
Sa
h

a
r Ta

hvili M
U

LTI-C
R

ITER
IA

 O
P

TIM
IZA

TIO
N

 O
F SYSTEM

 IN
TEG

R
A

TIO
N

 TESTIN
G

2018

ISBN 978-91-7485-414-5
ISSN 1651-4238

Address: P.O. Box 883, SE-721 23 Västerås. Sweden
Address: P.O. Box 325, SE-631 05 Eskilstuna. Sweden
E-mail: info@mdh.se Web: www.mdh.se

Mälardalen University Doctoral Dissertation 281

Multi-Criteria Optimization of System
Integration Testing
Sahar Tahvili

Optimizing the software testing process has received much attention over the last
few decades. Test optimization is typically seen as a multi-criteria decision making
problem. One aspect of test optimization involves test selection, prioritization and
execution scheduling. Having an efficient test process can result in the satisfaction
of many objectives such as cost and time minimization. It can also lead to on-time
delivery and better quality of the final software product.

To achieve the goal of test efficiency, a set of criteria, having an impact on the test
cases, needs to be identified. The analysis of several industrial case studies and also
state of the art in this thesis, indicate that the dependency between integration test
cases is one such criterion, which has a direct impact on test execution results. Other
criteria of interest include requirement coverage and test execution time.

In this doctoral thesis, we introduce, apply and evaluate a set of approaches and
tools for test execution optimization at industrial integration testing level in embedded
software development. Furthermore, ESPRET (Estimation and Prediction of Execution
Time) and sOrTES (Stochastic Optimizing of Test Case Scheduling) are our proposed
supportive tools for predicting the execution time and the scheduling of manual
integration test cases, respectively.

All proposed methods and tools in this thesis, have been evaluated at industrial
testing projects at Bombardier Transportation (BT) in Sweden. As a result of the scien-
tific contributions made in this doctoral thesis, employing the proposed approaches
has led to an improvement in terms of reducing redundant test execution failures of
up to 40 % with respect to the current test execution approach at BT. Moreover, an
increase in the requirements coverage of up to 9.6 % is observed at BT. In summary,
the application of the proposed approaches in this doctoral thesis has shown to
give considerable gains by optimizing test schedules in system integration testing of
embedded software development.

Sahar Tahvili is a researcher at RISE (Research Institutes of Sweden)
and also a member of the software testing laboratory at Mälardalen
University. In 2014, she graduated as M.Phil. in Applied Mathemat-
ics with emphasis on optimization from Mälardalen University.
Her research focuses on advanced methods for testing complex
software-intensive systems, designing the decision support systems
(DSS), mathematical modelling and optimization. She also has a
background in Aeronautical Engineering. Sahar holds a licentiate
degree in software engineering from Mälardalen University, titled:
“A Decision Support System for Integration Test Selection’’, since
October 2016.

Mälardalen University Press Dissertations
No. 281

MULTI-CRITERIA OPTIMIZATION OF
SYSTEM INTEGRATION TESTING

Sahar Tahvili

2018

School of Innovation, Design and Engineering

Mälardalen University Press Dissertations
No. 281

MULTI-CRITERIA OPTIMIZATION OF
SYSTEM INTEGRATION TESTING

Sahar Tahvili

2018

School of Innovation, Design and Engineering

111

Copyright © Sahar Tahvili, 2018
ISBN 978-91-7485-414-5
ISSN 1651-4238
Printed by E-Print AB, Stockholm, Sweden

Copyright © Sahar Tahvili, 2018
ISBN 978-91-7485-414-5
ISSN 1651-4238
Printed by E-Print AB, Stockholm, Sweden

222

Mälardalen University Press Dissertations
No. 281

MULTI-CRITERIA OPTIMIZATION OF SYSTEM INTEGRATION TESTING

Sahar Tahvili

Akademisk avhandling

som för avläggande av teknologie doktorsexamen i datavetenskap vid Akademin
för innovation, design och teknik kommer att offentligen försvaras fredagen

den 21 december 2018, 13.15 i Lambda, Mälardalens högskola, Västerås.

Fakultetsopponent: Professor Franz Wotawa, Graz University of Technology

Akademin för innovation, design och teknik

Mälardalen University Press Dissertations
No. 281

MULTI-CRITERIA OPTIMIZATION OF SYSTEM INTEGRATION TESTING

Sahar Tahvili

Akademisk avhandling

som för avläggande av teknologie doktorsexamen i datavetenskap vid Akademin
för innovation, design och teknik kommer att offentligen försvaras fredagen

den 21 december 2018, 13.15 i Lambda, Mälardalens högskola, Västerås.

Fakultetsopponent: Professor Franz Wotawa, Graz University of Technology

Akademin för innovation, design och teknik

333

Abstract
Optimizing software testing process has received much attention over the last few decades. Test
optimization is typically seen as a multi-criteria decision making problem. One aspect of test
optimization involves test selection, prioritization and execution scheduling. Having an efficient test
process can result in the satisfaction of many objectives such as cost and time minimization. It can also
lead to on-time delivery and a better quality of the final software product. To achieve the goal of test
efficiency, a set of criteria, having an impact on the test cases, need to be identified. The analysis of
several industrial case studies and also state of the art in this thesis, indicate that the dependency between
integration test cases is one such criterion, with a direct impact on the test execution results. Other criteria
of interest include requirement coverage and test execution time. In this doctoral thesis, we introduce,
apply and evaluate a set of approaches and tools for test execution optimization at industrial integration
testing level in embedded software development. Furthermore, ESPRET (Estimation and Prediction
of Execution Time) and sOrTES (Stochastic Optimizing of Test Case Scheduling) are our proposed
supportive tools for predicting the execution time and the scheduling of manual integration test cases,
respectively. All proposed methods and tools in this thesis, have been evaluated at industrial testing
projects at Bombardier Transportation (BT) in Sweden. As a result of the scientific contributions made in
this doctoral thesis, employing the proposed approaches has led to an improvement in terms of reducing
redundant test execution failures of up to 40% with respect to the current test execution approach at BT.
Moreover, an increase in the requirements coverage of up to 9.6% is observed at BT. In summary, the
application of the proposed approaches in this doctoral thesis has shown to give considerable gains by
optimizing test schedules in system integration testing of embedded software development.

ISBN 978-91-7485-414-5
ISSN 1651-4238

Abstract
Optimizing software testing process has received much attention over the last few decades. Test
optimization is typically seen as a multi-criteria decision making problem. One aspect of test
optimization involves test selection, prioritization and execution scheduling. Having an efficient test
process can result in the satisfaction of many objectives such as cost and time minimization. It can also
lead to on-time delivery and a better quality of the final software product. To achieve the goal of test
efficiency, a set of criteria, having an impact on the test cases, need to be identified. The analysis of
several industrial case studies and also state of the art in this thesis, indicate that the dependency between
integration test cases is one such criterion, with a direct impact on the test execution results. Other criteria
of interest include requirement coverage and test execution time. In this doctoral thesis, we introduce,
apply and evaluate a set of approaches and tools for test execution optimization at industrial integration
testing level in embedded software development. Furthermore, ESPRET (Estimation and Prediction
of Execution Time) and sOrTES (Stochastic Optimizing of Test Case Scheduling) are our proposed
supportive tools for predicting the execution time and the scheduling of manual integration test cases,
respectively. All proposed methods and tools in this thesis, have been evaluated at industrial testing
projects at Bombardier Transportation (BT) in Sweden. As a result of the scientific contributions made in
this doctoral thesis, employing the proposed approaches has led to an improvement in terms of reducing
redundant test execution failures of up to 40% with respect to the current test execution approach at BT.
Moreover, an increase in the requirements coverage of up to 9.6% is observed at BT. In summary, the
application of the proposed approaches in this doctoral thesis has shown to give considerable gains by
optimizing test schedules in system integration testing of embedded software development.

ISBN 978-91-7485-414-5
ISSN 1651-4238

444

Abstract

Optimizing the software testing process has received much attention over the
last few decades. Test optimization is typically seen as a multi-criteria decision
making problem. One aspect of test optimization involves test selection, priori-
tization and execution scheduling. Having an efficient test process can result
in the satisfaction of many objectives such as cost and time minimization. It
can also lead to on-time delivery and better quality of the final software product.
To achieve the goal of test efficiency, a set of criteria, having an impact on the
test cases, needs to be identified. The analysis of several industrial case studies
and also state of the art in this thesis, indicate that the dependency between
integration test cases is one such criterion, which has a direct impact on test
execution results. Other criteria of interest include requirement coverage and
test execution time. In this doctoral thesis, we introduce, apply and evaluate a set
of approaches and tools for test execution optimization at industrial integration
testing level in embedded software development. Furthermore, ESPRET (Esti-
mation and Prediction of Execution Time) and sOrTES (Stochastic Optimizing
of Test Case Scheduling) are our proposed supportive tools for predicting the
execution time and the scheduling of manual integration test cases, respectively.
All proposed methods and tools in this thesis, have been evaluated at industrial
testing projects at Bombardier Transportation (BT) in Sweden. As a result of
the scientific contributions made in this doctoral thesis, employing the proposed
approaches has led to an improvement in terms of reducing redundant test exe-
cution failures of up to 40% with respect to the current test execution approach
at BT. Moreover, an increase in the requirements coverage of up to 9.6% is
observed at BT. In summary, the application of the proposed approaches in
this doctoral thesis has shown to give considerable gains by optimizing test
schedules in system integration testing of embedded software development.

Keywords: Software Testing, Optimization, Integration Testing, Decision
Support System, Dependency, Test Scheduling, Requirement Coverage

i

Abstract

Optimizing the software testing process has received much attention over the
last few decades. Test optimization is typically seen as a multi-criteria decision
making problem. One aspect of test optimization involves test selection, priori-
tization and execution scheduling. Having an efficient test process can result
in the satisfaction of many objectives such as cost and time minimization. It
can also lead to on-time delivery and better quality of the final software product.
To achieve the goal of test efficiency, a set of criteria, having an impact on the
test cases, needs to be identified. The analysis of several industrial case studies
and also state of the art in this thesis, indicate that the dependency between
integration test cases is one such criterion, which has a direct impact on test
execution results. Other criteria of interest include requirement coverage and
test execution time. In this doctoral thesis, we introduce, apply and evaluate a set
of approaches and tools for test execution optimization at industrial integration
testing level in embedded software development. Furthermore, ESPRET (Esti-
mation and Prediction of Execution Time) and sOrTES (Stochastic Optimizing
of Test Case Scheduling) are our proposed supportive tools for predicting the
execution time and the scheduling of manual integration test cases, respectively.
All proposed methods and tools in this thesis, have been evaluated at industrial
testing projects at Bombardier Transportation (BT) in Sweden. As a result of
the scientific contributions made in this doctoral thesis, employing the proposed
approaches has led to an improvement in terms of reducing redundant test exe-
cution failures of up to 40% with respect to the current test execution approach
at BT. Moreover, an increase in the requirements coverage of up to 9.6% is
observed at BT. In summary, the application of the proposed approaches in
this doctoral thesis has shown to give considerable gains by optimizing test
schedules in system integration testing of embedded software development.

