy. Some of them try to hide the latency, such as multithread-
ing [94] or dynamic instruction scheduling. Some other hardware techniques have
been proposed to reduce conflict misses, such as the victim cache [79] or pseudo-
random placement functions [74, 95, 146, 150, 151].

Prefetching data ahead of use has the potential to tolerate the growing processor-
memory performance gap by overlapping long latency memory accesses with useful
computation. It can be done either by hardware [10, 30] or software means [21,
120]. Sophisticated software prefetching techniques have been automated for scien-
tific codes that access dense arrays in loop nests [120]. A similar level of success
has been shown for general-purpose programs by means of a dynamic prefetching
scheme [31, 32]. All these methods have in common that they increase the amount
of memory traffic by fetching more data than needed, which may cause contention
in the memory system.

On the other end, software techniques try to improve locality of programs,
thereby reducing the number of cache misses. Thus, they do not increase the
memory bandwidth requirement. Compilers increase locality either by changing
data access pattern or data layout. They apply useful loop transformations such as
tiling [24, 35, 93, 168], loop interchange [50, 113, 168, 170], loop fission/fusion [113],
and data layout transformations [28, 80, 129, 131, 142].

When using caches in hard real-time systems there is an unacceptable possibility
that a high cache miss penalty combined with a high miss ratio might cause a
missed deadline, jeopardizing the safety of the controlled system. Besides, caches
also increase the variation in execution time, causing jitter. Thus, many safety-
critical systems either do not have caches or disable them. Nevertheless, a system
with disabled caches will waste a lot of resources; the CPU will be underutilized, and
also the power consumption will be larger since memory accesses that fall into the
cache consume less power than accesses to main memory. Thus, bounding memory
performance tightly in hard real-time systems with caches is important to use the
system resources well.

1.1.1 Compiler Cache Optimizations

In order to tune the code so that it takes plenty advantage of cache memories, an
accurate assessment of the number of misses and their causes is required. Simulators
are used for describing memory behavior accurately. However, they are very slow
and do not provide too much insight into the causes of the misses. Thus, current
approaches are based on simple models (heuristics) for estimating locality [25, 35, 93,

1.1. Motivation · 5

129, 131]. However, modern architectures have very complex internal organization,
with different levels of cache, branch predictors, etc. Such models provide very
rough performance estimates, and in practice, are too simplistic to statically select
the best optimizations.

In this thesis we tackle the problem of improving cache behavior by means of
tiling and padding. Tiling has been shown to be useful for many algorithms in linear
algebra. By restructuring the loop and changing the order in which memory refer-
ences are executed, it reuses data in the faster levels of the hierarchy; thus it reduces
the average latency. Nevertheless, finding the optimal tile sizes is a very complex
task. The solution space is very large and non-uniform, and exploring all possible
solutions is infeasible. Furthermore, there is no simple model that can be used to
find a closed-form solution and the non-uniformity makes heuristics development
very hard. Padding has a significant potential to remove conflict misses. In fact, it
can remove most conflict misses by changing the addresses of conflicting data, and
some compulsory misses by aligning data with cache lines. However, choosing the
optimal data layout is an NP-complete problem [123].

1.1.2 Timing Cache Behavior

Hard real-time systems are those where a failure to meet a deadline can be fatal.
To guarantee their behavior, the worst case behavior has to be analyzed. It will be
used to ensure timely responses from tasks and as input to scheduling algorithms.

That implies that it is necessary to know the execution time for the tasks in a
real-time system. The analysis from a high-level point of view is concerned with the
possible paths through the program. Low-level analysis determines the effect on the
program timing of machine-dependent factors, such like caches. While control flow
can be modeled precisely, hardware (caches, branch predictors, etc.) can give rise
to actual unpredictability. Therefore, real-time systems have to be analyzed as a
whole, where software and hardware play their roles.

In order to get an accurate worst-case execution time (WCET), a tight worst-
case memory performance (WCMP) is needed. Current WCET platforms are applied
to rather simple architectures (they usually do not consider data caches) and make
simplifying assumptions such that the tasks are not preempted. In order to consider
the costs of task preemption, some studies incorporate into the schedulability anal-
ysis the costs of manipulating queues, processing interrupts and performing task
switching [15, 16, 76, 82].

However, cache behavior is very hard to predict, which leads to an overestimation
of the WCMP, and thus for the WCET as well. For this reason, many safety-critical

6 · Chapter 1. Introduction

systems do not use caches since it is very hard to prove that the system is reliable
under all circumstances.

In this thesis, our goal is to guarantee an exact prediction of hits or misses for
all memory accesses. In modern processors, it may happen that a cache hit is more
expensive than a cache miss [105]. If a memory access is not classified definitely
as a hit or miss, a subsequent calculation pass in a WCET analysis would have to
consider both situations to detect the worst-case path.

1.2 Problem Statement

There can be a wide difference in performance between programs that are designed
to exploit the cache memory and those that are not. Data cache behavior is very
difficult to analyze both efficiently and accurately. Moreover, due to the non-linear
mapping between main memory and cache sets, data cache behavior may fluctuate
due to variations in problem sizes and base addresses [93].

Recent studies [114] highlight the fact that most misses are inter-nest, whereas
most reuse is intra-nest. This is especially significant for numerical codes. Thus, a
model that gives a quantitative and qualitative measurement of cache misses for the
whole program is required.

Previous works for analyzing cache memory behavior are based either on simula-
tion or simple heuristics. Trace-driven simulation [148] and performance counters [6]
can obtain accurately a broad range of information for a program. However, sim-
ulation is very time-consuming and may need a lot of space to store traces. The
latter is restricted to measurements of existing caches. In addition, neither ap-
proach offers insight into the causes of the misses. On the other hand, analytical
methods [29, 48, 52] are limited mainly to individual perfect nests.

We introduce an accurate model for statically predicting the cache behavior of
whole programs. In particular, we use our model to address the following problems:

• How to characterize precisely the cache behavior for whole programs with
regular computations?

• How to consider complex architectures, with multi-level caches and branch
predictors?

• How to select the best transformation parameters to enhance performance
applying different optimization techniques in concert?

• How to use cache behavior to time memory performance in a safe way for
systems that allow preemption?

1.2. Problem Statement · 7

We now discuss these problems by comparing our solutions to some existing
work.

1.2.1 Static Analysis of Whole Programs

There has been extensive research on describing cache memory behavior stati-
cally [29, 48, 52, 141, 168]. Analytical methods use mathematical formulas to provide
a characterization of a program’s cache behavior so that it is not only possible to
obtain the number of cache misses but also to reason about the causes of such misses
from these formulas. The ultimate goal is to develop an analytical method that can
provide accurate assessments of when and why cache misses occur using a reasonable
amount of computational resources (e.g., CPU time, memory and disk usage).

Porterfield [124] introduces the concept of overflow iteration for predicting the
miss ratio for a fully set-associative LRU cache. Ferrante et al. [47] provide closed-
form formulas to estimate the capacity misses of a loop nest. Temam et al. [141]
also consider conflict misses but for a subset of array references. Wolf and Lam [168]
propose to use vectors to describe data reuse for uniformly generated references in a
perfect loop nest. They also use reuse vectors to derive an estimate of cache misses
to guide their data locality algorithm. Gannon et al [50] and Wolfe [171] discuss the
use of reference windows for predicting cache misses.

Ghosh et al [52] present a framework which is targeted at isolated perfect loop
nests. They make use of the reuse vectors among uniformly generated references in
the same nest. Fraguela et al [48] rely on a probabilistic analytical method to provide
a fast estimation of cache misses. While allowing multiple nests, they exploit only
the reuse between references contained in the same nest. Chatterjee et al [29] present
an ambitious method for exactly modeling the cache behavior of loop nests. They
can formulate Presburger formulas for a looping structure consisting of imperfect
nests, IF statements, references with affine accesses and non-linear data layouts.
However, due to the complexity of their method only small kernels can be analyzed.

The primary drawback of all these methods is that they only apply to small
parts of the codes, and hence we need a tool that characterizes cache behavior for
whole programs. On the other hand, they usually fail to describe accurately conflict
misses, which shows the need for a more precise description of cache behavior.

1.2.2 Considering Complex Architectures

All modern compiler techniques that are used to improve cache behavior are based
on simple models that usually only consider one level of cache [25, 35, 93, 129, 131].

8 · Chapter 1. Introduction

Moreover, current static analyses [29, 48, 52, 141, 168] only estimate locality for
the first level of cache. However, modern architectures have very complex internal
organization. The increasing performance mismatch between main memory and pro-
cessor speeds requires more levels of cache. Thus, we need a model that characterizes
memory behavior not only for the first level of cache, but for any hierarchy.

On the other hand, obtaining cache miss ratios is not sufficient for estimating
the cache performance on current machines since they include several techniques
such as non-blocking caches, out-of-order execution and speculation for tolerating
the latency of cache misses. Hence, a performance model that goes beyond cache
misses and opens the possibility to include more architectural features is needed.

1.2.3 Applying Compiler Techniques in Concert

Caches improve the speed of programs by reducing the number of accesses to the
slow upper levels of the memory hierarchy. Most of current compilers apply a set
of transformations in sequence. However, selecting an optimal sequence of transfor-
mations is very difficult, and few results have been published [53, 113, 166]. These
methods are based on heuristics and iterative methods, which do not solve the prob-
lem of optimality. Hence, we need an approach that tries to apply all optimizations
at the same time.

1.2.4 Timing Memory Performance

The computation of WCET in the presence of instruction caches has progressed in
such a way that it is now possible to obtain an accurate estimate of the WCET for
non-preemptive systems [5, 7, 64]. These results can be generalized to preemptive
systems [12, 17, 18, 22, 88, 97, 121, 125]. However, there has not been much progress
with the presence of data caches. Instructions such as loads and stores may access
multiple memory locations (such as those that implement array or pointer accesses),
which makes the attempt to classify memory accesses as hits or misses very hard.

Current approaches [5, 45, 87, 102] provide an estimation of WCET by con-
sidering data caching where only memory references which are scalar variables are
considered. Thus, they fail to study real codes with dynamic references (i.e., arrays
and pointers). White et al [162] propose a method for direct-mapped caches based
on static simulation. They categorize static memory accesses into (i) first miss, (ii)
first hit, (iii) always miss and (iv) always hit. Array accesses whose addresses can
be computed at compile-time are analyzed, but they fail to describe conflicts which
are always classified as misses.

1.3. Contributions · 9

Hence, there is a need for a tool that computes the WCET in the presence of
data caches for real programs.

1.3 Contributions

An accurate information of the cache memory behavior is essential to both optimize
and time memory behavior. However, this is a very difficult task. This thesis
contributes an analytical method which describes the cache misses of whole programs
with regular computations. This analysis is the first step required by any compiler
transformation or WCET analysis.

Our cache analysis is used to implement compiler cache optimizations in concert.
We show how tiling and padding can be implemented at the same time, which avoids
the problem of selecting the optimal sequence of transformations. This thesis also
presents how the worst-case memory performance can be computed in the presence
of data caches at compile time. The static analysis is used for those regions that
are predictable. We combine it with cache partitioning and cache locking to avoid
unpredictability caused by inter- and intra-task misses that are data-dependent.

The main contributions of this thesis are:

Analysis Framework We present an analytical method which builds on the top
of the Cache Miss Equations [52].

We first generalize the concept of reuse vectors [168] to quantify reuse among
references contained in multiple nests [160]. This simple characterization of
reuse allows setting up a set of equalities and inequalities that describe the
cache behavior of whole programs with regular computations, which may con-
sist of subroutines, call statements, if statements and arbitrarily nested loops.
We solve the equations by means of sampling techniques [155, 159], where the
level of accuracy is decided by the user.

This provides a framework that can be integrated in any static tool, like com-
piler optimizations or WCET analysis tools. To the best of our knowledge,
this is the first analytical method with demonstrated capability for analyzing
whole programs, efficiently and with a high degree of accuracy.

Memory Hierarchy Behavior Our model applies to a wide range of memory
hierarchies. We show how to describe the behavior of multi-level caches, par-
titioned caches and caches with locking features.

Data Locality Optimizations We detail an approach that can be used to drive
program transformations oriented to enhance data locality. The centerpiece

10 · Chapter 1. Introduction

of the proposed method is an accurate cost model combined with a genetic
algorithm [154].

In particular, we improve the order of memory accesses via tiling [1], whereas
conflict misses that tiling cannot eliminate are removed via padding [158]. Our
approach selects appropiate tile and pad factors at the same time. The cost
model considers different levels of the memory hierarchy and the performance
cost of the miss-predicted branches. To the best of our knowledge, our ap-
proach is the first one that considers applying more than one transformation
at the same time. In addition, it tries to optimize the overall performance
rather than only consider the first level of cache.

Time Cache Behavior This thesis presents a compiler algorithm to estimate the
worst-case memory performance (WCMP) for multitasking systems in the pres-
ence of data caches [157]. We use cache partitioning to eliminate inter-task con-
flicts, thus we can analyze each task in isolation. Tasks now use a smaller cache.
Hence, we apply compiler cache optimizations such as tiling and padding to
reduce the number of misses.

We have developed a compile-time algorithm that identifies those regions of
code where we cannot exactly determine the memory accesses. In those situa-
tions, the cache is locked so we do not jeopardize the cache analysis [156]. We
use a locality analysis based on Wolf and Lam’s reuse vectors [168] to select
the data to be loaded. Since the state of the cache is known when leaving the
region, we can apply our static analyzer [160] for the next regions of code, thus
having both predictability and good performance. To the best of our knowl-
edge, this is the first framework that obtains an exact WCMP for multitasking
systems.

Implementation Our system consists of components on normalizing loop nests, in-
lining calls (abstractly), generating reuse vectors, sampling memory accesses
and forming and solving the equations for obtaining cache misses for multi-level
and locking caches. It also contains a module that inserts lock/unlock/load
instructions automatically in order to have predictable codes without compro-
mising performance. We have also implemented a genetic algorithm in order
to explore the solution space for optimizing cache behavior.

Validation and Experimental Results We have validated our analysis method
against cache simulation using programs from SPECfp95, Perfect Suite, Liv-
ermore kernels, Linpack and Lapack.

1.4. Organization · 11

In order to show our ability to improve programs’ performance, we report
results for a set of modern processors that represent current architectural
paradigms. We have chosen the Pentium-4 [23] (CISC), Alpha-21264 [86] and
UltraSparcIII [140] (RISC), and Itanium [135] (EPIC).

Finally, in order to show to what extent our method can estimate the WCMP, we
present results for a collection of task sets consisting of programs drawn from
several related papers [5, 87, 162]. This collection includes kernels operating on
both arrays and scalars, such as sqrt or fibonacci. We have also used fft

to show the feasibility of our approach for typical DSP codes. For the sake
of concreteness, we have chosen the cache architectures of a set of modern
processors widely used in the real-time area: microSPARC-IIep [139], Pow-
erPC 604e [119], IDT 79RC64574 [75] and MIPS R4000 [117]. We also include
results for the recently released NEC V850E/ME2 32-bit high-performance
microcontroller.

1.4 Organization

Chapter 2 gives an introduction about cache memories. We start by presenting the
basic cache architectures. Next, some terminology for program analysis used in this
work is presented: we introduce the reuse vectors as a metric for reuse analysis and
the original CMEs framework.

Chapter 3 presents the underlying model on which this work is based. We present
the programs and architectures we deal with. Then, we explain the different trans-
formations we apply to the codes in such a way that we get a new version suitable for
our analysis. Some important statistical notions that are used to model the number
of misses are introduced.

We give an overview of our tool and introduce our experimental framework in
Chapter 4. We detail the benchmarks that we chose and the real architectures used
for our measurements.

We distribute the main contributions of this thesis in the next three chapters.
Chapter 5 introduces our new approach to analyzing whole program cache behavior.
We start by explaining how we deal with call statements and subroutines. Next, we
discuss a reuse metric for whole programs, and provide a mathematical formulation
for expressing cache misses across multiple loops and if statements. We show how
to extend these equations to deal with locking caches and multi-level memory hier-
archies. Finally, we present our extensive validation. We have evaluated both the
accuracy and feasibility of our analysis.

12 · Chapter 1. Introduction

Chapter 6 presents our model to develop automatic compiler cache optimizations.
We start by presenting our cost model function. Then, we introduce our genetic
algorithm, and give complete details of its implementation. Finally, we present
results of our optimization scheme comparing it with state-of-the-art techniques.

Chapter 7 discusses our approach to timing cache memory behavior for mul-
titasking real-time systems. First, we give an overview of a general WCET tool.
Then, we present our solution to have predictable programs on a unitask environ-
ment. Later, we extend our approach to deal with multitasking systems. We present
extensive evaluations of our method. We evaluate the accuracy and contributions of
all different components independently. Finally, we give performance measurements
for a multitasking system.

We discuss some related work in Chapter 8. Chapter 9 contains a summary of
the main contributions of this dissertation. It also points out some future work that
may be addressed using this thesis as a starting point.

Appendix A contains some codes from the benchmarks we have used to eval-
uate our analysis technique. Appendix B has all the codes used to evaluate our
optimization framework.

2

Data Cache Analysis: Background
and Overview

CHAPTER 2

DATA CACHE ANALYSIS:

BACKGROUND AND OVERVIEW

Processing capabilities of microprocessors used in current computer systems continu-
ally improve their processing capabilities due to increasing clock frequencies and the
exploitation of parallelism at different levels. However, such processor performance
is meaningless without a fast and broad memory subsystem.

Unfortunately, memory subsystem has become the bottleneck of current high-
performance computers, limiting how fast data is brought (received) to (from) the
processor. The gap between main memory and processor performance is increasing
every year. Whereas processor performance has improved about 60% per year for
the last 20 years, memory access time has only decreased at less than 10% per
year [68]. This large latency, which is increasing at a rate of 45% per year, is a
primary obstacle to improve general system’s performance.

Memory hierarchy and cache memories were introduced as a hardware solution
to hide this gap, becoming more and more significant with the widening performance
difference. This chapter introduces the memory hierarchy and the original Cache
Miss Equations (CMEs) [52]. The goal is to provide an overview of the CMEs frame-
work and cache memories to help the reader fully understand the work presented in
this thesis.

We first introduce the memory hierarchy and describe different kinds of cache
memories. Then, we explain the concepts of reuse and locality, which are essential
for analyzing cache memory behavior. Finally, we introduce the original CMEs
framework.

2.1 Memory Hierarchy

We can see a wide variety of storage in a computer system, which can be orga-
nized in a hierarchy (see Figure 2.1) according to either their speed or their cost.

16 · Chapter 2. Data Cache Analysis

Hard Disk

CPU

L1 Cache

L2 Cache

Main Memory

Latency

low

high

Size

small

big

Fig. 2.1: Memory hierarchy.

The closer the memory is to the processor, the faster it is. The small high-speed
memory is generally referred to as cache memory, or cache for short. Since caches
are smaller than the main memory, they can be designed using faster and more
expensive techniques.

The main property that makes the memory hierarchy work well in the general
case is called locality :

Locality There exists temporal locality (i.e., it is very likely that instructions access
data that has been already fetched), and spatial locality (i.e., it is very likely
that instructions access data nearby data that have been already fetched).

The memory hierarchy aims at having data that it is supposed to be accessed
very often in memory levels very close to the processor. Since these memories are
faster, the latency is smaller. Thus, the general performance is increased. The
system first copies the data needed by the processor from memory into the cache
(see Figure 2.2), and then from the cache into a register in the CPU. Storage of

2.1. Memory Hierarchy · 17

�

Matrix�A� Memory� Cache�

Fig. 2.2: How data is stored in both main memory and cache.

results is in the opposite direction. First the system copies the data into the cache.
Depending on the cache architecture details, the data is then immediately copied
back to memory (write-through), or deferred (write-back). If an application needs
the same data again, data access time is reduced significantly if the data is still in
the cache.

2.1.1 Cache Memories

Cache memories try to capture the most frequently accessed data items. Placed
between processor and main memory, they bridge queries from the processor. When
a memory request is generated, the request is first presented to the lowest level of
cache, and only in the case it cannot respond the request is presented to the upper
levels of the memory hierarchy. This can be summarized as follows:

1. If the cache has the data that the processor needs (cache hit), it brings the
data to the processor.

2. Otherwise, the processor suffers a cache miss and the next level in the memory
hierarchy must be accessed.

Cache misses are classified into three groups: compulsory, capacity, and conflict.
Compulsory misses, also referred to as cold misses, are mostly independent of the
cache size, and occur because data must be loaded at least once into the cache before
it can be used. Capacity misses correspond to the misses that happen because the
cache is not large enough to hold the working set of the program. Conflict misses are
generally the result of how the cache is being managed, and can occur even though

18 · Chapter 2. Data Cache Analysis

the cache is sized sufficiently to hold the program’s data; they occur when multiple
data are competing for the same location in cache.1

Let us look at the various parameters that affect the design of a cache memory.
We explain in the following sections how data is organized in the cache and different
policies that keep the coherence between main memory and caches [68].

2.1.2 Cache Organization

Caches are characterized by the following parameters. Cache size (C) defines the
total number of bytes it has. The line size (L) determines how many contiguous
bytes are fetched from memory.

Definition 2.1 (Memory Line) A memory line refers to a cache-line-sized block in
main memory.

Definition 2.2 (Cache Line) A cache line refers to the actual cache block in which
a memory line is mapped.

Definition 2.3 (Cache Set) is a collection of cache lines.

Definition 2.4 (Associativity (k)) is the number of cache lines in a cache set.

Sometimes, a cache configuration is identified as a triple (C,L,k).
Depending on the location in the cache that a block from memory can reside in,

we have different cache organizations.

1. Direct mapped. A given block can only reside in one exact location: the
memory address of the incoming cache line controls which cache location is
going to be used. Thus, the candidate location is controlled by the memory
address and not the usage. The cache size is

C = L×Number Lines

Implementing this organization is straightforward and it is relatively easy to
make it scale with the processor clock. Even though this design works well in
many cases, this policy has the potential downside of replacing a cache line
that contains information needed shortly afterwards.

1A conflict miss is a memory reference that hits in a fully-associative cache but misses on a
set-associative cache (see Section 2.1.2).

2.1. Memory Hierarchy · 19

�

k=2�

Cache:�4�sets,�
2�lines�per�set�

Fig. 2.3: Mapping of such a 2-way set-associative cache.

2. Fully associative. The fully-associative cache design solves the potential
problem of thrashing with a direct-mapped cache. The replacement policy
(see Section 2.1.3) is no longer a function of the memory address, but considers
usage instead. A block from memory can reside in any location in the cache.

However, this comes at a price, which is cost. Additional logic is required to
track usage of lines. The larger the cache, the higher the cost. Therefore, it is
difficult to scale this organization to large caches.

3. k-way set-associative. A set-associative cache design uses several small
fully-associative caches, where each cache is referred to as a set. Each set has
exactly k cache lines. On an incoming request, the cache controller decides
which set the line will go into. Within the set, a memory block may reside in
exactly any of the k locations. Figure 2.3 shows a 2-way set-associative cache,
with 4 sets.

Two factors are critical at the moment of choosing an index scheme that maps
memory lines onto cache lines (sets); firstly, the chosen function should have a cheap
and easy implementation in hardware, and secondly it is important that it has a
good behavior on any kind of regular address patterns. Modulo function (modulo the
number of cache sets) is the most common index function used. However, alternative
schemes may help programs to take advantage of cache memories. Prime-modulus

20 · Chapter 2. Data Cache Analysis

functions [95] and skewing functions [74] have been tested successfully. The use
of XOR functions was proposed by Frailong et al. [49], and some pseudo-random
placements by Rau et al. [128].

2.1.3 Replacement Policies

For those operations that result in a cache miss, the datum is retrieved from the main
memory and copied into the cache, resulting in some other datum being removed
from the cache to make room for this new datum. The cache replacement policy
(i.e., which item to remove from the cache) is crucial for performance.

The most common algorithms are:

LRU The least-recently used line is removed from cache.

Random One line is chosen randomly.

FIFO The line that was brought in the first time is replaced (even though it may
happen that it is accessed very often).

Nearly all caches in commercial products have LRU replacement policy to manage
the different lines we have in a set.

2.1.4 Writing to the Cache

Special actions should be taken in case of WRITE operations. 10–30% of the memory
accesses are WRITEs. Handling them is somewhat tricky because of the interaction
of the cache with input/output systems. Keeping cache coherence with the main
memory is very important. Different solutions have been presented, depending on
whether there exists a cache miss or a cache hit.

When having a cache hit:

Write through We write the modified item both in the cache and in the mem-
ory. Since main memory is rather slow, hardware solutions like buffering are
implemented in order to speed up the process of writing to main memory.

Copy back Data is written in the main memory only when the cache line is re-
placed. Thus, the memory does not contain updated information.

In case of suffering a cache miss:

Write allocate The memory line is modified and it is brought to the cache after-
wards.

2.2. Locality Analysis · 21

No write allocate The memory line is modified, but the data is not brought to
the cache.

When specifying a writing policy, both hit and miss policies should be provided.
The two most common configurations are:

• Copy back with Write allocate.

• Write through with No write allocate.

2.1.5 Locking Caches

Cache locking allows some or all of the contents of the cache to be locked in place.
Disabling the normal replacement mechanism, provided that the cache contents are
known, makes the time required for a memory access predictable. This ability to lock
cache contents is available on several commercial processors (PowerPC 604e [119],
405 and 440 families [73], Intel-960, some Intel x86, Motorola MPC7400 and others).
Each processor implements cache locking in several ways, allowing in all cases static
locking (the cache is loaded and locked at system start) and dynamic locking (the
state of the cache is allowed to change during the system execution).

2.2 Locality Analysis

Cache memories usually present very low associativity, which may result in data
being replaced before it is reused. Furthermore, there exists programs without
sufficient locality in their accesses, which makes them spend a lot of time transferring
data between main memory and cache.

Understanding data reuse is essential to predict cache behavior, since a datum
will only be in the cache if its line was referenced some time in the past. Reuse
happens whenever the same data item is referenced multiple times. This reuse
results in locality if it is actually realized; reuse will result in a cache hit if no
intervening reference flushes out the datum.

As an example, consider a k-way set-associative cache with an LRU replacement
policy. A memory access ma to memory line l will result in a cache miss if l is
accessed for the first time. Otherwise, let mb be the most recent previous access
also to l. Then, ma will result in a miss if there are k distinct memory lines that
are accessed between mb and ma that are also mapped to the same cache set as l,
and a hit otherwise.

Definition 2.5 (Memory Reference) A memory reference is a static read or write.

22 · Chapter 2. Data Cache Analysis

double a[N][N], b[N][N], c[N][N];
for(i=0;i<N;i++) {

for(j=0;j<N;j++) {
for(k=0;k<N;k++) {

a[i][j] = a[i][j] + b[i][k] * c[k][j] ;

}
}

}

Fig. 2.4: A running example: matrix multiplication algorithm.

We introduce a running example that we will use through this thesis. We consider
the matrix multiplication algorithm without initialization as shown in Figure 2.4,
where we highlight the four memory references.

In order to model cache behavior, we need to know whether two consecutive
accesses fetch data from the same memory line, and all intervening accesses between
such a pair of consecutive accesses.

Formally stated, we split a data cache analysis into the following steps:

1. Reuse Analysis describes the intrinsic data reuse among all different memory
references.

2. Data Locality Analysis describes the subset of reuses that actually results in
locality.

Now, we describe each step in detail for codes consisting of a single perfectly
nested loop. We first introduce some terminology that is used through the thesis.
Next, we present the reuse vectors as a metric to describe reuse. Finally, we give an
overview of the CMEs, which are used to describe locality.

2.2.1 Iteration Space

This section introduces some important terminology that is later used.

Definition 2.6 (Iteration Point) Let us consider an n-dimensional nested loop
with loop indexes I1, . . . , In. An execution of the loop body when I1 =
i1, . . . , In = in is identified by the vector ~ı = (i1, . . . , in) ∈ Z

n, which we
call iteration point.

Definition 2.7 (Iteration Space) The iteration space of an n-dimensional loop
nest is the polytope bounded by the bounds of the n enclosing loops, and

2.2. Locality Analysis · 23

represents the collection of all the iteration points. It possesses the (strict)
total order, ≺, which is known as the lexicographic or dictionary order.

�

i

k

j

(0, 2, 2)

(1, 2, 0)

Fig. 2.5: Diagram representing the iteration space of Figure 2.4 when (N=3).

Example 1 Recall our running example from Figure 2.4. Its iteration space is the
set {(i, j, k) | 0 ≤ i < N, 0 ≤ j < N, 0 ≤ k < N}. Figure 2.5 illustrates the shape
of the iteration space when N is 3. The first iteration point would be ~ı0 = (0, 0, 0),
and the last one ~ı26 = (2, 2, 2). Using the lexicographic order, we can express that
~ı0 ≺~ı26.

Definition 2.8 (Memory access) Let R be a memory reference. A particular exe-
cution of that read or write at run time is amemory access. We writemaR(~ı) to
represent the memory address of that memory access when executing iteration
point ~ı. The following expression computes the memory line (ml) and cache
set (cs) it is mapped to (we use the modulo-index scheme, see Section 2.1.2):

mlR(~ı) = bmaR(~ı)/Lc (2.1)

csR(~ı) = mlR(~ı) mod N (2.2)

where N = C/(L× k) is the number of cache sets.

24 · Chapter 2. Data Cache Analysis

2.2.2 Reuse Vectors

Reuse happens whenever the same data item is referenced multiple times. Trying
to determine all iterations that use the same data is extremely expensive. Thus, we
use a concrete mathematical representation that describes the direction as well as
the distance of the reuse in a methodical way. The shape of iterations that reuses
the same data is represented by a reuse vector space [168].

Definition 2.9 (Reuse Vector) Let R be a memory reference such that mlR(~ı1) =
mlR(~ı2), where ~ı1 ¹~ı2, we define ~r =~ı2 −~ı1 as a reuse vector.

Example 2 Recall reference c[k][j] from our running example. At iteration point
~ı0 = (1, 2, 3), it accesses the array element c[2][3], which is the same array element
accessed at ~ı1 = (3, 2, 3). Thus, we have a self-temporal reuse vector ~r = ~ı1 −~ı0 =
(3, 2, 3)− (1, 2, 3) = (2, 0, 0).

2.2.3 Uniformly Generated References

Definition 2.10 (Affine Expressions) An expression in a program is affine if it has
the form c1I1 + . . . + cnIn + b, where I1 . . . , In are the loop variables of the n
enclosing loops (if any) and c1, . . . , cn, b are compile-time or runtime constants.

Two references are called uniformly generated when their array subscripts are
affine and differ at most in the constant term [50]. Let n be the depth of a loop nest,
and d be the dimensions of an array R. Formally, two references R(f(~ı)) and R(g(~ı)),
where f and g are indexing functions Z

n → Z
d are called uniformly generated if

f(~ı) = H~ı+ ~cf g(~ı) = H~ı+ ~cg

where H is a linear transformation and ~cf and ~cg are constant vectors.

Example 3 For instance, reference a[i][j] is uniformly generated with respect to
references a[i][j + 1] and a[i− 1][j], but not with respect to reference a[j][i].

2.2.4 Classifying Reuse

Let Rp (p for ‘producer’) and Rc (c for ‘consumer’) be two uniformly generated
references Rp[H~ı + ~cp] and Rc[H~ı + ~cc], respectively. Let ~r º ~0 be a reuse vector.
Thus, applying the definition of reuse vector, Rc at iteration ~ı (with the memory

2.2. Locality Analysis · 25

access Rc[H~ı + ~cc]) reuses potentially from Rp at ~ı − ~r (with the memory access
Rp[H(~ı− ~r) + ~cp]):

mlRc(~ı) = mlRp(~ı− ~r) (2.3)

The reuse vector ~r represents a potential reuse in the cache between the two memory
accesses since the memory line touched in the cache at the first access (at~ı−~r) may
have been evicted from the cache before it gets reused at the second access (at ~ı). ~r
is temporal (reusing the same element) if the following equality also holds:

maRc(~ı) = maRp(~ı− ~r) (2.4)

and spatial (reusing the same cache line but not the same element) otherwise. In
addition, the reuse is said to be a self-reuse if Rc and Rp are identical and a group-
reuse otherwise. Thus, there are four kinds of reuse: self-temporal, group-temporal,
self-spatial and group-spatial.

• Self-temporal A self-temporal reuse takes place when a reference accesses
the same data element in different iterations of the loop.

• Self-spatial A self-spatial reuse takes place when a reference accesses the
same memory line in different iterations of the loop.

• Group-temporal A group-temporal reuse takes place when two different ref-
erences access the same data element.

• Group-spatial A group-spatial reuse takes place when two different references
access the same memory line.

If we take a closer look to the last definitions, we can see that temporal reuse is
a subset of spatial reuse. Whereas the temporal locality can be exploited as many
times as we want, the possibility of exploiting spatial locality depends on the cache
line size L.

2.2.5 Computing the Reuse Vector Space

Given a loop nest, the number of reuse vectors is very large. Wolf and Lam [168]
discuss how to compute a basis of the reuse vector space for perfect loop nests
with straight-line assignments. Whereas self reuse (both spatial and temporal) and
group-temporal reuse are computed in an exact way, group-spatial reuse is only
considered among uniformly generated references.

26 · Chapter 2. Data Cache Analysis

Reusing reference Reused reference Reuse Vector
Self-spatial (0,1,0)

a[i][j] (R)
Self-temporal (0,0,1)
Self-spatial (0,0,1)

b[i][k]
Self-temporal (0,1,0)
Self-spatial (0,1,0)

c[k][j]
Self-temporal (1,0,0)

a[i][j] (R) Group-temporal (0,0,0)
a[i][j] (W) Self-spatial (0,1,0)

Self-temporal (0,0,1)

Table 2.1: Reuse vectors for references in Figure 2.4. R stands for READ, W for WRITE.

If the rows2 of every array are aligned at the memory line boundaries, Wolf and
Lam’s reuse framework provides all reuse vectors required. Otherwise, some extra
reuse vectors are needed to represent cross-row reuse cases.

As an example, let us derive temporal reuse vectors for the two uniformly gen-
erated references {Rp = a[i − 1][j], Rc = a[i][j]} in an iteration space (i, j). The
subscript expressions for both references are affine:

H~I + ~cp = [1 0
0 1]

[
i
j

]
+ [−1

0]

H~I + ~cc = [1 0
0 1]

[
i
j

]
+ [0

0]

In this case, (2.4) becomes:

[1 0
0 1] [

x1

x2
] = [−1

0]

which has the unique solution (−1, 0). Thus, the unique temporal reuse vector from
a[i− 1][j] to a[i][j] is (−1, 0).

Table 2.1 lists all reuse vectors for the references of our running example shown in
Figure 2.4. The group-spatial reuse vector (0,1,0) between a[i][j](W) and a[i][j](R)
is not presented since it is redundant with the self-spatial reuse vector.

The reference a[i][j](W) may reuse from the same datum (hence, temporal reuse)
that a[i][j](R) (hence, group reuse) accessed at the same iteration. References
a[i][j](R), c[k][j] and a[i][j](W) are associated with the self-spatial reuse vector
(0,1,0), since they may reuse the same cache line (thus, spatial reuse) that they ac-
cessed one iteration before of the loop j. The other reuse vectors can be understood
in a similar way.

2We assume a row-major data layout.

2.3. Cache Miss Equations (CMEs) · 27

2.3 Cache Miss Equations (CMEs)

CMEs [52] are an analysis framework that describes the cache memory behavior of
perfectly nested loops which consist of straight-line assignments. For each memory
reference a set of constraints and equations define those situations where cache
misses arise.

The potential reuse is described by the reuse vectors (see Section 2.2.5). In order
to find out whether a reuse translates to locality we need to know all data brought
to the cache between the two accesses and the particular cache architecture we are
analyzing.

CMEs are a set of equations3 that describe the iteration points where the reuse
is not realized. For each reuse vector, two kinds of equations are generated:

• Compulsory equations: Given a reference, they represent the first time
a memory line is touched. We may distinguish between spatial and temporal
reuse:

– Temporal reuse: The reuse is not realized when the studied reference
reuses from an iteration point outside the iteration space.

– Spatial reuse: The reuse does not hold when either the analyzed
reference reuses from data mapped in another cache line, or the reference
reuses data from an iteration point outside the iteration space.

• Replacement equations: Given a reference, replacement equations repre-
sent the interferences with any other reference, included itself.

Next, we explain each kind of equation in more detail.

2.3.1 Compulsory Equations

There are two different kinds of compulsory equations:

• Cold Miss Equations (Temporal or spatial reuse). These equations
describe the iteration points where a reuse does not hold because the reference
reuses from an iteration point outside the iteration space (see Figure 2.6).

The Cold Miss Equations put a restriction on the possible values of one of the
variables inside the iteration space. For a given l ∈ [1, . . . ,m], an iteration
point ~ı and a reuse vector ~r, we obtain:

3The term equation has been used loosely to represent a set of simultaneous constraints.

28 · Chapter 2. Data Cache Analysis

i1

i2

Cold Miss Equations

Fig. 2.6: Cold Miss Equations

(CM)
il ≤ dl

lbk ≤ ik ≤ ubk, k = 1 . . .m

where il corresponds to the l-th variable of the iteration space, dl = ubl+rl ∈ Z,
the first equation represents an additional restriction on one of the variables4

and for each induction variable ik (k = 1, . . . ,m), ubk and lbk stand for the
upper and lower bounds of this variable in the iteration space.

Note that this equation could introduce a lower bound of the variable ik,
instead of an upper bound. The other 2m constraints determine the iteration
space.

Example 4 Recall our running example from Figure 2.4. In Table 2.1 we
have shown that reference b[i][k] has a self-spatial reuse in the direction ~r =
(0, 0, 1). Thus, at iteration point ~ı = (0, 0, 0), it may reuse from ~ı − ~r =
(0, 0, 0)− (0, 0, 1) = (0, 0,−1) which is not in the iteration space.

• Cold Miss Bounds (Spatial reuse). These equations describe the iteration
points where a reuse is not realized because the reference reuses data that is

4il − rl must belong to the domain of the l th variable of the iteration space.

2.3. Cache Miss Equations (CMEs) · 29

mapped in a different cache line. Given a reference Rc, there is a cold miss
along the reuse vector ~r in the iteration point~ı if the following equation holds:

mlRc(~ı) 6= mlRp(~ı− ~r)

where Rp is Rc (if ~r is a self-reuse vector), or a different reference (if ~r is a
group-reuse vector).

b[0][0] b[0][3]b[0][2]b[0][1]
b[0][4] b[0][7]b[0][6]b[0][5]

Fig. 2.7: Cold Miss Bounds

Example 5 Consider reference b[i][k] from our running example, and its self-
spatial reuse in the direction ~r = (0, 0, 1). At iteration point ~ı = (0, 0, 4), it
accesses b[0][4], and it may reuse from ~ı − ~r = (0, 0, 4) − (0, 0, 1) = (0, 0, 3),
which accessed b[0][3]. If we consider a memory layout that maps to cache
as shown in Figure 2.7, this reuse is not possible, since b[0][3] and b[0][4] are
mapped to different cache lines.

2.3.2 Replacement Equations

Given a reference, Replacement Equations represent the iteration points where any
other reference accesses data which is mapped onto the same cache set as the data
accessed by the current reference.

For each pair of references (RA and RB), the following expression gives the
condition for a cache set contention in a set-associative cache:

Cache Set(~ı)RA = Cache Set(~)RB
~ ∈ J

where J represents the set of iteration points between ~ı (the current one) and the
iteration point from which RA reuses, ~ı−~r, where RB is executed (see Figure 2.8).

30 · Chapter 2. Data Cache Analysis

i1

i2

i

i-r

J-set

Fig. 2.8: J set.

Example 6 Consider references a[i][j](W) and a[i][j](R) from our running exam-
ple. According to Table 2.1, the former reuses from the latter along ~r = (0, 0, 0). Let
us consider iteration point ~ı = (0, 0, 0). Reference a[i][j](R) will reuse data brought
by reference a[i][j](W) at ~ı− ~r = (0, 0, 0). Thus, J will be {(0, 0, 0)} for references
b[i][k] and c[k][j], since it may happen that b[0][0] or c[0][0], which are executed be-
fore a[0][0](W), access data that maps to the same cache set as a[0][0](R). The set
J is ∅ for a[i][j](W) and a[i][j](R), since they are not executed in the interval that
spans between a[0][0](R) and a[0][0](W) are executed.

2.3.3 Solving CMEs

Cache miss equations contain precise information about cache behavior, but obtain-
ing the information such as number and causes of the misses is not straightforward.

Each equation represents a convex polyhedron in R
n [14, 52], where n depends

on the type of equation. The integer points inside each convex polyhedron represent
the potential cache misses. We may consider two different ways of computing them,
either by solving the equations (analytical method) or by checking whether a point is
solution or not of the equations that define the polyhedron (traversing the iteration
space). Note that the first approach only works for direct-mapped caches, whereas

2.3. Cache Miss Equations (CMEs) · 31

the second one may be applied to any cache architecture. Next, we describe both
approaches in detail.

Analytical method

The solution set of the original CMEs represents the cache misses of a reference,
and its volume the number of misses. We construct the solution set based on the
following two theorems [52]:

• Theorem 1: The set of all misses of a reference along a reuse vector is given
by the union of all the solution sets of the equations corresponding to that
reuse vector.

Given a reference and a reuse vector, an iteration point produces a miss if it is either
a compulsory or a replacement miss.