Keywords: Software Testing, Optimization, Integration Testing, Decision
Support System, Dependency, Test Scheduling, Requirement Coverage

i

5

Sammanfattning

Optimering och förbättring av mjukvarutestningsprocessen har fått stor upp-
märksamhet under de senaste årtiondena. Testoptimering är typiskt sett som ett
multikriteriebeslutstödproblem. Aspekter av testoptimering innefattar testval,
prioritering och schemaläggning. Att ha ett effektivt sätt för att köra olika
testfall kan tillfredsställa många mål såsom kostnads- och tidsminimering. Det
kan också leda till leverans i tid och bättre kvalitet på den slutliga mjukvarupro-
dukten. För att uppnå målet måste en uppsättning kriterier som har inverkan
på testfallen identifieras. Analysen i denna avhandling av flera industriella
fallstudier och toppmoderna metoder tyder på att beroendet mellan integra-
tionstestfall är ett kritiskt kriterium, med en direkt inverkan på testresultaten.
Andra viktiga kriterier är kravtäckning och testkörningstid. I denna doktor-
savhandling introducerar vi, tillämpar och utvärderar en uppsättning metoder
och verktyg för testoptimering på industriell integrationsnivå av mjukvara för
inbäddade system. Dessutom, ESPRET (Estimation and Prediction of Execu-
tion Time) och sOrTES (Stochastic Optimizing Test case Scheduling) är våra
stödjande verktyg för att förutsäga exekveringstid och för schemaläggning av
manuell integrationstestning. Alla föreslagna metoder och verktyg i denna
avhandling har utvärderats vid industriella testprojekt i Bombardier Transporta-
tion (BT) i Sverige. Slutligen har användning av de föreslagna metoderna i den
här doktorsavhandlingen lett till förbättringar i form av en minskning av fel från
redundanta testfall med upp till 40% jämfört med nuvarande metoder i BT, och
en ökning av kravtäckning med upp till 9, 6%.

Nyckelord: Programvarutestning, Optimering, Integrationstestning, Besluts-
stödsystem, Beroende, Schemaläggning, Kravtäckning

ii

Sammanfattning

Optimering och förbättring av mjukvarutestningsprocessen har fått stor upp-
märksamhet under de senaste årtiondena. Testoptimering är typiskt sett som ett
multikriteriebeslutstödproblem. Aspekter av testoptimering innefattar testval,
prioritering och schemaläggning. Att ha ett effektivt sätt för att köra olika
testfall kan tillfredsställa många mål såsom kostnads- och tidsminimering. Det
kan också leda till leverans i tid och bättre kvalitet på den slutliga mjukvarupro-
dukten. För att uppnå målet måste en uppsättning kriterier som har inverkan
på testfallen identifieras. Analysen i denna avhandling av flera industriella
fallstudier och toppmoderna metoder tyder på att beroendet mellan integra-
tionstestfall är ett kritiskt kriterium, med en direkt inverkan på testresultaten.
Andra viktiga kriterier är kravtäckning och testkörningstid. I denna doktor-
savhandling introducerar vi, tillämpar och utvärderar en uppsättning metoder
och verktyg för testoptimering på industriell integrationsnivå av mjukvara för
inbäddade system. Dessutom, ESPRET (Estimation and Prediction of Execu-
tion Time) och sOrTES (Stochastic Optimizing Test case Scheduling) är våra
stödjande verktyg för att förutsäga exekveringstid och för schemaläggning av
manuell integrationstestning. Alla föreslagna metoder och verktyg i denna
avhandling har utvärderats vid industriella testprojekt i Bombardier Transporta-
tion (BT) i Sverige. Slutligen har användning av de föreslagna metoderna i den
här doktorsavhandlingen lett till förbättringar i form av en minskning av fel från
redundanta testfall med upp till 40% jämfört med nuvarande metoder i BT, och
en ökning av kravtäckning med upp till 9, 6%.

Nyckelord: Programvarutestning, Optimering, Integrationstestning, Besluts-
stödsystem, Beroende, Schemaläggning, Kravtäckning

ii

6

Populärvetenskaplig

sammanfattning

Rollen av mjukvara kan inte frånses från samhällets framsteg, med en direkt
inverkan på våra dagliga liv. Att förbättra kvaliteten på mjukvaruprodukter har
blivit allt viktigare för programvaruföretag under de senaste årtiondena. För att
uppnå högkvalitativa mjukvaruprodukter måste man balansera ansträngningar
mellan design och verifieringsaktiviteter under utvecklingsprocessen. Därför
blir mjukvarutestning ett viktigt verktyg som bidrar till att tillgodose slutanvän-
darnas behov och att upprätthålla hög kvalitet på slutprodukten. Kvalitetssäkring
av mjukvaruprodukter genererar stora satsningar på forskning inom program-
varutestning.

Programvarutestning utförs manuellt eller automatiskt och övergången till
automatiserade testningssystem har snabbt blivit utbredd i branschen. Eftersom
automatiserad testning idag inte fullt ut kan dra nytta av mänsklig intuition,
induktivt resonemang och inferens så spelar manuell testning fortfarande en
viktig roll. Testning utförs ofta på flera nivåer, såsom enhet, integration, system
och acceptans.

Lämplig testmetod (antingen manuell eller automatisk) beror på flera parame-
trar såsom kvalitetskrav, produktens storlek och komplexitet och testnivå.

Integrationstestning är den nivå i testprocessen där olika enskilda program-
moduler kombineras och testas som en grupp och kan ofta vara den mest
komplexa nivån. Integrationstestning utförs vanligtvis efter enhetstestning, när
alla moduler har testats och godkänts separat.

För att testa en produkt manuellt måste en uppsättning testfallsspecifika-
tioner skapas. En testfallsspecifikation beskriver textuellt en händelse och hur
produkten ska uppträda vid angivna ingångsparametrar. Vanligtvis krävs en stor
uppsättning testfall för att testa en produkt. Att köra alla testfall för en produkt

iii

Populärvetenskaplig

sammanfattning

Rollen av mjukvara kan inte frånses från samhällets framsteg, med en direkt
inverkan på våra dagliga liv. Att förbättra kvaliteten på mjukvaruprodukter har
blivit allt viktigare för programvaruföretag under de senaste årtiondena. För att
uppnå högkvalitativa mjukvaruprodukter måste man balansera ansträngningar
mellan design och verifieringsaktiviteter under utvecklingsprocessen. Därför
blir mjukvarutestning ett viktigt verktyg som bidrar till att tillgodose slutanvän-
darnas behov och att upprätthålla hög kvalitet på slutprodukten. Kvalitetssäkring
av mjukvaruprodukter genererar stora satsningar på forskning inom program-
varutestning.

Programvarutestning utförs manuellt eller automatiskt och övergången till
automatiserade testningssystem har snabbt blivit utbredd i branschen. Eftersom
automatiserad testning idag inte fullt ut kan dra nytta av mänsklig intuition,
induktivt resonemang och inferens så spelar manuell testning fortfarande en
viktig roll. Testning utförs ofta på flera nivåer, såsom enhet, integration, system
och acceptans.

Lämplig testmetod (antingen manuell eller automatisk) beror på flera parame-
trar såsom kvalitetskrav, produktens storlek och komplexitet och testnivå.

Integrationstestning är den nivå i testprocessen där olika enskilda program-
moduler kombineras och testas som en grupp och kan ofta vara den mest
komplexa nivån. Integrationstestning utförs vanligtvis efter enhetstestning, när
alla moduler har testats och godkänts separat.

För att testa en produkt manuellt måste en uppsättning testfallsspecifika-
tioner skapas. En testfallsspecifikation beskriver textuellt en händelse och hur
produkten ska uppträda vid angivna ingångsparametrar. Vanligtvis krävs en stor
uppsättning testfall för att testa en produkt. Att köra alla testfall för en produkt

iii

7

iv

manuellt kräver tid och resurser. Därför har urval, prioritering och schemaläg-
gning av tester fått stor uppmärksamhet i programvarutestningsdomänen.

I denna doktorsavhandling föreslår vi några optimeringstekniker för urval,
prioritering och schemaläggning av manuella testfall för utförande. Alla föres-
lagna optimeringsmetoder i denna avhandling har utvärderats på industriella
testprojekt vid Bombardier Transportation (BT) i Sverige.

iv

manuellt kräver tid och resurser. Därför har urval, prioritering och schemaläg-
gning av tester fått stor uppmärksamhet i programvarutestningsdomänen.

I denna doktorsavhandling föreslår vi några optimeringstekniker för urval,
prioritering och schemaläggning av manuella testfall för utförande. Alla föres-
lagna optimeringsmetoder i denna avhandling har utvärderats på industriella
testprojekt vid Bombardier Transportation (BT) i Sverige.

8

10

There’s just one life to live, there’s no time to wait, to waste.
Josh Alexander

vii

There’s just one life to live, there’s no time to wait, to waste.
Josh Alexander

vii

11

12

Acknowledgments

I would like to express my sincere gratitude to my main supervisor Markus
Bohlin for the continuous support of my Ph.D. studies and related research,
for his patience, motivation, and immense knowledge. A very special thank
you goes out to my assistant supervisors Wasif Afzal, his guidance helped me
for the entire duration of research and writing of this thesis and also Mehrdad
Saadatmand for all his help and support. I have learned so much from all of
you both personally and professionally, working with you made me grow as a
researcher.

I am very grateful to my former supervisors Daniel Sundmark, Stig Larsson,
Sergei Silvestrov, Tofigh Allahviranloo and Jonas Biteus, I have been extremely
lucky to have supervisors who cared so much about my work and responded to
my questions and queries promptly.

I would also like to thank my additional co-authors Leo Hatvani, Rita
Pimentel, Michael Felderer, my master thesis students Sharvathul Hasan Ameer-
jan, Marcus Ahlberg and Eric Fornander working with you is a great pleasure,
and also thanks to Narsis Aftab Kiani at Karolinska Institute and Mohammad
Mehrabi for brainstorming and effective discussions.

My deepest gratitude goes to my family Mohammad, Shabnam, Saeed, Sara
and Sepeher Tahvili and my friends: Shahab Darvish, Neda Kazemie, Lotta
Karlsson, Jonas Österberg, Linnea Siem who have always been there for me no
matter what. Without them I could have never reached this far.

I am thankful to Razieh Matini, Iraj and Siavash Mesdaghi, I consider myself
extremely blessed to be a part of your family. There is no way I could ever
thank you enough for being my second family in Sweden.

My sincere thanks also go to my manager, Helena Jerregard, who has al-
ways supported me throughout the work on this thesis. RISE SICS is a great
workplace that I very much enjoy being part of. Furthermore, thanks to all my

ix

Acknowledgments

I would like to express my sincere gratitude to my main supervisor Markus
Bohlin for the continuous support of my Ph.D. studies and related research,
for his patience, motivation, and immense knowledge. A very special thank
you goes out to my assistant supervisors Wasif Afzal, his guidance helped me
for the entire duration of research and writing of this thesis and also Mehrdad
Saadatmand for all his help and support. I have learned so much from all of
you both personally and professionally, working with you made me grow as a
researcher.

I am very grateful to my former supervisors Daniel Sundmark, Stig Larsson,
Sergei Silvestrov, Tofigh Allahviranloo and Jonas Biteus, I have been extremely
lucky to have supervisors who cared so much about my work and responded to
my questions and queries promptly.

I would also like to thank my additional co-authors Leo Hatvani, Rita
Pimentel, Michael Felderer, my master thesis students Sharvathul Hasan Ameer-
jan, Marcus Ahlberg and Eric Fornander working with you is a great pleasure,
and also thanks to Narsis Aftab Kiani at Karolinska Institute and Mohammad
Mehrabi for brainstorming and effective discussions.

My deepest gratitude goes to my family Mohammad, Shabnam, Saeed, Sara
and Sepeher Tahvili and my friends: Shahab Darvish, Neda Kazemie, Lotta
Karlsson, Jonas Österberg, Linnea Siem who have always been there for me no
matter what. Without them I could have never reached this far.

I am thankful to Razieh Matini, Iraj and Siavash Mesdaghi, I consider myself
extremely blessed to be a part of your family. There is no way I could ever
thank you enough for being my second family in Sweden.

My sincere thanks also go to my manager, Helena Jerregard, who has al-
ways supported me throughout the work on this thesis. RISE SICS is a great
workplace that I very much enjoy being part of. Furthermore, thanks to all my

ix

13

x

colleagues at RISE SICS Västerås: Malin Rosqvist, Petra Edoff, Zohreh Ranjbar,
Pasqualina Potena, Linnéa Svenman Wiker, Björn Löfvendahl, Daniella Mag-
nusson, Markus Borg, Gunnar Widforss, Tomas Olsson, Kristian Sandström,
Anders Wikström, Stefan Cedergren, Joakim Fröberg, Alvaro Aranda Munoz,
Niclas Ericsson, Daniel Flemström, Martin Joborn, Cecilia Hyrén, Ksenija Ko-
mazec, Petter Wannerberg, Backer Sultan, Mats Tallfors, Peter Wallin, Thomas
Nessen, Elsa Kosmack Vaara, Helena Junegard, Jawad Mustafa and also Barrett
Michael Sauter for proofreading this doctoral thesis.