• Theorem 2: The set of all miss instances of a reference is given by the
intersection of all the miss-instance sets along the reuse vectors.

Given a reference, an iteration point results in a hit if it exploits the locality of at
least one of the reuse vectors.

Thus, given a reference R with m reuse vectors and nk equations for the k-th
reuse vector, the polyhedron that contains all the iteration points that result in a
miss is [52]:

Set Misses = ∩m
k=1 ∪

nk
j=1 Solution Set Equationj

For this approach we need to count the number of points inside the polyhedra,
which is an NP-hard problem.5 Writing the set of misses as a function of the
complementary sets, we obtain:

Set MissesC = ∪nk
j=1 ∩

m
k=1 Solution Set EquationC

j

where Solution Set EquationC
j represents the set of all points in Z

n ⊂ R
n that are

not solution to the j-th equation. Thus, according to measure theory, the union of

5It is equivalent to deciding whether a solution exists to a system of equalities and inequalities,
which is NP-complete [11].

32 · Chapter 2. Data Cache Analysis

s sets can be computed as follows:

µ(∪s
i=1Ai) = µ(Ai) + . . .+ µ(As)−

−
∑

i6=j

µ(Ai ∩ Aj) +

+
∑

i6=j 6=k

µ(Ai ∩ Aj ∩ Ak) +

+ . . .+

(−1)(i−1)µ(∩s
i=1Ai)

where µ(P) is the number of points inside polyhedron P . As the expression shows,
the number of polyhedra that must be counted is 2s [159], making this problem
infeasible due to its huge computing time.

Traversing the iteration space

The second method is based on the fact that every iteration point can be studied
independently from the rest of the iteration space.

Given a reference, all iteration points are tested independently, studying the
equations in order: from the equations generated for the shortest reuse vector to the
equations generated by the longest one [52].

Let us consider a reference R. We study the reuse vectors in a lexicographic
ascendent order. Figure 2.9 shows the analysis for a particular reuse vector. After
one reuse vector has been treated, some iteration points will be identified as resulting
in a miss or a hit. Others rest undetermined and are studied by the remaining reuse
vector.

The iteration points are studied as follows:

• If an iteration point is a solution to a compulsory equation, the reuse along the
reuse vector ~r is not realized in this iteration point, but we cannot take any
definitive decision about the character of this iteration point until all reuse
vectors have been studied. Thus, this point will be considered as undeter-
mined.

• If an iteration point is not a solution to any of the compulsory equations, it
will be declared as a miss if it is a solution to a replacement equation, and as
a hit otherwise.

The algorithm stops when all iteration points have been characterized.

2.3. Cache Miss Equations (CMEs) · 33

�

hit�

miss�

�
�

�
Iteration�
Points�

Cold��
�

Misses�

�
MISSES�

�
HITS�

Replacement�
Equations�

To�Next�Reuse�
Vector�

Compulsory�
Equations�

Fig. 2.9: Studying iteration points through a reuse vector.

Counting the total number of solutions is a very time-consuming process, since
we may expect very large iteration spaces. In addition, we need to know whether a
polyhedron is empty after substituting the iteration point in the equation. This is
still an NP-hard problem [11]. Nevertheless, only s ∗ number of points polyhedra
must be analyzed.

This makes it rather impractical to be included in production compilers. In
Section 3.4 we introduce a probabilistic method based on sampling [159] to solve
the equations in a fast and accurate way. Moreover, we use a highly optimized
polyhedra representation [14, 155] to further speed up the process of capturing the
distribution of misses.

34 · Chapter 2. Data Cache Analysis

3

Underlying Model

CHAPTER 3

UNDERLYING MODEL

This chapter describes the different models we have used to model programs’ cache
memory behavior. We first provide the cache architecture that is assumed. Then,
we introduce the program model we use to represent typical programs found in
scientific applications and real-time systems. Later, we discuss the statistical model
that may be applied to speed up the solving process. Finally, we give an overview
of the general framework.

3.1 Architecture Model

We assume a uniprocessor with a memory hierarchy. We focus on multi-level data
caches, where each cache level is a k-way set-associative cache using an LRU re-
placement policy. If a cache level is unified, we ignore the effects of the instruction
accesses; as the total number of instruction misses compared to data misses is very
small, our model is still valid for real architectures. In the case of write misses,
we assume a fetch-on-write policy so that writes and reads are modeled identically.
Our current analysis assumes a memory hierarchy indexed either by virtual or phys-
ical addresses. Some systems index the first level cache virtually, and the upper
levels with physical addresses, making cache behavior strongly dependent on page
placement [85].

One of our goals is to optimize overall program performance. As the issue rate
and depth of pipelining of high performance superscalar processors increase, the
importance of control-flow speculation becomes more vital to achieve the potential
performance of current processors. There is a serious performance degradation in
deep-pipelined machines caused by prediction misses due to the large amount of
speculative work that has to be discarded [19]. For that purpose, we also model
the branch predictor performance. We consider a Backward Taken and Forward
not Taken scheme, which has proven to be good enough for our purposes (see Sec-
tion 6.6).

38 · Chapter 3. Underlying Model

3.2 Program Model

Our model applies to programs consisting of subroutines, calls, arbitrarily nested
loops, and assignments possibly guided by if conditionals.

In this thesis, all programs are written either in C or FORTRAN77. All code
snippets are written in a C-like style. When dealing with C codes, all arrays are
assumed to be stored in row-major order. Otherwise, they are in column-major
order. However, the techniques apply to any linear data layout.

The following restrictions define the scope of programs that are analyzable stat-
ically:

• Calls are non-recursive.

• All loop bounds, if conditionals and array subscript expressions must be either
known or in terms of the loop indices of the enclosing loops.

• The base addresses of all non-register variables including actual parameters
(scalars or arrays) must be known at compile time.

• The sizes of an array in all but the first1 dimension must be known statically.

In order to ensure that our analysis can be done in the polyhedral model [44], we
add the following constraint:

• The subscript expressions of array references and loop bounds are affine.

Thus, our analytical method can deal with any if conditional involving loop
indices and compile-time constants. In loop-oriented programs with regular com-
putations, almost all data-independent conditionals are affine expressions of loop
indices and compile-time constants involving possibly operators such as abs, mod,
max and min. In all programs that we have analyzed from SPECfp95, Perfect Suite,
Livermore Kernels, Linpack, Lapack, and real-time codes, we have not found any
if conditional that is data-independent but not also affine. Our program model ex-
cludes all and only data-dependent constructs (e.g., variable bounds, data-dependent
if conditionals and indirection arrays).

We rely on the compiler to identify compile-time and runtime constants. De-
tecting these constants allows more expressions to be analyzed statically. Standard
compile-time techniques can be very helpful in gathering missing information. To

1This applies to C codes. For FORTRAN77 codes it would be the last dimension.

3.3. Compilation Model · 39

for(i1=L1;i1<U1;i1++) {
S1;
for(i2=L2;i2<U2;i2++) {
S2;
for(i3=L3;i3<U3;i3++) {
· · ·
}

S2’;
}
S1’;

}

for(i1=L1;i1<U1;i1++) {
for(i2=L2;i2<U2;i2++) {

for(i3=L3;i3<U3;i3++) {
if(i2==L2 && i3==L3) S1;
if(i3==L3) S2;
· · ·
if(i3==U3) S2’;
if(i2==U2 && i3==U3) S1’;

}
}

}

(a) Before sinking (b) After sinking

Fig. 3.1: Loop sinking transformation.

address the symbolic loop bound problem, we use interprocedural constant propa-
gation to eliminate as many symbolic loop bounds as possible. This may also be
helpful to know statically which recursive calls are made, thus enlarging the scope
where the static analysis is applied.

3.3 Compilation Model

In order to solve the CMEs, we require all the memory references to be in innermost
loop nests. Besides, our compilation model needs all the innermost loops to have
the same depth. In order to transform user codes in such a way they are suitable for
being analyzed, we first apply loop sinking, which moves all references to innermost
loop nests. Thereafter, we apply loop normalization, which adds dummy loop nests
in order to have all the innermost loop nests in the same depth.

3.3.1 Loop Sinking

We present a strategy to analyze a subset of imperfectly nested loops (see Sec-
tion 2.3). The original CMEs can only deal with perfectly nested loops. Thus, there
are many important imperfectly nested loops that cannot be analyzed (as matrix
multiplication with initialization). Our strategy focuses on transforming imperfectly
nested loops into perfectly nested loops with conditionals [167]. The loop nests

40 · Chapter 3. Underlying Model

we consider are those without two loops at the same level. Figure 3.1(a) shows the
form of those loop nests.

The technique consists in sinking all the statements to the innermost loop, ob-
taining a perfectly nested loop. Then, the statements are enclosed within an if state-
ment following Abu-Sufah’s non-basic-to-basic-loop transformation [2]. The code
obtained is shown in Figure 3.1(b). In the case that the code is already protected
by an if statement, this is another constraint that is taken into account. A loop
transformation is called legal when the transformed code produces the same output
as the original one. In order to obtain a loop nest semantically equivalent to the
original one, the following conditions must hold [173]:

• The order of the references must be preserved.

• The innermost loop nest must be executed at least once, so if an iteration
of a statement would have executed, then it is executed in the transformed
program.

Loop sinking may introduce some new memory references that are necessary to
evaluate the new conditionals. In order to obtain the cache behavior of the original
program, we only analyze the original memory references and assume loop indices
are register allocated. Thus, we apply this transformation for analysis purpose, but
we do study the original code.

3.3.2 Loop Nest Normalization

Loop normalization consists in adding different for statements that iterate only one
iteration, in such a way that all innermost loop nests have the same depth. After
normalization, all loop nests are n-dimensional, and, in addition, all loop variables
at depth k are normalized [4] to Ik.

Unlike loop sinking, there is no restriction for applying this transformation, since
the new statements cannot modify the semantics of the program. Again, we apply
this transformation only for analysis purpose, but we do actually study the original
code.

3.4 Statistical Model

Even though generating the equations that describe the cache memory behavior is
very fast, solving them, i.e., obtaining the information contained in those equations
such as number of misses can be time consuming. This may be especially true for

3.4. Statistical Model · 41

very large iteration spaces. In order to obtain the cache behavior in a reasonable
amount of time, we use a statistical approach to determining the cache behavior.

First we present the basic statistical concepts used to model the cache behavior,
and secondly the model itself.

3.4.1 Discrete Random Variables

Let S = (Ω,A, P) be a probability space (where Ω is the sample space, A ⊂ ℘(Ω),2

and P is the probability function). We may define random variables (RV) [37]
X : Ω→ R over S. We review two of the most studied discrete RV which have been
used in our model.

Let X be a real discrete random variable:

• We say that it follows a Bernoulli distribution (X ∼ B(p)) when the image
set has only two elements. Bernoulli RVs describe the random experience in
which only two things can happen: success or failure. We define T ⊂ Ω as the
set of results obtained that we consider as “success”. Thus:

X : Ω −→ R

ω 7−→

{
0 ⇐⇒ w /∈ T
1 ⇐⇒ w ∈ T

The probability P [X = 1] is p. Therefore, the probability P [X = 0] is q = 1−p,
since p+ q must be 1.

• Binomial distribution (represented by X ∼ Bin(n, p)) models phenomena
where n different and independent experiments modeled by Bernoulli-RVs take
place. This RV represents the number of successes.

Once T ⊂ Ω is defined, we obtain:

X : Ωn −→ R

(ω1, . . . , ωn) 7−→ card{i|ωi ∈ T }

The probability P [X = k], k = 0 . . . n represents the probability that k exper-
iments over the n succeed. Thus,

P [X = k] =

(
n
k

)

pk(1− p)(n−k)

2℘(X), the power set of X, is the set of all the possible subsets of X

42 · Chapter 3. Underlying Model

3.4.2 Modeling the Cache Behavior with Random Variables

We are interested in finding the number of misses that a program results in (said
#misses). In order to obtain it, we model the problem as follows: for each reference
we define a RV that returns the number of misses.

We may model the behavior of a reference using a Binomial-RV, where the differ-
ent experiments consist in taking an iteration point and checking whether it results
in a miss.

Next, we prove that this RV actually follows a Binomial distribution. For each
memory instruction, we may define a Bernoulli-RV X ∼ B(p) as follows:

X : Iteration Space −→ R

~ı 7−→ {0, 1}

such that X(~ı) = 1 if the memory instruction results in a miss for iteration ~ı,
X(~ı) = 0 otherwise. Note that X describes the experiment of choosing an iteration
point and checking whether the memory instruction produces a miss for it, and p
is the probability of success. The value of p is p = #m

N
, where N is the number of

times this instruction is executed and #m the number of misses.
Then, we repeat the experiment N times, using different iteration points in each

experiment, obtaining X1, . . . , XN different RV-variables. We note that:

• All the Xi, i = 1 . . . N have the same value of p.

• All the Xi, i = 1 . . . N are independent.3

The variable Y =
∑

Xi represents the total number of misses in all N experi-
ments. This new variable follows a binomial distribution with parameters Bin(N,p) [37]
and it is defined over all the iteration space.

3.4.3 Estimation of Parameters

Although a random variable describes a certain property, it may sometimes happen
that it is impossible to obtain the parameters that define the RV. This may happen
in the cases where population is very large, as in our case, where iteration spaces
may have millions of iteration points. In order to overcome this limitation, a subset
of the population we try to describe can be analyzed and the results obtained can
be inferred to the population. Now, we explain how the parameters that describe a
Binomial-RV can be inferred.

3We assume that the iteration space is sampled in an independent way.

3.5. Framework Overview · 43

Let X ∼ Bin(n, p), and assume that p (the probability of success) is unknown.
We obtain an approximation of p evaluating the behavior of a subset of the popu-
lation (called sample). The RV that describes the property we are interested in is
then computed for the sample. Finally, we infer the sample-RV parameters to the
population-RV.

Let Q ⊂ Ωn be the sample, N = card(Ωn) and k = card(Q). The value p̂ is
defined as

p̂ =
successes ∈ Q

k
If the sample is randomly chosen among the population, the RV that describes

the behavior of the sample is Y ∼ Bin(k, p̂), and we have that:4

(p̂− p)
√

pq

k

∼ N(0, 1)

provided that the sample does not contain repeated elements and the following
conditions hold [37]:

• k
N
≤ 0.05

• p̂k ≥ 5 and 1− p̂k ≥ 5

• k ≥ 30

Once a confidence level5 is chosen, a confidence interval for the value of p is given
by the following expression, where α = 1-confidence:

p ∈ p̂± zα
2

√

p̂(1− p̂)

k

3.5 Framework Overview

Figure 3.2 depicts the structure of our framework. We show the different steps
involved in our analysis, as well as the interactions among all components. Our
framework consists of three big components represented by dashed boxes, which are
fully automated and performed during compilation.

First, the program being analyzed is translated into an internal representation,
which we call CMEs IR. Currently, there are available three different front-ends:

4Z∼N(0,1) is the Normal or Gauss distribution
5e.g., if the percentage is 95% (0.95), it represents that for 95 out of every 100 different samples,

p̂ will belong to the confidence interval

44 · Chapter 3. Underlying Model

Code

Front-End

CMEs IR
Predictability
Mechanism

High-level
Optimizer

CMEs SolverData Cache
Prediction

Parameterized
IR

Genetic
Algorithm

WCMP Misses Optimized
Version

Optimizations

Fig. 3.2: General framework.

• Polaris. The program is translated by a Polaris compiler into Polaris IR [42],
which is subsequently translated by Ictineo [8] into a so-called Ictineo load/store
IR. The lowering of the Polaris IR serves two purposes. First, some standard
compiler optimizations such as constant propagation and induction variable
elimination are performed so that the estimated miss ratio is a realistic repre-
sentation of the miss ratio of the compiled code. Second, the load/store array
references are identified and the scalars and temporaries mapped to virtual
registers. Once both are done, the load/store IR is converted to an optimized
Polaris IR in which all load/store array references are clearly indicated.

• SUIF1 & SUIF2. The program is translated by the corresponding SUIF [111]
compiler into a high-level SUIF IR. The SUIF infrastructure includes many of

3.5. Framework Overview · 45

Compiler C C++ FORTRAN77
Polaris X

SUIF1 X X

SUIF2 X X

Table 3.1: Different front-ends used in this thesis.

the standard compiler optimizations, which allows us to obtain a code compet-
itive to production compilers. Using SUIF, we identify high-level information
(such as array accesses and loop constructs) that can be further passed down
to the low-level passes as annotations.

It should be pointed out that our model is not limited to either internal representa-
tion. The model can be applied to any IR as long as the information required by the
model is available. Table 3.1 shows which programming languages are supported by
each of the available front-ends.

Once the program has been translated into the IR, different steps may be applied.
The three main steps are:

• Cache analysis. The key component is the one that computes the equations
and solves them, which in fact describes the cache behavior. It basically con-
sists of components inlining calls (abstractly), obtaining reuse vectors, forming
the mathematical expressions that describe cache misses and solving them.

• Optimizing w.r.t average execution time. We use a genetic algorithm
with an accurate cost model function to reduce programs’ execution time.
The genetic algorithm generates different solutions, which are analyzed by our
CMEs solver to compute potential cache misses for each level of cache.

• Optimizing w.r.t predictable timing. We introduce a method that com-
bines both static cache analysis and cache locking in order to achieve both
predictability and good performance. Furthermore, it allows computing a
worst-case memory performance WCMP estimate of tasks in a fast and tight
way. Our approach first transforms the original program issuing lock/unlock
instructions to ensure a tight analysis of the WCMP at static time. In order to
keep a high performance, load instructions are added when necessary. Later,
the actual computation of the WCMP estimate is performed.

46 · Chapter 3. Underlying Model

4

Experimental Framework

CHAPTER 4

EXPERIMENTAL FRAMEWORK

This chapter presents the architectures used to verify and obtain performance results
for our approach. We also introduce the benchmark applications and the simulation
environment.

4.1 High-Performance Architectures

We have considered four modern processors that represent current architectural
paradigms. To experiment with our optimizations, we have considered the Pentium-
4 [23] (CISC), Alpha-21264 [86] and UltraSparcIII [140] (RISC), and Itanium [135]
(EPIC). Next, we review in detail the architectures adopted by the processors used
in our study.

4.1.1 Pentium-4

Pentium-4 is Intel’s most advanced processor for desktop PCs. It uses the hyper-
pipelined technology in order to increase frequency and scalability of the processors,
which leads to a 20-stage pipeline. It includes an execution trace cache that stores
up to 12K decoded micro-operations. This increases performance by removing the
decoder from the main execution loop. Additionally, the trace cache increases the in-
struction fetch rate since instructions are stored following the dynamic order instead
of the static order.

Memory hierarchy. Caches are physically-indexed and physically-tagged (PIPT).
The second level on-die cache consists of a 256-bit (32-byte) interface that transfers
data on each core clock. As a result, it can deliver a data transfer rate of 48
GB/s. The processor always reads a cache line from the memory system on a 64-
byte boundary. A cache line can be filled from memory with a 8-transfer burst
transaction. Caches do not support partially-filled cache lines. Since caches are
write-through, all writes are write out to memory.

50 · Chapter 4. Experimental Framework

Branch Predictor. It dynamically predicts the direction and target of branches using
a 4K branch target buffer combined with a branch history table. If no dynamic
prediction is available, it predicts statically (taken for backwards looping branches,
not taken for forward branches). Besides, it makes use of the trace cache to alleviate
the cost of a miss-predicted branch.

4.1.2 Alpha-21264

The 21264 (EV6) is the third generation superscalar Alpha microprocessor. Four
instructions are fetched every cycle to be delivered to the out-of-order execution
engine, whose pipeline has 6 stages. The memory system is high-bandwidth, sup-
porting many in-flight memory references.

Memory hierarchy. The L1-cache is virtually indexed, physically tagged (VIPT).
Obviously, the off-chip L2 cache is PIPT. The L1 data cache operates at twice the
frequency of the processor clock, which gives full support for two memory references
every cycle without conflict. The L2 cache is a unified off-chip cache. The Alpha
processor supports mini-speculations: in order to achieve a low first level cache
latency, it is necessary to speculatively issue consumers of integer load data before
knowing if the load hit or missed in the cache.

Branch Predictor. It uses a hybrid predictor that dynamically chooses between two
types of branch predictors. Both predictors are two-level predictors. One of them
has 1024 branch-history registers in the first level and 1024 pattern-history entries
in the second level. The other predictor has a single branch-history register in the
first level and 4096 pattern-history entries in the second level. The choice predictor
is implemented by means of a 4096-entry table that is indexed by the global branch-
history register.

4.1.3 UltraSparc-III

The UltraSPARC-III Cu processor is a high-performance superscalar processor that
implements the 64-bit SPARC V9 RISC architecture. It is a 4-way superscalar
processor with nine execution units and six execution pipelines, which can sustain
the execution of up to four instructions per cycle. The non-stalling pipeline has 14
stages, with 64-bit data paths, 64-bit ALUs and 64-bit address arithmetic.

4.1. High-Performance Architectures · 51

Memory hierarchy. The L1 cache is VIPT. It is write-through and write no allocate.
The L2 cache is off-chip and unified. In order to minimize the number of transac-
tions, it incorporates a 2 KB, 4-way set associative PIPT prefetch cache for software
prefetch, and a 2 KB, 4-way set associative PIPT write cache that reduces store
bandwidth to L2 cache.

Branch Predictor. It uses a modified gshare [112].

4.1.4 Itanium

The Itanium processor is the first implementation of the IA-64 instruction set archi-
tecture. The new processor employs EPIC (explicitly parallel instruction comput-
ing) for a tighter coupling between hardware and software; the hardware-software
interface lets the software exploit all compile-time information and deliver this in-
formation to the hardware. Itanium provides a 6-wide and 10-stage pipeline, with
4 integer units, 2 load/store units and 4 floating-point units. This gives abundant
resources to exploit instruction-level parallelism (ILP).

Memory hierarchy. Three levels of PIPT on-chip cache minimize the overall impact
of memory latency. The L3 cache, which is accessed at core frequency, can provide
over 12GB/s. L2 and L3 are unified, whereas there are two split L1 caches.

Branch Predictor. It has the most sophisticated branch prediction mechanism among
the processors considered in our study. It consists of a hierarchy of three levels of
branch predictors, which need an important input from the compiler in order to
achieve a high hit rate [135].

Level 1 It is a branch target buffer which uses hints set by the compiler to decide
the branch direction.

Level 2 For scalar codes, the processor uses a 2-level prediction scheme. A return
stack buffer provides predictions for return instructions.

Level 3 Defined as branch address calculation and correction level, it applies a cor-
rection for the exit condition of modulo-scheduled loops. It uses a special
structure that keeps track of the loop count obtained during the loop initial-
ization. However, it does not work well with tiling due to the min expressions
in the loop bounds.

52 · Chapter 4. Experimental Framework

Processor Freq. L1 (C,L,k) L1 Replacement H L2 (C,L,k) H/M P
Pentium-4 1.6GHz (8,64,4) LRU 2 (512,128,8) 24/150 20
Alpha-21264 525MHz (64,64,2) FIFO 3 (4096,64,4) 6/84 7
UltraSparc-III 750MHz (64,32,4) Random 2 (8192,512,4) 10/100 8
Itanium 800MHz (96,64,6) LRU 2 (2048,64,4) 21/117 15

Table 4.1: High-performance processors used for the experimentation. C stands for cache size in
KB, L stands for cache line size in bytes, and k stands for the degree of associativity. H/M is the
hit/miss cycles for each cache level. P is the misprediction penalty.

Name Freq. L1(C,L,k) H/M
microSPARC II-ep 100MHz (8,16,1) 1/10
PowerPC 604e 300MHz (16,32,4) 1/38
MIPS R4000 250MHz (16,16,1) 1/40
IDT 79RC64574 200MHz (32,32,2) 1/16
NEC V850E/ME2 100MHz (8,16,2) 1/10

Table 4.2: Microprocessors and microcontrollers used for the experimentation. C stands for cache
size in KB, L stands for cache line size in bytes, and k stands for the degree of associativity. H/M
is the hit/miss cycles for each cache level.

4.2 Embedded Processors

Embedded systems are commonly considered very specific systems based on a mi-
croprocessor with memory integrated on the chip. Nowadays, emerging areas like
car computers demand real-time capabilities but at a relative low cost. Yet, some
of these new applications require a high throughput.

Microprocessor companies are moving from 4-, 8- and 16-bit processors to the
current 32-bit architectures. This includes the new ARM processors, some down-
scaled x86, and simplified PowerPC and MIPS processors. Caches are mainly used
on many high-end embedded 32-bit processors. We have chosen a set of modern
processors widely used in the real-time area: microSPARC-IIep [139], PowerPC
604e [119], IDT 79RC64574 [75] and MIPS R4000 [117]. We also include results for
the recently released NEC V850E/ME2 32-bit high-performance microcontroller.

4.3. Summary of Characteristics · 53

Name Description
Analysis

mgrid k 3-D loop nest from mgrid (SPECfp95)
hydro k Three 2-D loop nests from kernel 18 (Livermore)
mmt 3-D blocked loop nest that computes A×BT [48]
mmi Matrix multiplication with initialization as shown in [63]
lwsi k 4-D imperfect loop nest from lwsi

applu Parabolic/elliptic partial differential equations
Optimization

matmul Matrix multiplication
matvec Matrix vector multiplication
t2d 2D matrix transposition
adi 2D ADI integration
vpenta Invert 3 pentadiagonals

Analysis & Optimization

tomcatv Generation of grids
swim Solver for the shallow water equations

Table 4.3: Benchmarks used to evaluate our optimization framework.

4.3 Summary of Characteristics

We summarize the characteristics of the processors used in two tables. Cache laten-
cies and miss-prediction penalties1 have been obtained from vendors’ specifications.

Table 4.1 shows the configurations of the high-performance machines used in our
analysis, whereas Table 4.2 describes the embedded processors. For each of them, we
give the frequency and cache memory configuration that apply to each family. Note
that for the Itanium processor, we ignore the L1 cache since it only holds scalars.

4.4 Applications

The benchmarks evaluated in this study are all applications widely used in the high-
performance and real-time area. They are drawn from several benchmark suites.
The loop nest fragments and complete programs considered are from SPECfp95,
Perfect Suite, Livermore kernels, Linpack, Lapack, NAS and BIHAR libraries. Re-
garding the real-time kernels, this collection includes both kernels operating on
arrays and scalar programs, such as sqrt and fibonacci. We have also used fft

to show the feasibility of our approach for typical DSP codes.

1It is basically the length of the pipeline.

54 · Chapter 4. Experimental Framework

An overview of the five kernels that have been used to evaluate our analysis and
optimization techniques can be seen in Table 4.3. For all of them, we have studied
a set of different sizes that are reasoned through the thesis. The source code of all
of them can be found in Appendix A and Appendix B.

Name Description

mm Multiply two 100x100 Int matrices
cnt Count and sum values in a 100x100 Int matrix
st Calc Sum, Mean, Var (2 arrays of 1000 doubles)
sqrt Computes square root of 1384
fib Computes the first 30 Fibonacci numbers
srt Bubblesort of 1000 double array
ndes Encrypts and decrypts 64 bits
fft Fast Fourier transformation of 512 complex numbers

Table 4.4: Real-time benchmarks used.

Table 4.4 gives an overview of the 8 real-time programs considered. They are
all written in C, drawn from different real-time papers that analyze data cache
behavior [5, 87, 162].

4.5 Environment

To check the accuracy of our method, we compare our results against a simulator.
We have used a locally trace-driven simulator [153], which has been validated over
the years against the well-known Dinero III [69]. We have modified it to handle
locking caches and traces from different tasks. We have validated the new features
with micro-benchmark simulation, running small kernels and comparing the results
with the expected ones. Traces only contain load/store of data and lock/unlock
instructions, and are tagged with a task ID.

All programs are compiled and linked using the gnu tools (gcc and g77) with
the optimization level set to “-O3”. The base addresses and access order of the
references are obtained from the binaries. Hence, the miss ratio of a program is
sensitive to the particular binary being used. However, for the sake of fairness, both
the simulated and the analyzed codes have the same accesses executed in the same
order. Figure 4.1 details the steps used to compare the simulator and the analytical
methods.

The actual number of misses when executing programs on the Pentium-4 plat-
form are obtained by means of the performance counters. We have measured the

4.5. Environment · 55

Code

Front-End

CMEs IR

Generate Equations

Misses

Instrumented
Version

Instrument

Low IR

Compile & Link

Obtain Addresses

Misses

Fig. 4.1: Instrumentation framework.

events L1 load misses retired and L2 load misses retired.
For an evaluation of the ability of our model to predict actual cache miss ratios,

we refer the interested reader to [155]. In that work (which is not part of this thesis),
we have run different kernels on a modern out-of-order processor and quantified the
error between predicted and actual cache miss ratios.

56 · Chapter 4. Experimental Framework

5

Whole-Program Analysis

CHAPTER 5

WHOLE-PROGRAM ANALYSIS

In order to model cache behavior we must be able to identify the following infor-
mation: (i) the first time a memory line is brought to cache, (ii) two consecutive
accesses to a memory line, and (iii) all intervening accesses between such a pair of
consecutive accesses. We first introduce our compile-time framework for achieving
these three goals, which consists of abstract call inlining, iteration vectors and reuse
analysis. Abstract inlining allows having a representation of all memory references
which is not context sensitive. We use the iteration vectors to represent exactly
the address trace of the program, whereas the reuse analysis describes the potential
reuses among all references. Then, we present the techniques used to obtain the
cache behavior based on the new reuse description. A method to generate and solve
the equations that represent cache behavior for whole programs is also described.

5.1 Abstract Inlining

In an attempt to analyze exactly a program containing call statements, we perform
an abstract inlining for a call whenever possible. We do not actually generate the
inlined code. We only need to obtain the information required for analyzing the
inlined code. Each subroutine is associated with an abstract function consisting of
the information about the memory accesses to the runtime stack, its code body (i.e.,
its loop nests with references), and local variable and formal parameter declarations.

The two issues addressed by the abstract inlining are discussed below.

• Modeling of Accesses to the Runtime Stack. The calling conventions are
compiler- and architecture-dependent. What is shown in Figure 5.1 is one such
a convention for a 32-bit machine, in which all actual arguments are passed via
the runtime stack. Stack denotes the runtime stack modeled as a 1-D array.
If BP (base pointer to the stack) is 0 initially, its value is known at compile
time at every call site due to the absence of recursion (see our program model

60 · Chapter 5. Whole-Program Analysis

· · ·
f(A, B);
· · ·

⇒

· · ·
Stack[BP] = RetAddr
Stack[BP + 4] = @A
Stack[BP + 8] = @B
. . . = Stack[BP − 4]
. . . = Stack[BP − 8]
f’s code body (with the formals
replaced by actuals or renamed)

RetAddr = Stack[BP − 12]
· · ·

Fig. 5.1: Abstract inlining of a subroutine call.

in Section 3.2). The base address of Stack, if unknown at compile time, has
to be obtained at run time. Then Stack is treated just like an ordinary array.

• Transformation of Array References in the Callee. References to the
dummy arrays are transformed so that the subscript expressions of the match-
ing actuals are incorporated into the transformed references. The references to
the non-dummy arrays remain unchanged. The inlined code may not compile.
Hence, the term abstract inlining.

The inlined code is statically analyzable if the original program is. The inlined
code contains the same memory accesses executed in the same order as in the original
program; the abstract inlining has not modified anything in the original program.

In our current implementation, system calls (to I/O subroutines and intrinsic
functions) are not inlined. The memory accesses inside are not accounted for. These
calls can be inlined if their abstract functions are known. Without loss of generality,
from now on we assume that all parameters are passed by reference.

5.1.1 Transforming Array References

Not every call can be inlined according to Table 5.1. In order to analyze a call
exactly, our method needs to know at compile time the base addresses of all its
actual parameters. Let AP be an actual parameter that is either a scalar or an
array variable or a subscripted variable with an affine data access expression and
FP be its matching formal parameter.

AP is propagateable if, after inlining, every reference to FP can be replaced by a
reference to AP . This allows the reuse to AP both in the caller and in all the callees

5.1. Abstract Inlining · 61

Actual Parameters Calls
Program

P-/R-/N-able A/T
tomcatv 0/0/0 0/0
swim 0/0/0 5/5
su2cor 503/87/0 150/150
hydro2d 122/0/19 82/82
mgrid 68/0/35 2/23
applu 79/0/0 23/23
apsi 1601/0/210 118/186
fppp 83/0/3 16/17

turb3D 759/0/75 86/111
wave5 591/2/110 127/171

Actual Parameters Calls
Program

P-/R-/N-able A/T
CSS 2489/0/8 965/965
LWSI 140/0/19 18/28
MTSI 186/0/2 63/63
NASI 236/0/237 41/75
OCSI 620/0/48 209/244
SDSI 189/18/49 103/129
SMSI 321/0/41 38/53
SRSI 242/0/176 13/50
TFSI 137/0/91 13/44
WSSI 836/127/7 179/185

(a) SPECfp95 (b) Perfect

Overall P-/R-/N-able A/T
TOTAL 9202/234/1130 2251/2604

% 87.09/2.21/10.89 86.44/100

Table 5.1: Statistics for the actual parameters and calls in SPECfp95 and Perfect benchmarks. T

stands for the total number of calls, whereas A stands for all analyzable calls.

to be potentially exploited. In column “P-able”, we consider AP as propagateable
if FP is a scalar, or a one-dimensional array or if both AP and FP are arrays of
the same dimensionality with matching sizes in all but the first1 dimension.

Example 7 Let {a[N][M], a[I1][I2]} be the actual parameter (a is an array whose
dimensions are N and M), and {s[N][M], s[I3][I4+1]} the formal parameter. We are
interested in the memory address accessed by the formal parameter. Let SOF be the
size of the elements of the array. The memory address is given by the expression:

@s+ I3 ∗ SOF ∗M + (I4 + 1) ∗ SOF

Since parameters are passed by reference, @s is the memory address of the actual
parameter. This is, @a+ I1 ∗ SOF ∗M + I2 ∗ SOF. Substituting, we obtain:

@a+ I1 ∗ SOF ∗M + I2 ∗ SOF+ I3 ∗ SOF ∗M + (I4 + 1) ∗ SOF

Finally, grouping, we obtain that it is propagateable:

@a+ (I1 + I3) ∗ SOF ∗M + (I2 + I4 + 1) ∗ SOF = a[I1 + I3][I2 + I4 + 1]

1For FORTRAN77 codes it would be the last dimension.

62 · Chapter 5. Whole-Program Analysis

AP is renameable if, after inlining, every reference to FP can be replaced by a
reference to AP ′ such that AP and AP ′ have the same base address (i.e., @AP =
@AP ′). Notice that by definition, propagateable actuals are also renameable. In
column “R-able” we account for actuals that are classified as renameable and not
as propagateable. We consider AP as renameable if the sizes of all but the first
dimension for AP and FP are known statically. This still allows the reuse between
the references to FP in the same subroutine to be exploited (but not the reuse
between the caller and the callee.)

Example 8 Let {a[N][M], a[I1][I2]} be the actual parameter (a is an array whose
dimensions are N and M), and {s[N’][M’][P]), s[I3][I4][2])} the formal parameter.
We are interested in the memory address accessed by the formal parameter. Let
SOF be the size of the elements of the array. The memory address is given by the
expression:

@s+ I3 ∗ SOF ∗M ′ ∗ P + I4 ∗ SOF ∗ P + 2 ∗ SOF

Since we assume parameters are passed by reference, @s is the memory address of
the actual parameter. This is, @a+ I1 ∗SOF∗M + I2 ∗SOF. Substituting, we obtain:

@a+ I1 ∗ SOF ∗M + I2 ∗ SOF+ I3 ∗ SOF ∗M ′ ∗ P + I4 ∗ SOF ∗ P + 2 ∗ SOF

Finally, grouping and renaming S by S1, we obtain:

@a+ I3 ∗ SOF ∗M ′ ∗ P + I4 ∗ SOF ∗ P + (2 + I2 + I1 ∗M) ∗ SOF =

= s1 [I3][I4][I2 + 2 + I1 ∗M]

Column “N-able” accounts for the actuals that are neither propagateable nor
renameable, named non-analyzable. The propagateable and renameable actuals are
potentially analyzable since all references to FP can be analyzable if affine.

A call can be abstractly inlined, i.e., is potentially analyzable, if all its actuals are
analyzable. Table 5.1 shows that we can inline 86.44% of calls from SPECfp95 and
Perfect benchmarks. These statistics are obtained at compile time by examining
only a call and its callee.

Figure 5.2 serves to illustrate the inlining of a code segment (which may have out
of array bound accesses if loop bounds are not chosen properly). The inlined code
does not compile (dimensions of the arrays declared in the main program should be
statically known) but can be analyzed by our method. Hence, the name abstract
inlining.

5.1. Abstract Inlining · 63

double x, a[10][10], b[20][20];
for(I1 = . . .) {

for(I2 = . . .) {
a[I1][I2] = · · · ;
f(x, a, b, b[I1][I2]);
g(a[I1][I2], a[1][I2], b);

void f(y, c, d, s) {
double y, c[10][10], d[400], ∗s[10][10];
for(I3 = . . .) {

for(I4 = . . .) {
c[I3][I4 − 1] = y + d[I3 − 1 + 20 ∗ (I4 − 1)];
s[I3][I4][2] = · · · ;

void g(e, f, t)
double E[10][10], F [10], T [100, 4];
for(I3 = . . .) {

for(I4 = . . .) {
e[I3][I4] = f [I4]− t[I3][I4];

⇓

double x, a[10][10], b[20][20];
//THE FOLLOWING LINE DOES NOT COMPILE
double b1[∗][10][10], b2[100][4];
for(I1 = . . .) {

for(I2 = . . .) {
a[I1][I2] = · · · ;
for(I3 = . . .) {

for(I4 = . . .) {
a[I3][I4 − 1] = x+ b[I3 − 1 + 20 ∗ (I4 − 1)];
b1[I3][I4][I2 + 2 + I1 ∗ 20] = · · · ;

for(I3 = . . .) {
for(I4 = . . .) {
a[I1 + I3][I2 + I4] = a[I4 + 1][I2]− b2[I3][I4];

Fig. 5.2: Propagation and renaming of actual parameters. All actuals but the last are propagated.
The last actuals in both calls are renamed to b1 and b2, respectively. After inlining, @b = @b1 =
@b2.

64 · Chapter 5. Whole-Program Analysis

5.2 Iteration Vectors

The inlined program has a flat structure consisting of multiple loop nests without
any calls. The iteration vectors are defined to introduce a total order among all the
memory accesses from both within a nest and across nests in the abstractly inlined
program. They define precisely the address trace of the program at compile time.

After applying loop normalization (see Section 3.3.2), we have statements dis-
tributed among innermost loops. The access of a reference in the program can be
uniquely identified by (a) the loop nest in which the reference is contained, (b) the
iteration of the nest at which the reference is accessed, and (c) the access order of
the reference in the nest.

A particular instance of a statement S (known as an iteration or iteration point,
see Section 2.2.1) of the enclosing loop nest is identified by a 2n-dimensional iteration
vector of the form ~ı = (`1, I1, `2, I2, . . . , `n, In), where

• ~L = (`1, `2, · · · , `n) is the loop label (vector) for the innermost loop containing
S, and

• ~I = (I1, I2, . . . , In) is the index vector consisting of the indices of the n loops
enclosing S.

L1: for(I1 = 0; I1 < N ; I1 + +) { Iteration Vector
L2: for(I2 = 1; I2 < N ; I2 + +) {

if(I2 > 2)
S1: b[I1 − 1][I2] = · · · ; (1, I1, 1, I2)
L3: for(I2 = . . .) {
S2: · · · = b[I1][I2]; (1, I1, 2, I2)
L4: for(I1 = · · ·) {
L5: for(I2 = · · ·) {
S3: b[I2][I1] = · · · ; (2, I1, 1, I2)

Fig. 5.3: Iteration vectors for statements.

Figure 5.3 lists the iteration vector for each statement in the example. It is not
difficult to see how the iteration vectors are derived in general.

Let ~̀L be the loop label for loop nest L. Since we have applied loop normalization,
all the loop labels are n-dimensional, where n is the depth of the deepest loop nest.
The i-th entry of the loop label, if defined, is the order of the loop nest in the i-

5.3. Reference Iteration Spaces · 65

depth.2 Otherwise, we use the undefined value ⊥. Using this formulation, we obtain
the following loop labels for the example in Figure 5.3:

L1: ~̀
L1
=(1,⊥)

L2: ~̀
L2
=(1,1)

L3: ~̀
L3
=(1,2)

L4: ~̀
L4
=(2,⊥)

L5: ~̀
L5
=(2,1)

As usual, the set of all iterations for a particular loop nest is called the iteration
space of that nest (see Section 2.2.1).

Definition 5.1 (Access Order of References) Let SL be the set of all references
in a loop nest L. We define α : SL → Z

+ such that α(R) = k, meaning that
R is the k-th accessed reference (with any guarding IF conditional ignored) in
a common iteration of L.

In a sequential execution, all iteration points are executed in lexicographical order.
The usual lexicographic order operators ≺, ¹, Â and º are used later.

5.3 Reference Iteration Spaces

The reference iteration space of a reference R is defined as the set of iteration points
where the reference is accessed.