A special thanks to Ola Sellin, Stefan Persson, Kjell Bystedt, Anders Skytt,
Johan Zetterqvist and the testing team at Bombardier Transportation, Västerås,
Sweden.

In closing, I would like to express my sincere appreciation to Mariana Cook,
a fine arts photographer with a kind heart, who granted the permission to use
the image of Maryam Mirzakhani for the printed version of this doctoral thesis.

The work presented in this doctoral thesis has been funded by RISE SICS,
ECSEL and VINNOVA (through projects MegaM@RT2, XIVT, TESTOMAT
and IMPRINT) and also through the ITS-EASY program at Mälardalen Univer-
sity.

Sahar Tahvili
November 2018

Stockholm

x

colleagues at RISE SICS Västerås: Malin Rosqvist, Petra Edoff, Zohreh Ranjbar,
Pasqualina Potena, Linnéa Svenman Wiker, Björn Löfvendahl, Daniella Mag-
nusson, Markus Borg, Gunnar Widforss, Tomas Olsson, Kristian Sandström,
Anders Wikström, Stefan Cedergren, Joakim Fröberg, Alvaro Aranda Munoz,
Niclas Ericsson, Daniel Flemström, Martin Joborn, Cecilia Hyrén, Ksenija Ko-
mazec, Petter Wannerberg, Backer Sultan, Mats Tallfors, Peter Wallin, Thomas
Nessen, Elsa Kosmack Vaara, Helena Junegard, Jawad Mustafa and also Barrett
Michael Sauter for proofreading this doctoral thesis.

A special thanks to Ola Sellin, Stefan Persson, Kjell Bystedt, Anders Skytt,
Johan Zetterqvist and the testing team at Bombardier Transportation, Västerås,
Sweden.

In closing, I would like to express my sincere appreciation to Mariana Cook,
a fine arts photographer with a kind heart, who granted the permission to use
the image of Maryam Mirzakhani for the printed version of this doctoral thesis.

The work presented in this doctoral thesis has been funded by RISE SICS,
ECSEL and VINNOVA (through projects MegaM@RT2, XIVT, TESTOMAT
and IMPRINT) and also through the ITS-EASY program at Mälardalen Univer-
sity.

Sahar Tahvili
November 2018

Stockholm

14

List of Publications

Studies Included in the Doctoral Thesis1

Study A. Dynamic Test Selection and Redundancy Avoidance Based on Test
Case Dependencies, Sahar Tahvili, Mehrdad Saadatmand, Stig Larsson,
Wasif Afzal, Markus Bohlin and Daniel Sundmark, The 11th Workshop
on Testing: Academia-Industry Collaboration, Practice and Research
Techniques (TAIC PART’16), 2016, IEEE.

Study B. Cost-Benefit Analysis of Using Dependency Knowledge at Integration
Testing, Sahar Tahvili, Markus Bohlin, Mehrdad Saadatmand, Stig Lars-
son, Wasif Afzal and Daniel Sundmark, The 17th International Conference
on Product-Focused Software Process Improvement (PROFES’16), 2016,
Springer.

Study C. ESPRET: a Tool for Execution Time Estimation of Manual Test
Cases, Sahar Tahvili, Wasif Afzal, Mehrdad Saadatmand, Markus Bohlin
and Sharvatul Hasan Ameerjan, Journal of Systems and Software (JSS),
volume 146, pages 26-41, 2018, Elsevier.

Study D. Functional Dependency Detection for Integration Test Cases, Sahar

Tahvili, Marcus Ahlberg, Eric Fornander, Wasif Afzal, Mehrdad Saadat-
mand and Markus Bohlin, Companion of the 18th IEEE International
Conference on Software Quality, Reliability, and Security (QRS’18), 2018,
IEEE.

1The included studies have been reformatted to comply with the doctoral thesis layout and minor
typos have been corrected and marked accordingly.

xi

List of Publications

Studies Included in the Doctoral Thesis1

Study A. Dynamic Test Selection and Redundancy Avoidance Based on Test
Case Dependencies, Sahar Tahvili, Mehrdad Saadatmand, Stig Larsson,
Wasif Afzal, Markus Bohlin and Daniel Sundmark, The 11th Workshop
on Testing: Academia-Industry Collaboration, Practice and Research
Techniques (TAIC PART’16), 2016, IEEE.

Study B. Cost-Benefit Analysis of Using Dependency Knowledge at Integration
Testing, Sahar Tahvili, Markus Bohlin, Mehrdad Saadatmand, Stig Lars-
son, Wasif Afzal and Daniel Sundmark, The 17th International Conference
on Product-Focused Software Process Improvement (PROFES’16), 2016,
Springer.

Study C. ESPRET: a Tool for Execution Time Estimation of Manual Test
Cases, Sahar Tahvili, Wasif Afzal, Mehrdad Saadatmand, Markus Bohlin
and Sharvatul Hasan Ameerjan, Journal of Systems and Software (JSS),
volume 146, pages 26-41, 2018, Elsevier.

Study D. Functional Dependency Detection for Integration Test Cases, Sahar

Tahvili, Marcus Ahlberg, Eric Fornander, Wasif Afzal, Mehrdad Saadat-
mand and Markus Bohlin, Companion of the 18th IEEE International
Conference on Software Quality, Reliability, and Security (QRS’18), 2018,
IEEE.

1The included studies have been reformatted to comply with the doctoral thesis layout and minor
typos have been corrected and marked accordingly.

xi

15

xii

Study E. Automated Functional Dependency Detection Between Test Cases
Using Text Semantic Similarity, Sahar Tahvili, Leo Hatvani, Michael
Felderer, Wasif Afzal and Markus Bohlin, Submitted to The 12th IEEE
International Conference on Software Testing, Verification and Validation
(ICST’19), 2019, IEEE.

Study F. sOrTES: A Supportive Tool for Stochastic Scheduling of Manual
Integration Test Cases, Sahar Tahvili, Rita Pimentel, Wasif Afzal, Marcus
Ahlberg, Eric Fornande, Markus Bohlin, Journal of IEEE Access, 2018, In
revision.

Additional Peer-Reviewed Publications, not Included

in the Doctoral Thesis

Licentiate Thesis

1. A Decision Support System for Integration Test Selection, Sahar Tahvili,
Licentiate Thesis, ISSN 1651-9256, ISBN 978-91-7485-282-0, October
2016, Mälardalen University.

Journal

1. On the global solution of a fuzzy linear system, Tofigh Allahviranloo, Ar-
jan Skuka, Sahar Tahvili, Journal of Fuzzy Set Valued Analysis, volume
14, pages 1-8, 2014, ISPACS.

Conferences & Workshops

1. Solving complex maintenance planning optimization problems using
stochastic simulation and multi-criteria fuzzy decision making, Sahar

Tahvili, Sergei Silvestrov, Jonas Österberg , Jonas Biteus, The 10th
International Conference on Mathematical Problems in Engineering,
Aerospace and Sciences (ICNPAA’14), 2014, AIP.

2. A Fuzzy Decision Support Approach for Model-Based Trade-off Anal-
ysis of Non-Functional Requirements, Mehrdad Saadatmand, Sahar

xii

Study E. Automated Functional Dependency Detection Between Test Cases
Using Text Semantic Similarity, Sahar Tahvili, Leo Hatvani, Michael
Felderer, Wasif Afzal and Markus Bohlin, Submitted to The 12th IEEE
International Conference on Software Testing, Verification and Validation
(ICST’19), 2019, IEEE.

Study F. sOrTES: A Supportive Tool for Stochastic Scheduling of Manual
Integration Test Cases, Sahar Tahvili, Rita Pimentel, Wasif Afzal, Marcus
Ahlberg, Eric Fornande, Markus Bohlin, Journal of IEEE Access, 2018, In
revision.

Additional Peer-Reviewed Publications, not Included

in the Doctoral Thesis

Licentiate Thesis

1. A Decision Support System for Integration Test Selection, Sahar Tahvili,
Licentiate Thesis, ISSN 1651-9256, ISBN 978-91-7485-282-0, October
2016, Mälardalen University.

Journal

1. On the global solution of a fuzzy linear system, Tofigh Allahviranloo, Ar-
jan Skuka, Sahar Tahvili, Journal of Fuzzy Set Valued Analysis, volume
14, pages 1-8, 2014, ISPACS.

Conferences & Workshops

1. Solving complex maintenance planning optimization problems using
stochastic simulation and multi-criteria fuzzy decision making, Sahar

Tahvili, Sergei Silvestrov, Jonas Österberg , Jonas Biteus, The 10th
International Conference on Mathematical Problems in Engineering,
Aerospace and Sciences (ICNPAA’14), 2014, AIP.

2. A Fuzzy Decision Support Approach for Model-Based Trade-off Anal-
ysis of Non-Functional Requirements, Mehrdad Saadatmand, Sahar

16

xiii

Tahvili, The 12th International Conference on Information Technology:
New Generations (ITNG’15), 2015, IEEE.

3. Multi-Criteria Test Case Prioritization Using Fuzzy Analytic Hierarchy
Process, Sahar Tahvili, Mehrdad Saadatmand, Markus Bohlin, The 10th
International Conference on Software Engineering Advance (ICSEA’15),
2015, IARIA.

4. Towards Earlier Fault Detection by Value-Driven Prioritization of Test
Cases Using Fuzzy TOPSIS, Sahar Tahvili, Wasif Afzal, Mehrdad Saa-
datmand, Markus Bohlin, Daniel Sundmark, Stig Larsson, The 13th
International Conference on Information Technology : New Generations
(ITNG’16), 2016, Springer.

5. An Online Decision Support Framework for Integration Test Selection
and Prioritization (Doctoral Symposium), Sahar Tahvili, The 25th Inter-
national Symposium on Software Testing and Analysis (ISSTA’ 16), 2016,
ACM.

6. Towards Execution Time Prediction for Test Cases from Test Specifica-
tion, Sahar Tahvili, Mehrdad Saadatmand, Markus Bohlin, Wasif Afzal,
Sharvathul Hasan Ameerjan, The 43rd Euromicro Conference on Software
Engineering and Advanced Applications (SEAA’17), 2017, IEEE.

7. Cluster-Based Test Scheduling Strategies Using Semantic Relationships
between Test Specifications, Sahar Tahvili, Leo Hatvani, Michael Felderer,
Wasif Afzal, Mehrdad Saadatmand, Markus Bohlin, The 5th International
Workshop on Requirements Engineering and Testing (RET’18), 2018,
ACM.

xiii

Tahvili, The 12th International Conference on Information Technology:
New Generations (ITNG’15), 2015, IEEE.

3. Multi-Criteria Test Case Prioritization Using Fuzzy Analytic Hierarchy
Process, Sahar Tahvili, Mehrdad Saadatmand, Markus Bohlin, The 10th
International Conference on Software Engineering Advance (ICSEA’15),
2015, IARIA.

4. Towards Earlier Fault Detection by Value-Driven Prioritization of Test
Cases Using Fuzzy TOPSIS, Sahar Tahvili, Wasif Afzal, Mehrdad Saa-
datmand, Markus Bohlin, Daniel Sundmark, Stig Larsson, The 13th
International Conference on Information Technology : New Generations
(ITNG’16), 2016, Springer.

5. An Online Decision Support Framework for Integration Test Selection
and Prioritization (Doctoral Symposium), Sahar Tahvili, The 25th Inter-
national Symposium on Software Testing and Analysis (ISSTA’ 16), 2016,
ACM.

6. Towards Execution Time Prediction for Test Cases from Test Specifica-
tion, Sahar Tahvili, Mehrdad Saadatmand, Markus Bohlin, Wasif Afzal,
Sharvathul Hasan Ameerjan, The 43rd Euromicro Conference on Software
Engineering and Advanced Applications (SEAA’17), 2017, IEEE.

7. Cluster-Based Test Scheduling Strategies Using Semantic Relationships
between Test Specifications, Sahar Tahvili, Leo Hatvani, Michael Felderer,
Wasif Afzal, Mehrdad Saadatmand, Markus Bohlin, The 5th International
Workshop on Requirements Engineering and Testing (RET’18), 2018,
ACM.

17

18

Contents

I Thesis 1

1 Introduction 3

1.1 Thesis Overview . 5

2 Background 11

2.1 Software Testing . 11
2.2 Integration Testing . 13
2.3 Test Optimization . 14

2.3.1 Test Case Selection 14
2.3.2 Test Case Prioritization 15
2.3.3 Test Case Scheduling 15

2.4 Multiple-Criteria Decision-Making (MCDM) 16
2.4.1 Requirement Coverage 17
2.4.2 Execution Time . 17
2.4.3 Fault Detection Probability 17
2.4.4 Test Case Dependencies 18

3 Research Overview 23

3.1 Goal of the Thesis . 23
3.2 Technical Contributions . 27

3.2.1 Overview of the Proposed Approach 27
3.2.2 Discussion of Individual Contributions 27

3.3 Research Process and Methodology 30

4 Conclusions and Future Work 35

4.1 Summary and Conclusion 35
4.2 Future Work . 37

xv

Contents

I Thesis 1

1 Introduction 3

1.1 Thesis Overview . 5

2 Background 11

2.1 Software Testing . 11
2.2 Integration Testing . 13
2.3 Test Optimization . 14

2.3.1 Test Case Selection 14
2.3.2 Test Case Prioritization 15
2.3.3 Test Case Scheduling 15

2.4 Multiple-Criteria Decision-Making (MCDM) 16
2.4.1 Requirement Coverage 17
2.4.2 Execution Time . 17
2.4.3 Fault Detection Probability 17
2.4.4 Test Case Dependencies 18

3 Research Overview 23

3.1 Goal of the Thesis . 23
3.2 Technical Contributions . 27

3.2.1 Overview of the Proposed Approach 27
3.2.2 Discussion of Individual Contributions 27

3.3 Research Process and Methodology 30

4 Conclusions and Future Work 35

4.1 Summary and Conclusion 35
4.2 Future Work . 37

xv

19

xvi Contents

Bibliography 39

II Included Papers 47

5 Paper A:

Dynamic Test Selection and Redundancy Avoidance Based on Test

Case Dependencies 49

5.1 Introduction . 51
5.2 Background and Preliminaries 52

5.2.1 Motivating Example 52
5.2.2 Main definitions . 53

5.3 Approach . 54
5.3.1 Dependency Degree 55
5.3.2 Test Case Prioritization: FAHP 57
5.3.3 Offline and online phases 60

5.4 Industrial Case Study . 62
5.4.1 Preliminary results of online evaluation 66

5.5 Discussion & Future Extensions 68
5.5.1 Delimitations . 69

5.6 Related Work . 70
5.7 Summary & Conclusion . 72
Bibliography . 73

6 Paper B:

Cost-Benefit Analysis of Using Dependency Knowledge at Integra-

tion Testing 77

6.1 Introduction . 79
6.2 Background . 80
6.3 Decision Support System for Test Case

Prioritization . 81
6.3.1 Architecture and Process of DSS 82

6.4 Economic Model . 83
6.4.1 Return on Investment Analysis 86

6.5 Case Study . 87
6.5.1 Test Case Execution Results 89
6.5.2 DSS Alternatives under Study 89
6.5.3 ROI Analysis Using Monte-Carlo Simulation 90
6.5.4 Sensitivity Analysis 92

xvi Contents

Bibliography 39

II Included Papers 47

5 Paper A:

Dynamic Test Selection and Redundancy Avoidance Based on Test

Case Dependencies 49

5.1 Introduction . 51
5.2 Background and Preliminaries 52

5.2.1 Motivating Example 52
5.2.2 Main definitions . 53

5.3 Approach . 54
5.3.1 Dependency Degree 55
5.3.2 Test Case Prioritization: FAHP 57
5.3.3 Offline and online phases 60

5.4 Industrial Case Study . 62
5.4.1 Preliminary results of online evaluation 66

5.5 Discussion & Future Extensions 68
5.5.1 Delimitations . 69

5.6 Related Work . 70
5.7 Summary & Conclusion . 72
Bibliography . 73

6 Paper B:

Cost-Benefit Analysis of Using Dependency Knowledge at Integra-

tion Testing 77

6.1 Introduction . 79
6.2 Background . 80
6.3 Decision Support System for Test Case

Prioritization . 81
6.3.1 Architecture and Process of DSS 82

6.4 Economic Model . 83
6.4.1 Return on Investment Analysis 86

6.5 Case Study . 87
6.5.1 Test Case Execution Results 89
6.5.2 DSS Alternatives under Study 89
6.5.3 ROI Analysis Using Monte-Carlo Simulation 90
6.5.4 Sensitivity Analysis 92

20

Contents xvii

6.6 Discussion and Threats to Validity 95
6.7 Conclusion and Future Work 96
Bibliography . 97

7 Paper C:

ESPRET: a Tool for Execution Time Estimation of Manual Test

Cases 101

7.1 Introduction . 103
7.2 Background and Related Work 104
7.3 Description of the Proposed Approach 108

7.3.1 Parsing and Historical Data Collection 110
7.3.2 The Algorithm for Estimating the Maximum Execution

Time . 113
7.3.3 Regression Analysis for Prediction of the Actual Exe-

cution Time . 115
7.3.4 System Architecture, Implementation and Database

Creation . 117
7.4 Empirical Evaluation . 118

7.4.1 Unit of Analysis and Procedure 119
7.4.2 Case Study Report 120
7.4.3 Model Validation . 124
7.4.4 Model Evaluation Using Unseen Data 130

7.5 Threats to Validity . 133
7.6 Discussion and Future Extensions 134
7.7 Conclusion . 137
Bibliography . 139

8 Paper D:

Functional Dependency Detection for Integration Test Cases 147

8.1 Introduction . 149
8.2 Background and Related Work 150
8.3 Dependency Detection at Integration Testing 152

8.3.1 Basic concepts definitions 152
8.3.2 Implemented Method Details 156

8.4 Empirical Evaluation . 160
8.4.1 Unit of Analysis and Procedure 160
8.4.2 Case study report and results 160

8.5 Discussion and Future Extensions 165
8.6 Summary and Conclusion . 165

Contents xvii

6.6 Discussion and Threats to Validity 95
6.7 Conclusion and Future Work 96
Bibliography . 97

7 Paper C:

ESPRET: a Tool for Execution Time Estimation of Manual Test

Cases 101

7.1 Introduction . 103
7.2 Background and Related Work 104
7.3 Description of the Proposed Approach 108

7.3.1 Parsing and Historical Data Collection 110
7.3.2 The Algorithm for Estimating the Maximum Execution

Time . 113
7.3.3 Regression Analysis for Prediction of the Actual Exe-

cution Time . 115
7.3.4 System Architecture, Implementation and Database

Creation . 117
7.4 Empirical Evaluation . 118

7.4.1 Unit of Analysis and Procedure 119
7.4.2 Case Study Report 120
7.4.3 Model Validation . 124
7.4.4 Model Evaluation Using Unseen Data 130

7.5 Threats to Validity . 133
7.6 Discussion and Future Extensions 134
7.7 Conclusion . 137
Bibliography . 139

8 Paper D:

Functional Dependency Detection for Integration Test Cases 147

8.1 Introduction . 149
8.2 Background and Related Work 150
8.3 Dependency Detection at Integration Testing 152

8.3.1 Basic concepts definitions 152
8.3.2 Implemented Method Details 156

8.4 Empirical Evaluation . 160
8.4.1 Unit of Analysis and Procedure 160
8.4.2 Case study report and results 160

8.5 Discussion and Future Extensions 165
8.6 Summary and Conclusion . 165

21

xviii Contents

8.7 Acknowledgements . 166
Bibliography . 167

9 Paper E:

Automated Functional Dependency Detection Between Test Cases

Using Text Semantic Similarity 171

9.1 Introduction . 173
9.2 Background . 175
9.3 Related Work . 177
9.4 The proposed Approach . 179

9.4.1 Feature Vector Generation 180
9.4.2 Clustering Feature Vectors 181

9.5 Empirical Evaluation . 183
9.5.1 Industrial Case Study 183
9.5.2 Ground Truth . 185

9.6 Results . 188
9.6.1 Comparing the Clustering Results with the

Ground Truth . 188
9.6.2 Performance Metric Selection 189
9.6.3 Metric Comparison 190
9.6.4 Random Undersampling strategy for imbalanced

datasets . 191
9.7 Threats to Validity . 193
9.8 Discussion and Future Work 194
9.9 Conclusion . 196
Bibliography . 199

10 Paper F:

sOrTES: A Supportive Tool for Stochastic Scheduling of Manual

Integration Test Cases 205

10.1 Introduction . 207
10.2 Background and Related work 208

10.2.1 Test case selection 209
10.2.2 Test case prioritization 209
10.2.3 Test Case Stochastic Scheduling 210
10.2.4 Related Work . 211

10.3 Proposed Approach . 213
10.4 sOrTES- Stochastic Optimizing of Test case Scheduling 216

10.4.1 The Extraction Phase 217

xviii Contents

8.7 Acknowledgements . 166
Bibliography . 167

9 Paper E:

Automated Functional Dependency Detection Between Test Cases

Using Text Semantic Similarity 171

9.1 Introduction . 173
9.2 Background . 175
9.3 Related Work . 177
9.4 The proposed Approach . 179

9.4.1 Feature Vector Generation 180
9.4.2 Clustering Feature Vectors 181

9.5 Empirical Evaluation . 183
9.5.1 Industrial Case Study 183
9.5.2 Ground Truth . 185

9.6 Results . 188
9.6.1 Comparing the Clustering Results with the

Ground Truth . 188
9.6.2 Performance Metric Selection 189
9.6.3 Metric Comparison 190
9.6.4 Random Undersampling strategy for imbalanced

datasets . 191
9.7 Threats to Validity . 193
9.8 Discussion and Future Work 194
9.9 Conclusion . 196
Bibliography . 199

10 Paper F:

sOrTES: A Supportive Tool for Stochastic Scheduling of Manual

Integration Test Cases 205

10.1 Introduction . 207
10.2 Background and Related work 208

10.2.1 Test case selection 209
10.2.2 Test case prioritization 209
10.2.3 Test Case Stochastic Scheduling 210
10.2.4 Related Work . 211

10.3 Proposed Approach . 213
10.4 sOrTES- Stochastic Optimizing of Test case Scheduling 216

10.4.1 The Extraction Phase 217

22

Contents xix

10.4.2 Functional Dependencies Detection 217
10.4.3 Requirement Coverage Measurement 220
10.4.4 The Scheduling phase 221
10.4.5 Model Assumptions and Problem Description 222

10.5 Empirical Evaluation . 226
10.5.1 Unit of Analysis and Procedure 227
10.5.2 Case Study Report 228

10.6 Performance evaluation . 229
10.6.1 Performance comparison between sOrTES and

Bombardier . 229
10.6.2 Performance comparison including a History-based test

case prioritization approach 237
10.7 Threats to Validity . 241
10.8 Discussion and Future work 244
10.9 Conclusion . 245
Bibliography . 247

Contents xix

10.4.2 Functional Dependencies Detection 217
10.4.3 Requirement Coverage Measurement 220
10.4.4 The Scheduling phase 221
10.4.5 Model Assumptions and Problem Description 222

10.5 Empirical Evaluation . 226
10.5.1 Unit of Analysis and Procedure 227
10.5.2 Case Study Report 228

10.6 Performance evaluation . 229
10.6.1 Performance comparison between sOrTES and

Bombardier . 229
10.6.2 Performance comparison including a History-based test

case prioritization approach 237
10.7 Threats to Validity . 241
10.8 Discussion and Future work 244
10.9 Conclusion . 245
Bibliography . 247

23

24

I

Thesis

1

I

Thesis

1

25

26

Chapter 1

Introduction

The role of software is important in our daily lives and to the progress of
society in general. Over the past few decades, improving the quality of

software products has become a unique selling point for software companies.
Achieving high quality software products is possible through a balanced in-
tegrative approach of design and verification activities during the software
development life cycle (SDLC) process [2]. Considering these facts, software
testing becomes a major player in the product development process, which can
satisfy the end users’ needs and also ensure high quality of the final product [2].