Definition 5.2 (Reference Iteration Spaces) The reference iteration space (RIS)
of a reference R, denoted RISR ⊂ Z

n, is the n-dimensional polytope defined
by the bounds of its n enclosing loops and its guiding if conditional, if any.

If a reference is not guarded by a conditional, its RIS is the entire iteration space
of the enclosing loop nest. Otherwise, the RIS can be a subspace of that iteration
space.

If a reference is guarded by affine conditionals (containing possibly and, or, equal-
ity or not operators), the corresponding RIS can always be expressed as a finite
union of convex polytopes in Z

n. Such a RIS can be manipulated by the Omega
library [127] and its volume computed using methods [34, 61, 127] for various pur-
poses. Figure 5.4 depicts three commonly occurring cases.

2This can be seen as the numbering of sections and subsections in a paper.

66 · Chapter 5. Whole-Program Analysis

if (e1) {
· · ·

}

e1

(a)

if (e1 && e2) {
· · ·

}

e1 e2

(b)

if (e1 ‖ e2) {
· · ·

}

(c)

e1 e2

Fig. 5.4: Some commonly occurring RISs (in dotted areas).

Example 9 Consider the statement S1 in Figure 5.3. Applying the definition of
RIS, we obtain:

RIS (b[I1−1][I2]) = {(i1, i2) | 0 ≤ i1 < N, 2 < i2 < N}

The set of all accesses of a reference R contained in the nest (`1, . . . , `n) is defined
by:

MR = {(`1, i1, . . . , `n, in, α(l1,...,ln)(R)) | (i1, . . . , in) ∈ RISR}

If RefSet is the set of all references, then the set of all accesses in the program is
given by:

M =
⋃

R∈RefSet

MR

The accesses in M ordered by ≺ give rise to precisely the address trace of the
program at compile time.

Our analytical method can deal with conditionals that can be analyzed at com-
pile time without relying on any runtime information about the conditionals in-
volved. However, data-dependent conditional expressions such as a[i][j]==0, which
are supposed to be unknown until run time, are beyond any static cache analysis.
In Section 7 we show how these statements introduce unpredictability, and discuss
our approach to eliminating them in order to compute the worst-case scenario.

5.4 Reuse Analysis

Wolf and Lam [168] discuss how to compute reuse vectors for perfect loop nests
with straight-line assignments, assuming all RISs are the entire iteration space (see

5.4. Reuse Analysis · 67

Section 2.2.5). Later, Xue and Huang [174] describe an extension to allow non-
elementary reuse vectors to be represented exactly.

We generalize Wolf and Lam’s reuse framework [168, 174] to calculate reuse
vectors across different RISs, including multiple nests and conditionals. We also
add additional spatial reuse vectors to capture the reuse spanning two adjacent
rows3 of an array. Finally, we provide some discussions on the accuracy of our
approach.

5.4.1 Parametric Reuse Analysis

Reuse analysis is concerned with identifying two consecutive accesses to a memory
line. When we use this reuse to describe cache behavior, we are concerned with
finding two consecutive memory accesses to a memory line, with the earlier being the
most recent previous access (MRPA). Next, we summarize our previous work [175],
where we give a precise and insightful definition for the problem addressed in reuse
analysis.

We assume the existence of an undefined access vector ⊥ 6∈ M that is always
executed before any other access: ∀ ~a ∈M : ⊥ ≺ ~a. Let S be a set of integer vectors.
The notation max≺ S denotes the lexicographic maximum of S. By convention,
max≺ ∅ = ⊥.

Let R and R′ be two arbitrary references, which are not necessarily different.
We define:

PR,R′(~a) = {~b ∈MR′ | ~b ≺ ~a,mlR(~a) = mlR′(~b)} (5.1)

which consists of all accesses of R′ preceding ~a and mapped to the same line as ~a.
Let

ipredR,R′ :MR →MR′ ∪ {⊥}, ipredR,R′(~a) = max≺ PR,R′(~a) (5.2)

Then ipredR,R′(~a) is the most recent previous access, i.e., the one that immediately
precedes ~a in PR,R′(~a).

By composing the ipredR,R′ functions for a fixed R but varying R′, we get:

ipredR :MR →M∪ {⊥}, ipredR(~a) = max≺{ipredR,R′(~a) | R′ ∈ RefSet} (5.3)

Any reuse analysis is concerned with finding a good approximation
of the function ipredR for every reference in the program.

3For FORTRAN77 codes it would be columns.

68 · Chapter 5. Whole-Program Analysis

From the definition of the function ipredR,R′ , it is not difficult to recognize that we
can build the function exactly using parametric integer programming (PIP) [43, 110].
However, it is unnecessary and can be expensive to solve this problem as a form of
PIP for a large number of reference pairs. In numerical codes, the patterns of
accesses are regular [114]. We can capture most of this regularity by considering
only the accesses from uniformly generated references [50, 168, 160, 174] that are
generalized from single (see Section 2.2.3) to multiple nests.

We have developed a practical algorithm, named FindMRPA [175] for computing
mrpaR,R′ when R and R′ are uniformly generated. This algorithm is exact in com-
monly occurring cases, and according to our experiments, only in 2% of the cases
requires the application of integer programming.

Shortest Reuse Vectors Given ~a ∈ MR and ~b ∈
⋃

R′∈RefSet PR,R′(~a), ~a − ~b repre-
sents a generalization of Wolf and Lam’s reuse vectors from single nests to multiple
nests [168]. Among all these reuse vectors of the access ~a, the shortest reuse vector
(SRV) in the entire program is:

SRV R(~a) = ~a− ipredR(~a) (5.4)

SRV R(~a) Â ~0

The concepts of MRPAs and shortest reuse vector are equivalent but the latter
represents a roundabout way of providing the same information. ipredR,R′ depends
on the following factors: (a) the subscript expressions of R and R′, (b) the base
addresses of the arrays accessed by R and R′, (c) the array sizes in all but the
first dimension, (d) the line size L, (e) the shape of RISR and (f) the shape of
RISR′ . Wolf and Lam’s reuse framework for single nests [168], while sufficient for
their optimization purposes, does not provide the notion of shortest reuse vector
required in behavior analysis. This is because they compute reuse vectors without
considering the factors (b) – (f) above.

Next, we explain the implications of this theory when computing the shortest
reuse vectors for our analysis.

5.4.2 Group Reuse Among Different RISs

Let Rp and Rc be two uniformly generated references. Let Rp be the producer

Rp[H~I + ~cp] nested inside the innermost loop labeled by (`p
1, `

p
2, · · · , `

p
n) (see Sec-

tion 5.2) and Rc be the consumer Rc[H~I + ~cc] nested inside the innermost loop

labeled by (`c1, `
c
2, · · · , `

c
n), where ~I = (I1, I2, . . . , In).

5.4. Reuse Analysis · 69

Consider temporal reuse between Rp and Rc. Iterations ~ı1 of Rp and ~ı2 of Rc

reference the same data whenever H~ı1 + ~cp = H~ı2 + ~cc, that is, when M(~ı1 −~ı2) =
~cp − ~cc.

Let ~x = (x1, x2, . . . , xn) be a solution to:

H~x = ~cp − ~cc (5.5)

and

~rt = (`c1 − `p1, x1, `
c
2 − `p2, x2, . . . , `

c
n − `pn, xn)

such that ~rt º 0. Then ~rt is a temporal reuse vector from Rp to Rc.
We assume a C data layout, where all arrays are row-major. Let ~y = (y1, y2, . . . , yn)

be a solution to:

H ′~y = ~c′p − ~c′c
|H1~y| < L

(5.6)

but not a solution to (5.5), where H1 is the second row of H, and every primed
term is obtained from its corresponding term in (5.5) with its second row or entry
removed. Let

~rs = (`c1 − `p1, y1, `
c
2 − `p2, y2, . . . , `

c
n − `pn, yn)

such that ~rs º 0. Then ~rs is a spatial reuse vector from Rp to Rc. Note that
equations 5.5 and 5.6 are equivalent to those for perfectly nested loops (2.4 and 2.3)
respectively.

If a memory line spans two adjacent rows of an array, we will add spatial reuse
vectors to capture such reuse. The spatial reuse vectors of this second kind are
added individually depending on the iteration space shapes and cache parameters
used.

Let us derive reuse vectors for the first two references to b in Figure 5.3. Let Rp

be b[I1 − 1][I2] nested in the inner loop labeled by ~Lp = (1, 1) and Rc be b[I1][I2]

nested inside the inner loop labeled by ~Lc = (1, 2). The subscript expressions for
both references are affine:

H~I + ~cp = [1 0
0 1]

[
I1
I2

]
+ [−1

0]

H~I + ~cc = [1 0
0 1]

[
I1
I2

]
+ [0

0]

To find the spatial reuse vectors spanning a single column of b, we solve:

[1 0] [y1

y2
] = 0

[0 1] [y1

y2
] < L

70 · Chapter 5. Whole-Program Analysis

 b[i1][N-2] b[i1][N-1] b[i1+1][0] b[i1+1][1]

Rp accessed when (I1,I2)=(i1,N-2)

Rc accessed when (I1,I2)=(i1+1,0)

One Memory Line

Fig. 5.5: Spatial reuse across array rows (L=4).

which is the instance of the equation (5.6) for this case. Thus, all these vectors have
the form (0, y2). We would add the following spatial reuse vectors:

(0, 0, 1,−2), (0, 0, 1,−3), . . . , (0, 0, 1,−(L− 1))

Finally, we would need reuse vectors (0, 1, 0, 1−N) to capture the reuse for the
elements at the end of one array row and the beginning of the next row. This is
illustrated in Figure 5.5.

5.4.3 Discussion

If a reference is guarded by an if conditional, its RIS may not be the entire iteration
space of the enclosing loop nest. This causes complications only in the derivation
of group-temporal reuse vectors. The self-temporal and spatial reuse vectors for a
reference are defined and derived without a need to refer to its RIS. As for the group-
reuse vectors from Rp to Rc, a possible way to handle irregular RISs is to generate
all potential ones conservatively. In the case of group-temporal reuse, there can be
infinitely many reuse vectors from some facets of RISRp to some facets of RISRc .

Consider an extreme example illustrated in Figure 5.6. R2 (the reusing reference)
at every point (I1, I2) on the left boundary of its RIS may reuse R1 (the reused
reference) at the point (30, I2) on the right boundary of R1’s RIS along the symbolic
group-reuse vector (I1−30, 0). If we ignore the two conditionals to analyze the reuse
between the two references, the group-reuse vector ~r = (0, 0) will describe correctly
the reuse from R1 to R2. When the miss equations for R2 are formulated, the two
conditionals must be taken into account. Then this reuse vector will be ignored

5.5. Cache Behavior Modeling · 71

for(I1 = 0; I1 < 400; I1++) {
for(I2 = 0; I2 < 140; I2++) {

if(I1 <= 30)

R1: a[I2])

if(I1 + I2 >= 200)

R2: a[I2]

}
}

I1

I2

(170, 0)

(30, 0)

RIS for R1

RIS for R2

Fig. 5.6: Derivation of group-reuse vectors.

since the two RISs do not overlap. As a result, the number of cache misses for R2

on the left boundary of its RIS may be over-estimated. For practical applications,
such an over-estimation is negligible because (a) the over-estimation occurs only on
a facet of a RIS (e.g., the left boundary of R2’s RIS) and (b) the underlying reference
may reuse on the facet via other reuse vectors. In the example, R2 may reuse from
itself along the self-spatial reuse vector (1,−1). Thus, only a small fraction of these
boundary points are miss-predicted.

This situation arises at most in 2% of the cases [175]. Our extensive validation
confirms that an overestimation of cache misses caused by ignoring this reuse is
negligible since (a) we overestimate only on some facets of RISRc and (b) Rc may
reuse on the facets by other reuse vectors (usually self-reuse vectors). However,
when we need an exact description of the reuse, we apply integer programming
techniques [175] to guarantee that we obtain the shortest reuse vector.

5.5 Cache Behavior Modeling

Following the same classification as the CMEs, we divide our miss equations into
two groups : compulsory or cold (miss) equations and replacement (miss) equations.
Compulsory misses represent the first time a memory line is touched while replace-
ment misses are those accesses that result in misses because the cache lines that
would have been reused were evicted from the cache before they get reused. Note
that replacement equations represent both capacity and interference misses.

In this section, we present the miss equations as a specification of the cache
misses in a loop nest. We then discuss two algorithms for finding cache misses
from these equations. In particular, our replacement miss equations are formulated
and solved differently from those in the CMEs [52] since the involved RISs can be

72 · Chapter 5. Whole-Program Analysis

different. We also describe an algorithm for computing efficiently the volume of a
RIS for sampling purposes.

5.5.1 Forming Equations

Let ~r be a reuse vector from the producer reference Rp to the consumer reference
Rc. We want to find out if Rc at iteration ~ı can reuse the cache line accessed by
Rp at ~ı − ~r. Let Ri be an intervening reference such that the access of Ri at some
iteration point ~ between ~ı− ~r and ~ı 4 may be mapped to the same cache set as the
access of Rp at ~ı − ~r. If that happens, a set contention occurs between the access
of Rp at ~ı− ~r and the access of Ri at ~. In a k-way set associative cache with LRU
replacement policy, it takes k distinct set contentions to evict the cache line touched
by the access of Rp at ~ı− ~r.

We give below the miss equations that can be further analyzed to determine if
the access of Rc at ~ı is a miss or hit, assuming the single reuse vector ~r from Rp to
Rc and the single intervening reference Ri.

Compulsory Equations

The compulsory equations for Rc along ~r represent the iteration points where the
memory lines are brought to the cache for the first time:

~ı ∈ RISRc

and
(
~ı− ~r 6∈ RISRp

or
mlRc(~ı) 6= mlRp(~ı− ~r)

)

If ~r is temporal, the inequality is false and thus redundant.

Replacement Equations

The replacement equations for Rc along ~r are to investigate if Rc at iteration ~ı can
reuse the cache line that Rp accessed at iteration ~ı−~r subject to the set contentions
caused by the memory accesses from Ri. These equations only describe cache set
contentions, and we rely on the solver to check whether they result in a miss or not.
Ri may cause a cache set contention at all intervening points executed between ~ı−~r

4In lexicographic order.

5.5. Cache Behavior Modeling · 73

input

P = a program
S = sample

output

MissAnalyzer(P ,S) =
∑

R |RISR|×Miss Ratio(R)
∑

R |RISR|

algorithm

for each reference R

HR = RMR = ∅ // Hits/Replacement misses for R

CMR = S(R) // Compulsory misses for R

for each reuse vector in ≺ order
for each ~ı ∈ CMR

if ~ı is “compulsory” miss
if ~ı is a “replacement” hit

HR = HR ∪ {~ı}; CMR = CMR −~ı

else
RMR = RMR ∪ {~ı}; CMR = CMR −~ı

Miss Ratio(R) = |CMR|+|RMR|
|S(R)|

Fig. 5.7: An algorithm for estimating cache misses.

and ~ı:

mlRc(~ı) = mlRp(~ı− ~r)
~ı ∈ RISRc

~ı− ~r ∈ RISRp

csRc(~ı) = csRi(~)
~ ∈ JRi

where JRi denotes the set of all these intervening iteration points, called the inter-
ference set for Rc along ~r, and is specified precisely by:

JRi = {~ ∈ RISRi | ~ ∈ ¿~ı− ~r,~ıÀ}

where ‘¿’ is ‘[’ if Ri is lexically after Rp and ‘(’ otherwise and ‘À’ is ‘]’ if Ri is
lexically before Rc and ‘)’ otherwise. A reference is neither lexically before nor
lexically after itself.

5.5.2 FindMisses and EstimateMisses

Figure 5.7 gives an algorithm for obtaining the cache misses from a whole program,
consisting of multiple references and reuse vectors in multiple loop nests. It analyzes

74 · Chapter 5. Whole-Program Analysis

each reference by going through its reuse vectors in lexicographical order ≺ (see
Section 2.3.3). If an iteration point is a solution to the cold equations along the
current reuse vector ~r, its behavior is indeterminate and will be examined further
using the other reuse vectors later in the list. Otherwise, the iteration point is
classified either as a hit or a miss using the replacement equations along ~r. After all
reuse vectors have been checked, the remaining indeterminate iteration points are
cold misses.

input input

P = a program P = a program
c = confidence percentage
w = interval length

output output

FindMisses(P) = miss ratio EstimateMisses(P) = miss ratio

algorithm algorithm

for each reference R for each reference R
S(R) = RISR // analyze all points compute the volume of RISR

if RISR is too small to achieve (c, w)
S(R) = RISR // analyze all points

else
S(R) = a sample (c, w) of RISR

FindMisses(P)= MissAnalyzer(P ,S) EstimateMisses(P)=MissAnalyzer(P ,S)

(a) FindMisses (b) EstimateMisses

Fig. 5.8: Algorithms to compute cache misses with different trade-offs between accuracy and
execution time.

We present our two practical algorithms in Figure 5.8. FindMisses analyzes
all iteration points in a RIS and is practical only for programs of small sizes [52].
EstimateMisses analyzes a sample of a RIS and is capable of analyzing programs
significantly more efficiently with a controlled degree of accuracy. EstimateMisses
requires the user to enter values to the two parameters: the confidence percentage c
and the confidence width w, where 0% < c 6 100% and 0 < w < 1 (see Section 3.4).
The two input values determine the size of the sample taken from RISR and also
impose a lower bound on |RISR|. If a RIS is too small to achieve (c, w), we analyze

5.6. Locking Caches · 75

all points in RISR. The meanings of c and w are such that if we run EstimateMisses
many times, the real miss ratio for each R obtained in c of these runs will lie in the
interval [Miss Ratio(R)−w/2,Miss Ratio(R)+w/2]. However, this interpretation
does not apply to the miss ratio for the entire loop nest. In all our experiments, real
and estimated miss ratios are close (see Section 5.8).

Thus, the statistical sampling technique used requires the size of every RIS to be
calculated. Our algorithm for computing the volume of a RIS is described as follows.
If the IF conditions guarding a reference form a union of convex polyhedra, then
the corresponding RIS is a union of convex polyhedra because the iteration space is
convex. The number of points contained in such a RIS is calculated by slicing the
RIS recursively into regions of lower and lower dimensions until eventually every
region is either empty or a (one-dimensional) union of line segments so that the
points in the region can be counted easily. This algorithm, while exponential in
terms of the dimension of the iteration space, is very efficient for practical programs
with simple loop bounds and affine conditionals. Other methods for computing the
volume of a convex polytope also exist [34, 127].

If a reference R is guarded by some non-affine conditionals, then RISR can be
arbitrarily complex. There is not any general method for computing the volume of
RISR. In our implementation, we compute the volume of such a RIS by proceeding
as before with all non-affine conditionals ignored and then counting only those points
that satisfy all non-affine conditionals. This simple extension has not been used in
our experiments since we have not found any data-independent conditional that is
not affine in any programs analyzed.

5.6 Locking Caches

When we extend our analysis to caches with locking features, we have to treat in
a different manner references within a locked region compared to those within an
unlocked region. Regarding the reuse vectors, it is enough to ignore reuse vectors
whose producer reference is in a locked region. As those accesses within a locked
region do not bring data to the cache, they cannot affect the result of future accesses.
Furthermore, they cannot affect the decision of the LRU replacement policy since
they do not create a recent use of a memory line. When analyzing potential cache
set contentions, references within a locked region should be ignored. Again, since
they do not either bring data or modify the LRU state, they will not generate any
set contention.

76 · Chapter 5. Whole-Program Analysis

L1
EquationsSample

L1 hits

L2
Equations

L3
Equations

L2 hits L3 hits

L3 misses

Fig. 5.9: Our approach for analyzing multi-level caches.

5.7 Multi-level Caches

The increasing performance mismatch between memory and processor speeds has
required an increased number of cache levels. For instance, Itanium [135] has three
levels of cache. Thus, an accurate model for predicting cache behavior must give a
quantitative measurement of cache misses for all levels of cache. Therefore, we have
extended the analysis to describe cache behavior for modern architectures.

Given a memory reference, the equations are to investigate whether the reuse
described by its reuse vectors is realized or not. Thus, for these architectures, we
have to analyze differently memory references depending on the cache level they
are accessing. For that purpose, a set of equations that describes precisely the
relationship among the iteration space, array sizes and cache parameters is set up
for each of the cache levels.

Figure 5.9 shows our approach for a 3-level cache memory hierarchy. When
analyzing potential cache set contentions, only memory accesses that miss in lower
cache levels are considered. Thus, we can see the equations for each level as filters,
where only those memory accesses that miss are analyzed in further levels.

Our approach only considers data caches. If the higher levels of cache are unified,
we would ignore the accesses due to misses to the instruction cache. In the general
case, the number of data accesses is much larger than the number of accesses to
higher levels of cache due to instructions misses. Thus, only a small number of data
accesses will be miss-predicted.

5.8. Validation · 77

Kernel k (8KB,64B) (16KB,32B) (32KB,32B)

1 0.19 0.26 0.26
hydro k 2 0.18 0.26 0.25

4 0.18 0.25 0.24
1 0.35 0.30 0.20

mgrid k 2 0.37 0.17 0.14
4 0.30 0.14 0.14
1 0.19 0.24 0.43

mmt 2 0.14 0.16 0.28
4 0.09 0.16 0.21
1 0.32 0.37 0.30

mm 2 0.30 0.29 0.27
4 0.30 0.29 0.22
1 0.99 0.63 0.57

lwsi k 2 0.76 0.62 0.51
4 0.61 0.65 0.53

Table 5.2: Average absolute errors when compared against simulation for the experiments from
Figures 5.10, 5.11 and 5.12.

5.8 Validation

We now present results for different kernels, isolating if conditionals and multiple
loop nests in different tests. Then, we put everything together and we show the
accuracy and feasibility of our approach for analyzing whole programs. For results
when the cache is locked at run time, see Section 7.6.

We analyze the L1 caches of the four high-performance processors considered
in this thesis (see Table 4.1 in Section 4.3). All execution times are obtained on a
933MHz Pentium III PC with 512MB of RAM. In all experiments, we ran Estimate-
Misses with c = 95% and w = 0.05 as the input. The time elapsed on analyzing
a program includes the costs of generating and solving the equations, and does not
include the parsing time.

5.8.1 Loop Kernels

We first discuss the experimental results for the five kernels given in Table 4.3 and
that can be seen in Appendix A. Figure 5.10 compares the predicted miss ratios
against that from simulation for a fixed (8KB, 64B) cache configuration but with
three different k choices. In each graph, the miss ratios are plotted for one single
problem size parameter (with the others, if any, fixed). Figures 5.11 and 5.12 show

78 · Chapter 5. Whole-Program Analysis

Kernel
E.M.(secs) Sim.(secs)

Min. Max. Mean Min. Max. Mean

hydro k 0.03 0.27 0.19 0.04 14.49 5.10
mgrid k 0.17 0.19 0.18 0.50 35.00 11.82

mmt 0.71 15.54 4.71 1054.64 1938.65 1295.66
mm 0.07 0.89 0.33 0.13 1126.93 171.75

lwsi k 0.06 0.28 0.17 0.21 18.33 8.20

Table 5.3: Execution times for (32KB,32B,2) illustrated in Figure 5.12.

Program #lines #subrs #calls #refs

tomcatv 190 1 0 79
swim 429 6 6 52
applu 3868 16 27 2565

Table 5.4: Three whole programs.

the same plot for (16KB, 32B) and (32KB,32B) cache configurations. Table 5.2
gives the average absolute errors. Table 5.3 shows the times taken to evaluate all
the kernels for a single cache configuration. In all experiments, the predicted miss
ratios are close to the simulated ones and are obtained in times that are at least
two orders of magnitude faster than simulation. In Figures 5.10, 5.11 and 5.12,
the seemingly big differences between the predicted and simulated miss ratios for
mgrid k are due to the short ranges used for the miss ratios. We have used a
smaller number of samples for mmt because the tile size parameters KN and JN
are required to divide N .

5.8.2 Whole Programs

We evaluate EstimateMisses against a simulator using three programs from SPECfp95
detailed in Table 5.4. In each case, we have succeeded in abstractly inlining all the
calls and obtained one loop nest for the program. In addition, all actual parameters
are propagateable, meaning that the references to every actual can be potentially
exploited across calls. Each program is analyzed using the reference input data.
Thus, the variables in all READ statements are initialized from the reference data
and then treated as compile-time constants.

The three programs are further discussed below.

tomcatv from SPECfp95. This example is used to demonstrate the capability of

5.8. Validation · 79

k= 1: E.M · Sim. k = 2: E.M. Sim. k = 4: E.M. Sim.

5
10
15
20
25
30
35
40
45
50
55
60

100 200 300 400 500 600 700 800 900 1000

M
is

s
R

at
io

JN=KN

5
10
15
20
25
30
35
40
45
50

100 200 300 400 500 600 700 800 900 1000

M
is

s
R

at
io

JN=KN

6

6.5

7

7.5

8

8.5

9

9.5

100 200 300 400 500 600 700 800 900 1000

M
is

s
R

at
io

JN=KN
hydro k

5.8
6

6.2
6.4
6.6
6.8

7
7.2
7.4
7.6

40 60 80 100 120 140 160 180 200

M
is

s
R

at
io

M

4.5

4.6

4.7

4.8

4.9

5

5.1

5.2

5.3

40 60 80 100 120 140 160 180 200

M
is

s
R

at
io

M

4.3
4.4
4.5
4.6
4.7
4.8
4.9

5
5.1
5.2
5.3

40 60 80 100 120 140 160 180 200

M
is

s
R

at
io

M

mgrid k

53.5

53.6

53.7

53.8

53.9

54

54.1

54.2

54.3

200 600 1000 1400 1800

M
is

s
R

at
io

BJ=BK

53.15
53.2

53.25
53.3

53.35
53.4

53.45
53.5

53.55
53.6

53.65

200 600 1000 1400 1800

M
is

s
R

at
io

BJ=BK

53.05
53.1

53.15
53.2

53.25
53.3

53.35
53.4

53.45
53.5

200 600 1000 1400 1800

M
is

s
R

at
io

BJ=BK

mmt (N=2000)

5

10

15

20

25

30

35

100 200 300 400 500 600 700 800 900 1000

M
is

s
R

at
io

N

5

10

15

20

25

30

100 200 300 400 500 600 700 800 900 1000

M
is

s
R

at
io

N

5

10

15

20

25

30

100 200 300 400 500 600 700 800 900 1000

M
is

s
R

at
io

N

mm

0

10

20

30

40

50

60

70

100 200 300 400 500 600 700 800 900 1000

M
is

s
R

at
io

natoms

0

10

20

30

40

50

60

70

80

100 200 300 400 500 600 700 800 900 1000

M
is

s
R

at
io

natoms

7

8

9

10

11

12

13

14

100 200 300 400 500 600 700 800 900 1000

M
is

s
R

at
io

natoms

lwsi k (ns=20)

Fig. 5.10: Predicted and simulated miss ratios for (C,L)=(8KB, 64B) with three different k.

80 · Chapter 5. Whole-Program Analysis

k= 1: E.M · Sim. k = 2: E.M. Sim. k = 4: E.M. Sim.

10

15

20

25

30

35

40

45

100 200 300 400 500 600 700 800 900 1000

M
is

s
R

at
io

JN=KN

10
11
12
13
14
15
16
17
18
19
20

100 200 300 400 500 600 700 800 900 1000

M
is

s
R

at
io

JN=KN

10

11

12

13

14

15

16

17

18

100 200 300 400 500 600 700 800 900 1000

M
is

s
R

at
io

JN=KN
hydro k

9.8
10

10.2
10.4
10.6
10.8

11
11.2
11.4
11.6

40 60 80 100 120 140 160 180 200

M
is

s
R

at
io

M

8.6

8.7

8.8

8.9

9

9.1

9.2

9.3

9.4

40 60 80 100 120 140 160 180 200

M
is

s
R

at
io

M

8.6

8.7

8.8

8.9

9

9.1

9.2

9.3

9.4

40 60 80 100 120 140 160 180 200

M
is

s
R

at
io

M

mgrid k

56.1
56.15

56.2
56.25

56.3
56.35

56.4
56.45

56.5
56.55

56.6
56.65

200 600 1000 1400 1800

M
is

s
R

at
io

BJ=BK

56.05

56.1

56.15

56.2

56.25

56.3

56.35

56.4

56.45

200 600 1000 1400 1800

M
is

s
R

at
io

BJ=BK

56.05

56.1

56.15

56.2

56.25

56.3

56.35

56.4

56.45

200 600 1000 1400 1800

M
is

s
R

at
io

BJ=BK

mmt (N=2000)

5

10

15

20

25

30

35

100 200 300 400 500 600 700 800 900 1000

M
is

s
R

at
io

N

5

10

15

20

25

30

35

100 200 300 400 500 600 700 800 900 1000

M
is

s
R

at
io

N

5

10

15

20

25

30

35

100 200 300 400 500 600 700 800 900 1000

M
is

s
R

at
io

N

mm

0

5

10

15

20

25

30

35

40

0 100 200 300 400 500 600 700 800 9001000

M
is

s
R

at
io

natoms

0

5

10

15

20

25

30

35

40

0 100 200 300 400 500 600 700 800 9001000

M
is

s
R

at
io

natoms

0

5

10

15

20

25

30

0 100 200 300 400 500 600 700 800 9001000

M
is

s
R

at
io

natoms

lwsi k (ns=20)

Fig. 5.11: Predicted and simulated miss ratios for (C,L)=(16KB, 32B) with three different k.

5.8. Validation · 81

k= 1: E.M · Sim. k = 2: E.M. Sim. k = 4: E.M. Sim.

10

15

20

25

30

35

40

45

100 200 300 400 500 600 700 800 900 1000

M
is

s
R

at
io

JN=KN

10
11
12
13
14
15
16
17
18
19

100 200 300 400 500 600 700 800 900 1000

M
is

s
R

at
io

JN=KN

10

11

12

13

14

15

16

17

18

100 200 300 400 500 600 700 800 900 1000

M
is

s
R

at
io

JN=KN
hydro k

9.2

9.4

9.6

9.8

10

10.2

10.4

40 60 80 100 120 140 160 180 200

M
is

s
R

at
io

M

8.6

8.7

8.8

8.9

9

9.1

9.2

9.3

9.4

40 60 80 100 120 140 160 180 200

M
is

s
R

at
io

M

8.6

8.7

8.8

8.9

9

9.1

9.2

9.3

9.4

40 60 80 100 120 140 160 180 200

M
is

s
R

at
io

M

mgrid k

42

44

46

48

50

52

54

56

58

200 600 1000 1400 1800

M
is

s
R

at
io

BJ=BK

49

50

51

52

53

54

55

56

57

200 600 1000 1400 1800

M
is

s
R

at
io

BJ=BK

40
42
44
46
48
50
52
54
56
58

200 600 1000 1400 1800

M
is

s
R

at
io

BJ=BK

mmt (N=2000)

5

10

15

20

25

30

100 200 300 400 500 600 700 800 900 1000

M
is

s
R

at
io

N

5

10

15

20

25

30

100 200 300 400 500 600 700 800 900 1000

M
is

s
R

at
io

N

5

10

15

20

25

30

100 200 300 400 500 600 700 800 900 1000

M
is

s
R

at
io

N

mm

0

5

10

15

20

25

30

0 100 200 300 400 500 600 700 800 9001000

M
is

s
R

at
io

natoms

0

5

10

15

20

25

0 100 200 300 400 500 600 700 800 9001000

M
is

s
R

at
io

natoms

0

5

10

15

20

25

0 100 200 300 400 500 600 700 800 9001000

M
is

s
R

at
io

natoms

lwsi k (ns=20)

Fig. 5.12: Predicted and simulated miss ratios for (C,L)=(32KB, 32B) with three different k.

82 · Chapter 5. Whole-Program Analysis

0

10

20

30

40

50

60

1 2 4 8 1 2 4 8 1 2 4 8 1 2 4 8

M
is

s
R

at
io

8KB 16KB 32KB 64KB

E.M. 16B
Sim. 16B
E.M. 32B
Sim. 32B
E.M. 64B
Sim. 64B

0

10

20

30

40

50

60

1 2 4 8 1 2 4 8 1 2 4 8 1 2 4 8

M
is

s
R

at
io

8KB 16KB 32KB 64KB

E.M. 16B
Sim. 16B
E.M. 32B
Sim. 32B
E.M. 64B
Sim. 64B

0

10

20

30

40

50

60

1 2 4 8 1 2 4 8 1 2 4 8 1 2 4 8

M
is

s
R

at
io

8KB 16KB 32KB 64KB

E.M. 16B
Sim. 16B
E.M. 32B
Sim. 32B
E.M. 64B
Sim. 64B

0

10

20

30

40

50

60

1 2 4 8 1 2 4 8 1 2 4 8 1 2 4 8

M
is

s
R

at
io

8KB 16KB 32KB 64KB

E.M. 16B
Sim. 16B
E.M. 32B
Sim. 32B
E.M. 64B
Sim. 64B

0

10

20

30

40

50

60

1 2 4 8 1 2 4 8 1 2 4 8 1 2 4 8

M
is

s
R

at
io

8KB 16KB 32KB 64KB

E.M. 16B
Sim. 16B
E.M. 32B
Sim. 32B
E.M. 64B
Sim. 64B

0

10

20

30

40

50

60

1 2 4 8 1 2 4 8 1 2 4 8 1 2 4 8

M
is

s
R

at
io

8KB 16KB 32KB 64KB

E.M. 16B
Sim. 16B
E.M. 32B
Sim. 32B
E.M. 64B
Sim. 64B

0

10

20

30

40

50

60

1 2 4 8 1 2 4 8 1 2 4 8 1 2 4 8

M
is

s
R

at
io

8KB 16KB 32KB 64KB

0

10

20

30

40

50

60

70

80

1 2 4 8 1 2 4 8 1 2 4 8 1 2 4 8

M
is

s
R

at
io

8KB 16KB 32KB 64KB

2
4
6
8

10
12
14
16
18
20

1 2 4 8 1 2 4 8 1 2 4 8 1 2 4 8

M
is

s
R

at
io

8KB 16KB 32KB 64KB

(a) tomcatv (b) swim (c) applu

Fig. 5.13: Predicted and simulated miss ratios for #C×#L×#k = 96 cache configurations.

our method in analyzing real codes. The number of iterations of the outermost
loop is data-dependent. For the reference input data used, the outermost loop
runs for 750 iterations. The only data-dependent if conditional in the program
is always false. The memory accesses contained in this conditional are included
in our analysis.

swim from SPECfp95. This example demonstrates that we can analyze codes
consisting of call statements. All calls are parameterless. The outermost loop
is an if-goto construct, which has been converted into a for statement.

applu from SPECfp95. This shows that our method is capable of analyzing this
scale of programs efficiently with a good degree of accuracy. All actual param-
eters are propagateable. In subroutine SSOR, there are some data-dependent
constructs. All but one are guarded by an if branch that is false at compile
time and are thus ignored. The remaining data-dependent if construct is a
WRITE statement for a register-allocated scalar. The memory accesses in
this if conditional are included in our analysis.

Figure 5.13 compares the predicted miss ratios against that from simulation
for #C × #L × #k = 4 × 3 × 8 = 96 cache configurations. The total analysis
times required by tomcatv, swim and applu for all the configurations lumped
together are about 14 secs, 2.8 mins and 3.2 hours, respectively. These numbers are
in sharp contrast with the respective total simulation times consumed: 55 hours,
110 hours and 230 hours. In addition to being efficient, our model is accurate (in

5.9. Related Work · 83

Miss Ratio Exe.T (secs)
Program k E.M. Sim. Abs.Err. E.M. Sim.

1 56.16 56.00 0.16 0.31 4780.48
tomcatv 2 46.01 45.83 0.18 0.49 4897.58

4 22.38 22.46 0.08 0.60 4878.56
8 7.27 7.36 0.09 0.63 4769.87
1 66.71 65.98 0.73 2.88 8831.84

swim 2 70.15 69.18 0.97 3.55 9030.47
4 63.95 63.46 0.49 3.79 9353.51
8 37.99 37.15 0.84 5.93 9401.60
1 6.88 5.89 0.99 129.3 16784.15

applu 2 5.42 4.45 0.97 129.7 17646.31
4 5.20 4.23 0.97 129.8 18848.32
8 4.16 4.18 0.92 129.6 21104.30

Table 5.5: Absolute errors and execution times compared against simulation for (8KB, 64B) from
Figure 5.13.

terms of its prediction errors) and consistent (in terms of the trend exhibited by
the errors). To understand these points further, Table 5.5 gives the absolute errors
and the times to evaluate the three programs for (8KB, 64B). For the programs of
the scale such as applu, EstimateMisses yields close to actual miss ratio in about
130 seconds for each associativity while the cache simulation runs for about 5 hours.
This translates into a three orders of magnitude speedup over the cache simulator
used. In terms of memory requirement, our model requires about 1.8MB, 7.1MB
and 60.3MB to analyze tomcatv, swim and applu for the cache configuration
(8KB, 64B), respectively.

5.9 Related Work

We review in detail the five general-purpose analytical cache models developed pri-
marily for guiding data cache optimizations [29, 48, 52, 63, 143]. These models are
all restricted to data-independent language constructs, and consequently, can obtain
predictions of miss ratios at compile time without relying on address traces.

An analytical model consists of three components: reuse analysis, cache miss
specification and cache miss computation. In some cases, some or all of the three are
combined. Reuse analysis applies a reuse metric to obtain quantitative measurement
of data reuse in the program. Based on this analysis, some mathematical formulas
for specifying cache misses are set up. In the case of numerical programs, these
formulas typically describe the relationships among loop variables, array sizes, base
addresses and cache parameters. Finally, the cache miss information is generated

84 · Chapter 5. Whole-Program Analysis

from the specification by some means.
Temam et al [143] estimate the cache misses of individual perfect nests with

rectangular iteration spaces for direct-mapped caches. They consider a subset of
uniformly generated references so that all temporal reuse vectors are essentially
basis vectors. To find the misses for a particular iteration of a reuse-carrying loop
(corresponding to a basis reuse vector), they compute the footprint (i.e., the set of
cache lines) accessed by each reference and solve their formulas expressed in terms
of these footprints. Despite that the footprints are generally approximated, they
obtain good estimates for several kernel examples. Recently, Harper et al [63] give
an extension to set-associative caches but still for the same class of nests. They
obtain good estimates for the four example kernels: mm as given in Appendix A, a
2-D SOR nest, a 2-D Jacobi nest and a blocked matrix multiplication.

Ghosh et al [52] introduce the well-known CMEs, a set of equalities and in-
equalities, to specify the cache misses of a single perfect nest with straight-line
assignments for set-associative caches. Their reuse metric is Wolf and Lam’s reuse
vectors, which they obtain from uniformly generated references approximately by
relying on Wolf and Lam’s reuse framework and some ad hoc techniques. They show
that the CMEs can help an optimizing compiler choose tile and pad sizes without
requiring the CMEs to be solved explicitly.

Fraguela et al [48] rely on a probabilistic model to provide a fast estimation of
cache misses for set-associative caches. They use the so-called area vectors as a reuse
metric to represent probabilistically the amount of reuse along those directions and
solve their recursive cache miss equations for cache misses. When analyzing imper-
fect nests, they exploit only the reuse between references contained in a common
nest. These references differ by constants in their matching dimensions, forming a
subset of uniformly generated references considered in the CMEs. They validate the
accuracy of their model using three kernel examples. The two perfect nests can also
be analyzed by the CMEs, whereas the third one is a 3-D blocked imperfect nest for
computing ABT (named mmt and given in Appendix A). Table 5.6 compares their
method with ours for this particular kernel. Our EstimateMisses produces better
results in all cases. The two largest relative errors occur since the total number of
misses is small.

Chatterjee et al [29] present a cost model for exactly analyzing the cache be-
havior of loop nests for set-associative caches. They use Presburger formulas (as a
reuse metric) to specify a program’s cache misses, the Omega Calculator [126] to
simplify the formulas, PolyLib [163] to obtain an indiscriminating union of poly-
topes, and finally, Ehrhart polynomials to count the integer points (i.e., misses) in
each polytope [34]. They can formulate Presburger formulas for a looping structure

5.10. Chapter Summary · 85

N BJ BK C L k ∆P ∆E

200 100 100 16 8 2 6.23 0.1
200 100 100 256 16 2 2.73 0.5
200 200 100 32 8 1 6.88 0.06
200 200 100 128 8 2 2.86 0.05
200 200 100 128 32 2 44.25 16
200 50 200 16 4 1 4.62 0.05
200 100 200 32 8 2 12.51 0.1
200 100 200 64 16 1 3.31 0.4
400 100 100 16 8 2 4.48 0.03
400 100 100 256 16 2 4.26 0.5
400 200 100 32 8 1 2.65 0.4
400 200 100 128 8 2 5.82 0.05
400 200 100 128 32 2 44.68 16
400 50 200 16 4 1 2.02 0.05
400 100 200 32 8 2 5.55 0.06
400 100 200 64 16 1 7.12 0.3

Table 5.6: Comparison with Fraguela et al’s probabilistic method using mmt. ∆p denotes the
relative error between the estimated and real miss ratios for the probabilistic method and ∆E for
our EstimateMisses.

consisting of imperfect nests, IF statements, references with arbitrary affine accesses
and non-linear data layouts. However, their current implementation as a SUIF [111]
pass “does not yet have enough performance to be practical.” [29, p. 295]. Two ex-
amples are discussed: matrix multiplication — it takes 1 to 10 seconds on a 300MHz
Sparc Ultra 60 to analyze the 21× 21 instance; matrix-vector product — they have
derived the Presburger formulas for N = 100 but did not solve them.

Note that all these cache modeling techniques may make use of our abstract
inlining, since it works as an enabler. While we inline in order to analyze cache
misses exactly, existing techniques such as [3, 27, 137] inline primarily to optimize
program performance.

5.10 Chapter Summary

We have described a compile-time framework for obtaining quantitative measure-
ment of data reuse in whole programs. This framework consists of abstract inlining,
generalized iteration vectors and generalized reuse vectors. The abstract inlining
enables a program with calls to be analyzed statically; it may be useful to other
cache modeling techniques. The generalized iteration vectors define the execution

86 · Chapter 5. Whole-Program Analysis

order among the iterations from a common nest or distinct nests, allowing the whole
program to be represented in the polyhedral model. A generalized reuse vector rep-
resents precisely the direction and distance of reuse across the entire program.

To the best of our knowledge, this is the first work that demonstrates the fea-
sibility of analyzing statically the cache behavior of whole programs with regular
and compile-time predictable memory accesses. We have described, implemented
and validated an analytical model for programs where the bulk of computations
are expressed in loop nests operating on arrays and scalars. Our experimental re-
sults using kernels and complete programs indicate accurate cache miss estimates
in substantially shorter amount of time than simulation. Our model can obtain
predictions of miss ratios for program regions ranging from a single reference to the
entire program.

There are many benefits to static analytical modeling. In the rest of this thesis,
we show how we use our analysis to optimize programs’ performance. In addition,
we explain how we use the mathematical formulas developed for characterizing cache
misses to tighten the bound of the WCET of a program.

6

Data Cache Optimization

CHAPTER 6

DATA CACHE OPTIMIZATION

The performance of the memory hierarchy can be improved by means of data and
loop transformations. Tiling is a loop transformation that aims at reducing capacity
misses by shortening the reuse distance. Padding is a data layout transformation
targeted to reduce conflict misses.

In this chapter we present an accurate cost model that describes misses across
different hierarchy levels and considers the effects of other hardware components such
as branch predictors. The cost model drives the application of tiling and padding
transformations. We combine the cost model with a genetic algorithm to compute
tile and pad factors that enhance the program performance.

Our results show that this scheme is useful to optimize programs’ performance.
When compared to previous approaches, we observe that with a reasonable compile-
time overhead, our approach gives significant performance improvements for all stud-
ied kernels on all architectures.

6.1 Compiler Cache Transformations

A fast and accurate assessment of a program’s cache behavior at compile time is
needed to make an appropriate choice of transformation parameters. Unfortunately,
cache memory behavior is very hard to predict. Thus, current approaches are based
on simple models (heuristics) for estimating locality [25, 35, 93, 129, 131]. However,
modern architectures have a very complex internal organization, with different levels
of cache, branch predictors, etc. Such models provide very rough performance esti-
mates, and in practice, are too simplistic to statically select the best optimizations.

Tiling has been shown to be useful for many algorithms in linear algebra. By
restructuring the loop and changing the order in which memory references are exe-
cuted, it reuses data in the faster levels of the hierarchy; thus it reduces the average
latency. Nevertheless, finding the optimal tile sizes is a very complex task. The
solution space is huge, and exploring all possible solutions is infeasible.

90 · Chapter 6. Data Cache Optimization

double a[N][N];
double b[N][N];
double c[N][N];

for(ii=0;i<N;ii+=T1)
for(jj=0;jj<N;jj+=T2)

for(k=0;k<N;k++)
for(i=ii;i< min(ii+T1-1, N);i++)

for(j=jj;j< min(jj+T2-1, N);j++)
a[i][j]=a[i][j]+b[i][k]*c[k][j]

(a) Tiled Matrix Multiply.

double a[N+P Dim00][N+P Dim01]
double b[N+P Dim10][N+P Dim11]
double c[N+P Dim20][N+P Dim21]

for(ii=0;i<N;ii+=T1)
for(jj=0;jj<N;jj+=T2)

for(k=0;k<N;k++)
for(i=ii;i< min(ii+T1-1, N);i++)

for(j=jj;j< min(jj+T2-1, N);j++)
a[i][j]=a[i][j]+b[i][k]*c[k][j]

(b) Tiled and Padded Matrix Multiply.

Fig. 6.1: Matrix multiply algorithm after applying tiling and padding.

Padding has a significant potential to remove conflict misses. In fact, it can
remove most conflict misses by changing the addresses of conflicting data, and some
compulsory misses by aligning data with cache lines. However, choosing the optimal
data layout is an NP-complete problem [123]. A number of algorithms have been
proposed which are based on simple cost models that only consider the first level
cache [129].

In comparison, the proposed method makes use of an accurate cost model com-
bined with a genetic algorithm. In particular, we improve the order of memory
accesses via tiling, whereas conflict misses that tiling cannot eliminate are removed
via padding. Moreover, it chooses the best tile and pad factors at the same time.

Next, we review the transformations implemented in our experimental compiler.

6.1.1 Tiling Overview

Loop tiling combines strip-mining [9] with loop interchange [170] for increasing the
effectiveness of memory hierarchy. Recall Figure 2.4, where we show the code for the
matrix multiplication (of NxN arrays) kernel. Loop tiling basically consists of two
steps [168]. The first one consists of restructuring the code to enable tiling those
loops that carry reuse. The second one is to select the tile factors that maximize
locality. It is the latter step that is sensitive to the characteristics of the cache
memory considered. Due to hardware constraints, caches have limited associativity,
which may cause cache lines to be flushed out of the cache before they are reused
despite sufficient capacity in the overall cache.

We present the tiled version, with tile sizes T1 and T2, in Figure 6.1(a).

6.1. Compiler Cache Transformations · 91

Implementing Tiling

The iteration space obtained after tiling n dimensions can be expressed as the union
of 2n convex regions. We illustrate this situation in Figure 6.2. Figure 6.2(a) shows
how a 1-dimensional iteration space becomes a two-convex region iteration space
(see Figure 6.2(b)) after tiling (T=3). The shaded regions correspond to the different
convex regions before and after tiling.

A näıve way to overcome this problem is to use only one convex region that
approximates the actual non-convex region. This convex region can be the smallest
parallelepiped that includes all other convex regions (see Figure 6.2(c)) or alterna-
tively, the region which does not include the last iteration of every tiled loop when
the tile size does not divide the upper bound (see Figure 6.2(d)). Nevertheless, nei-
ther option is accurate. The first option includes points outside the iteration space,
whereas the second option excludes points belonging to the iteration space.

In our aim of having an accurate model, we decided to implement the exact
solution. By transforming the min expression into an if conditional, we formulate
the equations making use of the RIS concept. This transformation is only for analysis
purpose. Hence, we do not incorporate any overhead due to the extra conditional.

Example 10 Consider the loop “for(j=jj;j< min(jj+T2-1, N);j++)” in Figure 6.1(a).
We would consider the RIS equivalent to the following code:

for(j=jj;j< jj+T2-1;j++)
{ if (j<N)
. . .

6.1.2 Padding Overview

Unlike loop tiling, padding modifies the data layout to eliminate conflict misses.
It changes the data layout in two different ways. Inter-padding modifies the base
addresses of the arrays, whereas intra-padding changes the size of array dimensions.

As usual, we refer to the L1 (primary) cache size as C. memi is the original
base address of variable number i (V ari) and P Basei stands for the inter-variable
padding between V ari and V ari−1. dimij stands for the size of the dimension j
of V ari (Di is the number of dimensions) and Si is its size. P Dimij is the intra-
variable padding applied to dimij, and P Si is the size of V ari after padding (see
Figure 6.3). We define ∆i as P Si−Si. Notice that all variables are natural numbers.

92 · Chapter 6. Data Cache Optimization

i

 1 2 3 4 5 6 7 8 1 2 3

1

2

3

ii

i

(a) Before tiling. (b) After tiling.

 1 2 3

1

2

3

ii

i

 1 2 3

1

2

3

ii

i

(c) Using a bigger region. (d) Using a smaller region.

Fig. 6.2: Example of tiled iteration space.

6.1. Compiler Cache Transformations · 93

Var0 Var1 Var2(a)

Var0 Var1 Var2(b)

P_Base0 P_Base1 P_Base2

Var0 Var1 Row0(c) Var1 Row1 Var1 Row2

Var0 Var1 Row0(d) Var1 Row1 Var1 Row2

P_Base1 P_Dim10 P_Dim10

V
ar1 R

ow
0

V
ar1 R

ow
1

V
ar1 R

ow
2

P_Dim10

V
ar1 R

ow
n

Dim11

D
im

10

V
ar1 R

ow
0

V
ar1 R

ow
1

V
ar1 R

ow
2

V
ar1 R

ow
n

Dim11

D
im

10
P

_D
im

10

(f)(e)

Fig. 6.3: Data layout: (a) before inter-variable padding, (b) after inter-variable padding (c) before
padding, (d) after padding, (e) 2-D array, (f) 2-D array after intra-variable padding

Inter-variable Padding

When inter-variable padding is applied only the base addresses of the variables
are changed. Thus, padding is performed in a simple way. Memory variable base
addresses are initially defined using the values given by the compiler. Then, we
define for each memory variable V ari, a variable P Basei, 0 ≤ i < #vars:

0 ≤ P Basei < C

Note that padding a variable results in modifying the initial addresses of the
other variables (see Figure 6.3). Thus, after padding, the memory variable base

94 · Chapter 6. Data Cache Optimization

addresses are computed as follows:

BaseAddr(V ari) = memi +

k≤i∑

k=0

P Basek

Adding Intra-Variable Padding

The result of applying both inter- and intra-variable padding is that all base ad-
dresses and sizes of every dimension of each memory variable may change. They are
initially set according to the values given by the compiler. For each memory variable
V ari, 0 ≤ i < #vars, we define a set of variables {P Basei, P Dimij}, 0 ≤ j < Di

0 ≤ P Basei, P Dimij < C

After padding, memory variable base addresses are computed in the following way
(see Figure 6.3):

BaseAddr(V ari) = memi +
k<i∑

k=0

(P Basek +∆k) + P Basei

and the size of the dimensions are (see Figure 6.3):

Dimj(V ari) = dimij + P Dimij

Figure 6.1(b) shows our running example after tiling and intra-padding all array
dimensions.

6.2 Performance Modeling

In this section, we introduce our cost model. We first describe how we model loop
tiling, padding and branch predictor behavior. Then, we describe our cost function
to estimate performance. Finally, we discuss the use of a GA to traverse the solution
space.

6.2.1 Tiling and Padding Model

We want to improve data locality through loop tiling and padding. We focus on re-
moving capacity misses by means of loop tiling, whereas we use padding to eliminate
those conflict misses that loop tiling cannot remove.

6.2. Performance Modeling · 95

We present a compiler strategy that combines both optimizations at the same
time by implementing our static analyzer (see Section 5.5) in a parameterized way.
We assume normalized loop nests1. Thus, each tile factor will range between 1 and
the upper bound of the corresponding loop. For the pad factors, there is no need to
consider large domains. Usually, if two references do not conflict on a cache of size
S, they may not conflict on a cache of size nS (larger by a factor of n). Therefore,
we use the cache size of the smallest cache in the hierarchy (which in practice is L1)
as the domain. Results show than even smaller domains would be enough to achieve
important speedups, since pad factors are generally very small.

Our measure of locality is the number of read and write misses for each cache
level. More formally stated, given a loop nest L with n normalized enclosing loops
L = {l1, . . . , ln}, a set of tile and pad factors F , and a memory hierarchy with u
levels, we define a function MCost(L, F):

MCost : Loops× Factors −→ (N,N, . . . ,N,N)

(L, F) 7−→ (rmML1, wmML1, . . . , rmMLu, wmMLu)

where

F = T ile Factors× Pad Factors

T ile Factors = (Ti, . . . , Tk), 1 ≤ i, k ≤ n

Pad Factors = (P Basei, P Dimij), 0 ≤ i < #vars, 0 ≤ j < Di

where rmLk (wmLk) stands for the number of read (write) misses on the k-th level
cache.

Example 11 Let us recall the optimized version of our running example shown in
Figure 6.1(b), where we tile two loops and only consider intra-padding. We call the
following instance of MCost to describe its locality:

MCost(L, F) = MCost({l1, l2, l3}, F)

where

F = T ile Factors× Pad Factors

T ile Factors = (T1, T2), 1 ≤ T1 ≤ N, 1 ≤ T2 ≤ N

Pad Factors = (P Dimij), 0 ≤ i < 3, 0 ≤ j < 2

0 ≤ P Dimij < C

1The loop normalization consists in transforming all the loops into a normal form. In this
normal form, the lower bound and the increment are equal to one

96 · Chapter 6. Data Cache Optimization

6.2.2 Branch Model

Tiling must be applied carefully because it may increase the overhead due to the
tiled code complexity. Besides, the extra levels of loops may lead to larger number
of miss-predicted branches. In order to avoid a large performance degradation due
to branch prediction misses, we incorporate the number of possible miss-predicted
branches into our model. Notice that the same scheme can be applied to model
iterations overhead.

Let L be a loop nest with n normalized enclosing loops L = {l1, . . . , ln}, with
upper bounds U = {U1, . . . , Un} respectively. Since current branch predictors may
miss-speculate when loops finish their execution, the number of expected miss-
predicted branches is:

MissPred(L) =

j≤n
∑

j=1

i<j
∏

i=1

Ui

Thus, we are modeling a Backward Taken and Forward not Taken scheme.

Example 12 Let us consider our running example when {N=100, T1=20, T2=20}.
For this particular example, the values of the pad factors are irrelevant since they
do not affect the number of miss-predicted branches. The number of miss-speculated
branches for the non-tiled version (see Figure 2.4) is:

j≤3
∑

j=1

i<j
∏

i=1

100 = 1 + 100 + 104 = 10101

The number of miss-predictions for the tiled version (see Figure 6.1(a)) will be:

j≤5
∑

j=1

i<j
∏

i=1

Ui = 1 +

⌈
100

20

⌉

+

⌈
100

20

⌉

×

⌈
100

20

⌉

+

⌈
100

20

⌉

×

⌈
100

20

⌉

× 100 +

+

⌈
100

20

⌉

×

⌈
100

20

⌉

× 100× 20

= 1 + 5 + 25 + 2500 + 5× 104 = 52531

which is over five times as many as the original program.

The last example shows that in order to have a tiled code that runs faster than
the original one, we must have an important reduction in number of misses to
compensate this overhead.

6.2. Performance Modeling · 97

input

L = (l1, . . . , ln) a loop nest
ML = (ML1, . . . ,MLu) a memory hierarchy with u levels
F = (T1, . . . , Tn, P1, . . . , Pt) a set of tile and pad factors

output

LoopCost(L,M ,F) = number of estimated cycles

algorithm

< rmL1, wmL1, . . . , rmLu, wmLu > = MCost(L,F)
miss predictions = MissPred(L)

LoopCost(L,ML,F) =
∑l≤u

l=1
(µRl ∗ rmMLl + µWl ∗ wmMLl)

+ µMP *miss predictions
where

µRl = cost of a read miss in level l
µWl = cost of a write miss in level l
µMP = cost of a miss-predicted branch

Fig. 6.4: LoopCost algorithm.

6.2.3 Cost Model

Once we account for misses across all different levels and loop tiling overhead due
to miss-predicted branches, we can calculate the loop cost. In Figure 6.4, we give a
detailed description of our cost model function, LoopCost.

MCost calculates the locality for the loop nest L given the set of tile and pad
factors, i.e., the number of read and write misses for each cache level. MissPred
estimates the number of miss-predicted branches that the branch predictor may
incur in when executing loop nest L. Then, LoopCost calculates the total cost
of executing L. It simply adds up all different misses and the number of miss-
predictions, weighting each value by its relative cost.

Values of different µ weights depend on the considered architecture. Most current
processors have out-of-order execution and non-blocking caches, which makes the
different penalties vary at execution time. In Table 4.1 (see Section 4.3), we give the
relative costs used to model the architectures we used in our study for optimizing
execution time. In order to have a more accurate model, the vendors may calculate
the average penalties empirically, which may translate to better transformed codes.

6.2.4 Compiler Strategy

The main objective of a compiler strategy is to determine which transformation to
apply. In our case, our main concern is to decide which tile and pad factors yield

98 · Chapter 6. Data Cache Optimization

the best results. In this subsection, we explain how we choose the parameter values
guided by our cost model.

We want to find a set of tile and pad factors that minimize the LoopCost of a
loop nest L of depth n. More formally stated:

MIN LoopCost(L,ML,F)

1 ≤ Tk ≤ Uk, 1 ≤ k ≤ n

0 ≤ P Basei, P Dimij < C

0 ≤ i < #vars, 0 ≤ j < Di

where LoopCost is called the objective function.

6.2.5 Choosing Tile and Pad Factors

In this subsection, we use results from the original CMEs framework and compiler
theory to reason about the complexity of achieving optimal tile and pad factors.

Complexity: CMEs

CMEs [52] describe cache behavior by means of Diophantine equations, and so does
our model. Each set of equations defines a bounded convex polyhedron. Obtaining
the number of misses is equivalent to counting the number of integer points inside
those polyhedra. However, counting integer points in a general polyhedron has the
same complexity as deciding whether a solution exists to a system of equalities and
inequalities, which is NP-Complete [11]. So is the problem of computing the volume
(i.e., number of integer points) of a polyhedron [38].

The number of integer points inside a polyhedron can be enumerated by means of
Ehrhart Polynomials [34], which describe pseudo-polynomials whose coefficients in
the general case are NP-hard to compute. Thus, the parameterized equations used
to describe cache misses are a pseudo-polynomial function. Summing up, LoopCost
is a pseudo-polynomial function, and hence the relationship between tiling, padding
and the number of misses is nonlinear.

Tile and pad factors can only take integer values, thus, the problem of optimizing
LoopCost can be seen as a nonlinear integer optimization (NLP) one, which again,
in the general case, is NP-hard [72, 152].

6.2. Performance Modeling · 99

Complexity: Some Results from Compiler Theory

It is common knowledge that choosing the best tile sizes is very hard, and it is
considered to be a very difficult problem. However, no proof has been published
that it is an NP-hard problem.

Many researchers have spent much effort looking for the best data layout. Re-
cently it has been proved that “Unless P==NP there is no efficient optimal al-
gorithm for data placement that minimizes the number of misses” [123]. That is,
choosing the best pad factors is an NP-complete problem.

Notice that setting the different tile factors Tk to 1 is equivalent to solving the
“select best pad factors” problem. On the other end, if we set all the pad factors to
0, the resulting problem is the original “select best tile factors” problem.

6.2.6 How to Solve Non-Linear Integer Problems

One of the challenges in NLP is that some problems exhibit local minima. Algo-
rithms proposed to overcome this problem are named Global Optimization. Real
functions have been studied deeply [54, 72, 147]. Unfortunately, integer functions
are hard to optimize.

There are some studies based on {0,1} valued integer functions [62], but in
general, this is a hard and time-consuming problem. Hence, the use of heuristics
to traverse the solution space is necessary. Tabu search [55] obtains promising
theoretical results, but only partial implementations have been reported so far. On
the other hand, simulated annealing [89] and genetic algorithms [57, 70] have been
used for years with very good results for many problems.

Why a Genetic Algorithm?

The majority of research in optimization via high-level restructuring has relied on
smart heuristics and very simple models [24, 35, 93, 129, 142, 168], managing to
improve program performance significantly. Current results in compiler theory [123]
point out two important practical issues: (i) the use of heuristics is a must, and (ii)
the preservation of information is critical to find a good solution.

Our proposal is based on the use of a very accurate cost model, thus reducing
the loss of information. Then, we use a heuristic, in this case a genetic algorithm,
to optimize the LoopCost function. We highlight the list of items why we chose a
GA to solve our problem:

• GAs are especially appropriate when the relationships among variables are

100 · Chapter 6. Data Cache Optimization

not very well understood. This is the case for our LoopCost, which is highly
non-linear.

• GAs can be used for searching in high-dimensional spaces (i.e., it can cope
with lots of variables).

• In contrast with other approaches like neural networks, GAs’ solutions are
readable.

According to Petrank and Rawitz [123], the only efficient way to evaluate the
potential of our method is comparing it with previous ones. Our experimental
results show that with a small and reasonable compile-time overhead, our method
outperforms all previous approaches, for all benchmarks running on a variety of
modern architectures.

6.3 Implementing a Genetic Algorithm

Algorithms for function optimization are generally limited to convex-regular func-
tions. However, there are lots of functions that are not continuous, non differentiable
or multi-modal. It is common to solve these problems by means of stochastic sam-
pling. Whereas traditional search techniques use characteristics of the problem to
determine the next sampling point (e.g., Gradient), stochastic methods use non-
deterministic decision rules [41].

Genetic algorithms are a particular type of stochastic methods that have been
used to solve hard problems with objective functions that do not meet the properties
needed to be solved by traditional methods [57]. These algorithms search in the
solution space of a function simulating the nature-based process of evolution, that
is, the survival of the fittest. Usually, the fittest individuals tend to reproduce more
than the inferior individuals, and they survive to the next generation propagating
the best genes.

GAs simulate the evolution of a population. Figure 6.5(a) shows the simplest
GA. It starts from a random generated population. Then, it evolves the population
by means of basic genetic operators (selection, mutation and crossover) [57] applied
to individuals of the current population to produce an improved next generation.

Next, we explain how we implemented the different genetic operators and our
representation of the tile and pad factors.

6.3. Implementing a Genetic Algorithm · 101

ALGORITHM: ALGORITHM:

finish := false finish := false
iters:=0 iters := 0
Supply a population P0 Supply a population P0

while (not finish) while (not finish)
if (not converge(Piters)) if (iters<15)
iters:=iters + 1 iters := iters + 1
Piters=Selection(Piters−1) Piters:=Selection(Piters−1)
Piters=Reproduce(Piters) Piters=Reproduce(Piters)

else if (iters>=15 and iters<25)
if (not converge(Piters−1))
iters := iters + 1
Piters:=Selection(Piters−1)
Piters=Reproduce(Piters)

else finish := true
endif

else finish := true else finish := true
endif endif

endwhile endwhile

(a) Simple Genetic algorithm (b) Our Genetic algorithm

Fig. 6.5: Different implementations of a Genetic algorithm.

6.3.1 Genetic Algorithm Parameters

The use of GAs requires the determination of the following issues: chromosome
representation, selection function, genetic operators, the creation of the initial pop-
ulation, and the termination criterion.

Each individual is made up of a set of chromosomes which represents the vari-
ables. In our work, each individual is one configuration of tiling/padding (identified
by all tile factors and the inter- and intra-variable pad factors). Each chromosome
represents one single factor, either a tile or a pad factor. The fitness of those individ-
uals is computed using the objective function (in our case, LoopCost in Figure 6.4).
The fittest individual is the one that has a set of tile and pad factors that results in
the smallest cost according to our cost function LoopCost.

A chromosome representation is needed to represent each individual in the pop-
ulation. Genetic algorithms require the natural parameter set of the optimization
problem to be coded as a finite-length string over some finite alphabet such as {0,1}.
Thus, each chromosome is made up of a sequence of genes from a certain alphabet.

102 · Chapter 6. Data Cache Optimization

Loop considered l, with U = 11

⇓ (1) We compute k ⇓
k = dlog211e (+1 if odd) = 4

⇓ (2) We set up function g ⇓
g : [0 . . . 15] −→ [1 . . . 11]

⇓ (3) We enumerate function g ⇓
g(0)=1 g(1)=1 g(2)=2 g(3)=3
g(4)=3 g(5)=4 g(6)=5 g(7)=5
g(8)=6 g(9)=7 g(10)=7 g(11)=8
g(12)=9 g(13)=9 g(14)=10 g(15)=11

Fig. 6.6: Example of mapping between representation values and tile factors.

Representing Tile Factors

It has been shown that using large alphabets gives better results [115]. For repre-
senting the tile factors, we have experimentally observed that using the alphabet
{00, 01, 10, 11} produces good results.

The function to transform the chromosome values into tile sizes is not the identity
function. Tile factor Ti can take any value in the range [1. . .Ui]. On the other
hand a chromosome is represented by a sequence of genes encoded in a binary
representation. Thus, each chromosome will be represented by a value in the range
[0. . . 2k-1] where k is dlog2Uie. If k is an odd number, k is increased by 1 due to
the alphabet we have used to represent genes. Thus, there are more values in the
representation range for a chromosome than possible tile size values. Therefore, we
need a function to map values from the domain [0. . . 2k-1] to the range [1. . .Ui].

Let g be the function that represents the tile factor for each possible value of a
chromosome. We define it as follows:

g : [0 . . . 2k − 1] −→ [1 . . . Ui]

x 7−→

⌊
x ∗ (Ui − 1)

2k − 1

⌋

+ 1

where k = dlog2Uie (+1 if odd)

6.3. Implementing a Genetic Algorithm · 103

Figure 6.6 illustrates an example of how this function works. It can be seen that
every possible tile factor has at least one representation.

Example 13 Let us codify two tile factors {T1, T2} for two nested loops with upper
bounds {U1 = 40, U2 = 100}. Each tile factor is represented by one chromosome.
Thus, the first chromosome is represented by 3 genes (and function g1), and the
second one by 4 genes (and the corresponding function g2). Thus, the value 27
(011011) and 74 (01001010) correspond to the tile factors 17 (g1(27)=17) and 29
(g2(74)=29) respectively, and are represented by the following genes:

01
︸︷︷︸

gene10
=1

10
︸︷︷︸

gene11
=2

11
︸︷︷︸

gene12
=3

︸ ︷︷ ︸

chromosome1

01
︸︷︷︸

gene20
=1

00
︸︷︷︸

gene21
=0

10
︸︷︷︸

gene22
=2

10
︸︷︷︸

gene23
=2

︸ ︷︷ ︸

chromosome2

Representing Pad Factors

Representing pad factors is easier than representing tile factors due to the fact that
each pad factor belongs to the range [0, . . . C−1].2 Thus, we have used the alphabet
{0, . . . , 2t−1}, where t is the greatest divisor of the blog2 Cc that is lower than log2C.
This is, the largest value of t that guarantees that a single pad factor consists of at
least two genes for every cache size. This is not a restriction because the compilers
know the cache size. Thus, this computation can be done automatically.

Example 14 Let us assume a 32KB cache. Thus, log2(32 × 210) = 15. The set
of divisors is {1, 3, 5, 15}. Hence, the greatest divisor less than 15 is 5, and we will
use the alphabet {0, . . . , 31}, representing each single pad factor with 3 genes. For
instance, a pad factor of 10017 is represented by the following three genes:

01001
︸ ︷︷ ︸

gene0=9

11001
︸ ︷︷ ︸

gene1=25

00001
︸ ︷︷ ︸

gene2=1
︸ ︷︷ ︸

chromosome

2If the cache size is not a power of 2, we consider the largest cache size which is power of 2 and
smaller than the considered cache.

104 · Chapter 6. Data Cache Optimization

Genetic Operators

Genetic operators provide the basic search mechanism of the GAs, creating new
solutions based on the solutions that already exist. The selection of individuals
to produce successive generations plays an extremely important role. A common
selection approach assigns probability of selection to each individual depending on its
fitness. Individuals with higher fitness have a higher probability of contributing one
or more offsprings to the next generation. Then, individuals are selected depending
on this probability. Let us have a population of size N (i.e., a population with
N individuals). A selection scheme consists of choosing N individuals from the N
individuals of the previous generation. We have adopted one of the selection schemes
that gives better results, which is known as remainder stochastic selection without
replacement [57]. This selection scheme allows an individual to be chosen more than
once, so that best individuals contribute with more offsprings.

Child 2Child 1
Crossing�Site

Parent 2Parent 1

Fig. 6.7: Schematic of simple crossover.

The next step consists of pairing the chosen individuals and applying crossover.
Crossover takes two individuals and produces two new individuals with a given
probability, merging the genetic material in a random point (named cross site). In
the case they do not crossover, both individuals are added to the new population
(see Figure 6.7). Finally, mutation changes one individual to produce a new one by
flipping some of its genes. Both crossover probability and mutation probability have
to be determined empirically, and are related to the size of the population.

Convergence Criterion

The GA must be provided with an initial population (see Figure 6.5(a)), that is
created randomly. GAs move from generation to generation, and even though other
criteria can be used [57], the usual termination criterion is the number of generations.

6.4. Example of a Genetic Algorithm · 105

Our experiments have shown that an initial population of size equal to 30, with a
crossover probability of 0.9 and a mutation probability of 0.005, gives near-optimal
results in most of the cases after 15 generations. However, in some other cases
the near-optimal results are obtained after a number of generations between 15
and 25. Figure 6.5(b) shows our particular GA, where converge() is a function
which decides when the population is homogeneous enough. We consider that a
population converges when the best individual has a cost smaller than 2% with
respect to the average of its generation. We have observed that for the evaluated
loops, this convergence criterion is only achieved if the population is close to the
optimal.

6.4 Example of a Genetic Algorithm

In this section we show an example of an iteration of the genetic algorithm. Let us
recall our running example in its tiled and padded version (see Figure 6.1(b)). We
consider the problem of finding the best tile and pad sizes for a 4KB cache when
N=100.

The steps to set up a genetic algorithm are as follows:

1. Identify variables.

2. Identify domains of those variables.

3. Decide representation.

We review these three steps explained in Section 6.3 by constructing a GA for
the problem stated above. Then, we will show how the GA works by illustrating
some iterations.

6.4.1 Setting Up the GA

According to the code shown in Figure 6.1(b), our problem depends on 8 different
variables. There are two tile factors, T1 and T2, and 6 intra-pad factors, P Dim00,
P Dim01, P Dim10, P Dim11, P Dim20 and P Dim21.

First, we determine the domains according to Section 6.2.1:

1 ≤ T1 ≤ 100 1 ≤ T2 ≤ 100
0 ≤ P Dim00 < 4096 0 ≤ P Dim01 < 4096
0 ≤ P Dim10 < 4096 0 ≤ P Dim11 < 4096
0 ≤ P Dim20 < 4096 0 ≤ P Dim21 < 4096

106 · Chapter 6. Data Cache Optimization

Once the domains are determined, the next step consists on deciding the repre-
sentation that is used for each parameter. In order to do that, we follow the steps
explained in Section 6.3.1.

For representing the tile factors, we will need 8 bits. We obtain this value as
follows:

dlog2100e = d6.64e = 7

since 7 is odd, we add 1 and choose 8. Thus, each tile factor will be represented by
4 genes (each gene ∈ {00, 01, 10, 11}).

Pad factors are somehow easier to represent. We start considering the cache,
which is 4KB. Thus, log24

10 = 12, which means that each chromosome will consist
of 12 bits. The set of divisors is {1, 2, 4, 6, 12}, therefore we choose to represent each
gene with 6 bits.

Summing up, each individual (that represents a set of tile and pad factors), will
be made up of 88 bits. This is, 20 genes or 8 chromosomes:

xx
︸︷︷︸

xx
︸︷︷︸

xx
︸︷︷︸

xx
︸︷︷︸

︸ ︷︷ ︸

T1

· · · xxxxxx
︸ ︷︷ ︸

xxxxxx
︸ ︷︷ ︸

︸ ︷︷ ︸

P Dim00

· · · xxxxxx
︸ ︷︷ ︸

xxxxxx
︸ ︷︷ ︸

︸ ︷︷ ︸

P Dim21

x ∈ {0, 1}

6.4.2 Iterating the GA

Now, we show in detail how the genetic operators are applied in order to improve the
population. Let us consider that the selection method has chosen two individuals,
I1 and I2 such that:

I1 = xx
︸︷︷︸

xx
︸︷︷︸

xx
︸︷︷︸

xx
︸︷︷︸

︸ ︷︷ ︸

T1

· · · xxxxxx
︸ ︷︷ ︸

xxxxxx
︸ ︷︷ ︸

︸ ︷︷ ︸

P Dim00

· · · xxxxxx
︸ ︷︷ ︸

xxxxxx
︸ ︷︷ ︸

︸ ︷︷ ︸

P Dim21

x ∈ {0, 1}

I2 = yy
︸︷︷︸

yy
︸︷︷︸

yy
︸︷︷︸

yy
︸︷︷︸

︸ ︷︷ ︸

T1

· · · yyyyyy
︸ ︷︷ ︸

yyyyyy
︸ ︷︷ ︸

︸ ︷︷ ︸

P Dim00

· · · yyyyyy
︸ ︷︷ ︸

yyyyyy
︸ ︷︷ ︸

︸ ︷︷ ︸

P Dim21

y ∈ {0, 1}

According to Section 6.3.1, we first apply crossover, and then we mutate the new
individuals.

Crossover is NOT Applied

Let us consider first that crossover is not applied. Thus, we obtain two new individ-
uals which are exactly the same as before, I ′1 = I1, I

′
2 = I2. The next step consists

6.5. Experiments Setup · 107

of mutating some bits of these individuals. After mutating, we obtain these two new
individuals which are added to the new population:

I ′′1 = xx
︸︷︷︸

xx
︸︷︷︸

xx
︸︷︷︸

xx
︸︷︷︸

︸ ︷︷ ︸

T1

· · · xxxxxx
︸ ︷︷ ︸

xxxxxx
︸ ︷︷ ︸

︸ ︷︷ ︸

P Dim00

· · · xxxxxx
︸ ︷︷ ︸

xxxxxx
︸ ︷︷ ︸

︸ ︷︷ ︸

P Dim21

x ∈ {0, 1}

I ′′2 = yy
︸︷︷︸

yy
︸︷︷︸

yy
︸︷︷︸

yy
︸︷︷︸

︸ ︷︷ ︸

T1

· · · yyyyyy
︸ ︷︷ ︸

yyyyyy
︸ ︷︷ ︸

︸ ︷︷ ︸

P Dim00

· · · yyyyyy
︸ ︷︷ ︸

yyyyyy
︸ ︷︷ ︸

︸ ︷︷ ︸

P Dim21

y ∈ {0, 1}

Crossover IS Applied

When crossover is applied, we obtain two new individual which are obtained merging
the genes from both original individuals. In our case, the crossing site is at the 5th
bit, which gives rise to these two new individuals:

I ′1 = xx
︸︷︷︸

xx
︸︷︷︸

xy
︸︷︷︸

yy
︸︷︷︸

︸ ︷︷ ︸

T1

· · · yyyyyy
︸ ︷︷ ︸

yyyyyy
︸ ︷︷ ︸

︸ ︷︷ ︸

P Dim00

· · · yyyyyy
︸ ︷︷ ︸

yyyyyy
︸ ︷︷ ︸

︸ ︷︷ ︸

P Dim21

x, y ∈ {0, 1}

I ′2 = yy
︸︷︷︸

yy
︸︷︷︸

yx
︸︷︷︸

xx
︸︷︷︸

︸ ︷︷ ︸

T1

· · · xxxxxx
︸ ︷︷ ︸

xxxxxx
︸ ︷︷ ︸

︸ ︷︷ ︸

P Dim00

· · · xxxxxx
︸ ︷︷ ︸

xxxxxx
︸ ︷︷ ︸

︸ ︷︷ ︸

P Dim21

x, y ∈ {0, 1}

Finally, mutation is applied, which results in the two individuals that are eventually
added to the new population:

I ′′1 = xx
︸︷︷︸

xx
︸︷︷︸

xy
︸︷︷︸

yy
︸︷︷︸

︸ ︷︷ ︸

T1

· · · yyyyyy
︸ ︷︷ ︸

yyyyyy
︸ ︷︷ ︸

︸ ︷︷ ︸

P Dim00

· · · yyyyyy
︸ ︷︷ ︸

yyyyyy
︸ ︷︷ ︸

︸ ︷︷ ︸

P Dim21

x, y ∈ {0, 1}

I ′′2 = yy
︸︷︷︸

yy
︸︷︷︸

yx
︸︷︷︸

xx
︸︷︷︸

︸ ︷︷ ︸

T1

· · · xxxxxx
︸ ︷︷ ︸

xxxxxx
︸ ︷︷ ︸

︸ ︷︷ ︸

P Dim00

· · · xxxxxx
︸ ︷︷ ︸

xxxxxx
︸ ︷︷ ︸

︸ ︷︷ ︸

P Dim21

x, y ∈ {0, 1}

6.5 Experiments Setup

To evaluate our method, we have implemented our algorithms, executed the original
and transformed versions and collected execution times and number of misses for
different cache levels. The actual number of misses when executing programs on the
Pentium-4 platform are obtained by means of the performance counters. Otherwise
they are obtained by means of our EstimateMisses (see Section 5.5.2).

In order to evaluate our ability to improve data locality, we start studying
padding and tiling separately. Then, we combine both of them and report results
for a set of kernels.

108 · Chapter 6. Data Cache Optimization

6.5.1 Padding

Since the objective of padding is removing conflict misses, we optimized those pro-
grams from SPECfp95 that present a high number of conflict misses, which are
tomcatv and swim [46]. In addition, their miss ratio is highly affected by cache
size. We have chosen the most time-consuming loop nests from each program that in
total represent between the 90-100% of the whole execution time, using the reference
input data. The codes can be found in Appendix B.

A fully-associative cache has been evaluated as a reference point to estimate the
amount of conflict misses that are not removed by the padding technique. In order
to measure our ability to improve locality, we compare our padding algorithm with
Rivera and Tseng’s state-of-the-art technique [129, 130].

6.5.2 Tiling

An overview of the five kernels that have been evaluated can be seen in Table 4.3
in Section 4.4. For all of them, we have studied a set of different sizes that are
explained in the different experiments. We chose these kernels because they exhibit
high number of capacity misses.

We also determined the effectiveness of our method by comparing it with other
methods which represent the state-of-the-art:

• lrw: Lam et al. [93] choose the largest non-conflicting square tile.

• tss: Rivera and Tseng [131] extend Coleman and McKinley’s [35] Euclidean
GCD algorithm.

6.6 Evaluation

In this section, we evaluate our approach. We first present results for a set of
experiments where padding and tiling are applied in isolation. Then, we analyze the
efficiency of our approach, which consists on applying both of them.

6.6.1 Padding

Table 6.1 shows, for the two programs analyzed, the miss ratio of a direct-mapped
cache before and after applying inter-variable padding. Since the objective of
padding is to eliminate conflict misses, inter-variable padding provides a huge im-
provement in miss ratio for tomcatv and swim. Note that for both programs, a

6.6. Evaluation · 109

Program Cache Size NO Padding (%) Inter-Padding (%)
32KB 9.6 8.8
16KB 14.8 11.8

tomcatv 8KB 46.0 21.6
4KB 72.1 52.0
32KB 8.1 7.1
16KB 28.8 7.2

swim 8KB 62.9 7.8
4KB 77.9 8.2

Table 6.1: Average miss ratios for tomcatv and swim for a set of direct-mapped caches. Cache
line is 32B.

small improvement is obtained for a 32KB cache. This is caused by the fact that
almost no conflicts arise for 32KB caches or bigger for these programs due to the
relatively small working set of the SPECfp95 applications. However, the smaller the
cache the bigger the miss ratio and the bigger the improvement that inter-variable
padding obtains.

For the swim program, the miss ratio grows from 8.1% to 28.8%, 62.9%, and
77.9% when the cache is reduced from 32KB to 16KB, 8KB, and 4KB respectively.
However, when we apply inter-variable padding, the miss ratio is kept almost con-
stant (7.1%, 7.2%, 7.8% and 8.2% respectively). This is because most of the misses
of this program are caused by conflicts between different data structures (inter-
variable conflict misses) and the algorithm practically obtains the optimal padding
among them.

For the tomcatv program, the miss ratio also grows significantly when the cache
size is reduced (9.6%, 14.8%, 46.0%, and 72.1% respectively for the different cache
sizes). In this program, we also obtain a considerable improvement when applying
inter-variable padding for caches smaller than 32KB. However, the miss ratio after
inter-variable padding varies significantly with the cache size (8.8%, 11.8%, 21.6%,
and 52%). This variation is caused by intra-variable conflict misses (e.g., conflicts
among distinct rows and columns of the same array) whose frequency also grows
when the cache size is reduced. Inter-variable padding does not remove the latter
type of conflicts, which are the target of intra-variable padding.

Figure 6.8 details the miss ratio for the main loop nests of tomcatv and swim

(note the different scales for the different cache sizes). The figure shows the miss
ratio for each loop before and after applying inter-variable padding. It also shows
the miss ratio for a fully-associative cache.

For the swim program loop nest 1 has practically no improvement due to inter-

110 · Chapter 6. Data Cache Optimization

32KB Cache

0

5

10

15

20

25

1 2 3 4 5 1 2 3 4 5 6

M
is

s
R

at
io NO Padding

Inter-Padding

Fully-Assoc

16KB Cache

0

5

10

15

20

25

30

35

40

45

1 2 3 4 5 1 2 3 4 5 6

M
is

s
R

at
io NO Padding

Inter-Padding

Fully-Assoc

tomcatv swim tomcatv swim

(a) (b)

8KB Cache

0

10

20

30

40

50

60

70

80

90

100

1 2 3 4 5 1 2 3 4 5 6

M
is

s
R

at
io NO Padding

Inter-Padding

Fully-Assoc

4KB Cache

0

10

20

30

40

50

60

70

80

90

100

1 2 3 4 5 1 2 3 4 5 6

M
is

s
R

at
io NO Padding

Inter-Padding

Fully-Assoc

tomcatv swim tomcatv swim

(c) (d)

Fig. 6.8: Miss ratio before and after inter-variable padding for a set of direct-mapped caches.