Software testing research faces many challenges such as test effective-
ness [3], where in this regard, the concept and nature of software testing has
changed. The transition from manual to automated testing and continuous
changes in the testing procedure have quickly become widespread at industry.
However, human intuition, inductive reasoning and inference cannot be fully
covered by the current form of test automation and therefore manual testing still
plays a vital role in software testing [4].

Achieving a more effective testing process often comes down to dividing
it into several levels, such as unit, integration, system and acceptance testing
levels. Proposing an appropriate testing procedure (either manual or automated)
depends on several parameters such as the quality of requirements, the size and
complexity of the product and also the testing level.

Integration testing can be considered as the most complex testing phase in
some practical scenarios. Integrating unit test modules and testing their behavior
can result in a huge increase in complexity [5]. Verification of interactions
between software modules has the objective of recognizing the correctness for

3

Chapter 1

Introduction

The role of software is important in our daily lives and to the progress of
society in general. Over the past few decades, improving the quality of

software products has become a unique selling point for software companies.
Achieving high quality software products is possible through a balanced in-
tegrative approach of design and verification activities during the software
development life cycle (SDLC) process [2]. Considering these facts, software
testing becomes a major player in the product development process, which can
satisfy the end users’ needs and also ensure high quality of the final product [2].

Software testing research faces many challenges such as test effective-
ness [3], where in this regard, the concept and nature of software testing has
changed. The transition from manual to automated testing and continuous
changes in the testing procedure have quickly become widespread at industry.
However, human intuition, inductive reasoning and inference cannot be fully
covered by the current form of test automation and therefore manual testing still
plays a vital role in software testing [4].

Achieving a more effective testing process often comes down to dividing
it into several levels, such as unit, integration, system and acceptance testing
levels. Proposing an appropriate testing procedure (either manual or automated)
depends on several parameters such as the quality of requirements, the size and
complexity of the product and also the testing level.

Integration testing can be considered as the most complex testing phase in
some practical scenarios. Integrating unit test modules and testing their behavior
can result in a huge increase in complexity [5]. Verification of interactions
between software modules has the objective of recognizing the correctness for

3

27

4 Chapter 1. Introduction

several modules of a system under test at least once, which ultimately results in
a more complicated testing process, compared with other testing levels such as
unit and acceptance testing.

Having a large set of test cases for testing a product manually in such a
complex testing level proves the need for optimization methods in the software
testing domain [6]. Test optimization is a multi-faceted topic consisting of
writing effective requirement specification, creating more effective test cases,
executing a subset of test cases which are required for a product release, ranking
test cases for execution, etc. [7].

In this doctoral thesis we investigate methods to optimize the manual inte-
gration testing process through reducing unnecessary redundant test execution
failures. Moreover, the proposed optimization approaches in this thesis lead
to increased requirement coverage in each testing cycle. While several works
advocate test optimization in the software testing domain [8], [9], to the best
of our knowledge, this is the first attempt to provide an automated supportive
tool which schedules manual integration test cases for execution stochastically.
Moreover, most related to our work is the work by Nardo et al. [10], Elbaum et
al. [11], Yoo and Harman [7], which address several approaches for test case
selection, prioritization and scheduling.

In an efficient test optimization process, several factors such as test objective
function, test constraint optimization and also the test case properties and
features (e.g. execution time, requirement coverage) need to be identified in
an early stage of testing. Testing time minimization is a crucial objective
for test optimization, which is always demanded by industry as one of several
optimization goals. Decreasing the total testing time can lead to on-time delivery
of the final product and thereby leading to cost minimization. Furthermore,
maximizing requirement coverage can be considered as another promising
objective for the test optimization.

On the other hand, identifying and measuring the test case properties in
advance is a challenging task, especially for manual integration test cases, which
are usually described by testers in written text and are recorded together in a test
specification document. However, since the testing constraints (e.g. allocated
testing budget, testing deadline, delivery plan) need to be satisfied by one of
the proposed test optimization approaches [12], the testing constraints should
be determined implicitly before applying the test optimizations techniques. To
address all of the above-mentioned optimization aspects, the test optimization
problem must convert to a multiple-criteria decision making (MCDM) problem,
where each test case property represents a criterion in the optimization model. In
this thesis, we propose several MCDM methods for solving the test optimization

4 Chapter 1. Introduction

several modules of a system under test at least once, which ultimately results in
a more complicated testing process, compared with other testing levels such as
unit and acceptance testing.

Having a large set of test cases for testing a product manually in such a
complex testing level proves the need for optimization methods in the software
testing domain [6]. Test optimization is a multi-faceted topic consisting of
writing effective requirement specification, creating more effective test cases,
executing a subset of test cases which are required for a product release, ranking
test cases for execution, etc. [7].

In this doctoral thesis we investigate methods to optimize the manual inte-
gration testing process through reducing unnecessary redundant test execution
failures. Moreover, the proposed optimization approaches in this thesis lead
to increased requirement coverage in each testing cycle. While several works
advocate test optimization in the software testing domain [8], [9], to the best
of our knowledge, this is the first attempt to provide an automated supportive
tool which schedules manual integration test cases for execution stochastically.
Moreover, most related to our work is the work by Nardo et al. [10], Elbaum et
al. [11], Yoo and Harman [7], which address several approaches for test case
selection, prioritization and scheduling.

In an efficient test optimization process, several factors such as test objective
function, test constraint optimization and also the test case properties and
features (e.g. execution time, requirement coverage) need to be identified in
an early stage of testing. Testing time minimization is a crucial objective
for test optimization, which is always demanded by industry as one of several
optimization goals. Decreasing the total testing time can lead to on-time delivery
of the final product and thereby leading to cost minimization. Furthermore,
maximizing requirement coverage can be considered as another promising
objective for the test optimization.

On the other hand, identifying and measuring the test case properties in
advance is a challenging task, especially for manual integration test cases, which
are usually described by testers in written text and are recorded together in a test
specification document. However, since the testing constraints (e.g. allocated
testing budget, testing deadline, delivery plan) need to be satisfied by one of
the proposed test optimization approaches [12], the testing constraints should
be determined implicitly before applying the test optimizations techniques. To
address all of the above-mentioned optimization aspects, the test optimization
problem must convert to a multiple-criteria decision making (MCDM) problem,
where each test case property represents a criterion in the optimization model. In
this thesis, we propose several MCDM methods for solving the test optimization

28

1.1 Thesis Overview 5

problem in the following forms: test case selection, prioritization and test
scheduling. All of the proposed approaches in this thesis are applied and
evaluated on a set of industrial testing projects at Bombardier Transportation
(BT), a large railway equipment manufacturer in Sweden. In summary, applying
the proposed optimization approaches in this doctoral thesis has resulted in an
increase in the requirements coverage of up to 9.6%, where simultaneously, an
improvement in terms of minimizing redundant test execution failures of up to
40% is observed with respect to the current execution approach at BT.

1.1 Thesis Overview

This doctoral thesis consists of two main parts. The first part provides an intro-
duction to the overall work, while Chapter 2 gives background information on
the research conducted in this thesis in the area of software testing. Chapter 3
presents an overview of the research, which consists of the thesis goals, the
research challenges and corresponding technical and industrial contributions,
followed by the research methodology. Finally, Chapter 4 draws the final con-
clusions and presents an outlook on future work. A collection of six research
studies (Study A-to-F) constitutes the second part of the thesis that describes
the research results. A summary of the included research studies in this doctoral
thesis is as follows:

Study A: Dynamic Test Selection and Redundancy Avoidance Based on
Test Case Dependencies, Sahar Tahvili, Mehrdad Saadatmand, Stig Larsson,
Wasif Afzal, Markus Bohlin and Daniel Sundmark, The 11th Workshop on
Testing: Academia-Industry Collaboration, Practice and Research Techniques
(TAIC PART’16), 2016, IEEE.

Abstract: Prioritization, selection and minimization of test cases are well-
known problems in software testing. Test case prioritization deals with the
problem of ordering an existing set of test cases, typically with respect to
the estimated likelihood of detecting faults. Test case selection addresses the
problem of selecting a subset of an existing set of test cases, typically by
discarding test cases that do not add any value in improving the quality of the
software under test. Most existing approaches for test case prioritization and
selection suffer from one or more drawbacks. For example, to a large extent,
they utilize static analysis of code for that purpose, making them unfit for higher
levels of testing such as integration testing. Moreover, they do not exploit the

1.1 Thesis Overview 5

problem in the following forms: test case selection, prioritization and test
scheduling. All of the proposed approaches in this thesis are applied and
evaluated on a set of industrial testing projects at Bombardier Transportation
(BT), a large railway equipment manufacturer in Sweden. In summary, applying
the proposed optimization approaches in this doctoral thesis has resulted in an
increase in the requirements coverage of up to 9.6%, where simultaneously, an
improvement in terms of minimizing redundant test execution failures of up to
40% is observed with respect to the current execution approach at BT.

1.1 Thesis Overview

This doctoral thesis consists of two main parts. The first part provides an intro-
duction to the overall work, while Chapter 2 gives background information on
the research conducted in this thesis in the area of software testing. Chapter 3
presents an overview of the research, which consists of the thesis goals, the
research challenges and corresponding technical and industrial contributions,
followed by the research methodology. Finally, Chapter 4 draws the final con-
clusions and presents an outlook on future work. A collection of six research
studies (Study A-to-F) constitutes the second part of the thesis that describes
the research results. A summary of the included research studies in this doctoral
thesis is as follows:

Study A: Dynamic Test Selection and Redundancy Avoidance Based on
Test Case Dependencies, Sahar Tahvili, Mehrdad Saadatmand, Stig Larsson,
Wasif Afzal, Markus Bohlin and Daniel Sundmark, The 11th Workshop on
Testing: Academia-Industry Collaboration, Practice and Research Techniques
(TAIC PART’16), 2016, IEEE.

Abstract: Prioritization, selection and minimization of test cases are well-
known problems in software testing. Test case prioritization deals with the
problem of ordering an existing set of test cases, typically with respect to
the estimated likelihood of detecting faults. Test case selection addresses the
problem of selecting a subset of an existing set of test cases, typically by
discarding test cases that do not add any value in improving the quality of the
software under test. Most existing approaches for test case prioritization and
selection suffer from one or more drawbacks. For example, to a large extent,
they utilize static analysis of code for that purpose, making them unfit for higher
levels of testing such as integration testing. Moreover, they do not exploit the

29

6 Chapter 1. Introduction

possibility of dynamically changing the prioritization or selection of test cases
based on the execution results of prior test cases. Such dynamic analysis allows
for discarding test cases that do not need to be executed and are thus redundant.
This paper proposes a generic method for prioritization and selection of test
cases in integration testing that addresses the above issues. We also present the
results of an industrial case study where initial evidence suggests the potential
usefulness of our approach in testing a safety-critical train control management
subsystem.

Statement of Contribution: The first author is the main contributor of the
study focusing on test case selection and prioritization based on dependency
between manual integration test cases and other testing criteria; co-authors
helped in study design and in writing related work.

Study B: Cost-Benefit Analysis of Using Dependency Knowledge at In-
tegration Testing, Sahar Tahvili, Markus Bohlin, Mehrdad Saadatmand, Stig
Larsson, Wasif Afzal and Daniel Sundmark, The 17th international confer-
ence on Product-Focused Software Process Improvement (PROFES’16), 2016,
Springer.