6.6. Evaluation · 111

variable padding (excepting a slight improvement due to alignment) because it has
no conflict misses. Note also that this loop nest has almost the same miss ratio
regardless of the cache size. On the other hand, loop nests 2 to 6 have an extremely
large miss ratio. As an extreme case, loop nest 2 has a miss ratio close to 100% for a
4KB cache, which after inter-variable padding is reduced to 11.8%. Note that inter-
variable padding removes all the conflict misses for all swim loops since the miss
ratio after inter-variable padding and the fully-associative miss ratio are practically
identical.

The tomcatv program has several loop nests that deserve special comments.
For the 32KB and 16KB, the proposed inter-variable padding technique practically
removes all conflict misses. For the 8KB cache, inter-variable padding removes all
conflict misses from all loop nests except for loop 1. In this case, inter-variable
padding reduces the miss ratio from 53.6% to 29.2% but not all conflict misses are
removed since the fully-associative cache miss ratio is 11.4%. An analysis of this
loop shows that there are also intra-conflict misses.

In the case of a 4KB cache, inter-variable padding achieves about the same miss
ratio as a fully-associative cache for loop nests 2 and 5. As a noticeable case, the
miss ratio of loop 5 has been reduced from 42.3% to 15.8%. For the other loop nests
there is a significant improvement but the miss ratio is still far from that of the
fully-associative cache. An analysis of these three loop nests revealed that most of
the remaining misses are intra-variable conflict misses.

Intra-Variable Padding

The objective of intra-variable padding is to eliminate those intra-variable conflict
misses that inter-padding cannot remove.

We have shown that tomcatv is the only program that has a significant intra-
variable conflict miss ratio, in particular for caches of 4KB and 8KB. Figure 6.9
shows the miss ratio for the different loop nests of the tomcatv program. The figure
shows the miss ratio for each loop after applying inter- and intra-variable padding.
It also shows the miss ratio before padding and that of a fully-associative cache.
As we observed before, inter-variable padding does not remove all conflict misses
because there are intra-variable conflict misses. Intra-variable padding achieves
about the same miss ratio as the fully-associative cache, which means that the
proposed padding algorithm removes practically all conflict misses.

112 · Chapter 6. Data Cache Optimization

0

10

20

30

40

50

60

70

80

90

100

M
is

s
R

at
io NO Padding

Inter-Padding

Intra-Padding

Fully-Assoc

1 2 3 4 5 1 2 3 4 5

8KB 4KB

Fig. 6.9: Miss ratio for different tomcatv loop nests before and after inter- and intra-variable
padding.

Miss Ratio Results

We have obtained the miss ratios for the most significant loop nests from tomcatv

and swim after running them on the Pentium-4 platform. Figure 6.10 shows the
miss ratios for both L1 and L23 caches before and after applying intra-padding. We
use the miss penalties shown in Table 4.1 to calculate the MCost (see Section 6.2.3)
for each loop nest. We assume that read and write misses are equally expensive.
Intra-variable padding reduces the average miss penalty for the tomcatv program
by 12.4%, whereas it reduces the average miss penalty by 140.8% for the swim

program.

Performance Results

Figures 6.11 and 6.12 show the runtime improvements. We have executed the orig-
inal and padded versions on the four considered platforms (see Table 4.1). Notice

3L2 misses are calculated w.r.t. the total number of memory accesses.

6.6. Evaluation · 113

0

2

4

6

8

10

12

14

16

18

1 2 3 4 5

M
is

s
R

at
io L1 Original

L1 Intra-padding

L2 Original

L2 Intra-padding

0

10

20

30

40

50

60

1 2 3 4 5 6

M
is

s
R

at
io L1 Original

L1 Intra-padding

L2 Original

L2 Intra-padding

(a) tomcatv (b) swim

Fig. 6.10: L1 and L2 miss ratios before and after intra-padding for the Pentium-4.

Name Problem Size
matmul 100, 200, 500, 1000, 2000
matvec 100, 200, 500, 1000, 2000
t2d 100, 200, 500, 1000, 2000
adi 100, 200, 500, 1000, 2000
vpenta 128

(a) Problem sizes for evaluating
the reduction in number of capacity misses.

Name Size 1 Size 2
matmul 400+50i 1000+50i
matvec 500+43i 1000+43i
t2d 2000+53i 4000+53i
adi 2000+53i 4000+53i
vpenta 1028+47i 2056+47i

(b) Problem sizes (i = 0 . . . 14)
for evaluating execution time.

Table 6.2: Problem sizes for evaluating tiling.

the different scales for each chart. We have also compared our approach to select-
ing pad sizes with Rivera and Tseng’s algorithm [129]. The first column presents
the speedups achieved running Rivera and Tseng’s method. We use the best result
yielded by their two approaches PAD and PADLITE. The second column shows
the speedups obtained by our approach. We observe that in all cases our approach
performs better, with relative speedups with Rivera and Tseng’s ranging between
1% and 227% for the tomcatv program and 4% and 66% for the swim program.

6.6.2 Tiling

We now present results for our evaluation of tiling.

114 · Chapter 6. Data Cache Optimization

(
�

=227.5%)

0

20

40

60

80

100

120

140

160

1 2 3 4 5 Overall

S
pe

ed
up Rivera

Ours

(� =66.6%)

0

1

2

3

4

5

6

1 2 3 4 5 6 Overall

S
pe

ed
up Rivera

Ours

tomcatv swim

(a) Pentium-4

(� =35.5%)

0

0.5

1

1.5

2

2.5

1 2 3 4 5 Overall

S
pe

ed
up Rivera

Ours

(� =4.7%)

0

0.5

1

1.5

2

2.5

1 2 3 4 5 6 Overall

S
pe

ed
up Rivera

Ours

tomcatv swim

(b) Alpha-21264

Fig. 6.11: Speedups of the padded versions compared to the original programs. ∆ stands for the
relative speedup of our method compared to Rivera and Tseng’s.

Removing Capacity Misses

We first show the ability of tiling to reduce the number of capacity misses.4 In order
to investigate that, we have evaluated the replacement miss ratio of the studied
kernels for a set of problem sizes shown in Table 6.2(a). We do not include the
compulsory misses since tiling does not change them. Unlike the SPECfp95, we can
change the size of the working sets. Thus, we use bigger caches and bigger working
sets according to today’s workloads.

We show the results in Figure 6.13. We observe that tiling practically removes
all replacement misses for almost all kernels. However, the replacement miss ratio

4CMEs replacement misses account for both capacity and conflict misses.

6.6. Evaluation · 115

(� =25.3%)

0

0.2

0.4

0.6

0.8

1

1.2

1.4

1.6

1 2 3 4 5 Overall

S
pe

ed
up Rivera

Ours

(� =6.7%)

0

2

4

6

8

10

12

14

16

18

20

1 2 3 4 5 6 Overall

S
pe

ed
up Rivera

Ours

tomcatv swim

(a) UltraSparc-III

(� =1.2%)

0

0.2

0.4

0.6

0.8

1

1.2

1.4

1 2 3 4 5 Overall

S
pe

ed
up Rivera

Ours

(� =8.6%)

0

0.2

0.4

0.6

0.8

1

1.2

1.4

1.6

1 2 3 4 5 6 Overall

S
pe

ed
up Rivera

Ours

tomcatv swim

(b) Itanium

Fig. 6.12: Speedups of the padded versions compared to the original programs. ∆ stands for the
relative speedup of our method compared to Rivera and Tseng’s.

obtained for vpenta is still rather high for all cache sizes due to conflict misses.
To confirm this intuition, we have applied tiling and padding for this kernel, which
removes all replacement misses (i.e., conflict and capacity misses). This case illus-
trates the need for applying tiling and padding in concert in order to remove both
conflict and capacity misses.

Loop Tiling Overhead

We now present the importance of considering the loop tiling overhead. We show
that without an accurate estimate of the penalty of miss-predicted branches, the
degradation in performance can be severe.

The results of our set of experiments are shown in Figure 6.14. In order to prove

116 · Chapter 6. Data Cache Optimization

64KB Cache

0
10
20
30
40
50
60
70
80
90

100

M
A

T
M

U
L_

10
0

M
A

T
M

U
L_

20
0

M
A

T
M

U
L_

50
0

M
A

T
M

U
L_

10
00

M
A

T
M

U
L_

20
00

M
A

T
V

E
C

_1
00

M
A

T
V

E
C

_2
00

M
A

T
V

E
C

_5
00

M
A

T
V

E
C

_1
00

0

M
A

T
V

E
C

_2
00

0

T
2D

_1
00

T
2D

_2
00

T
2D

_5
00

T
2D

_1
00

0

T
2D

_2
00

0

A
D

I_
10

0

A
D

I_
20

0

A
D

I_
50

0

A
D

I_
10

00

A
D

I_
20

00

V
P

E
N

T
A

Kernels

R
ep

la
ce

m
en

t
M

is
s

R
at

io

NO Tiling

Tiling

32KB Cache

0
10
20
30
40
50
60
70
80
90

100

M
A

T
M

U
L_

10
0

M
A

T
M

U
L_

20
0

M
A

T
M

U
L_

50
0

M
A

T
M

U
L_

10
00

M
A

T
M

U
L_

20
00

M
A

T
V

EC
_1

00

M
A

T
V

EC
_2

00

M
A

T
V

EC
_5

00

M
A

T
V

E
C

_1
00

0

M
A

T
V

E
C

_2
00

0

T
2D

_1
00

T
2D

_2
00

T
2D

_5
00

T
2D

_1
00

0

T
2D

_2
00

0

A
D

I_
10

0

A
D

I_
20

0

A
D

I_
50

0

A
D

I_
10

00

A
D

I_
20

00

V
P

E
N

TA

Kernels

R
ep

la
ce

m
en

t M
is

s
R

at
io

NO Tiling

Tiling

(a) (b)

16KB Cache

0
10
20
30
40
50
60
70
80
90

100

M
A

T
M

U
L_

10
0

M
A

T
M

U
L_

20
0

M
A

T
M

U
L_

50
0

M
A

T
M

U
L_

10
00

M
A

T
M

U
L_

20
00

M
A

T
V

EC
_1

00

M
A

T
V

EC
_2

00

M
A

T
V

EC
_5

00

M
A

T
V

E
C

_1
00

0

M
A

T
V

E
C

_2
00

0

T
2D

_1
00

T
2D

_2
00

T
2D

_5
00

T
2D

_1
00

0

T
2D

_2
00

0

A
D

I_
10

0

A
D

I_
20

0

A
D

I_
50

0

A
D

I_
10

00

A
D

I_
20

00

V
P

E
N

T
A

Kernels

R
ep

la
ce

m
en

t M
is

s
R

at
io

NO Tiling

Tiling

8KB Cache

0
10
20
30
40
50
60
70
80
90

100
M

A
T

M
U

L_
10

0

M
A

T
M

U
L_

20
0

M
A

T
M

U
L_

50
0

M
A

T
M

U
L_

10
00

M
A

T
M

U
L_

20
00

M
A

T
V

EC
_1

00

M
A

T
V

EC
_2

00

M
A

T
V

EC
_5

00

M
A

T
V

E
C

_1
00

0

M
A

T
V

E
C

_2
00

0

T
2D

_1
00

T
2D

_2
00

T
2D

_5
00

T
2D

_1
00

0

T
2D

_2
00

0

A
D

I_
10

0

A
D

I_
20

0

A
D

I_
50

0

A
D

I_
10

00

A
D

I_
20

00

V
P

E
N

T
A

Kernels

R
ep

la
ce

m
en

t M
is

s
R

at
io

NO Tiling

Tiling

(c) (d)

Fig. 6.13: Miss ratio before and after tiling for a set of direct-mapped caches. Cache line is 32B.

the importance of considering branch predictor behavior, we have analyzed different
penalty values for the Pentium-4 processor for the problem sizes shown in the second
column of Table 6.2(b). For the sake of comparison, we only consider the effects of
tiling; we have run our approach for obtaining the best tile sizes considering different
values of µMP , and compared the execution times to that of the selected penalty
(µMP = 20). We present results in terms of slowdowns. We can see that in general,
execution time converges smoothly to the estimated penalty, which confirms our
intuition. When the penalty is set to small values, the degradation in performance
may be very important (up to 34% for matmul). This is because we generate
tiles that are very small in order to minimize memory penalty, though incurring in
a high overhead due to the increased number of miss-predicted branches. On the
other hand, if we set large penalty values, we prioritize branches overhead, thus,
tiles are bigger but we incur in more misses that can degrade performance.

6.6. Evaluation · 117

1

1.1

1.2

1.3

1.4

1.5

1.6

MP=1 MP=5 MP=10 MP=15 MP=20 MP=25 MP=30

S
lo

w
do

w
n

Matmul
T2D
ADI

Matvec
Vpenta

Fig. 6.14: Impact of branch miss-prediction overhead for the Pentium-4 processor. Results are
normalized to our estimated penalty, µMP = 20.

LoopCost Results

We have obtained the miss ratios for the different problem sizes from matmul as
shown in the second column of Table 6.2(b) after running them on the Pentium-4
platform. Figure 6.15 shows the number of L1 and L2 misses for lrw and tss

-100

-50

0

50

100

150

200

250

40
0

45
0

50
0

55
0

60
0

65
0

70
0

75
0

80
0

85
0

90
0

95
0

10
00

10
50

11
00

L1 misses
L2 misses
MP Branches

-500

0

500

1000

1500

2000

2500

3000

3500

40
0

45
0

50
0

55
0

60
0

65
0

70
0

75
0

80
0

85
0

90
0

95
0

10
00

10
50

11
00

L1 misses
L2 misses
MP Branches

(a) tss (b) lrw

Fig. 6.15: Run-time information of the three different tiling algorithms for the execution on the
Pentium-4 platform.

normalized to those of our approach. We also show the number of modeled miss-
predicted branches (MissPred in Section 6.2.3) based on the selected tile sizes. Note
that the resulting tiled code of our approach is always the fastest.

Since our approach tries to optimize overall performance, it does not focus on
removing L1 cache misses. Instead, it takes into account all different factors. Thus,

118 · Chapter 6. Data Cache Optimization

we can observe that the other approaches may yield less misses on the L1 or L2
cache level, or have less miss-predicted branches. However, our approach considers
all possible factors, and the resulting program runs faster.

Performance Results

While lrw and tss can be applied to any loop nest, they were originally thought for
programs involving matrix operations, and especially, for tiling matrix multiplica-
tion.

In this subsection we compare our tile selection approach with them for the
matrix multiplication kernel. We present results for 5 possible loop orders, IKJ,
JIK, JKI, KIJ and KJI (the remaining IJK order is used in the next subsection).
We use 15 different matrix sizes:

N = 1000 + 53i, 0 ≤ i ≤ 14

1.00

1.50

2.00

2.50

3.00

3.50

4.00

Processors

S
pe

ed
up lrw

tss

lrw 1.13 1.99 1.05 1.10

tss 1.62 4.10 1.21 1.16

Pentium-4 Alpha-21264 UltraSparc-III Itanium

Fig. 6.16: Speedups for 5 different loop orders of the matmul kernel.

Figure 6.16 shows the average speedups of our method (only tiling is applied)
compared to lrw and tss. For obtaining these results, we have run all different
approaches to select the best tile sizes for each platform. Then, we have executed
the tiled version measuring the actual execution time. The results show that our
approach outperforms these two techniques significantly, up to 310% for tss on the
Alpha processor. We also show that our approach is better than both techniques
for all platforms, with improvements ranging between 5% and 310%.

6.6. Evaluation · 119

6.6.3 Tiling and Padding

1

1.2

1.4

1.6

1.8

2

2.2

2.4

Matmul T2D ADI Matvec Vpenta Overall

Kernel

S
p

ee
du

p lrw
tss
lrwPad
tssPadd

1

2

3

4

5

6

7

8

Matmul T2D ADI Matvec Vpenta Overall

Kernel
S

p
ee

du
p lrw

tss
lrwPad
tssPad

(a) Pentium-4 (b) Alpha-21264

1

1.05

1.1

1.15

1.2

1.25

1.3

1.35

1.4

1.45

Matmul T2D ADI Matvec Vpenta Overall

Kernel

S
p

ee
du

p lrw
tss
lrwPad
tssPad

1

1.2

1.4

1.6

1.8

2

2.2

2.4

2.6

2.8

Matmul T2D ADI Matvec Vpenta Overall

Kernel

S
p

ee
du

p lrw
tss
lrwPad
tssPad

(c) UltraSparc-III (d) Itanium

Fig. 6.17: Speedup obtained by our approach compared with lrw and tss algorithms.

We now present results for a set of common kernels that may benefit from
tiling and padding. We showed the problem sizes in Table 6.2(b). The second
column shows the sizes considered for the Pentium-4, Alpha-21264 and UltraSparc-
III, whereas the third column shows the sizes used for experimenting on the Itanium
machine. We chose different sizes for Itanium in such a way that blocking could be
useful to enhance performance.

In order to see the effectiveness of our method, we have compared our approach
to selecting tile and pad factors with lrw and tss. Figure 6.17 shows, for each
machine, to what extent our method is better in terms of execution time of the
optimized codes.

We first consider the results where only loop tiling is applied. For each program,
the first two bars report the speedup compared to lrw and tss respectively. In
all cases our method yields better results than previous approaches. Our ability

120 · Chapter 6. Data Cache Optimization

0.7

0.9

1.1

1.3

1.5

1.7

1.9

2.1

2.3

2.5

2.7

Matmul T2D ADI Matvec Vpenta Overall
Kernel

S
pe

ed
up

lrw
tss
ours
lrwPadd
tssPad
oursPadd

0

1

2

3

4

5

6

Matmul T2D ADI Matvec Vpenta Overall

Kernel

S
pe

ed
up

lrw
tss
ours
lrwPadd
tssPad
oursPadd

(a) Pentium-4 (b) Alpha-21264

0

0.5

1

1.5

2

2.5

3

3.5

4

4.5

5

Matmul T2D ADI Matvec Vpenta Overall

Kernel

S
pe

ed
up

lrw
tss
ours
lrwPadd
tssPad
oursPadd

0.3

0.5

0.7

0.9

1.1

1.3

1.5

1.7

1.9

2.1

2.3

Matmul T2D ADI Matvec Vpenta Overall

Kernel

S
pe

ed
up

lrw
tss
ours
lrwPadd
tssPad
oursPadd

(c) UltraSparc-III (d) Itanium

Fig. 6.18: Speedup of all approaches w.r.t. the original program.

to select tile factors results in important runtime improvements; on average, our
transformed code runs 8% and 49% faster on a Pentium-4 compared to lrw and tss.
On the Alpha machine results are even more impressive, with average speedups of
63% and 195% respectively.

Now, we consider results where both tiling and padding techniques are applied.
The second set of bars reports the speedup compared to lrwPad and tssPad,
enhanced versions of lrw and tss where padding is allowed [131]. Note that the
memory requirement for all methods was roughly the same. We can see that the
speedup is smaller on the Pentium-4, where our transformed code runs 7.7% and
26% faster than lrwPad and tssPad respectively. However, the difference increases
on the other three platforms, with the most significant results showing for the Alpha
(260% and 271%).

Finally, in order to see to what extent tiling and padding help enhancing pro-
gram’s performance, we show in Figure 6.18 the speedups that the different ap-
proaches (with and without padding) obtain w.r.t. the original kernel. The applica-

6.6. Evaluation · 121

tion of padding on lrw and tss does not always translate to a better performance.
Padding improves especially tss on the Pentium-4, but it yields worse results on the
Alpha machine. On the other hand, our approach applies padding selectively. Our
accurate cost model guides the selection of tile and pad factors; if padding is not
useful, our cost model will predict a performance degradation, so pad factors will be
set to 0. Overall, our approach obtains (98%, 204%, 135%, 49%) average speedups
on the Pentium-4, Alpha, UltraSparc-III and Itanium respectively. Combining the
other methods with padding, lrwPad obtains (69%, 19%, 107%, 16%) and tssPad
(20%, 80%, 109%, 11%). Otherwise, their speedups are (74%, 78%, 119%, 9%) and
(30%, 20%, 105%, 3%) for lrw and tss respectively.

Note that the use of an accurate model allows us to obtain always a version of
the code that it is not worse than the original one. For instance, when optimizing
matvec for the Itanium platform our cost model determines that tiling is not useful,
thus we do not apply it. However, the other approaches do not have an accurate
model that guides the transformations, which results, some times, in optimized codes
that run slower than the original version.

6.6.4 Compile-Time Overhead

Clearly, for our method to be considered a realistic optimization approach, it must
be shown that the compilation time required is small enough to be practical. Al-
though a precise cost model combined with a GA can find very good results, the
compilation time required for that may be infeasible. In order to investigate this,
we have collected the execution time needed to obtain tile and pad factor for all our
experiments. We account for 15 problem sizes for each of the 5 kernels.

Processor MIN MAX AVG
Pentium-4 1.8 14.5 4.6
Alpha-21264 0.1 11.9 3.6
UltraSparc-III 0.87 16.5 5.8

Itanium 0.4 17.0 5.5

Table 6.3: Compile-time overhead when selecting tile and pad factors on a Pentium-4 running at
1.6GHz.

Table 6.3 shows the average times needed to generate the optimized versions
(including both tiling and padding) for each architecture. We see that in the worst
case, it takes an average of 5.8 seconds to optimize a code. We believe that this
amount of time is reasonable for a static compiler.

122 · Chapter 6. Data Cache Optimization

6.6.5 Summary

Overall, we have shown the effectiveness of our method to select tile and pad factors.
We first have presented results where only padding and tiling are applied. Then, we
have reported results that highlight the importance of modeling the branch predic-
tor behavior. Later, we have seen that our approach outperforms state-of-the-art
techniques to select tile and pad sizes for all analyzed kernels, for all platforms.
We have shown how our cost model selects tile and pad factors in concert, which
translates to consistent speedups.

From these results, we conclude that accurate cost models that consider not
only cache behavior but other hardware components are necessary. A simple cost
model may hinder the compiler’s ability to generate good code that improves overall
performance. For instance, it is not clear when padding should be combined with
tiling for the lrw and tss algorithms.

6.7 Related Work

Researchers working on locality optimizations have considered re-ordering tech-
niques such as loop interchange [50, 113, 168, 170], loop fission/fusion [113] and
loop tiling [24, 35, 93, 131, 168].

The success of loop tiling depends on the tile size and shape selection. Lam et
al. [93] present an algorithm that chooses the largest non-conflicting square tile, con-
sidering caches with low associativity. Coleman and McKinley [35] try to maximize
the tile size while minimizing the cross-interferences. Their cost model is based on
computing the footprints of the array references. Rivera and Tseng [131] further
extend the Euclidean algorithm [35] by computing tile widths using a recurrence.
They realize that there may be some pathological problem sizes where tile selection
does not work very well. They propose padding the first dimension of all arrays
with the same pad to eliminate such cases.

Array padding can help eliminate conflict misses. Rivera and Tseng [129, 130]
propose several simple heuristics that are addressed to eliminate conflicts in some
particular cases. They mainly focus on conflicts that occur on every loop iteration,
addressing only inter-padding for uniformly generated references (so they cannot
remove conflict misses for references such as b[i][j]) and c[k][j]). On the other hand,
they do not use intra-padding to remove cross-interferences. In the case they cannot
remove all the conflicts, no changes are done to the data layout. Besides, they use
the padding algorithm devised to avoid conflict misses for direct-mapped caches to
remove conflict misses for set-associative caches, without taking into account that

6.8. Chapter Summary · 123

interferences arise in different situations for different cache architectures. A set con-
tention in a set-associative cache does not necessarily mean there is an interference.
They presented an extension of this work targeting multi-level caches [132], where
they study the effects of optimizing L1 cache on L2 cache behavior.

Ghosh et al. [52] use the CMEs to propose a tiling and padding technique.
Padding works on direct-mapped caches, optimizing conflicting arrays that have the
same column size. Their technique finds the optimal padding if there is a padding
such that the total number of replacement misses after padding is zero. However, if
such padding does not exist, their technique does not provide any solution. Note that
replacement misses include both conflict and capacity misses and one may expect
the case where replacement misses cannot be decreased up to zero to be common.
Tiling is based on maximizing the tile size for every self-interference equation, ob-
taining a tile that has no conflicts for the given equation. However, they do not give
insights about how to combine the different tile sizes obtained. Furthermore, tiling
is not applied to cross-interferences.

Our approach has several advantages over previous research. First, our cost
model describes accurately the cache behavior of any memory hierarchy and con-
siders all array accesses within a loop nest. Moreover, we model tiling overhead
due to miss-predicted branches. Second, our padding considers different pad factors
for each array dimension, increasing the chances of finding a better optimized code.
Finally, we perform tiling and padding at the same time, hence considering a global
solution.

6.8 Chapter Summary

This chapter presents a new approach to improving execution time of programs by
enhancing data locality. It combines tiling and padding to remove both capacity
and conflict misses. First, using the cache locality model presented in previous
chapters, we presented a very accurate cost model that describes cache locality
across different levels of cache. Moreover, this cost model takes into account the
possible tiling overhead due to the added miss-predicted branches. We discuss how
this model can be tuned to describe accurately the performance cost for different
modern architectures.

Second, we introduce the use of genetic algorithms to explore the solution space.
We show how our approach can guide compiler optimizations efficiently; with a small
compile-time overhead (average of 4.9 seconds per kernel), we obtain significant run-
time improvements. Our results show that, compared to the best performing scheme
among previous approaches for each particular architecture (which happens not to

124 · Chapter 6. Data Cache Optimization

be always the same scheme), we have 7.7%, 63.2%, 5.2% and 35.7% average speedup
for Pentium-4, Alpha-21264, UltraSparc-III and Itanium processors respectively.

Overall, we contribute a new technique that makes a case for the use of accurate
models to guide compilers in order to improve execution time. Moreover, it does
not only model cache behavior but hardware components such as branch predictors,
which shows the possibility of having complex and accurate models for modern
architectures.

7

Timing Cache Behavior

CHAPTER 7

TIMING CACHE BEHAVIOR

A safe and tight worst-case behavior of programs when executed on a system with
data caches is difficult to obtain due to intra- and inter-task cache conflicts. This
thesis contributes a new technique to obtain predictability in preemptive multitask-
ing systems in the presence of data caches. Our method explores the use of cache
partitioning, dynamic cache locking and static cache analysis to provide worst-case
performance estimates in a safe and tight way. We use cache partitioning, which di-
vides the cache among tasks to eliminate inter-task cache interferences. We combine
static cache analysis and cache locking mechanisms to ensure that all intra-task con-
flicts, and consequently, memory access times, are exactly predictable. To minimize
the performance degradation due to cache partitioning and locking, two strategies
are employed. First, the cache is loaded with data likely to be accessed so that their
cache utilization is maximized. Second, compiler optimizations such as tiling and
padding are applied in order to reduce cache conflict misses.

7.1 Motivation

The presence of data-dependent accesses makes the estimate of whether the reuse
is realized or not infeasible. A näıve way of having a safe approach is to assume all
future accesses as misses. However, this will result in a large overestimation of the
WCET.

Another approach to overcoming this problem in real-time systems is to lock
the cache for the whole execution of the program. Unfortunately, this translates to
very poor cache utilization when data do not fit the cache. In order to confirm this
intuition, we have run a number of different programs (for a detailed description of
the benchmarks, see Table 4.4 in Section 4.4) assuming two cache configurations:

(i) Normal behavior with enabled cache (Unlocked).

(ii) Loading the cache with most frequently accessed memory lines and locking it

128 · Chapter 7. Timing Cache Behavior

Miss Ratios Cycles
Program Analysis MIN MAX AVG Increase(%) Degradation(%)

Unlocked 1.88 33.53 10.01
mm Locked+Load 59.14 99.36 82.27 721.77 599.55

Unlocked 5.67 8.33 7.94
cnt Locked+Load 18.08 98.72 64.45 710.92 565.67

Unlocked 3.57 14.29 7.66
st Locked+Load 3.57 96.80 35.87 389.87 307.87

Unlocked 1.43 1.43 1.43
sqrt Locked+Load 1.43 1.43 1.43 0.00 0.00

Unlocked 0.49 0.49 0.49
fib Locked+Load 0.49 0.49 0.49 0.00 0.00

Unlocked 8.37 16.74 10.93
srt Locked+Load 8.37 93.73 18.49 69.16 58.28

Unlocked 0.90 1.74 0.96
ndes Locked+Load 0.90 6.56 1.33 38.40 12.30

Unlocked 0.59 56.10 9.18
fft Locked+Load 0.59 93.64 20.15 119.37 97.66

Table 7.1: Comparison of performance between an unlocked cache and a locked cache loaded with
the most frequently accessed lines for programs in Table 4.4. Increase (Degradation) represents
the average increase in miss ratios (cycles) of “Locked+Load” over “Unlocked” across all cache
architectures.

at start time for the whole execution (Locked+Load).

In order to obtain the most frequently accessed lines, we have run the program
once and collected statistics for each memory line accessed. Then, we load each cache
set with the most frequently accessed memory lines that map to that particular set.

We have analyzed the following cache architectures: 4KB, 8KB, 16KB and 32KB
(32B per line) for three different associativities (direct-mapped, 2-way and 4-way).
We have also simulated the microSPARC I cache architecture (direct-mapped, 512
bytes, 32B per line). We present results accounting only for load/store instructions:
we assume a conservative architecture where a cache hit takes 1 cycle and a cache
miss 50 cycles.

Table 7.1 shows the results of our experiments. For each program and con-
figuration, we report the minimum, maximum and average miss ratios across all
architectures. The last two columns show to what extent locking the cache degrades
performance. We present results for miss ratios and simulated cycles. We can see
that performance drops significantly for most programs (in some cases, it degrades
more than 500% in cycles). Cache locking performs well only in those cases where

7.2. A WCET Tool Overview · 129

all data fit the cache such as sqrt (it only accesses a few floating point values) or
srt (when the cache is large enough to hold the array being sorted).

7.2 A WCET Tool Overview

A real-time system is a computer-based system where the timing of a computation
is as important as the actual value. In most cases, steady and predictable behavior
is the desired property; sometimes too fast is as bad as too slow.

Hard real-time systems are those where a failure to meet a deadline can be fatal.
To guarantee their behavior, the worst case behavior has to be analyzed. It will be
used to ensure timely responses from tasks as well as input to scheduling algorithms.

That implies that it is necessary to know the execution time for the tasks in a
real-time system. However, a task does not have a unique execution time. There are
two sources of execution time variation: (i) the task may have different work loads
depending on the input, and (ii) the initial state of the hardware where the task
is executed may change for different runs. Since execution time varies, the WCET
(i.e., the longest execution time for a program for all possible input data) is used as
a safe upper limit.

7.2.1 Estimating WCET

In order to be useful, WCET has to be conservative and tight. On one hand, an
underestimated WCET will produce a system that can fail. On the other hand, a
very large overestimated WCET may be perfectly useless, since it will imply a very
large waste of resources.

A näıve approach to computing the WCET of a task would be to run the program
for each possible input. However, this is not possible in practice due to measurement
time. Running the program with the input data that cause the WCET would be a
solution, but it is usually hard to know such data. A third option is running the
code with an estimated very bad input data. Then a safety margin is added.

However, the WCET that is obtained in each of these approaches is not safe,
since it cannot be proved that it is the actual WCET. Besides, hardware components
like caches may give different results for two otherwise identical runs, due to, e.g.,
different cache states at startup. In particular, cache behavior depends on the initial
state of the cache. Therefore, a sound static analysis is needed.

130 · Chapter 7. Timing Cache Behavior

7.2.2 Task Model and Schedulability Analysis

We consider a set of N periodic tasks Ti, 1 ≤ i ≤ N . We denote the period and
worst-case execution time of task Ti by Pi and Ci, respectively.

We consider two schedulability analyses for periodic tasks, UA (utilization-based
analysis) and RTA (response time analysis). For dynamic priority preemptively
scheduled systems (e.g., earliest deadline first), the utilization condition U ≤ 1 is
necessary and sufficient, where U is defined as follows:

U =
N∑

i=1

Ci

Pi

(7.1)

For static priority preemptively scheduled systems such as rate monotonic, we
use response time analyses [78, 145] to obtain a necessary and sufficient condition.
For a task Ti, the idea is to consider all preemptions produced by higher priority
tasks on an increasing window time. The fixed point of the following recurrence
gives the response time Ri of task Ti:

R0
i = Ci

... (7.2)

Rn+1
i = Ci +

∑

Tj∈HP (Ti)

⌈
Rn

i

Pj

⌉

× Cj

where HP (Ti) is the set of tasks with higher priority than Ti. In order to check
the schedulability of task Ti, one only has to compare the response time Ri with its
period Pi. Task Ti is schedulable if and only if Ri ≤ Pi.

Our approach eliminates cache penalties due to cold-starting the cache after a
context switch. Thus, classical non-cache sensitive schedulability analyses should be
used rather than their cache-sensitive versions, CUA [12] and CRTA [17].

7.2.3 Extended Program Model

We recall our program model from Section 3.2. Our model applies to programs
consisting of subroutines, calls, arbitrarily nested loops, and assignments possibly
guided by if conditionals.

The following restrictions define the scope of programs where only one path is
analyzed:

• Calls are non-recursive.

7.2. A WCET Tool Overview · 131

• Bounds of all loops are known and affine.

• The if conditionals are analyzable at compile time.

Otherwise, when data-dependent situations arise, we will apply path merging in
order to reduce the number of paths being analyzed. We assume that the maximum
number of iterations of a loop and the maximum number of recursive calls are known.
This can be done either by manual annotations [40] or by automatic approaches [60].
Next, we discuss the path analysis in detail.

7.2.4 Flow Analysis

In order to estimate the WCET statically, we must analyze all possible paths. For
each path generated, the execution time will be estimated for a particular architec-
ture.

Program flow analysis determines the possible paths through a program.

Definition 7.1 (Path) A path from u to v in the control flow graph of a program
is a sequence of directed edges, n0, n1, . . . , nk, such that n0 = u, nk = v and
(ni, ni+1) is an edge in the graph.

Flow analysis yields information about which functions are called, the number of
iterations of a loop, etc. Unfortunately, it is infeasible to analyze all possible paths
in a program.

Approximations during computation must be selected so that path explosion
is reduced: a simple loop with an if-then-else statement that iterates a hundred
times generates 2100 possible paths. Whenever it is possible, infeasible paths are
removed [40, 103] reducing the number of paths to be analyzed.

In order to further reduce the number of paths analyzed, we use a common
technique known as merging to make the analysis more efficient. This basically
consists of reducing the path explosion by merging paths in those cases where a
path enumeration is needed [45, 64, 104]. This includes data-dependent conditionals,
loops with multiple paths inside and loops with unknown loop bounds. Figure 7.1
introduces three examples that will be used through this chapter to illustrate path
merging.

However, this approximation trades performance for accuracy. At every merge
point, the most pessimistic assumptions are made in order to have a safe estimate.
In the presence of caches, this generally translates to an unknown state of the cache,
since the final state of the cache for each path is also merged.

132 · Chapter 7. Timing Cache Behavior

if (!a[i])
b[i]++;

else
c[i]−−;

for (i=0;i<4;i++)
if (a[i])
break;

for (i=0;i<2;i++){
if (a[i]){
a[i]−−;
break;

}
else
a[2*i]++;

}

(a) if Construct (b) Loop Construct (c) Loop with if

Fig. 7.1: Non-analyzable codes.

7.2.5 Merging Operator

Merge points can be chosen arbitrarily depending on accuracy and execution time
desired. We use a strategy where the number of paths to be explored are reduced
from nk to kn for a loop that contains n possible paths and iterates k times. In
each iteration, all n paths are analyzed, but at the start of the next iteration all
these paths are merged into one. Note that we only consider natural loops, which
may have multiple exits. In the other cases, path merging is not applied and thus
all paths are analyzed.

Conditionals are also treated in a special way. When a conditional branch whose
condition is unknown is found, both paths have to be analyzed. In order to keep
the number of paths that are analyzed reasonable, both paths are merged.

Definition 7.2 (System State) For each path p, we denote its system state as the
result of its (partial) execution, and it may include information about the
program counter (which instruction is executed), memory locations, registers
contents, etc.

Regarding our analysis, we are only concerned about the program counter (PC) and
the cache state (CC).

Definition 7.3 (Set of Cache Lines) L is the set of cache lines.

Definition 7.4 (Memory) S is the set of all memory lines. To represent the absence
of any block in a cache line, we introduce a new element I 6∈ S, S ′ = S ∪ {I}.

7.2. A WCET Tool Overview · 133

input

pa = a path
pb = a path

pre-condition:
pa.state.PC = pb.state.PC

output

pa t pb = a path

algorithm

pc is a path
pc.state.PC := pa.state.PC;
pc.state.CC := pa.state.CC tCC pb.state.CC ;

pa t pb :=pc

Fig. 7.2: Merging operator for paths.

Definition 7.5 (CC) The state of the cache is a mapping

CC : L→ S ′

When considering set-associative caches, we assume that cache lines are sorted
within sets according to the replacement policy.1

For each merge operation, one must union the system states of all merging paths.
The merging operator t that merges paths is outlined in Figure 7.2. The union
operation for cache states is defined as usual [5, 103]:

a tCC b = CC : L→ S ′

l 7→ a(l) tL b(l)

x tL y =

{
I if x 6= y
x otherwise

Note that the program counter of two merging paths at the merge point is the
same by definition. However, the cache states do not have to be the same, thus some
approximations when merging are taken. Our approach will eliminate this situation:
all merging paths have the same cache state at the merging point.

134 · Chapter 7. Timing Cache Behavior

(a) if Construct (b) Loop Construct (c) Loop with if

Fig. 7.3: Control-flow graph for examples in Figure 7.1. Dashed boxes represent entry/exit nodes.

7.2.6 Merging Operator Placement

We describe the situations where the merge operator is applied below, where we use
the codes in Figure 7.1. Their associated control-flow graphs are shown in Figure 7.3,
where the dashed nodes represent the entry/exit nodes. The unfolded versions are
shown in Figure 7.4.

Data-dependent conditionals Figure 7.4(a) shows an example of such a case.
At compile time, it is impossible to figure out which branch is going to be
executed. The merge point is set in such a way that it merges the outcomes
from both branches.

Unknown number of iterations of a loop This situation arises when either the
loop bounds are unknown or there is a jump out of the loop. Either way, a

1The current implementation only supports LRU replacement policy, which is the one adopted
by all studied real-time processors.

7.3. Predictable Cache Behavior · 135

Merge Point Merge Point Merge Point

(a) if Construct (b) Loop Construct (c) Loop with if

Fig. 7.4: Basic merge situations.

path is created for each possible number of iterations, and all of them merged
later when they exit the loop (see Figure 7.4(b)).

Notice that these two situations can be combined. When analyzing a loop with a
data-dependent conditional, we may want to merge the branches of each iteration
and later, all the iterations (see Figure 7.4(c)).

7.3 Predictable Cache Behavior

When considering cache memories, schedulability analyses should consider the cost
of reloading the cache lines that may have been evicted from cache. When a pre-
empted task resumes its execution, it may spend a lot of time reloading those cache
lines that have been displaced from cache. Recent studies incorporate some cache-
related preemption costs into the schedulability analysis [12, 17, 97]. They basically
consider that the preempted task will incur a miss for each cache line when resuming
execution. However, this approach cannot be used when dynamic cache locking is
used, since the cost of preempting a task that is accessing a locked region may be
much larger than a cache miss for every cache line. A preempting task may unlock
the cache and load it with its own data; when the preempted task resumes its ex-
ecution, it will not reload the cache since the cache is locked. Thus, there may be
more extra misses than one per cache line throughout the locked region.

Our goal is to have a method that allows obtaining an exact (we want to guar-
antee an exact classification of memory accesses as cache hits or misses) and safe

136 · Chapter 7. Timing Cache Behavior

input

S = a set of tasks
C = a cache architecture

output

PredictMultiTask(S, C) = <set of tasks, set of partitions>

algorithm

CP := CreatePartitions(S, C); // set of partitions
S aux := ∅; // set of modified tasks
for each task Ti ∈ S

CPi is Ti’s cache partition
P aux:= LockAndLoad(Ti); // modified task after locking
P aux:= CacheOptimize(P aux, CPi);
S aux.insert(P aux);

PredictMultiTask(S, C) := < S aux, CP >

Fig. 7.5: An algorithm for obtaining a predictable set of tasks on a multitasking system.

WCMPs of tasks for multitasking systems with data caches, so that current schedula-
bility analyses can be applied without modifications. We propose the use of cache
partitioning for avoiding inter-tasks conflicts. This allows us to compute the WCMP of
each task in isolation. We combine it with some compiler cache optimizations (such
as tiling and padding introduced in Chapter 6) to reduce the loss of performance
due to the use of a smaller cache. When calculating the WCMP of a task, we use
our static analysis combined with dynamic cache locking. We first transform the
program issuing lock/unlock instructions to ensure a tight WCMP estimate at static
time. In order to keep a high performance, load instructions are added only when
necessary.

PredictMultiTask given in Figure 7.5 takes as input a set of tasks and a cache
architecture, and generates a set of cache partitions and a set of analyzable tasks
that have the same semantics as the original tasks. Then, we run our static analyzer
which calculates an exact WCMP for each transformed task. In the next sections, we
explain in detail the different parts of the algorithm. We first discuss the implications
of using the cache partitioning technique. Then, we outline how we solve the problem
of predictability for data caches. In order to optimize the cache behavior of tasks, we
have used the different techniques explained in Chapter 6. Thus, the performance
of the tasks is not jeopardized.

7.4. Cache Partitioning (CreatePartitions) · 137

7.4 Cache Partitioning (CreatePartitions)

Inter-task interference occurs when memory accesses from different tasks conflict
in cache (i.e., different tasks use the same cache lines and thus, a task may evict
data that have been brought by another task), which causes unpredictability. Cache
partitioning [88] divides the cache into disjoint partitions, which are assigned to
tasks in such a way that inter-conflicts are removed.

Let {T1, . . . , Tn} be a set of tasks. Usually, cache partitioning creates n + 1
partitions, one for each real-time task and another one which is shared among non-
real-time tasks. Each task is only allowed to access its own partition, thus removing
inter-task conflicts. Note that tasks that have the same priority (thus, they are
non-preemptively related to each other) can share the same partition, since they
are only preempted by tasks that have higher priority, and thus the predictability
of cache behavior is not affected. Therefore, it is enough to divide the cache in p
partitions, where p is the number of different priorities.

Cache partitioning can be implemented by either software [121, 169] or hard-
ware [88]. Both techniques impose the partition size to be a power of two, so that
the pointer transformation to access data structures can be performed in a fast
way.2 The software approach requires compiler and linker support [121], which are
responsible for relocating data to provide exclusive mappings on the cache for each
task.

When a cache is partitioned, each task will access a smaller fraction of the
cache, which may cause capacity misses to increase. Thus, the size of the partitions
has an impact on the overall performance. In order to obtain the best data cache
partitioning, the decision should be taken based on the priorities and the reuse
patterns of tasks. For instance, a task that has a workload of 8KB but only accesses
each cache line once only needs one cache line, whereas a task with a workload of
1KB that reuses each cache line one million times would suffer a performance loss
with a partition smaller than 1KB.

Our approach works with both hardware and software mechanisms, and it does
not depend on the size of the partitions created. From now on we assume that the
cache is divided in n equally-sized partitions, one for each task. Yet simple, we
show how it is good enough for scheduling real sets of tasks and better utilizing the
CPU than other approaches. An algorithm to obtain even better performance, by
choosing different cache partition sizes for different tasks, is left as future work.

2This restriction does not apply to instruction caches.

138 · Chapter 7. Timing Cache Behavior

7.5 Dynamic Cache Locking (LockAndLoad)

input

P = a program

output

LockAndLoad(P) = a predictable program

algorithm

P aux is a program
P aux := LockMergingPoints(P);
P aux := LockDataDependent(P aux);
P aux := OptimizeLock(P aux);
P aux := LoadData(P aux);

LockAndLoad(P) := P aux

Fig. 7.6: An algorithm for obtaining a predictable program.

LockAndLoad given in Figure 7.6 takes as input a general program, and generates
an analyzable program with the same semantics. In this section, we explain in detail
the different parts of the algorithm to have a predictable program. We first discuss
the implications of using the merging technique. Secondly, we explain how we solve
the problem of predictability for data caches. Then, we outline an algorithm to
selectively load the cache, so that the performance is not jeopardized. Finally, we
present how this approach can be used to compute the WCMP and WCET of a task.

7.5.1 Path Merging (LockMergingPoints)

A practical limitation for WCET estimation is that the number of paths to be
analyzed can easily be prohibitive, especially when studying loop constructs with
multiple paths inside. We have shown in Section 7.2.4 how we manage to bound
the number of analyzed paths to just a few by means of path merging. However,
merging paths leads to an unknown state of the cache, since a new state of the cache
is created based on the state of the cache at the end of each path [5, 104].

When a memory access is analyzed on the pipeline and it cannot be classified as
a hit or a miss, both situations should be analyzed to identify the longest path [39].
This translates to larger analysis times. In order to avoid an unknown state of the
cache due to merging, we lock the regions where paths are merged.

LockMergingPoints makes use of the control-flow graph of the program. It inserts

7.5. Dynamic Cache Locking (LockAndLoad) · 139

lock/unlock instructions (lock/unlock nodes in the control-flow graph) exactly for
the situations described in Section 7.2.6:

• The lock instruction is placed at the top of the entry node of the if or loop
construct.

• The unlock instruction is placed after the exit node of the if or loop construct.
For loops with multiple exits, an unlock instruction is placed for each possible
exit. Without loss of generality, from now on we only consider loops with one
exit.

(a) if Construct (b) Loop Construct (c) Loop with if

Fig. 7.7: Control-flow graphs with lock/unlock nodes for examples in Figure 7.3. Black boxes
represent the lock/unlock nodes with the lock/unlock instructions.

Figure 7.7 shows the resulting control-flow graphs after inserting lock/unlock
instructions for the control-flow graphs shown in Figure 7.3. Figure 7.8 shows the
codes with the lock instructions for the corresponding codes in Figure 7.1.

140 · Chapter 7. Timing Cache Behavior

lock();
if (!a[i])
b[i]++;

else
c[i]−−;

unlock();

lock();
for (i=0;i<4;i++)
if (a[i])
break;

unlock();

lock();
for (i=0;i<2;i++){

lock();
if (a[i]){
a[i]−−;
break;

}
else
a[2*i]++;

unlock();
}
unlock();

(a) if Construct (b) Loop Construct (c) Loop with if

Fig. 7.8: Non-analyzable codes with lock instructions.

7.5.2 Data Cache Locking (LockDataDependent)

In the discussions so far, we have ignored the effects of data-dependent memory
accesses.

Initially it may appear that obtaining a reasonable bound on the WCMP when the
data accessed is unknown is far from being feasible. This includes indirection arrays
(e.g., a[b[i]]), variables allocated dynamically (e.g., mallocs) and pointer accesses
that cannot be determined statically. We also include non-linear array references
that are not handled by our static analyzer (e.g., a[i*j]). However, a tight prediction
of the WCMP can be achieved by automatically locking and loading the cache in those
regions where we find those accesses. We explain how our LockDataDependent works
for those situations in detail below.

Run-time allocation. Real-time codes are usually free from dynamic memory
allocation. Otherwise, as long as the actual calls to the malloc routine and the size
of the memory allocated are known at static time, it is possible to figure out where
the mallocs go, just by keeping information about the allocated and deallocated
memory in the program. If everything else fails, the only option is to lock the cache
when accessing data allocated dynamically.

Pointers. Pointer analysis can be used to determine some pointer values [164].
Besides, programmer annotations may be used to tighten the analysis. When ana-
lyzing indirection arrays in a loop, we lock the cache for the loop nest. If the array
being accessed fits the cache, we load it. Otherwise, we make sure that it is not

7.5. Dynamic Cache Locking (LockAndLoad) · 141

in the cache by invalidating those lines that contain parts of it.3 This allows us
to (i) predict the result of the memory access, and (ii) reduce the variation of the
execution time, since we cannot have a hit when we have predicted a miss (and vice
versa).

Library and operating system calls. In order to obtain an accurate WCMP of
a task with library calls, we would need to analyze the source code of the library to
generate annotations that would help our analysis. Otherwise, just to ensure that
those calls do not interfere with our analysis, we lock the cache before each call
statement and unlock it afterwards. The memory accesses within the library call
will not be guaranteed as hits/misses, thus both situations will be analyzed in the
pipeline analysis of the WCET calculation.

The lock/unlock instructions are placed following the same principles as we used
in Section 7.5.1. Lock instructions are placed at the top of the control-flow node
where the memory access is realized (or where the call statement is placed). The
unlock instructions are placed at the bottom.

7.5.3 Optimizing Placement of Lock/Unlock Instructions (OptimizeLock)

Automatic placement of lock/unlock instructions may cause an important perfor-
mance degradation. On one hand, the execution of lock/unlock instructions incurs a
run-time overhead. This is especially important for instructions placed within loops,
since they will execute several times. On the other hand, locking the cache when it
is not necessary usually worsens performance.

Let us consider the code in Figure 7.8(c). At first sight, the lock/unlock in-
structions within the loop nest are unnecessary, due to the lock/unlock instructions
placed at the entry/exit of the loop respectively. If we assume that each lock/unlock
executes in 1 cycle, removing the unnecessary instructions will reduce the number
of cycles needed to run the code by 2*k, where k is the number of iterations. For
our example, we would save 4 cycles.

OptimizeLock goes through the control-flow graph looking for redundant lock/un-
lock instructions. It is an algorithm that keeps iterating while some progress is done.
We have currently implemented the following optimizations, where “;” represents
arcs between nodes in the control-flow graph.

Rule 1. Lock/unlock instructions that lock the whole loop body are placed outside
the loop.

3We can obtain this information from our static analyzer.

142 · Chapter 7. Timing Cache Behavior

lock();
lock();
for (i=0;i<2;i++){
if (a[i]){
a[i]−−;
break;

}
else
a[2*i]++;

}
unlock();
unlock();

lock();
for (i=0;i<2;i++){
if (a[i]){
a[i]−−;
break;

}
else
a[2*i]++;

}
unlock();

lock();
for (i=0;i<2;i++){
if (a[i]){
a[i]−−;
break;

}
else
a[2*i]++;

}
unlock();

(a) After 1st iteration (b) After 2nd iteration (c) Final code

Fig. 7.9: Application of OptimizeLock on the code in Figure 7.8(c).

loop;lock;S;unlock;endloop V lock;loop;S;endloop;unlock

Rule 2. Remove nested lock regions.

lock;lock;S;unlock;unlock V lock;S;unlock

Rule 3. Fuse two consecutive locked regions.

lock;S1;unlock;lock;S2;unlock V lock;S1;S2;unlock

Rule 4. Inspecting the memory accesses for the different outcome branches of an IF
statement may allow us to detect that the memory accesses are actually the
same, thus we do not have to distinguish among them.

if S1.memory accesses=S2.memory accesses then
lock;if;then S1;else S2;unlock V if;then S1;else S2

We show in Figure 7.9 the results of running the code in Figure 7.8(c) through
OptimizeLock. The first iteration applies Rule 1, whereas in the second iteration
it uses Rule 2 to remove the innermost locked region. Finally, it stops at the third
iteration since no further changes are done. The final code is showed in Figure 7.9(c).

We define two extra rules to optimize lock/unlock instructions placement:

7.5. Dynamic Cache Locking (LockAndLoad) · 143

Rule 5. Move a statement past a lock instruction.

S1;lock;S2;unlock V lock;S1;S2;unlock

Rule 6. Move an unlock instruction past a statement.

lock;S1;unlock;S2 V lock;S1;S2;unlock

Whereas Rules 1–4 do not modify cache behavior, these last two rules may not
always be beneficial. If data accessed in the newly locked statements is already
in cache then these transformations do not hurt performance. However, they may
create later opportunities for other optimizations. The automatic placement of
lock/unlock instructions to get the best performance remains as future work.4

7.5.4 Selecting Data to Lock in the Cache (LoadData)

The benefit of cache locking is clear from the predictability point of view. Locking
the cache allows us to analyze data-dependent constructs while not jeopardizing the
analysis of the forthcoming code. However, programs do not benefit from locality
as we have shown in Table 7.1.

In order to overcome this problem, we can load the cache with data likely to be
accessed. Nevertheless, determining accurately which data in the cache gives best
performance is too expensive; it would be the same as knowing, before running the
program, the most frequently accessed memory lines for each cache set. However,
we can use a simple analysis based on reuse analysis to determine which data to
load, if any.

Figure 7.10 outlines LoadData, the algorithm we use to load the cache selectively.
The for in line 3 analyzes all locked regions sequentially. For each locked region, it
collects all variables that are accessed within it, classifying the variables depending
on whether they have data-dependent (non-analyzable) accesses or not (analyzable).

Loading Analyzable Variables

We first study those variables whose memory accesses are statically analyzable. Since
we want to maximize the locality, IssueInstrForAV in Figure 7.11 analyzes variables
in descending order; the variable that has more memory references is going to be

4This is equivalent to optimize the conversion of data between two formats which is known to
be NP-hard.

144 · Chapter 7. Timing Cache Behavior

input

P = a program [with locked regions]

output

LoadData(P) = program with selective
load instructions

algorithm

1 P aux := P is a program
2 Lock(P) := locked regions of P;

3 for each locked region L ∈ Lock(P)
4 NAV (L) := non-analyzable variables ∈ L;
5 AV (L) := analyzable variables ∈ L;
6 P aux := IssueInstrForAV(P aux,AV (L));
7 P aux := IssueInstrForNAV (P aux,NAV (L));

8 LoadData(P) := P aux

Fig. 7.10: Algorithm for selective loading.

allocated first. In order to decide which memory lines to load, we compute, for each
variable, the range of addresses that it accesses. When analyzing array variables,
we use the concept of uniformly generated references (UGR) [50] to decide which
part of the array is accessed within the region. At line 3 we classify all memory
references to the studied variable V in uniformly generated classes, that is, it groups
references whose array subscript expressions differ at most in the constant term.

We estimate the amount of data that can be reused from outside the locked
region using the reuse vectors. The for in line 4 studies all UGR classes, again in
descending order, giving priority to those that have more references. Our algorithm
is a simple volume analysis based on reuse vectors (line 5). It is a modified version
of those proposed previously [134, 168] in order to handle locked regions.

If we detect that some elements will not be in cache when we lock the cache,
AddLoads includes the necessary load instructions to place them in cache. For large
data sets, we may try to load a memory line that maps to a cache set that is already
full. In those cases, we do not reload it since it has been loaded by a variable with
higher locality.

Loading Non-Analyzable Variables

A precise approach to computing WCET uses global information (such as cache
behavior) as input to the local low-level analysis, simulating the result of the cache

7.5. Dynamic Cache Locking (LockAndLoad) · 145

input

P = a program
S = set of variables

output

IssueInstrForAv(P ,V) = program with selective
load instructions

algorithm

1 P aux := P is a program

2 for each variable V ∈ S (in desc. order)
3 UGR(V) := classify references ∈ V in UGR classes;
4 for each reference class R ∈ UGR(V) (in desc. order)
5 if (R has no locality)
6 P aux := AddLoads(P aux,R);

7 IssueInstrForAv(P ,V) := P aux

Fig. 7.11: Algorithm for issuing load instructions for analyzable variables.

miss/hit on the actual execution of instructions in the processor pipeline. However,
when the result of a cache access is unknown, both possible results have to be
simulated.

Our IssueInstrForNAV analyzes those variables that have non-analyzable ac-
cesses. Since it is not possible to determine at compile time which part of the array
is accessed, we assume that the whole array is accessed. Besides, since we want to
avoid those situations where a cache access cannot be classified, we load the whole
array if there is space in the cache. Otherwise we remove all elements present in
cache, thus ensuring cache misses for all accesses to that array. This algorithm is
illustrated in Figure 7.12. It first makes room in the cache invalidating all data from
variables that do not fit in cache (lines 2–4). Then, it tries to load into cache those
variables that do fit in cache.

Architectural Support

Several processors offer the ability to load and invalidate cache lines selectively, with
cache fill and invalidate instructions respectively. Thus, no special hardware support
is necessary to implement our LoadData algorithm.

However, both of them could be “simulated” in software if necessary, even though
at the cost of worse performance.

146 · Chapter 7. Timing Cache Behavior

input

P = a program
S = set of variables

output

IssueInstrForNAV(P ,V) = program with selective
load instructions

algorithm

1 P aux := P is a program

2 for each variable V ∈ S (in desc. order)
3 if (V does not fit in cache)
4 P aux := InvalidateArray(P aux,V);
5 for each variable V ∈ S (in desc. order)
6 if (V fits in cache)
7 P aux := LoadArray(P aux,V);

8 IssueInstrForNAV(P ,V) := P aux

Fig. 7.12: Algorithm for issuing load instructions for non-analyzable variables.

Remarks

In the discussions so far, we have ignored the effects of possible conflicts with memory
accesses coming after the locked region. It may happen that due to the added load
instructions, a memory line that otherwise would have been reused later is flushed
out from cache, thus worsening cache behavior for that particular access. This would
cause, in the worst case, one miss per each cache line. However, keeping those lines
could cause a poor performance for the locked region. Achieving the best overall
performance (i.e., deciding which memory lines to load taking into account the whole
program) is a challenging problem that we plan to address in the future.

7.5.5 Putting It All Together

In this subsection, we will use the code in Figure 7.13(a) to illustrate how Lock-
DataDependent and LoadData work. We assume, for this example, a 4KB direct-
mapped cache with 16B per line.

We start running LockDataDependent, which detects those constructs that are
not analyzable at compile time and places lock/unlock instructions. After running
OptimizeLock to avoid unnecessary locks/unlocks at every iteration, we obtain the
code shown In Figure 7.13(b).

The next step consists in running LoadData to decide which data to load. We

7.5. Dynamic Cache Locking (LockAndLoad) · 147

int a[100], b[100];
int c[100], k=0;
for (i=0;i<100;i++)
a[i]=random(i);

for (i=0;i<100;i++)
c[i]=b[a[i]]+c[i];

for (i=0;i<100;i++)
if (c[i]>15)
k++;

c[i]=0;

Non-analyzable constructs:
b[a[i]]
c[i]>15

int a[100], b[100];
int c[100], k=0;
for (i=0;i<100;i++)
a[i]=random(i);

lock(); /*region 1*/
for (i=0;i<100;i++)
c[i]=b[a[i]]+c[i];

unlock();
for (i=0;i<100;i++){
register int temp=(c[i]>15);
lock();/*region 2*/
if (temp)
k++;

unlock();
c[i]=0;

}

(a) Original Code (b) Code with lock/unlock

Fig. 7.13: A code before and after applying LockDataDependent and OptimizeLock.

summarize the steps applied when analyzing the first locked region in Figure 7.14.

We start studying the analyzable variables for each region. For the first region,
it identifies two analyzable variables, c and a. It first analyzes c since it has two
references, and then a, determining that c is not in cache yet. Thus, it issues the
corresponding load instructions. Using the reuse vectors, we detect temporal locality
between the two occurrences of a[i], and the volume analysis says that neither access
will flush the datum accessed out from the cache. A similar analysis is performed for
the second region, determining that k is already in cache due to the initialization.

Then, the non-analyzable variables for each locked region are analyzed. Our
approach identifies variable b in the first locked region, which is accessed for the
first time. Assuming that there are no interferences, there is enough space in the
cache to load b.

Eventually, the worst-case memory performance will be computed. Figure 7.15
shows the final transformed code. With the information of when a memory access is
to be a miss/hit, we compute that the longest path is the one where c[i]>15 holds
in all instances. It results in 26 misses due to first accesses to k and a, 50 misses due
to the loading of b and c and 775 hits. In case that array b did not fit the cache,
we would estimate all its accesses as a miss, since we would not know the memory

148 · Chapter 7. Timing Cache Behavior

Anal. Vars Refs Locality Load
c: c[i], c[i] N/A YES
a: a[i] YES NO

⇓ UGR classes for c ⇓
c[i]

⇓ c has not locality ⇓
Issue loads for c[i], i = 0 . . . 99

⇓ UGR classes for a ⇓
a[i]

⇓ a has locality ⇓
Do not issue loads

Non-Anal. Vars Refs Fits
b: b[. . .] YES

⇓ b fits the cache ⇓
Issue loads for b, i = 0 . . . 99

Fig. 7.14: Detailed steps for the LoadData execution for region 1.

lines being accessed (besides, we would have invalidated array b since our analyzer
would not take advantage of it).

7.6 Experimental Results

We have conducted experiments for data caches commonly used in real-time sys-
tems. The cache configurations and access times are the ones specified in Table 4.2.
Otherwise, we make clear which cache architecture is used. Each instruction to load
the cache is treated as a normal memory access. We present results in terms of
WCMP.

Figure 7.16 depicts the framework used to compute the worst-case performance
and study the schedulability of a task set. The paths that are used to obtain the
path corresponding to the worst-case scenario are currently manually fed to our
system.

The central component is the static analyzer. Since we want to guarantee hits
and misses for all memory accesses, we have used our FindMisses algorithm (see
Section 5.5.2) to obtain precisely which memory accesses result in a miss. We present
the performance of our approach for two real task sets. We set up a large task set
in order to evaluate the efficiency of cache partitioning and compiler optimizations.
Themedium task set is used to show that even for smaller workloads, our approach
performs better than static cache locking. An overview of the two task sets can be

7.6. Experimental Results · 149

int a[100], b[100];
int c[100], k=0;

for (i=0;i<100;i++) lock(); /*region 1*/
a[i]=99-i; for (i=0;i<100;i++)

load(c[0]); c[i]=b[a[i]]+c[i];
load(c[4]); unlock();
... for (i=0;i<100;i++){
load(c[92]); register int temp=(c[i]>15);
load(c[96]); lock();/*region 2*/
load(b[0]); if (temp)
load(b[4]); k++;
... unlock();
load(b[92]); c[i]=0;
load(b[96]); }

Fig. 7.15: Transformed code with lock/unlock and load instructions.

Yes/No
Task
Set

Cache
Partitioning

Partition 1
Task 1

Partition n
Task n

Static Analysis Schedulability
Analysis

Dynamic Locking
WCMP

Analysis WCMP

Dynamic Locking
WCMP

Analysis WCMP

Cache

Fig. 7.16: A framework for worst-case performance computation.

seen in Table 7.2. The programs are introduced in Table 4.4. For each task, we
present its name, its description, and the WCMP when the data cache is disabled.
We give two possible periods. The normal periods of tasks have been selected so
that the relation between CPU utilization5 and amount of data is the same for each
task set. We chose a CPU utilization of 2.03 for the large task set, and 4.69 for
the medium. For the HP (high performance) periods, we chose them so the CPU

5In terms of our simple timing model.

150 · Chapter 7. Timing Cache Behavior

Workload WCMP Period Period
Name (bytes) (no cache) (Normal) (HP)

Large Task Set
mm 120000 153140000 117800000 102093333
srt 8000 113925998 159496397 227851996
fib 16 7790 155800000 3895
fft 8192 1655808 152334336 3311616

Medium Task Set
cnt 40000 1140000 570000 285000
sqrt 16 5360 241200 2680
st 16000 532000 266000 266000

ndes 960 220938 331407 110469

Table 7.2: Task Sets used.

utilization is 4.5 and 10.0 for the large and medium task set respectively, so that
tasks have higher throughput. Thus, the task sets are not feasible if a data cache is
not used for any of the period configurations.

We start analyzing dynamic cache locking. We first evaluate the accuracy of our
static data cache analysis when adding the locking features. Then, we analyze the
efficiency of our loading algorithm for reducing the performance degradation due to
the lock/unlock instructions. Next, we present our estimated WCMP for the set of
benchmarks for different architectures.

As a second step, we discuss the impact of partitioning the cache on the system’s
throughput. Later, we compare the performance of different methods that ensure
predictability when applied to partitioned caches. Finally, we show the worst-case
performance when our method is applied, and compare it with static data cache
locking [125].

7.6.1 Accuracy of FindMisses

The results of our first set of experiments are shown in Table 7.3. Table 7.3(a) shows
the accuracy of our method for those codes where locking was not necessary. All the
programs consist of a set of subroutines, some of them containing IF statements.
In all the cases, we predict exactly the same results as yielded by the simulator.
Moreover, we exactly predict for each memory access the actual behavior.

Table 7.3(b) presents the results for those codes where our method issued lock
and unlock instructions. In order to show our capability to statically analyze the
cache behavior in this situation, we analyze the same path that is actually executed

7.6. Experimental Results · 151

Simulated Estimated Est/Sim
Name MP. Cost Cost Ratio

S 7108684 7108684 1.00
P 8836226 8836226 1.00

mm M 8513410 8513410 1.00
I 8701615 8701615 1.00
S 75000 75000 1.00
P 122500 122500 1.00

cnt M 105000 105000 1.00
I 105192 105192 1.00
S 223 223 1.00
P 279 279 1.00

fib M 220 220 1.00
I 244 244 1.00
S 31784 31784 1.00
P 32500 32500 1.00

st M 29000 29000 1.00
I 33500 33500 1.00

(a) Codes where cache is not locked.

Simulated Estimated Est/Sim
Name MP. Cost Cost Ratio

S 332 332 1.00
P 883 883 1.00

sqrt M 458 458 1.00
I 962 962 1.00
S 7509 7509 1.00
P 12287 12287 1.00

srt M 10515 10515 1.00
I 12789 12789 1.00
S 9040 9040 1.00
P 9450 9450 1.00

ndes M 9841 9841 1.00
I 9514 9514 1.00
S 233344 233344 1.00
P 807936 807936 1.00

fft M 358400 358400 1.00
I 849152 849152 1.00

(b) Codes with lock/unlock instructions.

Table 7.3: Dynamic results for data caching. S stands for microSPARC-IIep, P for PowerPC 604e,
M for MIPS R4000, I for IDT 79RC64574.

152 · Chapter 7. Timing Cache Behavior

in the simulator. Thus, we can isolate the results of our analyzer from those of
the WCMP computation. FindMisses obtains the same results as the simulator in all
cases.

Analysis time

We run our approach on a Pentium-4 processor at 1.6GHz. The average execution
time needed to analyze each configuration was 0.6 seconds. mm was the program
that took the longest time to analyze, with 3 seconds for each cache configuration.
The problem size is N=100, which means that we have to evaluate around 3 million
accesses. We believe this time is reasonable for the kind of analysis performed.

7.6.2 Performance of Data Cache Locking

The goal of using data cache locking is to eliminate unpredictability by locking
those regions in the code where a static analyzer cannot be applied. However, cache
locking may cause degradation in performance, which we try to avoid by means of
loading the cache with data likely to be accessed. To evaluate the effectiveness of
this approach, we compare the memory cost of the resulting code with lock/unlock
instructions against the same code extended with selective load instructions. For the
sake of comparison, we do not consider the additional cycles due to extra loads and
locks/unlocks. In order to isolate the results from those of the WCMP computation,
we consider the actual path that is executed (i.e., we do not use the longest path).

The results of this experiment are shown in Table 7.4. We only analyze programs
where lock/unlock and load instructions were issued. We can see that in the general
case, locking the cache without loading it leads to a significant performance degrada-
tion, in one case as large as over 1000%. srt presents almost the same performance
regardless the presence of lock/unlock instructions because when the lock regions
are executed, all data are already in cache. The same happens to ndes; however,
when considering a small cache like the one in microSPARC-IIep, it cannot hold all
data and thus the performance drops.

When loading the cache, performance degradation is usually eliminated. In those
cases where there are conflicts among data accessed in the locked regions, loading the
cache reduces the performance degradation, but it cannot eliminate it completely.
Finally, the last column presents the number of extra loads issued to load the cache.
It shows that the reduction of memory cost can be achieved with few selected loads.

We have evaluated the overall overhead of the resulting code in more detail.

7.6. Experimental Results · 153

Name C. Unlock Lock Lock & Load ∆U (%) ∆L(%) #Loads

S 158 330 158 108.8 0.0 1
P 214 881 214 311.6 0.0 1

sqrt M 185 456 185 146.4 0.0 1
I 218 960 218 340.3 0.0 1
S 7507 7507 7507 0.0 0.0 0
P 12285 12285 12285 0.0 0.0 0

srt M 10513 10513 10513 0.0 0.0 0
I 12787 12787 12787 0.0 0.0 0
S 6299 6992 6992 11.0 11.0 0
P 6970 6970 6970 0.0 0.0 0

ndes M 6641 7361 7361 10.8 10.8 0
I 7034 7034 7034 0.0 0.0 0
S 88696 231296 118544 160.7 33.6 256
P 52736 805888 52736 1428.1 0.0 128

fft M 50944 356480 50944 599.7 0.0 256
I 53248 847104 53248 1490.8 0.0 128

Table 7.4: Memory cost in cycles for the lock & load algorithm. S stands for microSPARC-IIep, P
for PowerPC 604e, M for MIPS R4000, I for IDT 79RC64574. (∆U=loss of performance without
loading the cache, ∆L=loss of performance when loading the cache).

Figure 7.17 contains the results where cycles due to locks/unlocks and extra loads
are considered. The memory cost is normalized to the memory cost of the actual
execution of the program without lock instructions. We can see that the slowdown
ranges from 0% to 43%, mainly because the cache is not big enough to contain all
data accessed in the locked regions. For instance, fft has an overhead of 43% for
the microSPARC-IIep architecture. When the cache size is increased, the conflicts
disappear and the overhead is minimal.

ndes deserves special comments. The overhead is basically due to the lock/unlock
instructions. This happens because a majority of these instructions are nested in
loops, and they cannot be removed by applying Rules 1–4 explained in Section 7.5.3.
Thus, we have decided to apply Rules 5–6. Figure 7.18 shows the overhead for ndes

after optimizing the placement of lock/unlock instructions. We can see that these
transformations have worked as enablers, i.e., they have enabled Rules 1–4 to achieve
a better instruction placement. Due to changes in the lock/unlock instructions place-
ment, our algorithm has now issued 12 load instructions for microSPARC-IIep and
MIPS R4000, and 22 for the remaining PowerPC 604e and IDT 79RC64574.

In the following section, we show how this small degradation in performance
allows having a fully predictable program. Thus, we can compute the WCMP in a

154 · Chapter 7. Timing Cache Behavior

0

20

40

60

80

100

120

140

160

S
Q

R
T

S

S
Q

R
T

P

S
Q

R
T

M

S
Q

R
T

I

S
R

T
S

S
R

T
P

S
R

T
M

S
R

T
I

FF
T

S

FF
T

P

FF
T

M

FF
T

I

N
D

E
S

 S

N
D

E
S

 P

N
D

E
S

 M

N
D

E
S

 I

Programs

N
or

m
al

iz
ed

 C
yc

le
s

Conflicts Overhead

Lock Inst. Overhead

Normal Accesses

Fig. 7.17: Overall overhead of the cache locking. S stands for microSPARC-IIep, P for Pow-
erPC 604e, M for MIPS R4000, I for IDT 79RC64574.

much tighter way than previous approaches. Even though the actual execution time
of the task may increase, the WCMP will be smaller, thus we will be able to make
better use of resources.

7.6.3 WCMP

Our locking algorithm will be successful if the presence of locked regions allows us
to compute a smaller WCMP than before. This is,

if WCMP(task + lock + load) < WCMP(task)

In order to see the effectiveness of our approach, we have compared our method
to compute WCMP with two other methods that are currently used:

• Cache disabled (i.e., cache locked all the time).

7.6. Experimental Results · 155

0

20

40

60

80

100

120

140

S P M I

Processors

N
or

m
al

iz
ed

 C
yc

le
s

Conflicts Overhead

Lock Inst. Overhead

Normal Accesses

Fig. 7.18: Overhead of cache locking for the ndes program after further optimizing lock/unlock
instructions placement. S stands for microSPARC-IIep, P for PowerPC 604e, M for MIPS R4000,
I for IDT 79RC64574.

• Cache unlocked, making pessimistic assumptions whenever we do not know
what happens. This can be seen as considering an empty cache where we
would unlock the cache in our approach.

We use as a reference the actual WCMP of the program without lock instructions,
which is obtained running the program with the worst-case input data.

Figure 7.19 shows the different estimates for each method. When we consider
the cache disabled, all memory accesses are considered as misses, which yields a
very large overestimation of the WCMP. The values show that the estimated WCMP is
between 5 and 38 times larger than the actual one.

The pessimistic approach performs better than considering the cache disabled,
but it is still far from a tight WCMP. The estimated WCMP is between 2 and 22 times
larger than the actual WCMP. Our approach gives an exact WCMP of the transformed
program (i.e., the program with lock instructions).

Finally, Figure 7.20 shows our estimated WCMP for the NEC V850E/ME2 micro-

156 · Chapter 7. Timing Cache Behavior

0

500

1000

1500

2000

2500

3000

3500

4000

SQRT S SRT S FFT S NDES S

Programs

W
C

M
P

 in
 c

yc
le

s

Actual WCMP

Disabled WCMP

Pessimistic WCMP

Our WCMP

0

500

1000

1500

2000

2500

3000

3500

4000

SQRT P SRT P FFT P NDES P

Programs

W
C

M
P

 in
 c

yc
le

s

Actual WCMP

Disabled WCMP

Pessimistic WCMP

Our WCMP

(a) microSPARC-IIep (b) PowerPC 604e

0

500

1000

1500

2000

2500

3000

3500

4000

SQRT I SRT I FFT I NDES I

Programs

W
C

M
P

 in
 c

yc
le

s

Actual WCMP

Disabled WCMP

Pessimistic WCMP

Our WCMP

0

500

1000

1500

2000

2500

3000

3500

4000

SQRT M SRT M FFT M NDES M

Programs

W
C

M
P

 in
 c

yc
le

s

Actual WCMP

Disabled WCMP

Pessimistic WCMP

Our WCMP

(c) IDT 79RC64574 (d) MIPS R4000

Fig. 7.19: Estimates of the WCMP.

controller. We assume that each cache miss takes 24 cycles. We use as a reference
the actual WCMP of the transformed program. We can observe that for all kernels
studied, our approach is exact and gives the actual WCMP.

7.6.4 Dynamic Locking: Summary

Overall, we have shown the effectiveness of dynamic locking. Whereas some perfor-
mance may be lost due to the locking mechanism (in the worst case, the program
runs 0.4 times slower), we can achieve a perfect estimate of the WCMP for the bench-
marks given. Besides, we have seen that the estimate of the WCMP(task+lock+load)
is much smaller than the best estimate of the WCMP(task). For those programs where
lock instructions are not issued, our estimate is exact and there is no overhead.

We have presented results that highlight the accuracy of our static approach.
Later, we have seen that in all cases, our selective locking technique allows us to

7.6. Experimental Results · 157

94

96

98

100

102

104

106

108

110

MM CNT FIB ST SQRT SRT NDES FFT

Programs

W
C

M
P

 in
 c

yc
le

s

Actual WCMP

Our WCMP

Program WCMP

mm 10128312
cnt 145000
fib 228
st 59448

sqrt 143
srt 3011521
ndes 8827
fft 57344

Fig. 7.20: Estimates of the WCMP for the NEC V850E/ME2 high-performance microcontroller.

accurately predict the cache behavior, which translates to an exact computation of
the WCMP. We have shown that estimating the WCMP without the help of locking the
cache is very hard, and it usually yields very large overestimates. Moreover, the
knowledge of the memory behavior will allow us to compute tighter WCET.

7.6.5 Performance of Cache Partitioning

For analyzing the whole system, we have chosen 16KB and 32KB caches with 32B
lines (like the ones of PowerPC 604e and IDT 79RC64574). For each cache, we
have considered a direct-mapped cache, 2-way and 4-way set associative caches.6

We chose the hit and miss access times after the PowerPC 604e [119], where each
hit takes 1 cycle and each miss 38 cycles. Lock and unlock instructions take 1 cycle
each.

The goal of using cache partitioning is to eliminate unpredictability due to inter-
task conflicts for multitasking systems that have data caches. However, they trade
predictability for performance, which may cause some performance degradation. In
order to evaluate the effectiveness of applying cache partitioning, we have compared
the following three situations, where cache locking is not used:

• Fully dynamic execution. Each task uses the whole cache.

• Partitioned dynamic execution. We create equally-sized partitions. Each
task runs on its own partition.

• Cache disabled. We consider the system without cache.

158 · Chapter 7. Timing Cache Behavior

0%

500%

1000%

1500%

2000%

2500%

3000%

3500%

MM
SRT

FIB
FFT

CNT
SQRT ST

NDES

Pdyn. exec
No cache

0%

500%

1000%

1500%

2000%

2500%

3000%

3500%

MM
SRT

FIB
FFT

CNT
SQRT ST

NDES

Pdyn. exec
No cache

16KB 1-way 32KB 1-way

0%

500%

1000%

1500%

2000%

2500%

3000%

3500%

MM
SRT

FIB
FFT

CNT
SQRT ST

NDES

Pdyn. exec
No cache

0%

500%

1000%

1500%

2000%

2500%

3000%

3500%

MM
SRT

FIB
FFT

CNT
SQRT ST

NDES

Pdyn. exec
No cache

16KB 2-way 32KB 2-way

0%

500%

1000%

1500%

2000%

2500%

3000%

3500%

MM
SRT

FIB
FFT

CNT
SQRT ST

NDES

Pdyn. exec
No cache

0%

500%

1000%

1500%

2000%

2500%

3000%

3500%

MM
SRT

FIB
FFT

CNT
SQRT ST

NDES

Pdyn. exec
No cache

16KB 4-way 32KB 4-way

Fig. 7.21: Cache partitioning impact: comparison of performance degradation for a system with a
partitioned cache and a system without a cache.

7.6. Experimental Results · 159

Figure 7.21 shows the results of this experiment. We present results in terms of
slowdowns when compared to the memory cost of each task when fully dynamic ex-
ecution is allowed. We can observe that the average memory cost increases by 79%
and 2470% for partitioned dynamic execution and a system without cache respec-
tively. This demonstrates that cache partitioning degrades performance compared
to a system where each task uses the whole cache, but it is much better than not
having a cache at all. Thus, we are trading performance for predictability.

7.6.6 Optimizations

The use of cache partitioning increases predictability by removing inter-task cache
conflicts. However, it may increase intra-task cache conflicts since each task uses a
smaller cache. This can be critical for direct-mapped caches, whereas set-associative
caches can handle conflicts in a better way. In order to reduce intra-task conflicts,
we apply well-known compiler cache optimizations in concert with dynamic cache
locking. For the large task set, the application of tiling has translated to a 5.6%
(1%) WCMP reduction for mm on the 16KB direct-mapped (2-way) partitioned cache,
and padding has reduced the WCMP for fft by 99.9% on the 32KB direct-mapped
partitioned cache. The average memory cost compared to the partitioned dynamic
execution scheme drops to 189.12% and 7.23% for the 16KB cache and 32KB cache
respectively. This has allowed us to schedule successfully the large data set on the
16KB direct-mapped cache, whereas it has reduced the CPU utilization on the other
cases.

7.6.7 Worst-Case Performance: Schedulability

In order to see the effectiveness of our approach, we have compared our method (all
optimizations are on) to have a predictable multitasking system with data caches
when static cache locking [22, 125] is applied. For that purpose, we have loaded
the cache with the most frequently accessed memory lines7 for each task set, and
locked it for the whole execution (it is the same as Lock-MU in [125]). This is
the best worst-case performance that can be obtained with a shared cache using
static cache locking; it gives better results than applying static locking for each task
independently once the cache is partitioned since tasks that use the cache intensively
use more cache lines.

6Caches with larger associativity usually use random or FIFO replacement policies.
7We assume the worst-case path for each task is known.

160 · Chapter 7. Timing Cache Behavior

Large Task Set Medium Task Set
32KB 16KB 32KB 16KB

Ways 1 2 4 1 2 4 1 2 4 1 2 4
Lock 0.93 0.93 0.93 1.19 1.19 1.19 1.51 1.75 1.74 2.16 2.19 2.18
Ours 0.29 0.13 0.10 0.81 0.68 0.65 0.43 0.43 0.43 0.57 0.57 0.57

Table 7.5: Performance of static cache locking and our cache analysis.

Large Task Set Medium Task Set
32KB 16KB 32KB 16KB

Ways 1 2 4 1 2 4 1 2 4 1 2 4
Lock 3.55 3.55 3.55 3.85 3.85 3.85 2.97 3.44 3.44 5.11 4.37 4.37
Ours 0.40 0.21 0.17 0.99 0.85 0.81 0.79 0.79 0.79 0.92 0.93 0.93

Table 7.6: Performance of static cache locking and our cache analysis for a high-performance
system.

The worst-case system performance of both task sets is given in Table 7.5. Each
cell contains the CPU utilization (if it is smaller than 1, it is schedulable for dy-
namic priority preemptive schedules by (7.1)). A bold number indicates that the
task set is not schedulable according to fixed priority schedules by (7.2). We can
see that our dynamic cache locking performs better than static cache locking for
all cases. Even though our approach only uses a fourth of the whole cache for each
task, the combination of dynamic locking and static analysis makes better use of the
cache, thus reducing the WCMP. Static cache locking is only able to schedule (both
dynamic and fixed priority systems) the large task set for all 32KB cache config-
urations. However, our approach schedules all task sets for all cache architectures.
Furthermore, the CPU utilization is between 3.2 and 9.8 times smaller for the 32KB
architecture, and between 1.5 and 3.8 times smaller for the 16KB cache.

7.6.8 High-Performance Systems

Finally, we show results for a high-performance multitasking system, where through-
put is higher and thus the CPU utilization increases. For that purpose, we have
chosen the HP periods in the last column of Table 7.2. Since the magnitude of the
periods is very different among tasks, fixed priority systems do not perform well,
and thus we only compute the CPU utilization. We can observe that our approach
works better under tight deadlines, and it is able to schedule all task sets. However,
static cache locking fails to schedule any of the task sets. In this case, the CPU

7.7. Related Work · 161

utilization of our method is between 3.8 and 20.0 times smaller for a 32KB cache
and between 3.8 and 5.5 for the 16KB architecture. This indicates that our method
scales better than static cache locking for systems that need high throughput.

7.6.9 Cache Partitioning: Summary

Overall, we have demonstrated the effectiveness of our approach. We have evaluated
the impact of applying cache partitioning on a multitasking system. We have seen
that even though the performance degrades, partitioning the cache is much better
than not having a cache at all. Then, we have evaluated the application of static
locking and dynamic locking to ensure predictability once the cache is partitioned.
We have also pointed out how the application of compiler cache optimizations can be
useful to reduce the performance degradation caused by the use of a small fraction
of the cache. Finally, we have compared our approach with static cache locking in
which all the tasks share the whole cache. We have shown that our method performs
much better, and is capable of scheduling tasks that need a high throughput.