Abstract: In software system development, testing can take considerable
time and resources, and there are numerous examples in the literature of how to
improve the testing process. In particular, methods for selection and prioritiza-
tion of test cases can play a critical role in using testing resources efficiently.
This paper focuses on the problem of selecting and ordering of integration-level
test cases. Integration testing is performed to evaluate the correctness of several
units in composition. Furthermore, for reasons of both effectiveness and safety,
many embedded systems are still tested manually. To this end, we propose a
process for ordering and selecting test cases based on the test results of pre-
viously executed test cases, which is supported by an online decision support
system. To analyze the economic efficiency of such a system, a customized
return on investment (ROI) metric tailored for system integration testing is
introduced. Using data collected from the development process of a large-scale
safety-critical embedded system, we perform Monte Carlo simulations to eval-
uate the expected ROI of three variants of the proposed new process. The
results show that our proposed decision support system is beneficial in terms of
ROI at system integration testing and thus qualifies as an important element in
improving the integration testing process.

Statement of Contribution: The first author is the main contributor of

6 Chapter 1. Introduction

possibility of dynamically changing the prioritization or selection of test cases
based on the execution results of prior test cases. Such dynamic analysis allows
for discarding test cases that do not need to be executed and are thus redundant.
This paper proposes a generic method for prioritization and selection of test
cases in integration testing that addresses the above issues. We also present the
results of an industrial case study where initial evidence suggests the potential
usefulness of our approach in testing a safety-critical train control management
subsystem.

Statement of Contribution: The first author is the main contributor of the
study focusing on test case selection and prioritization based on dependency
between manual integration test cases and other testing criteria; co-authors
helped in study design and in writing related work.

Study B: Cost-Benefit Analysis of Using Dependency Knowledge at In-
tegration Testing, Sahar Tahvili, Markus Bohlin, Mehrdad Saadatmand, Stig
Larsson, Wasif Afzal and Daniel Sundmark, The 17th international confer-
ence on Product-Focused Software Process Improvement (PROFES’16), 2016,
Springer.

Abstract: In software system development, testing can take considerable
time and resources, and there are numerous examples in the literature of how to
improve the testing process. In particular, methods for selection and prioritiza-
tion of test cases can play a critical role in using testing resources efficiently.
This paper focuses on the problem of selecting and ordering of integration-level
test cases. Integration testing is performed to evaluate the correctness of several
units in composition. Furthermore, for reasons of both effectiveness and safety,
many embedded systems are still tested manually. To this end, we propose a
process for ordering and selecting test cases based on the test results of pre-
viously executed test cases, which is supported by an online decision support
system. To analyze the economic efficiency of such a system, a customized
return on investment (ROI) metric tailored for system integration testing is
introduced. Using data collected from the development process of a large-scale
safety-critical embedded system, we perform Monte Carlo simulations to eval-
uate the expected ROI of three variants of the proposed new process. The
results show that our proposed decision support system is beneficial in terms of
ROI at system integration testing and thus qualifies as an important element in
improving the integration testing process.

Statement of Contribution: The first author is the main contributor of

30

1.1 Thesis Overview 7

this study focusing on both theoretical and industrial results, with the other
co-authors having academic and industrial advisory roles. The simulation part
was primarily the contribution of the second author. The first author developed
the models, the concept, and also conducted the industrial case study. However,
the writing process was an iterative contribution of all authors.

Study C: ESPRET: a Tool for Execution Time Estimation of Manual Test
Cases, Sahar Tahvili, Wasif Afzal, Mehrdad Saadatmand, Markus Bohlin and
Sharvatul Hasan Ameerjan, Journal of Systems and Software (JSS), volume 146,
pages 26-41, 2018, Elsevier.

Abstract: Manual testing is still a predominant and important approach
for validation of computer systems, particularly in certain domains such as
safety-critical systems. Knowing the execution time of test cases is important
when performing test scheduling, prioritization and progress monitoring. In this
work, we present, apply and evaluate ESPRET (EStimation and PRediction of
Execution Time) as our tool for estimating and predicting the execution time
of manual test cases based on their test specifications. Our approach works
by extracting timing information for various steps in manual test specification.
This information is then used to estimate the maximum time for test steps that
have textual specifications but have not been previously executed. As part of
our approach, natural language parsing of the specifications is performed to
identify word combinations to check whether existing timing information on
various test steps is already available or not. Since executing test cases on the
several machines may take varying amounts of time, a set of regression models
are used to predict the actual execution time for test cases. Finally, an empirical
evaluation of the approach and tool has been performed on a railway use case at
Bombardier Transportation (BT) in Sweden.

Statement of Contribution: The first author is the main contributor of the
study, with the co-authors having academic and industrial advisory roles. The
first author developed the prediction models, cross validation, the concept, and
performed the industrial and also the evaluation case study. The last author
implemented ESPRET as an automated supportive tool.

Study D: Functional Dependency Detection for Integration Test Cases, Sa-
har Tahvili, Marcus Ahlberg, Eric Fornander, Wasif Afzal, Mehrdad Saadatmand
and Markus Bohlin, Companion of the 18th IEEE International Conference on
Software Quality, Reliability, and Security (QRS’18), 2018, IEEE.

1.1 Thesis Overview 7

this study focusing on both theoretical and industrial results, with the other
co-authors having academic and industrial advisory roles. The simulation part
was primarily the contribution of the second author. The first author developed
the models, the concept, and also conducted the industrial case study. However,
the writing process was an iterative contribution of all authors.

Study C: ESPRET: a Tool for Execution Time Estimation of Manual Test
Cases, Sahar Tahvili, Wasif Afzal, Mehrdad Saadatmand, Markus Bohlin and
Sharvatul Hasan Ameerjan, Journal of Systems and Software (JSS), volume 146,
pages 26-41, 2018, Elsevier.

Abstract: Manual testing is still a predominant and important approach
for validation of computer systems, particularly in certain domains such as
safety-critical systems. Knowing the execution time of test cases is important
when performing test scheduling, prioritization and progress monitoring. In this
work, we present, apply and evaluate ESPRET (EStimation and PRediction of
Execution Time) as our tool for estimating and predicting the execution time
of manual test cases based on their test specifications. Our approach works
by extracting timing information for various steps in manual test specification.
This information is then used to estimate the maximum time for test steps that
have textual specifications but have not been previously executed. As part of
our approach, natural language parsing of the specifications is performed to
identify word combinations to check whether existing timing information on
various test steps is already available or not. Since executing test cases on the
several machines may take varying amounts of time, a set of regression models
are used to predict the actual execution time for test cases. Finally, an empirical
evaluation of the approach and tool has been performed on a railway use case at
Bombardier Transportation (BT) in Sweden.

Statement of Contribution: The first author is the main contributor of the
study, with the co-authors having academic and industrial advisory roles. The
first author developed the prediction models, cross validation, the concept, and
performed the industrial and also the evaluation case study. The last author
implemented ESPRET as an automated supportive tool.

Study D: Functional Dependency Detection for Integration Test Cases, Sa-
har Tahvili, Marcus Ahlberg, Eric Fornander, Wasif Afzal, Mehrdad Saadatmand
and Markus Bohlin, Companion of the 18th IEEE International Conference on
Software Quality, Reliability, and Security (QRS’18), 2018, IEEE.

31

8 Chapter 1. Introduction

Abstract: This paper presents a natural language processing (NLP) based
approach that, given software requirements specification, allows the functional
dependency detection between integration test cases. We analyze a set of inter-
nal signals to the implemented modules for detecting dependencies between
requirements and thereby identifying dependencies between test cases such that:
module 2 depends on module 1 if an output internal signal from module 1 enters
as an input internal signal to the module 2. Consequently, all requirements
(and thereby test cases) for module 2 are dependent on all the designed require-
ments (and test cases) for module 1. The dependency information between
requirements (and thus corresponding test cases) can be utilized for test case
selection and prioritization. We have implemented our approach as a tool and
the feasibility is evaluated through an industrial use case in the railway domain
at Bombardier Transportation, Sweden.

Statement of Contribution: The first author is the main contributor of
this paper, while the co-authors having academic and industrial advisory roles.
The first author conducted the industrial case study, evaluation of the proposed
approach and developed the models and concepts. The second and third authors
implemented the dependency extractor algorithms.

Study E: Automated Functional Dependency Detection Between Test Cases
Using Text Semantic Similarity, Sahar Tahvili, Leo Hatvani, Michael Felderer,
Wasif Afzal and Markus Bohlin, Submitted to 12th IEEE International Confer-
ence on Software Testing, Verification and Validation (ICST’19), 2018, IEEE.

Abstract: Knowing about dependencies and similarities between test cases
is beneficial for prioritizing them for cost-effective test execution. This holds
especially true for the time consuming, manual execution of integration test
cases written in natural language. Test case dependencies are typically derived
from requirements and design artifacts. However, such artifacts are not always
available, and the derivation process can be very time-consuming. In this pa-
per, we propose, apply and evaluate a novel approach that derives test case
similarities and functional dependencies directly from the test specification
documents written in natural language, without requiring any other data source.
The approach first applies a deep-learning based language processing method
to detect text-semantic similarities between test cases and then groups them
based on two clustering algorithms HDBSCAN and FCM. The correlation be-
tween test case text-semantic similarities and their functional dependencies is

8 Chapter 1. Introduction

Abstract: This paper presents a natural language processing (NLP) based
approach that, given software requirements specification, allows the functional
dependency detection between integration test cases. We analyze a set of inter-
nal signals to the implemented modules for detecting dependencies between
requirements and thereby identifying dependencies between test cases such that:
module 2 depends on module 1 if an output internal signal from module 1 enters
as an input internal signal to the module 2. Consequently, all requirements
(and thereby test cases) for module 2 are dependent on all the designed require-
ments (and test cases) for module 1. The dependency information between
requirements (and thus corresponding test cases) can be utilized for test case
selection and prioritization. We have implemented our approach as a tool and
the feasibility is evaluated through an industrial use case in the railway domain
at Bombardier Transportation, Sweden.

Statement of Contribution: The first author is the main contributor of
this paper, while the co-authors having academic and industrial advisory roles.
The first author conducted the industrial case study, evaluation of the proposed
approach and developed the models and concepts. The second and third authors
implemented the dependency extractor algorithms.

Study E: Automated Functional Dependency Detection Between Test Cases
Using Text Semantic Similarity, Sahar Tahvili, Leo Hatvani, Michael Felderer,
Wasif Afzal and Markus Bohlin, Submitted to 12th IEEE International Confer-
ence on Software Testing, Verification and Validation (ICST’19), 2018, IEEE.

Abstract: Knowing about dependencies and similarities between test cases
is beneficial for prioritizing them for cost-effective test execution. This holds
especially true for the time consuming, manual execution of integration test
cases written in natural language. Test case dependencies are typically derived
from requirements and design artifacts. However, such artifacts are not always
available, and the derivation process can be very time-consuming. In this pa-
per, we propose, apply and evaluate a novel approach that derives test case
similarities and functional dependencies directly from the test specification
documents written in natural language, without requiring any other data source.
The approach first applies a deep-learning based language processing method
to detect text-semantic similarities between test cases and then groups them
based on two clustering algorithms HDBSCAN and FCM. The correlation be-
tween test case text-semantic similarities and their functional dependencies is

32

1.1 Thesis Overview 9

evaluated in the context of an on-board train control system from Bombardier
Transportation AB in Sweden. For this system, the functional dependencies
between the test cases were previously derived and are, in this paper, compared
against the results of the new approach. The results show that of the two evalu-
ated clustering algorithms, HDBSCAN has better performance than FCM or a
dummy classifier. The classification methods’ results are of reasonable quality
and especially useful from an industrial point of view. Finally, performing a
random undersampling approach to correct the imbalanced data distribution
results in an F1 Score of up to 75% and an accuracy of up to 80% when applying
the HDBSCAN clustering algorithm.

Statement of Contribution: The first author is the main contributor of the
study focusing on theoretical, experimental and industrial results. The simula-
tion part was primarily the contribution of the second author. The first author
also developed the models, the concept and performed the industrial case study.
The other co-authors have academic and industrial advisory roles.

Study F: sOrTES: A Supportive Tool for Stochastic Scheduling of Man-
ual Integration Test Cases, Sahar Tahvili, Rita Pimentel, Wasif Afzal, Marcus
Ahlberg, Eric Fornande, Markus Bohlin, Journal of IEEE Access (IEEE-Access),
2018, In revision.

Abstract: The main goal of software testing is to detect as many hidden
bugs as possible in the final software product before release. Generally, a
software product is tested through executing a set of test cases, which can be
performed manually or automatically. The number of test cases which are
required to test a software product depends on several parameters such as: the
product type, size and complexity. Executing all test cases with no particular
order can lead to waste of time and resources. Test optimization can provide a
partial solution for saving time and resources which can lead to the final software
product being released earlier. In this regard, test case selection, prioritization
and scheduling can be considered as possible solutions for test optimization.
Most of the companies do not provide direct support for ranking test cases on
theirs own servers. In this paper we introduce, apply and evaluate sOrTES as
our decision support system for manual integration of test scheduling. sOrTES
is a Python based supportive tool which schedules manual integration test cases
which are written in a natural language text. The feasibility of sOrTES is studied
by an empirical evaluation which has been performed on a railway use-case at
Bombardier Transportation in Sweden. The empirical evaluation indicates that

1.1 Thesis Overview 9

evaluated in the context of an on-board train control system from Bombardier
Transportation AB in Sweden. For this system, the functional dependencies
between the test cases were previously derived and are, in this paper, compared
against the results of the new approach. The results show that of the two evalu-
ated clustering algorithms, HDBSCAN has better performance than FCM or a
dummy classifier. The classification methods’ results are of reasonable quality
and especially useful from an industrial point of view. Finally, performing a
random undersampling approach to correct the imbalanced data distribution
results in an F1 Score of up to 75% and an accuracy of up to 80% when applying
the HDBSCAN clustering algorithm.

Statement of Contribution: The first author is the main contributor of the
study focusing on theoretical, experimental and industrial results. The simula-
tion part was primarily the contribution of the second author. The first author
also developed the models, the concept and performed the industrial case study.
The other co-authors have academic and industrial advisory roles.

Study F: sOrTES: A Supportive Tool for Stochastic Scheduling of Man-
ual Integration Test Cases, Sahar Tahvili, Rita Pimentel, Wasif Afzal, Marcus
Ahlberg, Eric Fornande, Markus Bohlin, Journal of IEEE Access (IEEE-Access),
2018, In revision.

Abstract: The main goal of software testing is to detect as many hidden
bugs as possible in the final software product before release. Generally, a
software product is tested through executing a set of test cases, which can be
performed manually or automatically. The number of test cases which are
required to test a software product depends on several parameters such as: the
product type, size and complexity. Executing all test cases with no particular
order can lead to waste of time and resources. Test optimization can provide a
partial solution for saving time and resources which can lead to the final software
product being released earlier. In this regard, test case selection, prioritization
and scheduling can be considered as possible solutions for test optimization.
Most of the companies do not provide direct support for ranking test cases on
theirs own servers. In this paper we introduce, apply and evaluate sOrTES as
our decision support system for manual integration of test scheduling. sOrTES
is a Python based supportive tool which schedules manual integration test cases
which are written in a natural language text. The feasibility of sOrTES is studied
by an empirical evaluation which has been performed on a railway use-case at
Bombardier Transportation in Sweden. The empirical evaluation indicates that

33

10 Chapter 1. Introduction

around 40% of testing failure can be avoided by using the proposed execution
schedules by sOrTES, which leads to an increase in the requirements coverage
of up to 9.6%.

Statement of Contribution: The first author is the main contributor of
the study focusing on both theoretical and experimental results, with the other
co-authors having academic and industrial advisory roles. The performance
evaluation is performed by the first and second author. Moreover, the fourth and
fifth authors implemented sOrTES as an automated supportive tool. The model,
concept development and industrial case study is performed by the first author.

10 Chapter 1. Introduction

around 40% of testing failure can be avoided by using the proposed execution
schedules by sOrTES, which leads to an increase in the requirements coverage
of up to 9.6%.

Statement of Contribution: The first author is the main contributor of
the study focusing on both theoretical and experimental results, with the other
co-authors having academic and industrial advisory roles. The performance
evaluation is performed by the first and second author. Moreover, the fourth and
fifth authors implemented sOrTES as an automated supportive tool. The model,
concept development and industrial case study is performed by the first author.

34

Chapter 2

Background

In this chapter we provide a brief overview of some required background
information of software testing concepts which are central to this doctoral

thesis. Moreover, in this chapter we introduce our proposed approaches and
solutions for solving the test optimization problem in an industrial domain. The
following sections constitute mainly of the concepts and terminologies utilized
in this thesis.

2.1 Software Testing

Software testing is a time and resource consuming process among the verifica-
tion and validation (V&V) activities and can be considered as one of the critical
phases in all software development life cycles [13]. According to the reports
from both academia and industry, the process of software testing can take of up
to 50% of total development cost [14].

IEEE international standard (ISO/IEC/IEEE 29119-1) provides a formal
definition of the software testing process as follows:

Definition 2.1. Software testing is the process of analyzing a software item
with the aim to detect the differences between existing and required conditions
(hidden bugs) and also to evaluate the features of the software item [15].

The process of software testing at industry is performed manually, auto-
matically or semi-automatically, and each one has its own advantages and
disadvantages. A largely automated testing procedure eliminates manual efforts,

11

Chapter 2

Background

In this chapter we provide a brief overview of some required background
information of software testing concepts which are central to this doctoral

thesis. Moreover, in this chapter we introduce our proposed approaches and
solutions for solving the test optimization problem in an industrial domain. The
following sections constitute mainly of the concepts and terminologies utilized
in this thesis.

2.1 Software Testing

Software testing is a time and resource consuming process among the verifica-
tion and validation (V&V) activities and can be considered as one of the critical
phases in all software development life cycles [13]. According to the reports
from both academia and industry, the process of software testing can take of up
to 50% of total development cost [14].

IEEE international standard (ISO/IEC/IEEE 29119-1) provides a formal
definition of the software testing process as follows:

Definition 2.1. Software testing is the process of analyzing a software item
with the aim to detect the differences between existing and required conditions
(hidden bugs) and also to evaluate the features of the software item [15].

The process of software testing at industry is performed manually, auto-
matically or semi-automatically, and each one has its own advantages and
disadvantages. A largely automated testing procedure eliminates manual efforts,

11

35

12 Chapter 2. Background

which can lead to saving testing time in some scenarios. However, the develop-
ment and maintenance of automated tests costs between 3 to 15 times higher
compared to manual testing [16].

In the manual testing procedure, the testing process is led by testers who
operate a set of test case specifications manually. The testing process continues
until the expected behaviors are ensured.

Definition 2.2. A test case specification textually describes the main purpose
of a specific test through providing a step-by-step procedure for execution [17].

Moreover, the required inputs, expected outputs and test executed results
(pass/fail) are also specified in a test case specification. Table 2.1 represents
an example of a manual test case specification for a safety critical system at
Bombardier Transportation (BT), which consists of a test case description, an
expected test result, test steps, a test case ID, corresponding requirements, etc.

Test case name: Drive And Brake Functions Date: 2018-01-20
Test case ID Test level (s) Test Result Comments

3EST000231-2756 Sw/Hw Integration
Test configuration

TCMS baseline:1.2
VCS Platform 3.24
Requirement(s)

SRS-Line Voltage 07
SRS-Speed 2051
Tester ID

BR−1211
Initial State

No active cab
Step Action Reaction Pass / Fail

1 No passenger emergency brake activated in consist = F Traction safe loop deenergized = 1
2 Restore the passenger emergency brake handle in the Traction safe loop deenergized = 0

remote consist
3 Ready to run from A1, Logged in as Driver, MSTO "Start inhibit reason"
4 Wait 20 seconds
5 Activate isolation of Fire System Start inhibit reason = 0
6 Deactivate Isolation of Fire System Start inhibit reason = 72(8 + 64)
7 Clean up

Table 2.1: A test case specification example from the safety-critical train control
management system at Bombardier Transportation.

As we can see, the test case specification presented in Table 2.1 is designed
for manually testing the interaction between line voltage and speed modules.
In order to determine the total number of required test cases for testing a
software product, several factors including the product size, complexity, testing
maturity, testing procedure (manual/ automated) and the level of testing need to
be analyzed. An industrial testing project usually requires a large number of test
cases in the various testing levels and therefore the majority of the total budget

12 Chapter 2. Background

which can lead to saving testing time in some scenarios. However, the develop-
ment and maintenance of automated tests costs between 3 to 15 times higher
compared to manual testing [16].

In the manual testing procedure, the testing process is led by testers who
operate a set of test case specifications manually. The testing process continues
until the expected behaviors are ensured.

Definition 2.2. A test case specification textually describes the main purpose
of a specific test through providing a step-by-step procedure for execution [17].

Moreover, the required inputs, expected outputs and test executed results
(pass/fail) are also specified in a test case specification. Table 2.1 represents
an example of a manual test case specification for a safety critical system at
Bombardier Transportation (BT), which consists of a test case description, an
expected test result, test steps, a test case ID, corresponding requirements, etc.

Test case name: Drive And Brake Functions Date: 2018-01-20
Test case ID Test level (s) Test Result Comments

3EST000231-2756 Sw/Hw Integration
Test configuration

TCMS baseline:1.2
VCS Platform 3.24
Requirement(s)

SRS-Line Voltage 07
SRS-Speed 2051
Tester ID

BR−1211
Initial State

No active cab
Step Action Reaction Pass / Fail

1 No passenger emergency brake activated in consist = F Traction safe loop deenergized = 1
2 Restore the passenger emergency brake handle in the Traction safe loop deenergized = 0

remote consist
3 Ready to run from A1, Logged in as Driver, MSTO "Start inhibit reason"
4 Wait 20 seconds
5 Activate isolation of Fire System Start inhibit reason = 0
6 Deactivate Isolation of Fire System Start inhibit reason = 72(8 + 64)
7 Clean up

Table 2.1: A test case specification example from the safety-critical train control
management system at Bombardier Transportation.

As we can see, the test case specification presented in Table 2.1 is designed
for manually testing the interaction between line voltage and speed modules.
In order to determine the total number of required test cases for testing a
software product, several factors including the product size, complexity, testing
maturity, testing procedure (manual/ automated) and the level of testing need to
be analyzed. An industrial testing project usually requires a large number of test
cases in the various testing levels and therefore the majority of the total budget

36

2.2 Integration Testing 13

should be allocated towards the testing activities in the software development
process [18], [14].

2.2 Integration Testing

Performing testing activities in several levels makes it possible to detect more
faults in the software product and also to evaluate the system’s compliance with
the specified needs [5]. Moreover, dividing the testing activities into separate
levels can provide some clues for identifying missing areas in the software that
have not been tested yet. A typical software development life cycle (SDLC)
model is founded on six different phases including (i) requirement gathering
and analysis, (ii) design, (iii) implementation, (iv) testing, (v) development
and finally, (vi) maintenance. Generally, the testing phase is broken down into
four main levels which are unit, integration, system and acceptance testing.
Figure 2.1 illustrates the mentioned phases and the testing level as a V-model of
the software development life cycle.

Requirements Design

System Design

Architecture Design

Module Design

Implementation

Unit Test

Integration Test

System Test

Acceptance Test

Verification
Phase Vali

da
tio

n Ph
as

e

Figure 2.1: The V- Model for the software development life cycle.

Software testing is not only limited to the four mentioned levels but can
also be performed in other types of testing such as regression testing [19],
buddy testing and alpha-beta testing. These tests can take place at any of the
four main levels with a specific purpose as well. Furthermore, some of the
mentioned testing levels can be removed or merged with each other during
a testing process while integration testing is performed in almost all testing
projects in multi-component systems.

2.2 Integration Testing 13

should be allocated towards the testing activities in the software development
process [18], [14].