7.7 Related Work

During the last years, the real-time community has intensified the research in the
area of predicting WCET of programs in presence of caches. Calculation of a tight
WCET bound of a program involves difficulties that come from the very character-
istics of data caching. Even though some progress has been done when studying
processors with instruction caches [7, 64, 99], few steps have been done towards
analyzing data caches.

We summarize below the approaches that can be used for analyzing WCET in
the presence of data caches for multitasking hard real-time systems.

1. Static Cache Analyses. They attempt to classify statically the different
memory accesses as hits or misses. However, the best static cache analyses
do not consider preemptive systems and are limited to codes free of data-
dependent constructs. In addition, only results for direct-mapped caches have
been reported [87, 100, 102, 162].

2. Cache-Preemption Delays. When a task resumes its execution, it may
spend a long time reloading the cache with previously loaded cache blocks.
This increases the execution time of the task, and may invalidate the results
of the schedulability analysis. Some studies have addressed the issue of incor-
porating cache preemption costs into the schedulability analysis [12, 17, 97].

162 · Chapter 7. Timing Cache Behavior

However, preemption changes the cache contents in an unpredictable manner.
Thus, a cache-sensitive analysis of a task assumed to run in isolation might be
invalid in a context where the task is preempted: the worst-case execution path
may not be the same anymore since hits may be turned into misses and vice
versa. Adding a penalty by assuming the cache is cold-started might be unsafe
on processors with out-of-order instruction scheduling, where a cache hit un-
der some circumstances may be more expensive than a miss [105]. Moreover,
this method resorts to a static cache analysis to obtain the WCET.

3. Cache Locking. The ability to lock cache contents is available on several
commercial processors (PowerPC 604e [119], 405 and 440 families [73], Intel-
960, some Intel x86, Motorola MPC7400 and others). Each processor imple-
ments cache locking in several ways, allowing in all cases static locking (the
cache is loaded and locked at system start) and dynamic locking (the state of
the cache is allowed to change during the system execution). Provided that
the cache contents are known, the time required for a memory access is pre-
dictable. Cache locking can be applied to each task in isolation or at system
startup [125].

4. Cache Partitioning. These techniques [18, 88, 101, 121] give reserved por-
tions of the cache to certain tasks to guarantee that data will be in cache
despite preemptions, thus eliminating inter-task conflicts. The reduction of
the cache size that each task uses may, however, translate to a significant loss
of performance.

Now, we describe the most relevant approaches in detail. Alt et al [5, 45] provide
an estimation of WCET by means of abstract interpretation. As well as the usual
drawbacks from abstract analysis (i.e., time consuming and lack of accuracy), they
only analyze memory references which are scalar variables. When providing exper-
imental results, they only deal with instruction caches. Lim et al [102] present a
method that computes the WCET taking into account data caching. However, they
only analyze static memory references (i.e., scalars), failing to study real codes with
dynamic references (i.e., arrays and pointers). Kim et al [87] propose a method that
improves the previous method extending the analysis that classifies references as
either static or dynamic. However, they deal with neither arrays nor pointers (i.e.,
only detecting temporal locality). Further, it is limited to basic blocks, without
taking into account possible reuse among different subroutines or loop nests. Li et
al. [100] describe a method which does not merge the cache state but tries to calcu-
late possible cache contents along with the timing of the program. The whole CPU

7.8. Chapter Summary · 163

is modeled by a linear integer programming problem, and a new constraint is added
for each element of a calculated reference. This requires a very large computation
time, and has problems of scalability with large arrays. Besides, they do not report
results for WCET in the presence of data caches.

White et al [162] propose a method for direct-mapped caches based on static
simulation. They categorize static memory accesses into (i) first miss, (ii) first
hit, (iii) always miss and (iv) always hit. Array accesses whose addresses can be
computed at compile-time are analyzed, but they fail to describe conflicts which are
always classified as misses. For instance, they overestimate the memory cost by 10%
and 17% for MM and ST respectively (we estimate the WCMP exactly without issuing
lock instructions).

Lundqvist and Stenström [104] propose an approach where variables that have
non-analyzable references are mapped onto a non-cacheable memory space. They
show that the majority of data structures in their benchmarks are predictable, but
they have not presented the overhead of the transformed program. Neither have
they reported results for WCET or WCMP using their approach.

Campoy et al [22] introduce the use of locking instruction caches for multitasking
systems. They use static locking, and present a genetic algorithm in an attempt to
reduce the solution space when selecting the best contents for the cache. They
represent each memory block by means of one bit, which flips between 0/1 (in-
cache/out-cache). On one hand, we have shown that static locking is not a good
solution for data caches. On the other hand, while this approach may work for small
programs, it is not easy to see how it can be extended to data caches:(i) each possible
solution would occupy a lot of memory (data is typically much larger than programs),
and (ii) we would need a static analysis to evaluate each potential solution. Puaut
and Decotigny [125] extend it by introducing two polynomial algorithms to select
the instructions to lock in cache.

7.8 Chapter Summary

Our approach combines cache partitioning and dynamic data cache locking with
static cache analysis to estimate the worst-case memory performance of a multi-
tasking system in a safe, exact and fast way.

Our method partitions the cache in equally-sized partitions, which are assigned
to tasks. Cache partitioning allows us to eliminate unpredictability due to inter-
task conflicts. In order to overcome the problem of data-dependent constructs, we
combine it with dynamic cache locking. Finally, we run a static analysis. This
results in a tool that predicts the worst-case memory performance in an exact and

164 · Chapter 7. Timing Cache Behavior

safe way, with an acceptable loss of performance. Combined with a timing analysis
platform, we may estimate a tight worst-case performance.

Overall, we contribute a new technique that provides a considerable step toward
a useful worst-case execution time prediction for actual architectures. To the best of
our knowledge, this is the first approach that presents a method to estimate worst-
case performance for multitasking systems in the presence of set-associative data
caches.

We believe this approach is highly attractive for hard-real time systems, where
the problem sizes are not very big. Moreover, while being not really large, the
compilation time can be amortized across the number of products shipped. We also
believe that the higher throughput of the systems due to the smaller overestimation
of the WCET may make this approach very useful. A better use of the cache is
very useful in order to reduce power consumption and better utilize the CPU, which
allows running more real-time tasks simultaneously.

8

Related Work

CHAPTER 8

RELATED WORK

In this chapter we present previous research in related areas.

8.1 Cache Analysis

Programs must exhibit sufficient locality to achieve good cache performance. Com-
piler optimizations for improving the cache behavior need to have detailed knowl-
edge about the number and causes of cache misses. There are different approaches
to analyze data locality which provide different trade-offs between accuracy, speed,
flexibility (i.e., adaptability to different memory configurations) and information
provided.

Memory simulation techniques are very accurate, flexible and can provide rich
information. They are usually based on trace-driven simulation [83, 56, 116, 138,
51, 106, 58, 13, 114, 149]. However, these techniques may demand a lot of space to
store traces and are very slow (typical slowdowns are several orders of magnitude).
For instance, the slowdown exhibited by all simulators surveyed in [148] is in the
range of 45-6250.

There are some innovative methods that have been proposed with the objective
of reducing the exhibited slowdown [108, 96, 165]. However, these methods provide
little information (usually only miss ratios), trading information for speed.

Martonosi et al. [109] introduced the use of trace sampling techniques in order to
further reduce the overhead of such simulators (the slowdown shown is between 3 and
8). They take samples from the full reference trace so that they are representative of
the full trace. The sizes of the samples as well as the number of samples depend on
both the cache that is analyzed and the characteristics of the program being traced.
Even though the results present a good degree of accuracy, neither the error bounds
can be chosen, nor the sample process can be set to achieve a degree of accuracy.
In addition, when sampling is applied to simulators inaccuracy can result from the
unknown state of the cache at the beginning of the sample. Recently, Wunderlich

168 · Chapter 8. Related Work

et al. [172] claim that it is not possible to have an accurate simulator that makes
use of rigorous sampling without keeping an exact state of the cache.

There are other tools based on hardware counters (e.g., [6]) provided by some mi-
croprocessors. These tools are fast and accurate. They have no flexibility since they
can only be used to analyze the memory architecture of the actual microprocessor.
In addition, they provide a limited set of results depending on the particular coun-
ters provided by a particular machine. Information like conflict misses between two
particular memory references cannot be obtained with current hardware counters.

Analytical methods use mathematical formulas to provide a characterization of a
program’s cache behavior so that we cannot only obtain the number of cache misses
but also reason about the causes of such misses from these formulas. The ultimate
goal is to develop an analytical method that can provide accurate assessments of
when and why cache misses occur using a reasonable amount of computational
resources (e.g., CPU time, memory and disk usage). Such a method would be
useful in guiding various automatic memory optimizations and also in improving
the simulation times of cache simulators and profilers.

Some static analysis techniques [141] have limited accuracy, due to unknown
information at compile time. For instance, unknown loop bounds or unknown initial
addresses of data structures can degrade the accuracy of the results.

A solution to this problem is to use hybrid techniques (which combine the very
best from both approaches), such as SPLAT [133]. SPLAT is a static analysis
technique improved with some profile (dynamic) information. This hybrid technique
is fast, flexible and can provide much information like other static techniques. In
addition, it is accurate because the information unknown at compile time is provided
by a profiling. Due to simplifications in the analysis, SPLAT is not capable of
analyzing interferences in applications with complex interference patterns and can
only analyze direct mapped caches.

Porterfield [124] introduces the concept of overflow iteration for predicting the
miss ratio for a fully set-associative LRU cache. Ferrante et al. [47] provide closed-
form formulas to estimate the capacity misses of a loop nest. Temam et al. [141] also
consider conflict misses but for a subset of array references studied in this paper.
Wolf and Lam [168] propose to use vectors to describe data reuse for uniformly
generated references in a perfect loop nest. They also use reuse vectors to derive
an estimate of cache misses to guide their data locality algorithm. Xue and Huang
[174] report an improvement. Gannon et al [50] and Wolfe [171] discuss the use of
reference windows for predicting cache misses.

Recently, Weikle et al [161] introduce a trace-based idea of viewing caches as fil-
ters. Their framework can potentially handle any program consisting of any pattern

8.2. Compiler Optimizations · 169

of memory references.

8.2 Compiler Optimizations

Caches improve the speed of programs by reducing the number of accesses to the slow
upper levels of the memory hierarchy. Conflict misses may represent the majority of
intra-nest misses and about half of all cache misses for typical programs and cache
architectures [114].

Many hardware techniques have been proposed to reduce conflict misses, such
as the victim cache [79] or pseudo-random placement functions [146]. Software
techniques are attractive because they do not increase the hardware complexity
and may be very effective for regular programs where the compiler can perform an
accurate locality analysis. Moreover, they can complement hardware techniques.

Among software techniques to avoid self-interferences we can point out the tile
size selection proposed by Lam et al. [93]. Coleman and McKinley [35] improved that
technique by allowing rectangular tiles. Temam et al. [142] proposed to use a buffer
where the data to be manipulated is copied. Unfortunately, the copy operation itself
causes cache conflicts and has some overhead.

There are many other proposals to transform the order in which the iteration
space is traversed, such as loop interchange, loop permutation, loop distribution,
etc. [25, 84, 170]. Although these transformations may affect the number of conflict
misses, they are not specially targeted to minimize them.

There has also been some work on combining loop transformations and certain
data transformations, such as changing the data layout of an array from column-
major to row-major [33, 81]. There are some earlier attempts on partitioning the
cache and mapping arrays to distinct cache portions [26, 107]. Kodukula el al. [91]
propose a data shackling technique to tile imperfect loop nests. This transformation
is very similar to loop tiling, and as such, it does not modify the actual layouts of
the arrays used. Besides, the authors do not provide an algorithm to choose the tile
sizes.

Chatterjee et al. [28] consider nonlinear array layouts and achieve impressive
performance speedups in some of the benchmarks used when combined with loop
tiling. Recently, Huang et al. present a method that combines loop tiling and a new
mapping that proves to be effective for SOR-like solvers.

170 · Chapter 8. Related Work

8.3 Genetic Algorithms

Many researchers have applied machine-learning methods to optimize compilation
process. Calder et al. used supervised learning techniques to fine-tune static branch
prediction heuristics [20]. They employ neural networks and decision trees to search
for effective static branch prediction heuristics. This scheme has also been used for
determining accurately the branches’ outcome at run time [77].

Monsifrot et al. use a classifier based on decision tree learning to determine which
loops to unroll [118]. Cooper et al. use genetic algorithms to solve compilation
phase ordering problems and to reduce code size [36]. Recently, another group
presented results when applying GAs for solving the phase ordering problem [92].
The COGEN(t) compiler uses GAs to map code to irregular DSPs [59]. The compile-
once nature of DSP applications may warrant the long, iterative compilation process.

Recently, Stephenson et al. [136] present an evolutionary algorithm to automat-
ically find effective compiler heuristics. Instead of evolving the application, they
evolve the compiler.

8.4 Path Information

The computation flow can be calculated either manually or automatically. Once
the different paths are computed, these are communicated to the WCET tool which
uses this information to calculate the path that generates the worst-case scenario.

Kirner and Puschner [90] add flow information (like number of iterations of a
loop) into the C source code by extending the original syntax with new keywords.
A different approach that does not modify the compiler is taken by Park [122], who
defines a new language based on regular expressions which describes the possible
paths. Li and Malik [98] and Theiling and Ferdinand [144] use linear constraints on
the object code to describe possible paths.

Ermedahl and Gustafsson [40, 60] use abstract interpretation on the source code
to calculate the flow information automatically. Lundqvist and Stenström [103]
obtain this information using symbolic instruction-level simulation. Healy et al. [65,
66, 67] use data flow analysis to calculate loop bounds. Based on this information,
they also try to eliminate infeasible paths. Holsti et al. [71] use Presburger formulas
to obtain the loop bounds from object code.

9

Conclusions

CHAPTER 9

CONCLUSIONS

As a result of the increasing disparity between processor and memory speeds, the
problem of hiding and reducing memory latency has become a key challenge for
achieving high performance. Current processors use the memory hierarchy as a
mean to bridge this gap. While caches reduce the memory latency in many cases,
cache misses remain as a performance impediment for many applications.

Cache misses depend on both hardware and software. Unfortunately, cache mem-
ory behavior is very hard to predict. Simulators may be used for describing it ac-
curately. However, they are very slow and do not provide too much insight into the
causes of the misses.

This thesis addresses the question of how effective compile-time techniques that
deal with cache behavior can be in practice. We have addressed this question by
proposing and implementing a framework that analyzes, optimizes and times cache
behavior. Even though it is applicable to general codes, its natural environment is
well-structured and array-based codes.

9.1 Thesis Contributions

The key results of this dissertation are the following:

1. We have introduced a new characterization of reuse for quantifying reuse across
multiple nests. If we combine it with abstract inlining, we obtain a method that
allows analyzing whole programs. Based on these “new” reuse vectors, we have
developed an analytical method for statically predicting the cache behavior of
complete programs with regular computations. We outlined two algorithms
for computing cache misses. FindMisses analyzes all iteration points and can
predict exactly the cache misses for programs of small problem sizes. Esti-
mateMisses analyzes a sample of all memory accesses and can achieve close to
real cache miss ratios in practical cases efficiently.

174 · Chapter 9. Conclusions

2. We have shown how to analyze control flow which is analyzable at compile
time. We can analyze if statements with compile-time-analyzable conditionals.
In the presence of these conditionals, different references may be executed in
different parts of the iteration space, which are not necessarily convex. We have
described how reuse is calculated and how the miss equations are formed and
solved. Our replacement miss equations are formulated and solved by taking
into account the fact that the RISs for different references can be different.

3. A compiler can make use of this very accurate static analysis to transform
codes in such a way that misses are reduced and overall performance increases.
We have presented an accurate cost model that considers the effects of L1 and
L2 caches, and that also considers the possible overhead due to added miss-
predicted branches.

4. We have used our cost model to implement two well-known compiler optimiza-
tions: padding and tiling. We have introduced the use of genetic algorithms to
explore the solution space. We have shown how our approach can guide com-
piler optimizations efficiently; with a small compile-time overhead (average of
4.9 seconds per kernel), we obtain very important runtime improvements.

5. Data-dependent constructs make predicting the cache behavior of a task very
difficult. We have used dynamic cache locking to avoid these situations. We
have discussed how to load the cache in order to achieve a good performance
while having a predictable program.

6. We have combined cache partitioning and dynamic data cache locking with
static cache analysis to estimate the worst-case memory performance of a mul-
titasking system in a safe, exact and fast way. We have shown that partitioning
the cache with equally-sized partitions, which are assigned to different tasks,
allows eliminating unpredictability due to inter-task conflicts without compro-
mising throughput. The use of cache partitioning and dynamic cache locking
makes it possible to obtain an exact and safe worst-case memory performance.

7. Our framework combines approaches from both the high-performance and the
real-time community. While being two different worlds, they share a rather
large number of problems. Our framework uses cache partitioning and locking
(which are mainly used in the real-time community), with a static cache anal-
ysis and loop optimizations (which are broadly used by the high-performance
community).

9.2. Future Work · 175

9.2 Future Work

The main goals of our compiler framework were threefold: we wanted to analyze
cache memory behavior for a broad range of programs, to present a model to optimize
cache memory behavior and to have a predictable cache behavior for a large set of
applications.

The scope of our static cache analysis was well-structured and array-based pro-
grams. Perhaps the most obvious extension is to address programs that make ex-
tensive use of pointers or that have very complex control flow. Having a larger set
of programs analyzable statically, would allow us to reduce those situations where
the cache has to be locked to ensure predictability.

Regarding code optimization, future work will both investigate the application of
padding and tiling for whole programs and the addition of other compiler techniques
such as loop fusion, loop interchange and unrolling. It may also be interesting to take
into account the overall performance when selecting the size of the cache partitions,
data to load and placement of lock/unlock instructions. We plan to investigate these
issues in order to have increased predictability and better performance.

Even though the results show that a model that assumes an LRU replacement
policy is good enough, we plan to incorporate other replacement policies into our
model. While implementing other replacement policies may be straightforward, they
may be time consuming and thus infeasible.

176 · Chapter 9. Conclusions

A

Codes – Analysis

APPENDIX A

CODES – ANALYSIS

We present the codes from different benchmarks used to evaluate the accuracy of our
static cache analyzer. They consist of kernel-based applications, which implement
very intensive regular computations. This set of benchmarks contains programs
from Livermore, Linpack, Lapack, SPECfp95 and Perfect Benchmarks suites.

180 · Appendix A. Codes – Analysis

REAL*8 U,Z

DIMENSION U(M,M,M), Z(M,M,M)

DO 400 I3=2,M-1

DO 200 I2=2,M-1

DO 100 I1=2,M-1

U(2*I1-1,2*I2-1,2*I3-1)=U(2*I1-1,2*I2-1,2*I3-1)

+Z(I1,I2,I3)

100 CONTINUE

DO 200 I1=2,M-1

U(2*I1-2,2*I2-1,2*I3-1)=U(2*I1-2,2*I2-1,2*I3-1)

+0.5D0*(Z(I1-1,I2,I3)+Z(I1,I2,I3))

200 CONTINUE

DO 400 I2=2,M-1

DO 300 I1=2,M-1

U(2*I1-1,2*I2-2,2*I3-1)=U(2*I1-1,2*I2-2,2*I3-1)

+0.5D0*(Z(I1,I2-1,I3)+Z(I1,I2,I3))

300 CONTINUE

DO 400 I1=2,M-1

U(2*I1-2,2*I2-2,2*I3-1)=U(2*I1-2,2*I2-2,2*I3-1)

+0.25D0*(Z(I1-1,I2-1,I3)+Z(I1-1,I2,I3)

+Z(I1, I2-1,I3)+Z(I1, I2,I3))

400 CONTINUE

END

Fig. A.1: mgrid k.

· 181

REAL*8 ZA, ZP, ZQ, ZR, ZM, ZB, ZU, ZV, ZZ

DIMENSION ZA(JN+1,KN+1), ZP(JN+1,KN+1), ZQ(JN+1,KN+1)

DIMENSION ZR(JN+1,KN+1), ZM(JN+1,KN+1), ZB(JN+1,KN+1)

DIMENSION ZU(JN+1,KN+1), ZV(JN+1,KN+1), ZZ(JN+1,KN+1)

T= 0.003700D0

S=0.004100D0

DO k= 2,KN

DO j= 2,JN

ZA(j,k)=(ZP(j-1,k+1)+ZQ(j-1,k+1)-ZP(j-1,k)-ZQ(j-1,k))*

*(ZR(j,k)+ZR(j-1,k))/(ZM(j-1,k)+ZM(j-1,k+1))

ZB(j,k)= (ZP(j-1,k)+ZQ(j-1,k)-ZP(j,k)-ZQ(j,k))*

(ZR(j,k)+ZR(j,k-1))/(ZM(j,k)+ZM(j-1,k))

ENDDO

ENDDO

DO k= 2,KN

DO j= 2,JN

ZU(j,k)= ZU(j,k)+S*(ZA(j,k)*(ZZ(j,k)-ZZ(j+1,k))-ZA(j-1,k)*

*(ZZ(j,k)-ZZ(j-1,k))

-ZB(j,k)*(ZZ(j,k)-ZZ(j,k-1))+ZB(j,k+1) *(ZZ(j,k)-ZZ(j,k+1)))

ZV(j,k)= ZV(j,k)+S*(ZA(j,k)*(ZR(j,k)-ZR(j+1,k))-ZA(j-1,k)*

*(ZR(j,k)-ZR(j-1,k))

-ZB(j,k) *(ZR(j,k)-ZR(j,k-1))+ZB(j,k+1) *(ZR(j,k)-ZR(j,k+1)))

ENDDO

ENDDO

DO k= 2,KN

DO j= 2,JN

ZR(j,k)= ZR(j,k)+T*ZU(j,k)

ZZ(j,k)= ZZ(j,k)+T*ZV(j,k)

ENDDO

ENDDO

END

Fig. A.2: hydro k.

182 · Appendix A. Codes – Analysis

REAL*8 A, B, D, WB

DIMENSION A(N,N), B(N,N), D(N,N), WB(N.N)

DO J2 = 1,N,BJ

DO K2 = 1,N,BK

DO J=J2,J2+BJ-1

DO K=K2,K2+BK-1

WB(J-J2+1,K-K2+1)=B(K,J)

ENDDO

ENDDO

DO I = 1,N

DO K=K2,K2+BK-1

RA=A(I,K)

DO J=J2,J2+BJ-1

D(I,J)=D(I,J)+

WB(J-J2+1,K-K2+1)*RA

ENDDO

ENDDO

ENDDO

ENDDO

ENDDO

END

Fig. A.3: mmt.

REAL*8 X(N,N), Y(N,N), Z(N,N)

DO i = 1,N

DO j = 1,N

Z(j,i) = 0.0

DO k = 1,N

Z(j,i)=Z(j,i)+X(k,i)∗Y(j,k)
ENDDO

ENDDO

ENDDO

END

Fig. A.4: mmi.

· 183

DOUBLE PRECISION xt, yt, xc, yc, zc

DOUBLE PRECISION zero, wsin, wcos, z, xs

DIMENSION xc(natoms, ns), yc(natoms, ns)

DIMENSION zc (natoms, ns), xt (natoms)

DIMENSION wsin(1), wcos(1), zero(1), z(1)

DIMENSION xs(1), yt (natoms)

DO i = 1, ns, 1

xt(1) = xt(2)+wcos(1)

xt(3) = xt(1)

yt(2) = zero(1)

DO j = 1, ns, 1

yt(1) = yt(2)+wsin(1)

yt(3) = yt(2)-wsin(1)

z(1) = zero(1)

DO k = 1, ns, 1

DO l = 1, natoms, 1

xc(l,k) = xt(l)

yc(l,k) = yt(l)

zc(l,k) = z(1)

ENDDO

z(1) = z(1)+xs(1)

ENDDO

yt(2) = yt(2)+xs(1)

ENDDO

xt(2) = xt(2)+xs(1)

ENDDO

END

Fig. A.5: lwsi k.

184 · Appendix A. Codes – Analysis

B

Codes – Optimization

APPENDIX B

CODES – OPTIMIZATION

We present the codes from different benchmarks used to evaluate the performance
of our optimization technique.

188 · Appendix B. Codes – Optimization

INTRINSIC abs, max

DOUBLE PRECISION a, aa, abx, aby, b, c, d, dd, pxx, pxy, pyy

DOUBLE PRECISION qxx, qxy, qyy, r, rx, rxm, ry, rym, x, xx, xy

DOUBLE PRECISION y, yx, yy

INTEGER*4 i, iter, j

DIMENSION aa(513, 513), d(513, 513), dd(513, 513), rx(513, 513)

DIMENSION rxm(1000), ry(513, 513), rym(1000), x(513, 513)

DIMENSION y(513, 513)

DO iter = 1, 5, 1

DO j = 1, 511, 1

DO i = 1, 511, 1

xx = x(2+i, 1+j)+(-1)*x(i, 1+j)

yx = y(2+i, 1+j)+(-1)*y(i, 1+j)

xy = x(1+i, 2+j)+(-1)*x(1+i, j)

yy = y(1+i, 2+j)+(-1)*y(1+i, j)

a = 0.25D0*(xy**2+yy**2)

b = 0.25D0*(xx**2+yx**2)

c = 0.125D0*(xx*xy+yx*yy)

aa(1+i, 1+j) = (-1)*b

dd(1+i, 1+j) = 2*b+a*(2.0D0/0.98D0)

pxx = x(i, 1+j)+x(2+i, 1+j)+(-1)*2.D0*x(1+i, 1+j)

qxx = y(i, 1+j)+y(2+i, 1+j)+(-1)*2.D0*y(1+i, 1+j)

pyy = x(1+i, j)+x(1+i, 2+j)+(-1)*2.D0*x(1+i, 1+j)

qyy = y(1+i, j)+y(1+i, 2+j)+(-1)*2.D0*y(1+i, 1+j)

pxy = x(i, j)+x(2+i, 2+j)+(-1)*x(i, 2+j)+(-1)*x(2+i, j)

qxy = y(i, j)+y(2+i, 2+j)+(-1)*y(i, 2+j)+(-1)*y(2+i, j)

rx(1+i, 1+j) = a*pxx+b*pyy+(-1)*c*pxy

ry(1+i, 1+j) = a*qxx+b*qyy+(-1)*c*qxy

ENDDO

ENDDO

ENDDO

END

Fig. B.1: tomcatv: loop number 1.

· 189

INTRINSIC abs, max

DOUBLE PRECISION a, aa, abx, aby, b, c, d, dd, pxx, pxy, pyy

DOUBLE PRECISION qxx, qxy, qyy, r, rx, rxm, ry, rym, x, xx, xy

DOUBLE PRECISION y, yx, yy

INTEGER*4 i, iter, j

DIMENSION aa(513, 513), d(513, 513), dd(513, 513), rx(513, 513)

DIMENSION rxm(1000), ry(513, 513), rym(1000), x(513, 513)

DIMENSION y(513, 513)

DO iter = 1, 5, 1

DO j = 1, 511, 1

DO i = 1, 511, 1

rxm(iter) = MAX(rxm(iter), ABS(rx(1+i, 1+j)))

rym(iter) = MAX(rym(iter), ABS(ry(1+i, 1+j)))

ENDDO

ENDDO

ENDDO

END

Fig. B.2: tomcatv: loop number 2.

INTRINSIC abs, max

DOUBLE PRECISION a, aa, abx, aby, b, c, d, dd, pxx, pxy, pyy

DOUBLE PRECISION qxx, qxy, qyy, r, rx, rxm, ry, rym, x, xx, xy

DOUBLE PRECISION y, yx, yy

INTEGER*4 i, iter, j

DIMENSION aa(513, 513), d(513, 513), dd(513, 513), rx(513, 513)

DIMENSION rxm(1000), ry(513, 513), rym(1000), x(513, 513)

DIMENSION y(513, 513)

DO iter = 1, 5, 1

DO j = 1, 510, 1

DO i = 1, 511, 1

r = aa(1+i, 2+j)*d(1+i, 1+j)

d(1+i, 2+j) = 1.D0/(dd(1+i, 2+j)+(-1)*aa(1+i, 1+j)*r)

rx(1+i, 2+j) = rx(1+i, 2+j)+(-1)*rx(1+i, 1+j)*r

ry(1+i, 2+j) = ry(1+i, 2+j)+(-1)*ry(1+i, 1+j)*r

ENDDO

ENDDO

ENDDO

END

Fig. B.3: tomcatv: loop number 3.

190 · Appendix B. Codes – Optimization

INTRINSIC abs, max

DOUBLE PRECISION a, aa, abx, aby, b, c, d, dd, pxx, pxy, pyy

DOUBLE PRECISION qxx, qxy, qyy, r, rx, rxm, ry, rym, x, xx, xy

DOUBLE PRECISION y, yx, yy

INTEGER*4 i, iter, j

DIMENSION aa(513, 513), d(513, 513), dd(513, 513), rx(513, 513)

DIMENSION rxm(1000), ry(513, 513), rym(1000), x(513, 513)

DIMENSION y(513, 513)

DO iter = 1, 5, 1

DO j = 1, 510, 1

DO i = 1, 511, 1

rx(1+i, (-1)+513+(-1)*j) = d(1+i, (-1)+513+(-1)*j)*(rx(1+i, (-1

*)+513+(-1)*j)+(-1)*aa(1+i, (-1)+513+(-1)*j)*rx(1+i, 513+(-1)*j))

ry(1+i, (-1)+513+(-1)*j) = d(1+i, (-1)+513+(-1)*j)*(ry(1+i, (-1

*)+513+(-1)*j)+(-1)*aa(1+i, (-1)+513+(-1)*j)*ry(1+i, 513+(-1)*j))

ENDDO

ENDDO

ENDDO

END

Fig. B.4: tomcatv: loop number 4.

INTRINSIC abs, max

DOUBLE PRECISION a, aa, abx, aby, b, c, d, dd, pxx, pxy, pyy

DOUBLE PRECISION qxx, qxy, qyy, r, rx, rxm, ry, rym, x, xx, xy

DOUBLE PRECISION y, yx, yy

INTEGER*4 i, iter, j

DIMENSION aa(513, 513), d(513, 513), dd(513, 513), rx(513, 513)

DIMENSION rxm(1000), ry(513, 513), rym(1000), x(513, 513)

DIMENSION y(513, 513)

DO iter = 1, 5, 1

DO j = 1, 511, 1

DO i = 1, 511, 1

x(1+i, 1+j) = rx(1+i, 1+j)+x(1+i, 1+j)

y(1+i, 1+j) = ry(1+i, 1+j)+y(1+i, 1+j)

ENDDO

ENDDO

ENDDO

END

Fig. B.5: tomcatv: loop number 5.

· 191

INTEGER*4 i, j

REAL*4 u, v, psi

REAL*4 dx, dy

DIMENSION u(513, 513), v(513, 513), psi(513, 513)

DO j = 1, 512, 1

DO i = 1, 512, 1

u(i+1, j) = -(psi(i+1, j+1)-psi(i+1, j))*dy

v(i, j+1) = (psi(i+1, j+1)-psi(i, j+1))*dx

ENDDO

ENDDO

END

Fig. B.6: swim: loop number 1.

REAL*4 u, v, p, uold, vold, pold

DIMENSION u(513, 513), v(513, 513), p(513, 513)

DIMENSION uold(513, 513), vold(513, 513), pold(513, 513)

DO j = 1, 513, 1

DO i = 1, 513, 1

uold(i, j) = u(i, j)

vold(i, j) = v(i, j)

pold(i, j) = p(i, j)

ENDDO

ENDDO

END

Fig. B.7: swim: loop number 2.

192 · Appendix B. Codes – Optimization

INTEGER*4 i, itmax, j, m, mp1, mprint, n, np1

REAL*4 a, alpha, cu, cv, di, dj, dt, dx, dy, el, fsdx, fsdy, h

REAL*4 p, pcf, pi, pnew, pold, psi, tdt, tpi, u, unew, uold, v

REAL*4 vnew, vold, z

DIMENSION cu(513, 513), cv(513, 513), h(513, 513), p(513, 513)

DIMENSION pnew(513, 513), pold(513, 513), psi(513, 513)

DIMENSION u(513, 513), unew(513, 513), uold(513, 513)

DIMENSION v(513, 513), vnew(513, 513), vold(513, 513)

DIMENSION z(513, 513)

COMMON /cons/ dt, tdt, dx, dy, a, alpha, itmax, mprint, m, n, mp1,

* np1, el, pi, tpi, di, dj, pcf

COMMON // u, v, p, unew, vnew, pnew, uold, vold, pold, cu, cv, z,

*h, psi

DO j = 1, 512, 1

DO i = 1, 512, 1

cu(i+1, j) = .5*(p(i+1, j)+p(i, j))*u(i+1, j)

cv(i, j+1) = .5*(p(i, j+1)+p(i, j))*v(i, j+1)

z(i+1, j+1) = (fsdx*(v(i+1, j+1)-v(i, j+1))-fsdy*(u(i+1, j+1)-u(

*i+1, j)))/(p(i, j)+p(i+1, j)+p(i+1, j+1)+p(i, j+1))

h(i, j) = p(i, j)+.25*(u(i+1, j)*u(i+1, j)+u(i, j)*u(i, j)+v(i,

*j+1)*v(i, j+1)+v(i, j)*v(i, j))

ENDDO

ENDDO

END

Fig. B.8: swim: loop number 3.

· 193

INTEGER*4 i, itmax, j, m, mp1, mprint, n, np1

REAL*4 unew, vnew, pnew, uold, vold, pold, cu, cv, z, h

REAL*4 tdts8, tdtsdx, tdtsdy

DIMENSION unew(513, 513), vnew(513, 513), pnew(513, 513)

DIMENSION uold(513, 513), vold(513, 513), pold(513, 513)

DIMENSION cu(513, 513), cv(513, 513), z(513, 513), h(513, 513)

DO j = 1, 512, 1

DO i = 1, 512, 1

unew(i+1, j) = (uold(i+1, j)+tdts8*(z(i+1, j+1)+z(i+1,j))*(cv(i

+1, j+1)+cv(i, j+1)+cv(i, j)+cv(i+1, j)))-tdtsdx(h(i+1, j)-h(i, j

*))

vnew(i, j+1) = (vold(i, j+1)-tdts8*(z(i+1, j+1)+z(i,j+1))*(cu(i

+1, j+1)+cu(i, j+1)+cu(i, j)+cu(i+1, j)))-tdtsdy(h(i, j+1)-h(i,j

*))

pnew(i, j) = (pold(i, j)-tdtsdx*(cu(i+1, j)-cu(i,j)))-tdtsdy*(c

*v(i, j+1)-cv(i, j))

ENDDO

ENDDO

END

Fig. B.9: swim: loop number 4.

INTEGER*4 i, j

REAL*4 u,v,p, unew, vnew, pnew, uold, vold, pold

DIMENSION u(513, 513), v(513, 513), p(513,513)

DIMENSION unew(513, 513), vnew(513,513), pnew (513,513)

DIMENSION uold(513,513), vold(513,513), pold(513,513)

DO j = 1, 513, 1

DO i = 1, 513, 1

uold(i, j) = u(i, j)

vold(i, j) = v(i, j)

pold(i, j) = p(i, j)

u(i, j) = unew(i, j)

v(i, j) = vnew(i, j)

p(i, j) = pnew(i, j)

ENDDO

ENDDO

END

Fig. B.10: swim: loop number 5.

194 · Appendix B. Codes – Optimization

INTEGER*4 i, itmax, j, m, mp1, mprint, n, np1

REAL*4 a, alpha, cu, cv, di, dj, dt, dx, dy, el, h, p, pcf, pi

REAL*4 pnew, pold, psi, tdt, tpi, u, unew, uold, v, vnew, vold

REAL*4 z

DIMENSION cu(513, 513), cv(513, 513), h(513, 513), p(513, 513)

DIMENSION pnew(513, 513), pold(513, 513), psi(513, 513)

DIMENSION u(513, 513), unew(513, 513), uold(513, 513)

DIMENSION v(513, 513), vnew(513, 513), vold(513, 513)

DIMENSION z(513, 513)

COMMON /cons/ dt, tdt, dx, dy, a, alpha, itmax, mprint, m, n, mp1,

* np1, el, pi, tpi, di, dj, pcf

COMMON // u, v, p, unew, vnew, pnew, uold, vold, pold, cu, cv, z,

*h, psi

DO j = 1, 512, 1

DO i = 1, 512, 1

uold(i, j) = u(i, j)+alpha*((unew(i, j)-2.*u(i, j))+uold(i, j))

vold(i, j) = v(i, j)+alpha*((vnew(i, j)-2.*v(i, j))+vold(i,j))

pold(i, j) = p(i, j)+alpha*((pnew(i, j)-2.*p(i, j))+pold(i,j))

u(i, j) = unew(i, j)

v(i, j) = vnew(i, j)

p(i, j) = pnew(i, j)

ENDDO

ENDDO

END

Fig. B.11: swim: loop number 6.

PARAMETER (N=xx)

REAL*8 a(N,N), b(N,N), c(N,N)

DO i = 1, N

DO j = 1, N

DO k = 1, N

a(i,j) = a(i,j) + b(i,k) * c(k,j)

ENDDO

ENDDO

ENDDO

END

Fig. B.12: matmul

· 195

PARAMETER (N=xx)

DOUBLE PRECISION a(N,N), b(N,N)

DO i=1,N

DO j=1,N

a(i,j) = b(j,i)

ENDDO

ENDDO

END

Fig. B.13: t2d

PARAMETER (N=xx)

DOUBLE PRECISION A11,A12,A13,A21,A22,A23,A31,A32,A33

DOUBLE PRECISION DU1(N), DU2(N), DU3(N)

DOUBLE PRECISION U1(N,N,2), U2(N,N,2), U3(N,N,2)

DO 8 kx=2,N-1

DO 8 ky=2,N-1

DU1(ky)=U1(kx,ky+1,nl1) - U1(kx,ky-1,nl1)

DU2(ky)=U2(kx,ky+1,nl1) - U2(kx,ky-1,nl1)

DU3(ky)=U3(kx,ky+1,nl1) - U3(kx,ky-1,nl1)

U1(kx,ky,nl2)=U1(kx,ky,nl1) +A11*DU1(ky) +A12*DU2(ky)+A13*DU3(ky)

1 + SIG*(U1(kx+1,ky,nl1) -fw*U1(kx,ky,nl1) +U1(kx-1,ky,nl1))

U2(kx,ky,nl2)=U2(kx,ky,nl1) +A21*DU1(ky) +A22*DU2(ky)+A23*DU3(ky)

1 + SIG*(U2(kx+1,ky,nl1) -fw*U2(kx,ky,nl1) +U2(kx-1,ky,nl1))

U3(kx,ky,nl2)=U3(kx,ky,nl1) +A31*DU1(ky) +A32*DU2(ky)+A33*DU3(ky)

1 + SIG*(U3(kx+1,ky,nl1) -fw*U3(kx,ky,nl1) +U3(kx-1,ky,nl1))

8 CONTINUE

END

Fig. B.14: adi

196 · Appendix B. Codes – Optimization

PARAMETER (N=xx)

REAL*8 b, c, arow

DIMENSION b(N,N), c(N,N), arow(N)

DO i=1,N

DO j=1,N

DO k=1,N

c(i,j) = c(i,j) + arow(k) * b(k,j)

ENDDO

ENDDO

ENDDO

END

Fig. B.15: matvec

PARAMETER (N=xx)

DOUBLE PRECISION A(N,N), B(N,N), C(N,N), D(N,N),

$ E(N,N), F(N,N,3), X(N,N), Y(N,N)

DO j = 3,N-2

DO k = 1,N

RLD2 = A(J,K)

RLD1 = B(J,K) - RLD2*X(J-2,K)

RLD = C(J,K) - (RLD2*Y(J-2,K) + RLD1*X(J-1,K))

RLDI = 1./RLD

F(J,K,1) = (F(J,K,1) - RLD2*F(J-2,K,1) - RLD1*F(J-1,K,1))*RLDI

F(J,K,2) = (F(J,K,2) - RLD2*F(J-2,K,2) - RLD1*F(J-1,K,2))*RLDI

F(J,K,3) = (F(J,K,3) - RLD2*F(J-2,K,3) - RLD1*F(J-1,K,3))*RLDI

X(J,K) = (D(J,K) - RLD1*Y(J-1,K))*RLDI

Y(J,K) = E(J,K)*RLDI

ENDDO

ENDDO

END

Fig. B.16: vpenta

Bibliography

[1] J. Abella, A. González, J. Llosa, and X. Vera. Near-optimal loop tiling by
means of cache miss equations and genetic algorithms. In Proceedings of 31st
International Conference on Parallel Processing (ICPP02) Workshops, Aug.
2002.

[2] W. Abu-Sufah. Improving the performance of virtual memory computers. PhD
thesis, University of Illinois at Urbana-Champaign, Nov. 1978.

[3] G. Aigner and U. Hölzle. Eliminating virtual function calls in C++ programs.
In 10th European Conference on Object-Oriented Programming (ECOOP’96),
pages 142–166, 1996.

[4] R. Allen and K. Kennedy. Automatic translation of FORTRAN programs
to vector form. ACM Transactions on Programming Languages and Systems
(TOPLAS), 9(4):491–542, 1987.

[5] M. Alt, C. Ferdinand, F. Martin, and R. Wilhelm. Cache behaviour predic-
tion by abstract interpretation. In Proceedings of Static Analysis Symposium
(SAS’96), Lecture Notes in Computer Science (LNCS) 1145, pages 52–66.
Springer-Verlag, Sep. 1996.

[6] G. Ammons, T. Ball, and J.R. Larus. Exploiting hardware performance
counters with flow and context sensitive profiling. In Proceedings of ACM
SIGPLAN Conference on Programming Language Design and Implementation
(PLDI’97), pages 85–96, 1997.

[7] R. Arnold, F. Müeller, D. Whalley, and M. Harmon. Bounding worst-case
instruction cache performance. In Proceedings of 15th Real-Time Systems
Symposium (RTSS’94), pages 172–181, 1994.

198 · Bibliography

[8] E. Ayguadé, C. Barrado, A. González, J. Labarta, J. Llosa, D. López,
S. Moreno, D. Padua, F. Reig, Q. Riera, and M. Valero. Ictineo: a tool
for research on ilp. In Proceedings of Supercomputing (SC’96), 1996. Research
Exhibit “Polaris at Work”.

[9] D. F. Bacon, S. L. Graham, and O. J. Sharp. Compiler transformations for
high-performance computing. Technical report, University of California, 1994.

[10] J-L. Baer and T-F. Chen. An effective on-chip preloading scheme to reduce
data access penalty. In Proceedings of ACM International Conference on Su-
percomputing (ICS’97), pages 176–186, Nov. 1991.

[11] U. Banerjee. Dependence Analysis for Supercomputing. Kluwer Academic
Publishers, 1988.

[12] S. Basumallick and K. Nielsen. Cache issues in real-time systems. In Pro-
ceedings ACM Workshop on Languages, Compilers and Tools for Real-Time
Systems (LCTES’94), Jun. 1994.

[13] R. Bedichek. Talismam: Fast and accurate multicomputer simulation. In Pro-
ceedings of ACM Sigmetrics Conf. on Measurement and Modeling of Computer
Systems (SIGMETRICS’95), pages 14–24, May 1995.

[14] N. Bermudo, X. Vera, A. González, and J. Llosa. An efficient solver for cache
miss equations. In Proceedings of IEEE International Symposium on Perfor-
mance Analysis of Systems and Software (ISPASS’00), 2000.

[15] A. Burns, K. Tindell, and A. Wellings. Effective analysis for engineering real-
time fixed priority schedulers. IEEE Transactions on Software Engineering,
21:475–480, 1995.

[16] A. Burns and A. Wellings. The impact of an Ada run-time system’s perfor-
mance characteristics on scheduling models. In Proceedings of 12th Ada-Europe
International Conference, pages 240–248, Jun. 1993.

[17] J. V. Busquets-Mataix, J. J. Serrano, R. .Ors, P. Gil, and A. Wellings. Adding
instruction cache effect to schedulability analysis of preemptive real-time sys-
tems. In Proceedings of 2nd Real-Time Technology and Applications Sympo-
sium (RTAS’96), Jun. 1996.

Bibliography · 199

[18] J. V. Busquets-Mataix, J. J. Serrano, and A. Wellings. Hybrid instruction
cache partitioning for preemptive real-time systems. In Proceedings of 9th
Euromicro Workshop on Real-Time Systems (EUROMICRO-RTS’97), Jun.
1997.

[19] M. Butler, T-Y. Yeh, Y.N. Patt, M. Alsup, H. Sales, and M. Shebanow. In-
struction level parallelism is greater than two. In Proceedings of the 18th In-
ternational Symposium on Computer Architecture (ISCA’91), pages 276–286,
1991.

[20] B. Calder, D. Grunwald, M. Jones, D. Lindsay, J. Martin, M. Mozer, and
B. Zorn. Evidence-based static branch prediction using machine learning.
ACM Transactions on Programming Languages and Systems (TOPLAS),
19(1):188–222, 1997.

[21] D. Callahan, K. Kennedy, and A. Porterfield. Software prefetching. In Proceed-
ings of IV International Conference on Architectural Support for Programming
Languages and Operating Systems (ASPLOS’91), pages 40–52, Apr. 1991.

[22] M. Campoy, A. P. Ivars, and J. V. Busquets-Mataix. Static use of locking
caches in multitask preemptive real-time systems. In Proceedings of IEEE/IEE
Real-Time Embedded Systems Workshop (Satellite of the IEEE Real-Time Sys-
tems Symposium), 2001.

[23] D. Carmean. Inside the Pentium 4 Processor Micro-Architecture
(www.intel.com/pentium4), 2000.

[24] S. Carr and K. Kennedy. Compiler blockability of numerical algorithms. In
Proceedings of Supercomputing (SC’92), pages 114–124, Nov. 1992.

[25] S. Carr, K.S. McKinley, and C-W. Tseng. Compiler optimizations for im-
proving data locality. In Proceedings of VI Int. Conf. on Architectural Support
for Programming Languages and Operating Systems (ASPLOS’94), pages 252–
262, Oct. 1994.

[26] C.-Y. Chang, J.-P. Sheu, and H.-C. Chen. Reducing cache conflicts by multi-
level cache partitioning and array elements mapping. In Proceedings of 7th
International Conference on Parallel and Distributed Systems (ICPADS’00),
2000.

200 · Bibliography

[27] P. P. Chang, S. A. Mahlke, W. Y. Chen, and W. W. Hwu. Profile-guided auto-
matic inline expansion for C programs. Software — Practice and Experience,
25:249–369, 1992.

[28] S. Chatterjee, V. V. Jain, A. R. Lebeck, S. Mundhra, and M. Thottethodi.
Nonlinear array layout for hierarchical memory systems. In Proceedings of
ACM International Conference on Supercomputing (ICS’99), pages 444–453,
Rhodes, Greece, Jun. 1999.

[29] S. Chatterjee, E. Parker, P. J. Hanlon, and A. R. Lebeck. Exact analysis of the
cache behavior of nested loops. In ACM SIGPLAN ’01 Conference on Pro-
gramming Language Design and Implementation (PLDI’01), pages 286–297,
2001.

[30] T-F. Chen and J-L. Baer. A performance study of software and hardware
data prefetching schemes. In Proceedings of 21st International Symposium on
Computer Architecture (ISCA’94), 1994.

[31] T. M. Chilimbi. Efficient representations and abstractions for quantifying and
exploiting data reference locality. In Proceedings of the ACM SIGPLAN 2001
conference on Programming language design and implementation, pages 191–
202, 2001.

[32] T. M. Chilimbi and M. Hirzel. Dynamic hot data stream prefetching for
general-purpose programs. In Proceedings of the ACM SIGPLAN 2002 Con-
ference on Programming language design and implementation, pages 199–209,
2002.

[33] M. Cierniak and W. Li. Unifying data and control transformations for
distributed shared-memory machines. In Proceedings of the ACM SIG-
PLAN 1995 Conference on Programming Language Design and Implemen-
tation (PLDI’95), pages 205–217, 1995.

[34] P. Clauss. Counting solutions to linear and non-linear constraints through
Ehrhart polynomials. In Proceedings of ACM International Conference on
Supercomputing (ICS’96), pages 278–285, Philadelphia, 1996.

[35] S. Coleman and K. S. McKinley. Tile size selection using cache organization
and data layout. In Proceedings of ACM SIGPLAN Conference on Program-
ming Language Design and Implementation (PLDI’95), pages 279–290, Jun.
1995.

Bibliography · 201

[36] K. D. Cooper, P. J. Schielke, and D. Subramanian. Optimizing for reduced
code space using genetic algorithms. In Proceedings of the ACM SIGPLAN
1999 workshop on Languages, Compilers, and Tools for Embedded Systems
(LCTES’99), pages 1–9, 1999.

[37] M. H. DeGroot. Probability and statistics. Addison-Wesley, 1998.

[38] M. Dyer and A. M. Frieze. On the complexity of computing the volumne of a
polyhedron. SIAM J. Comput., 17(5):967–974, 1988.

[39] J. Engblom and A. Ermedahl. Pipeline timing analysis using a trace-driven
simulator. In Proceedings of 6th International Conference on Real-Time Com-
puting Systems and Applications (RTCSA’99), Dec. 1999.

[40] A. Ermedahl and J. Gustafsson. Deriving annotations for tight calculation of
execution time. In Proceedings of Euro-Par (EUROPAR’97), pages 1298–1307,
Aug. 1997.

[41] Y. Ermoliev and R. J.-B. Wets. Numerical Techniques for Stochastic Opti-
mization. Springer-Verlag, 1988.

[42] K. A. Faigin, J. P. Hoeflinger, D. A. Padua, P. M. Petersen, and S. A. Weath-
erford. The Polaris internal representation. International Journal of Parallel
Programming, 22(5):553–586, Oct. 1994.

[43] P. Feautrier. Parametric integer programming. Operations Research,
22:243–268, 1988.

[44] P. Feautrier. Automatic parallelization in the polytope model. In G. R. Perrin
and A. Darte, editors, The Data Parallel Programming Model, Lecture Notes
in Computer Science 1132, pages 79–103. Springer Verlag, 1996.

[45] C. Ferdinand and R. Wilhelm. Efficient and precise cache behavior prediction
for real-time systems. Real-Time Systems, 17:131–181, 1999.

[46] A. Fernández. A quantitative analysis of the SPECfp95. Technical Report
UPC-DAC-1999-12, Universitat Politècnica de Catalunya, March 1999.

[47] J. Ferrante, V. Sarkar, and W. Thrash. On estimating and enhancing cache
effectiveness. In 4th Workshop on Languages and Compilers for Parallel Com-
puting (LCPC’91), pages 328–343, 1991.

202 · Bibliography

[48] B. B. Fraguela, R. Doallo, and E. L. Zapata. Automatic analytical modeling
for the estimation of cache misses. In Proceedings of International Conference
on Parallel Architectures and Compilation Techniques (PACT’99), 1999.

[49] J. Frailong, W. Jalby, and J. Lenfant. XOR-schemes: a flexible data orga-
nization in parallel memories. In Proceedings of International Conference on
Parallel Processing (ICPP’85), pages 276–283, 1985.

[50] D. Gannon, W. Jalby, and K. Gallivan. Strategies for cache and local mem-
ory management by global program transformations. Journal of Parallel and
Distributed Computing, 5:587–616, 1988.

[51] J. Gee, M. Hill, D. Pnevmatikatos, and A.J. Smith. Cache performance of the
spec92 benchmark suite. IEEE Micro, pages 17–27, Aug. 1993.

[52] S. Ghosh, M. Martonosi, and S. Malik. Cache miss equations: a compiler
framework for analyzing and tuning memory behavior. ACM Transactions on
Programming Languages and Systems (TOPLAS), 21(4):703–746, 1999.

[53] S. Ghosh, M. Martonosi, and S. Malik. Automated cache optimizations using
CME driven diagnosis. In Proceedings of International Conference on Super-
computing (ICS’00), pages 316–326, 2000.

[54] Gill, Murray, and Wright. Practical optimization. Academic Press, 1981.

[55] Glover and Laguna. Tabu search. Kluwer, 1997.

[56] A.J. Goldberg and J. Hennessy. Performance debugging shared memory mul-
tiprocessor programs with mtool. In Proceedings of Supercomputing (SC’91),
pages 481–490, 1991.

[57] D. E. Goldberg. Genetic algorithms in search, optimizations and machine
learning. Addison-Wesley, 1989.

[58] S. Goldschmidt and J. Hennessy. The accuracy of trace-driven simulation of
multiprocessors. In Proceedings of ACM Sigmetrics Conf. on Measurement
and Modeling of Computer Systems (SIGMETRICS’93), pages 146–157, May
1993.

[59] G. W. Gréwal and C. T. Wilson. Mapping reference code to irregular dsps
within the retargetable, optimizing compiler COGEN(T). In Proceedings of

Bibliography · 203

the 34th annual ACM/IEEE international symposium on Microarchitecture,
pages 192–202, 2001.

[60] J. Gustafsson. Analyzing Execution Time of Object-Oriented Programs Using
Abstract Interpretation. PhD thesis, Uppsala University, May 2000.

[61] M. R. Haghighat and C. D. Polychronopoulos. Symbolic analysis: A basis for
parallelization, optimization and scheduling of programs. In 1993 Workshop
on Languages and Compilers for Parallel Computing (LCPC’93), pages 567–
585, Portland, Ore., Aug. 1993. Springer Verlag.

[62] Hansen, Jaumard, and Mathon. Constrained nonlinear 0-1 programming.
ORSA Journal on Computing, 1995.

[63] J. S. Harper, D. J. Kerbyson, and G. R. Nudd. Analytical modeling of set-
associative caches. IEEE Transactions on Computers, 48(10):1009–1024, Oct.
1999.

[64] C. A. Healey, D. Whalley, and M. Harmon. Integrating the timing analysis of
pipelining and instruction caching. In Proceedings of 16th Real-Time Systems
Symposium (RTSS’95), pages 288–297, 1995.

[65] C. Healy, M. Sjödin, V. Rustagi, and D. Whalley. Bounding loop iterations
for timing analysis. In Proceedings of 4th IEEE Real-Time Technology and
Applications Symposium (RTAS’98), Jun. 1998.

[66] C. Healy, M. Sjödin, V. Rustagi, D. Whalley, and R. van Engelen. Supporting
timing analysis by automatic bounding of loop iterations. Real-Time Systems,
18(2/3):129–156, 2000.

[67] C. Healy and D. Whalley. Tighter timing predictions by automatic detection
and exploitation of value-dependent constraints. In Proceedings of 5th IEEE
Real-Time Technology and Applications Symposium (RTAS’99), Jun. 1999.

[68] J. L. Hennessy and D. A. Patterson. Computer architecture: a quantitative
approach. Morgan Kaufman Publishers, 1996.

[69] M. Hill. DineroIII: a uniprocessor cache simulator
(http://www.cs.wisc.edu/˜larus/warts.html).

[70] J. Holland. Adaptation in natural and artificial systems. The University of
Michigan Press, Ann Arbor, 1975.

204 · Bibliography

[71] N. Holsti, T. L̊angbacka, and S. Saarinen. Worst-case execution-time analysis
for digital signal processors. In Proceedings of the EUSIPCO 2000 Conference
(X European Signal Processing Conference), Sep. 2000.

[72] R. Horst, P. M. Pardalos, and N. V. Thoai. Introduction to Global Optimiza-
tion. Kluwer Academic Publishers, 1995.

[73] IBM Microelectronics Division. The PowerPC 440 core, 1999.

[74] D. T. Harper III and J. R. Jump. Vector access performance in parallel mem-
ories. IEEE Transactions on Computers, C(36):1440–1449, 1987.

[75] Integrated Device Technologies. 79RC64574/RC64575 Data Sheet, 2001.

[76] K. Jeffay and D. L. Stone. Accounting for interrupt handling costs in dynamic
priority task systems. In Proceedings of 14th Real-Time Systems Symposium
(RTSS’93), pages 212–221, Dec. 1993.

[77] D. A. Jiménez and C. Lin. Neural methods for dynamic branch prediction.
ACM Transactions on Computer Systems (TOCS), 20(4):369–397, 2002.

[78] M. Joseph and P. Pandya. Finding response times in a real-time system. The
Computer Journal, 29(5):390–395, 1986.

[79] N. Jouppi. Improving direct-mapped cache performance by the addition of
a small fully-associative cache and prefetch buffers. In Proceedings of 17th
International Symposium on Computer Architectures (ISCA’90), 1990.

[80] M. Kandemir, A. Choudhary, P. Banerjee, and J. Ramanujam. A linear al-
gebra framework for automatic determination of optimal data layouts. IEEE
Transactions on Parallel and Distributed Systems, 10(2):115–135, Feb. 1999.

[81] M. Kandemir, A. Choudhary, J. Ramanujam, and P. Banerjee. Improving
locality using loop and data transformations in an integrated framework. In
Proceedings of International Conference on Microprogramming and Microar-
chitecture, pages 285–296, 1998.

[82] A. I. Katcher, H. Arakawa, and J. K. Strosnider. Engineering and analy-
sis of fixed priority schedulers. IEEE Transactions on Software Engineering,
19:920–934, 1993.

Bibliography · 205

[83] K. Kennedy, D. Callahan, and A. Porterfield. Analyzing and visualizing per-
formance of memory hierarchy. In Instrumentation for Visualization. ACM
Press, New York, 1990.

[84] K. Kennedy and K.S. McKinley. Maximizing loop parallelism and improving
data locality via loop fusion and distribution. Technical Report COMP TR92-
189, Rice University, August 1992.

[85] R. E. Kessler and M. D. Hill. Page placement algorithms for large real-indexed
caches. ACM Transactions on Computer Systems (TOCS), 10(4):338–359,
1992.

[86] R. E. Kessler, E. J. McLellan, and D. A. Webb. The Alpha 21264 micropro-
cessor architecture, 1999.

[87] S. K. Kim, S. L. Min, and R. Ha. Efficient worst case timing analysis of
data caching. In Proceedings of IEEE Real-Time Technology and Applications
Symposium (RTAS’96), 1996.

[88] D. B. Kirk. SMART (strategic memory allocation for real-time) cache design.
In Proceedings of 10th Real-Time Systems Symposium (RTSS’89), Dec. 1989.

[89] Kirkpatrick, Gelatt, and Vecchi. Optimization by simulated annealing. Science
220, 1983.

[90] R. Kirner and P. Puschner. Transformation of path information for WCET
analysis during compilation. In Proceedings of 13th Euromicro Conference of
Real-Time Systems (ECRTS’01), Jun. 2001.

[91] I. Kodukula, N. Ahmed, and K. Pingali. Data-centric multi-level blocking.
In Proceedings of the ACM SIGPLAN 1997 Conference on Programming Lan-
guage Design and Implementation (PLDI’97), pages 346–357, 1997.

[92] P. Kulkarni, W. Zhao, H. Moon, K. Cho, D. Whalley, J. Davidson, M. Bailey,
Y. Paek, and K. Gallivan. Finding effective optimization phase sequences. In
Proceedings of the 2003 ACM SIGPLAN Conference on Language, Compiler,
and Tool for Embedded Systems (LCTES’03), pages 12–23, 2003.

[93] M. Lam, E. E. Rothberg, and M. E. Wolf. The cache performance of blocked
algorithms. In Proceedings of IV International Conference on Architectural
Support for Programming Languages and Operating Systems (ASPLOS’91),
Apr. 1991.

206 · Bibliography

[94] J. Laudon, A. Gupta, and M. Horowitz. Interleaving: A multithreading tech-
nique targeting multiprocessors and workstations. In Proceedings of 6th In-
ternational Conference on Architectural Support for Programming Languages
and Operating Systems (ASPLOS’94), 1994.

[95] D. Lawrie and C. Vora. The prime memory system for array access. IEEE
Transactions on Computers, C(31):435–442, 1982.

[96] A.R. Lebeck and D.A. Wood. Cache profiling and the spec benchmarks: A
case study. IEEE Computer, 27(10):15–26, Oct. 1994.

[97] C. G. Lee, J. Hahn, Y. M. Seo, S. L. Min, R. Ha, S. Hong, C. Y. Park, M. Lee,
and C. S. Kim. Analysis of cache-related preemption delay in fixed-priority
preemptive scheduling. IEEE Transaction on Computers, 47, 1998.

[98] Y.-T. S. Li and S. Malik. Performance analysis of embedded software using
implicit path enumeration. In Proceedings of the ACM SIGPLAN 1995 Work-
shop on Languages, Compilers, & Tools for Real-Time Systems, pages 88–98,
1995.

[99] Y. T. S. Li, S. Malik, and A. Wolfe. Efficient microarchitecture modeling and
path analysis for real-time software. In Proceedings of 16th Real-Time Systems
Symposium (RTSS’95), pages 298–307, 1995.

[100] Y. T. S. Li, S. Malik, and A. Wolfe. Cache modeling and path analysis
for real-time software. In Proceedings of 17th Real-Time Systems Symposium
(RTSS’96), 1996.

[101] J. Liedtke, H. Härtig, and M. Hohmuth. OS-controlled cache predictability
for real-time systems. In Proceedings of 3rd IEEE Real-Time Technology and
Applications Symposium (RTAS’97), 1997.

[102] S. S. Lim, Y. H. Bae, G. T. Jang, B. D. Rhee, S. L. Min, C. Y. Park, H. Shin,
K. Park, and C. S. Kim. An accurate worst case timing analysis technique
for RISC processors. In Proceedings of 15th Real-Time Systems Symposium
(RTSS’94), pages 97–108, 1994.

[103] T. Lundqvist and P. Stenström. Integrating path and timing analysis us-
ing instruction-level simulation techniqes. In Proceedings of ACM SIG-
PLAN Workshop on Languages, Compilers, and Tools for Embedded Systems
(LCTES’98), pages 1–15, Jun. 1998.

Bibliography · 207

[104] T. Lundqvist and P. Stenström. A method to improve the estimated worst-
case performance of data caching. In Proceedings of the 6th International
Conference on Real-Time Computing Systems and Applications (RTCSA’99),
pages 255–262, Dec. 1999.

[105] T. Lundqvist and P. Stenström. Timing anomalies in dynamically sched-
uled microprocessors. In Proceedings of 20th Real-Time Systems Symposium
(RTSS’99), Dec. 1999.

[106] P. Magnusson. A design for efficient simulation of a multiprocessor. In
Proceedings of the Western Simulation Multiconference on Int. Workshop on
MASCOTS-93, pages 69–78, 1993. La Jolla, CA.

[107] N. Manjikian and T. Abdelrahman. Array data layout for the reduction of
cache conflicts. In Proceedings of 8th International Conference on Parallel and
Distributed Systems (ICPADS’95), 1995.

[108] M. Martonosi, A. Gupta, and T. Anderson. Memspy: Analyzing memory sys-
tem bottlenecks in programs. In Proceedings of ACM SIGMETRICS Conf. on
Measurement and Modeling of Computer Systems (SIGMETRICS’92), pages
1–12, Jun. 1992.

[109] M. Martonosi, A. Gupta, and T. Anderson. Effectiveness of trace sampling for
performance debugging tools. In Proceedings of ACM SIGMETRICS Conf. on
Measurement and Modeling of Computer Systems (SIGMETRICS’93), 1993.

[110] The PIP System. Solving systems of affine (in)equalities: PIP’s user’s guide.
http://www.prism.uvsq.fr/˜paf.

[111] The SUIF Compiler Group. SUIF: An infrastructure for research on paral-
lelizing and optimizing compilers. http://suif.stanford.edu.

[112] S. McFarling. Combining branch predictors. Technical Report TN-36, Digital
Western Researh Lab, 1993.

[113] K. McKinley, S. Carr, and C.-W. Tseng. Improving data locality with loop
transformations. ACM Transactions on Programming Languages and Systems
(TOPLAS), 18(4):424–453, Jul. 1996.

[114] K. S. McKinley and O. Temam. A quantitative analysis of loop nest locality.
In Proceedings of VII Int. Conf. on Architectural Support for Programming
Languages and Operating Systems (ASPLOS’96), 1996.

208 · Bibliography

[115] Z. Michalewicz. Genetic algorithms+Data structures=Evolution Programs.
Springer-Verlag, 1994.

[116] MIPS. RISCompiler Languages Programmer’s Guide. MIPS, 1988.

[117] MIPS Technologies. MIPS32 4Kp- Embedded, MIPS Processor Core, 2001.

[118] A. Monsifrot, F. Bodin, and R. Quiniou. A machine learning approach to au-
tomatic production of compiler heuristics. In Artificial Intelligence: Method-
ology, Systems, Applications, pages 40–50, 2002.

[119] Motorola Inc. PowerPC 604e RISC Microprocessor Technical Summary, 1996.

[120] T.C. Mowry, M.S. Lam, and A. Gupta. Design and evaluation of a com-
piler algorithm for prefetching. In Proceedings of V International Conference
on Architectural Support for Programming Languages and Operating Systems
(ASPLOS’92), pages 62–73, Oct. 1992.

[121] F. Müeller. Compiler support for software-based cache partitioning. In Pro-
ceedings ACM Workshop on Languages, Compilers and Tools for Real-Time
Systems (LCTES’95), Jun. 1995.

[122] C. Y. Park. Predicting program execution times by analyzing static and dy-
namic program paths. Real-Time Systems, 5(1):31–62, 1993.

[123] E. Petrank and D. Rawitz. Hardness of cache conscious data placement. In
Proceedings of International Conference on Principles of Programming Lan-
guages (POPL’02), 2002.

[124] A. K. Porterfield. Software Methods for improvement of cache performance
on supercomputer applications. PhD thesis, Department of Computer Science,
Rice University, May 1989.

[125] I. Puaut and D. Decotigny. Low-complexity algorithms for static cache locking
in multitasking hard real-time systems. In Proceedings of 23th Real-Time
Systems Symposium (RTSS’02), Dec. 2002.

[126] W. Pugh. The Omega test: A fast and practical integer programming algo-
rithm for dependence analysis. Communication of the ACM, 35(8):102–114,
Aug. 1992.

Bibliography · 209

[127] W. Pugh. Counting solutions to Presburger formulas: how and why. In
Proceedings of ACM SIGPLAN ’94 Conference on Programming Language
Design and Implementation (PLDI’94), pages 121–134, 1994.

[128] B. Rau. Pseudo-randomly interleaved memories. In Proceedings of Interna-
tional Symposium on Computer Architecture (ISCA’91), pages 74–83, 1991.

[129] G. Rivera and C-W. Tseng. Data transformations for eliminating conflict
misses. In Proceedings of ACM SIGPLAN Conference on Programming Lan-
guage Design and Implementation (PLDI’98), pages 38–49, 1998.

[130] G. Rivera and C-W. Tseng. Eliminating conflict misses for high performance
architectures. In Proceedings of ACM Internacional Conference on Supercom-
puting (ICS’98), 1998.

[131] G. Rivera and C-W. Tseng. A comparison of compiler tiling algorithms. In
Proceedings of the 8th International Conference on Compiler Construction
(CC’99), 1999.

[132] G. Rivera and C-W. Tseng. Locality optimizations for multi-level caches. In
Proceedings of Supercomputing (SC’99), 1999.

[133] F.J Sánchez and A. González. Fast, flexible and accurate data locality analy-
sis. In Proceedings of International Conference on Parallel Architectures and
Compilation Techniques (PACT’98), Oct. 1998.

[134] F.J Sánchez, A. González, and M. Valero. Static locality analysis for cache
management. In Proceedings of International Conference on Parallel Archi-
tectures and Compilation Techniques (PACT’97), Nov. 1997.

[135] H. Sharangpani. Itanium microprocessor architecture. IEEE Micro, 2000.

[136] M. Stephenson, S. Amarasinghe, M. Martin, and U. O’Reilly. Meta optimiza-
tion: improving compiler heuristics with machine learning. In Proceedings of
the ACM SIGPLAN 2003 conference on Programming language design and
implementation, pages 77–90, 2003.

[137] T. Suganuma, T. Yasue, and T. Nakatani. An empirical study of method
inlining for a Java just-in-time compiler. In 2nd Java Virtual Machine Research
and Technology Symposium, San Francisco, 2002.

210 · Bibliography

[138] R. Sugumar. Multi-configuration simulation algorithms for the evaluation of
computer designs. PhD thesis, University of Michigan, 1993.

[139] Sun Microelectronics. microSPARC-IIep User’s Manual, 1997.

[140] Sun Microelectronics. UltraSPARC-III Cu User’s Manual, Apr. 2003.

[141] O. Temam, C. Fricker, and W. Jalby. Cache interference phenomena. In
Proceedings of ACM SIGMETRICS Conference on Measurement and Modeling
of Computer Systems (SIGMETRICS’94), pages 261–271, May 1994.

[142] O. Temam, E.D. Granston, and W. Jalby. To copy or not to copy: A compile-
time technique for accessing when data copying should be used to eliminate
cache conflicts. In Proceedings of Supercomputing (SC’93), pages 410–419,
1993.

[143] O. Temam, W. Jalby, and C. Fricker. Cache interference phenomena. In Pro-
ceedings of International Conference on Measurement and Modeling of Com-
puter Systems (SIGMETRICS’93), 1993.

[144] H. Theiling and C. Ferdinand. Combining abstract interpretation and ILP for
microarchitecture modelling and program path analysis. In Proceedings of the
19th IEEE Real-Time Systems Symposium (RTSS’98), Dec. 1998.

[145] K. Tindell, A. Burns, and A. Wellings. An extendible approach for analysing
fixed priority hard real-time tasks. Real-Time Systems, 6(1):133–151, 1994.

[146] N. Topham, A. González, and J. González. The design and performance of a
conflict-avoiding cache. In Proceedings of 30th Symposium on Microarchitec-
ture (MICRO-30), 1997.

[147] Torn and Zilinskas. Global optimization. Springer-Verlag, 1989.

[148] R. A. Uhlig and T. N. Mudge. Trace-driven memory simulation: a survey.
ACM Computing Surveys, 29(3):128–170, Sep. 1997.

[149] E. van der Deijl, G. Kanbier, O. Temam, and E.D. Granston. A cache visual-
ization tool. IEEE Computer, 30(7):71–78, Jul. 1997.

[150] H. Vandierendonck and K. De Bosschere. Efficient profile-based evaluation of
randomising set index functions for cache memories. In Proceedings of 2nd
International Symposium on Performance Analysis of Systems and Software
(ISPASS’01), Tucson, Nov. 2001.

Bibliography · 211

[151] H. Vandierendonck and K. De Bosschere. Highly accurate and efficient eval-
uation of randomising set index functions. Journal of Systems Architecture,
48(13–15):429–452, 2003.

[152] S. A. Vavasis. Nonlinear optimization, complexity issues. In Oxford University
Press, 1991.

[153] X. Vera. Coyote project: The simulator. Technical Report MRTC Report
95/2003, Mälardalens Högskola, Apr. 2003.

[154] X. Vera, J. Abella, A. González, and J. Llosa. Optimizing program locality
through CMEs and GAs. In Proceedings of 12th International Conference on
Parallel Architectures and Compilation Techniques (PACT’03), New Orleans,
Sept. 2003.

[155] X. Vera, N. Bermudo, J. Llosa, and A. González. A fast and accurate frame-
work to analyze and optimize cache memory behavior. ACM Transactions on
Programming Languages and Systems (TOPLAS), To Appear.

[156] X. Vera, B. Lisper, and J. Xue. Data cache locking for higher program pre-
dictability. In Proceedings of International Conference on Measurement and
Modeling of Computer Systems (SIGMETRICS’03), pages 272–282, Jun. 2003.

[157] X. Vera, B. Lisper, and J. Xue. Data caches in multitasking hard real-
time systems. In Proceedings of International Real-Time Systems Symposium
(RTSS03), Dec. 2003.

[158] X. Vera, J. Llosa, and A. González. Near-optimal padding for removing conflict
misses. In 15th Workshop on Languages and Compilers for Parallel Computers
(LCPC’02), July 2002.

[159] X. Vera, J. Llosa, A. González, and N. Bermudo. A fast and accurate approach
to analyze cache memory behavior. In Proceedings of European Conference on
Parallel Computing (Europar’00), 2000.

[160] X. Vera and J. Xue. Let’s study whole program cache behaviour analytically.
In Proceedings of International Symposium on High-Performance Computer
Architecture (HPCA 8), Cambridge, Feb. 2002.

[161] D. A. B. Weikle, K. Skadron, S. A. McKee, and W. A. Wulf. Cache as filters: a
unifying model for memory hierarchy analysis. Technical Report CS-2000-16,
University of Virginia, Jun. 2000.

212 · Bibliography

[162] R. T. White, F. Müeller, C. Healy, D. Whalley, and M. Harmon. Timing
analysis for data caches and set-associative caches. In Proceedings of Third
IEEE Real-Time Technology and Applications Symposium (RTAS’97), pages
192–202, 1997.

[163] D. K. Wilde. A library for doing polyhedral operations. Technical Report 785,
Oregon State University, 1993.

[164] R. P. Wilson. Efficient context-sensitive pointer analysis for C programs. PhD
thesis, Stanford University, December 1997.

[165] E. Witchel and M. Rosenblum. Embra: Fast and flexible machine simulation.
In Proceedings of ACM Sigmetrics Conf. on Measurement and Modeling of
Computer Systems (SIGMETRICS’96), May 1996.

[166] M. Wolf, D. Maydan, and D. Chen. Combining loop transformations consid-
ering caches and scheduling. In Proceedings of 29th ACM/IEEE International
Symposium on Microarchitecture (MICRO-29), 1996.

[167] M. E. Wolf. Improving locality and parallelism in nested loops. PhD thesis,
Stanford University, Mar. 1992.

[168] M.E. Wolf and M.S. Lam. A data locality optimizing algorithm. In Proceed-
ings of ACM SIGPLAN Conference on Programming Language Design and
Implementation (PLDI‘91), pages 30–44, Jun. 1991.

[169] A. Wolfe. Software-based cache partitioning for real-time applications. In Pro-
ceedings of the 3rd International Workshop on Responsive Computer Systems,
1993.

[170] M. Wolfe. Advanced loop interchanging. In Proceedings of International Con-
ference on Parallel Processing (ICPP’96), 1996.

[171] M. E. Wolfe. High performance compilers for parallel computing. Addison-
Wesley, 1996.

[172] R. E. Wunderlich, T. F. Wenisch, B. Falsafi, and J. C. Hoe. Smarts: ac-
celerating microarchitecture simulation via rigorous statistical sampling. In
Proceedings of the 30th International Symposium on Computer Architecture
(ISCA’03), pages 84–97, 2003.

Bibliography · 213

[173] J. Xue. Unimodular transformations of non-perfectly nested loops. Parallel
Computing, 22(12):1621–1645, 1997.

[174] J. Xue and C.-H. Huang. Reuse-driven tiling for data locality. International
Journal of Parallel Programming, 26(6):671–696, 1998.

[175] J. Xue and X. Vera. Efficient and accurate analytical modeling of whole-
program data cache behavior. IEEE Transactions on Computers, To Appear.

214 · Bibliography

Credits

So, I spent few months writing this dissertation in between trips and at night on
my laptop, drinking way too much diet coke with lemon flavor, listening to a lot
of music, and bugging everybody to read drafts. I thank Björn, Janne and Jaume
for reading the whole thesis, and Ebbe and Toni for checking some chapters. Any
mistakes are mine, and were made over all their objections.

That represents the end of a personal research line that started 6 years ago at
UPC in Barcelona. At that time, I was working on the MHAOTEU Esprit project,
where I started implementing the original CMEs with Carles Ciuraneta. Soon, he
left and Nerina Bermudo, at that time already a very good friend of mine, joined
the project. Under the supervision of Antonio González and Josep Llosa, we carried
out our Master Thesis’ and got the first practical implementation of the CMEs.
That was what Nerina and I used to call the Randy Project, which remains at UPC
and was used by Jaume Abella and me to develop the first implementation of our
compiler cache optimizations.

Based on our experience, Nerina and I re-implemented the kernel that it’s used in
this thesis at IDt/MDH (we named it Coyote Project, and it’s publicly available at
http://www.mrtc.mdh.se/projects/wcet/Coyote/). I’m really indebted to her;
without her collaboration, her patience fixing bugs, and our discussions about how
to get the best performance, this thesis wouldn’t have achieved these results.

The real-time part of this thesis couldn’t have been done without Ebbe’s help.
Jakob Engblom has been always there with his technical comments and broad knowl-
edge about everything. I’m also grateful to Thomas Häoveken from NEC Electronics
(Europe) for supplying information about the NEC controllers.

I also want to thank (in no particular order), for so many hours of company:

Less Than Jake, Frenzal Rhomb, Bouncing Souls, The Living End,
One Dollar Short, Goldfinger, Millencolin,

those corny pop bands (singers) I’m embarrassed to write down (oops), Ministry of
Sound, Sash!, Him, Sonique, Vendetta, Deadstar, Green Day,

216 · Credits

all the golden oldies, Kent, Offspring, Area 7, MxPx,
Unwritten Law, Los Piratas, Rancid, Lucky 7, Nerf Herder, NoFx, Paul van Dyck,

Lash, 28 Days, all the mates at bmwfaq, and more than any,
Randy!

	Abstract
	Populärvetenskaplig
	Acknowledgments
	Contents
	List of Figures
	List of Tables
	Publications
	1 Introduction
	1.1 Motivation
	1.1.1 Compiler Cache Optimizations
	1.1.2 Timing Cache Behavior

	1.2 Problem Statement
	1.2.1 Static Analysis of Whole Programs
	1.2.2 Considering Complex Architectures
	1.2.3 Applying Compiler Techniques in Concert
	1.2.4 Timing Memory Performance

	1.3 Contributions
	1.4 Organization

	2 Data Cache Analysis
	2.1 Memory Hierarchy
	2.1.1 Cache Memories
	2.1.2 Cache Organization
	2.1.3 Replacement Policies
	2.1.4 Writing to the Cache
	2.1.5 Locking Caches

	2.2 Locality Analysis
	2.2.1 Iteration Space
	2.2.2 Reuse Vectors
	2.2.3 Uniformly Generated References
	2.2.4 Classifying Reuse
	2.2.5 Computing the Reuse Vector Space

	2.3 Cache Miss Equations (CMEs)
	2.3.1 Compulsory Equations
	2.3.2 Replacement Equations
	2.3.3 Solving CMEs

	3 Underlying Model
	3.1 Architecture Model
	3.2 Program Model
	3.3 Compilation Model
	3.3.1 Loop Sinking
	3.3.2 Loop Nest Normalization

	3.4 Statistical Model
	3.4.1 Discrete Random Variables
	3.4.2 Modeling the Cache Behavior with Random Variables
	3.4.3 Estimation of Parameters

	3.5 Framework Overview

	4 Experimental Framework
	4.1 High-Performance Architectures
	4.1.1 Pentium-4
	4.1.2 Alpha-21264
	4.1.3 UltraSparc-III
	4.1.4 Itanium

	4.2 Embedded Processors
	4.3 Summary of Characteristics
	4.4 Applications
	4.5 Environment

	5 Whole-Program Analysis
	5.1 Abstract Inlining
	5.1.1 Transforming Array References

	5.2 Iteration Vectors
	5.3 Reference Iteration Spaces
	5.4 Reuse Analysis
	5.4.1 Parametric Reuse Analysis
	5.4.2 Group Reuse Among Different RISs
	5.4.3 Discussion

	5.5 Cache Behavior Modeling
	5.5.1 Forming Equations
	5.5.2 FindMisses and EstimateMisses

	5.6 Locking Caches
	5.7 Multi-level Caches
	5.8 Validation
	5.8.1 Loop Kernels
	5.8.2 Whole Programs

	5.9 Related Work
	5.10 Chapter Summary

	6 Data Cache Optimization
	6.1 Compiler Cache Transformations
	6.1.1 Tiling Overview
	6.1.2 Padding Overview

	6.2 Performance Modeling
	6.2.1 Tiling and Padding Model
	6.2.2 Branch Model
	6.2.3 Cost Model
	6.2.4 Compiler Strategy
	6.2.5 Choosing Tile and Pad Factors
	6.2.6 How to Solve Non-Linear Integer Problems

	6.3 Implementing a Genetic Algorithm
	6.3.1 Genetic Algorithm Parameters

	6.4 Example of a Genetic Algorithm
	6.4.1 Setting Up the GA
	6.4.2 Iterating the GA

	6.5 Experiments Setup
	6.5.1 Padding
	6.5.2 Tiling

	6.6 Evaluation
	6.6.1 Padding
	6.6.2 Tiling
	6.6.3 Tiling and Padding
	6.6.4 Compile-Time Overhead
	6.6.5 Summary

	6.7 Related Work
	6.8 Chapter Summary

	7 Timing Cache Behavior
	7.1 Motivation
	7.2 A WCET Tool Overview
	7.2.1 Estimating WCET
	7.2.2 Task Model and Schedulability Analysis
	7.2.3 Extended Program Model
	7.2.4 Flow Analysis
	7.2.5 Merging Operator
	7.2.6 Merging Operator Placement

	7.3 Predictable Cache Behavior
	7.4 Cache Partitioning (CreatePartitions)
	7.5 Dynamic Cache Locking (LockAndLoad)
	7.5.1 Path Merging (LockMergingPoints)
	7.5.2 Data Cache Locking (LockDataDependent)
	7.5.3 Optimizing Placement of Lock/Unlock Instructions (OptimizeLock)
	7.5.4 Selecting Data to Lock in the Cache (LoadData)
	7.5.5 Putting It All Together

	7.6 Experimental Results
	7.6.1 Accuracy of FindMisses
	7.6.2 Performance of Data Cache Locking
	7.6.3 WCMP
	7.6.4 Dynamic Locking: Summary
	7.6.5 Performance of Cache Partitioning
	7.6.6 Optimizations
	7.6.7 Worst-Case Performance: Schedulability
	7.6.8 High-Performance Systems
	7.6.9 Cache Partitioning: Summary

	7.7 Related Work
	7.8 Chapter Summary

	8 Related Work
	8.1 Cache Analysis
	8.2 Compiler Optimizations
	8.3 Genetic Algorithms
	8.4 Path Information

	9 Conclusions
	9.1 Thesis Contributions
	9.2 Future Work

	A Codes -- Analysis
	B Codes -- Optimization
	Bibliography
	Credits