2.2 Integration Testing

Performing testing activities in several levels makes it possible to detect more
faults in the software product and also to evaluate the system’s compliance with
the specified needs [5]. Moreover, dividing the testing activities into separate
levels can provide some clues for identifying missing areas in the software that
have not been tested yet. A typical software development life cycle (SDLC)
model is founded on six different phases including (i) requirement gathering
and analysis, (ii) design, (iii) implementation, (iv) testing, (v) development
and finally, (vi) maintenance. Generally, the testing phase is broken down into
four main levels which are unit, integration, system and acceptance testing.
Figure 2.1 illustrates the mentioned phases and the testing level as a V-model of
the software development life cycle.

Requirements Design

System Design

Architecture Design

Module Design

Implementation

Unit Test

Integration Test

System Test

Acceptance Test

Verification
Phase Vali

da
tio

n Ph
as

e

Figure 2.1: The V- Model for the software development life cycle.

Software testing is not only limited to the four mentioned levels but can
also be performed in other types of testing such as regression testing [19],
buddy testing and alpha-beta testing. These tests can take place at any of the
four main levels with a specific purpose as well. Furthermore, some of the
mentioned testing levels can be removed or merged with each other during
a testing process while integration testing is performed in almost all testing
projects in multi-component systems.

37

14 Chapter 2. Background

Definition 2.3. Integration testing is a level of software testing which occurs
after unit testing and before system testing, where individual modules are
combined and tested as a group [5].

In some testing scenarios, most of the hidden bugs in a software product can
only be detected when the modules are interacting with each other [20], which
makes the integration testing more complex [5].

2.3 Test Optimization

Today, test optimization and efficiency have become an increasingly popular
topic in the software testing domain, and according to published research from
academia, it is going to get even more important [21], [22]. As highlighted
in Chapter 1, the testing process is a critical and costly process and therefore
there is opportunity for an increase in test efficiency and a decrease in testing
costs. There are a number of ways to optimize the testing process such as test
suite minimization [23], test case selection, test case prioritization, test case
scheduling and test automation. In this regard, a number of different algorithms
have been applied to address the test optimization problem [24], such as ant
colony optimization [25], particle swarm optimization [26], artificial bee colony
optimization [27] and genetic algorithm [28]. In the following sections, we
review some of the test optimization aspects which we then utilize for the
optimization of industrial level integration testing.

2.3.1 Test Case Selection

Selecting and evaluating a subset of generated test cases for execution is one
technique to optimize the testing process [29]. Rothermel and Harrold [30]
formulate the test case selection problem as follows:

Definition 2.4. Given: The program, P , the modified version of P , P ′, and a
test suite, T .
Problem: To find a subset of T , T ′, with which to test P ′.

Test case selection can be considered as a proper optimization approach e.g.
in exploratory and regression testing, where the behavior of a modified software
can be verified through selecting a subset of test cases for re-execution [31].
Indeed, not all created test cases need to be executed at the same testing level as
they can instead be tested in some other testing levels, for instance acceptance
testing, where all test cases have already been executed at least once and only a

14 Chapter 2. Background

Definition 2.3. Integration testing is a level of software testing which occurs
after unit testing and before system testing, where individual modules are
combined and tested as a group [5].

In some testing scenarios, most of the hidden bugs in a software product can
only be detected when the modules are interacting with each other [20], which
makes the integration testing more complex [5].

2.3 Test Optimization

Today, test optimization and efficiency have become an increasingly popular
topic in the software testing domain, and according to published research from
academia, it is going to get even more important [21], [22]. As highlighted
in Chapter 1, the testing process is a critical and costly process and therefore
there is opportunity for an increase in test efficiency and a decrease in testing
costs. There are a number of ways to optimize the testing process such as test
suite minimization [23], test case selection, test case prioritization, test case
scheduling and test automation. In this regard, a number of different algorithms
have been applied to address the test optimization problem [24], such as ant
colony optimization [25], particle swarm optimization [26], artificial bee colony
optimization [27] and genetic algorithm [28]. In the following sections, we
review some of the test optimization aspects which we then utilize for the
optimization of industrial level integration testing.

2.3.1 Test Case Selection

Selecting and evaluating a subset of generated test cases for execution is one
technique to optimize the testing process [29]. Rothermel and Harrold [30]
formulate the test case selection problem as follows:

Definition 2.4. Given: The program, P , the modified version of P , P ′, and a
test suite, T .
Problem: To find a subset of T , T ′, with which to test P ′.

Test case selection can be considered as a proper optimization approach e.g.
in exploratory and regression testing, where the behavior of a modified software
can be verified through selecting a subset of test cases for re-execution [31].
Indeed, not all created test cases need to be executed at the same testing level as
they can instead be tested in some other testing levels, for instance acceptance
testing, where all test cases have already been executed at least once and only a

38

2.3 Test Optimization 15

few test cases need to be selected for re-execution. Previously1 in [32] and [33],
we propose some methods of compensatory aggregation2 for selecting a subset
of test cases for execution.

2.3.2 Test Case Prioritization

To increase the rate of fault detection, all generated test cases should be ranked
for execution in such a way that test cases of higher importance are ranked
higher [35]. Test case prioritization can be applied almost at all testing levels
with the main purpose of detecting faults earlier in the software product [7]. The
problem of test case prioritization is defined by Rothermel and Harroldn [30]
as:

Definition 2.5. Given: A test suite, T , the set of permutations of T , PT and a
function from PT to real numbers, f : PT → R.
Problem: To find a T ′ ∈ PT that maximizes f .

The main difference between Definition 2.4 and Definition 2.5 is the number
of test cases. In Definition 2.4 a subset of test cases will be opted for the test
case selection, whereas in Definition 2.5, all generated test cases will be ranked
for execution in the test case prioritization. The problem of test selection and
prioritization is addressed in this doctoral thesis in Studies A and B respectively.

2.3.3 Test Case Scheduling

Most of the previous works [36], [37], [29], [38] on test case selection and
prioritization are only applicable before test execution, meaning that they do
not monitor the test results after each execution. In order to optimize the testing
process more efficiently, the test execution results of each test case need be
recorded and considered continuously. Selecting and prioritizing test cases for
execution based on their execution results leads us to utilizing the term test
case scheduling as a proper technique for addressing the test optimization. In
keeping with the structure of Definition 2.4 and Definition 2.5, we propose the
following definition to the problem of test case scheduling:

Definition 2.6. Given: A test suite, T . For all subset of T , A ⊆ T , the set of
all permutations A, SPA. For all B ⊆ T , the set of all possible outputs after

1Studies [32] and [33] are not included in this doctoral thesis.
2In a compensatory aggregation method, a set of alternatives and criteria need to be defined and

identified respectively. The compensatory methods measure a weight for each criterion and also
calculate the geometric distance between each alternative [34].

2.3 Test Optimization 15

few test cases need to be selected for re-execution. Previously1 in [32] and [33],
we propose some methods of compensatory aggregation2 for selecting a subset
of test cases for execution.

2.3.2 Test Case Prioritization

To increase the rate of fault detection, all generated test cases should be ranked
for execution in such a way that test cases of higher importance are ranked
higher [35]. Test case prioritization can be applied almost at all testing levels
with the main purpose of detecting faults earlier in the software product [7]. The
problem of test case prioritization is defined by Rothermel and Harroldn [30]
as:

Definition 2.5. Given: A test suite, T , the set of permutations of T , PT and a
function from PT to real numbers, f : PT → R.
Problem: To find a T ′ ∈ PT that maximizes f .

The main difference between Definition 2.4 and Definition 2.5 is the number
of test cases. In Definition 2.4 a subset of test cases will be opted for the test
case selection, whereas in Definition 2.5, all generated test cases will be ranked
for execution in the test case prioritization. The problem of test selection and
prioritization is addressed in this doctoral thesis in Studies A and B respectively.

2.3.3 Test Case Scheduling

Most of the previous works [36], [37], [29], [38] on test case selection and
prioritization are only applicable before test execution, meaning that they do
not monitor the test results after each execution. In order to optimize the testing
process more efficiently, the test execution results of each test case need be
recorded and considered continuously. Selecting and prioritizing test cases for
execution based on their execution results leads us to utilizing the term test
case scheduling as a proper technique for addressing the test optimization. In
keeping with the structure of Definition 2.4 and Definition 2.5, we propose the
following definition to the problem of test case scheduling:

Definition 2.6. Given: A test suite, T . For all subset of T , A ⊆ T , the set of
all permutations A, SPA. For all B ⊆ T , the set of all possible outputs after

1Studies [32] and [33] are not included in this doctoral thesis.
2In a compensatory aggregation method, a set of alternatives and criteria need to be defined and

identified respectively. The compensatory methods measure a weight for each criterion and also
calculate the geometric distance between each alternative [34].

39

16 Chapter 2. Background

execution of the test cases in B, R. For each r ∈ R, the function fr : SPA →
R.
Problem: To find a prioritized set of T , T ′, considering the function f∅ : PT →
R, where PT is the set of permutations of T . To execute the test cases in T ′

until the first failure (if any). To update the previous procedure for T − Tp,
considering the function fre , until Tp = T , where Tp is the sets of passed test
cases and re is the output of the executed test cases, respectively.

Indeed, the deciding factor for choosing test cases for execution and in what
order, is dependent on the test execution results. Therefore, the executed test
cases need to be saved in re and the prioritization process should be continued
until all generated test cases have been executed at least once.

We need to consider that the main difference between Definition 2.4 and
Definition 2.5 with Definition 2.6 is that only the last one monitors the results
of the test executions, while the other two do not. This inclusion of results
monitorization provides the opportunity for a dynamic test optimization process.
If no failures occur after the first execution then we only need to prioritize test
cases once, according to the Definition 2.5 (note that the f in Definition 2.5 is
the same as f∅ in Definition 2.6).

2.4 Multiple-Criteria Decision-Making (MCDM)

The problem of test optimization can be categorized into a multi-criteria and
also a multi-objective decision-making problem. The criterion in the software
testing can be interpreted as a property for each test case which also help us to
distinguish between test cases. Recognizing and measuring the criteria for each
test case is a challenging task; first all properties cannot be determined precisely.
Take for instance the test case property of fault detection probability, it can
be utilized for test case selection and prioritization. There is no precise value
for this property before the first execution but performing a historical analysis
of a system under test (SUT) can provide some clues about the probability
of detecting faults by each test case. In this regard, identifying most faulty
subsystems (e.g. the brake system in a train contains more faults than the radio
system) in the SUT can be used for comparing test cases with each other based
on this property. For instance, test case A (which tests the brake system) has
a higher probability of detecting faults than test case B (which tests the radio
system); thus, test case A should be ranked higher for execution. Secondly,
in some scenarios, measuring the test case properties requires being in close
proximity to the testing experts at industries. To account for this, several

16 Chapter 2. Background

execution of the test cases in B, R. For each r ∈ R, the function fr : SPA →
R.
Problem: To find a prioritized set of T , T ′, considering the function f∅ : PT →
R, where PT is the set of permutations of T . To execute the test cases in T ′

until the first failure (if any). To update the previous procedure for T − Tp,
considering the function fre , until Tp = T , where Tp is the sets of passed test
cases and re is the output of the executed test cases, respectively.

Indeed, the deciding factor for choosing test cases for execution and in what
order, is dependent on the test execution results. Therefore, the executed test
cases need to be saved in re and the prioritization process should be continued
until all generated test cases have been executed at least once.

We need to consider that the main difference between Definition 2.4 and
Definition 2.5 with Definition 2.6 is that only the last one monitors the results
of the test executions, while the other two do not. This inclusion of results
monitorization provides the opportunity for a dynamic test optimization process.
If no failures occur after the first execution then we only need to prioritize test
cases once, according to the Definition 2.5 (note that the f in Definition 2.5 is
the same as f∅ in Definition 2.6).

2.4 Multiple-Criteria Decision-Making (MCDM)

The problem of test optimization can be categorized into a multi-criteria and
also a multi-objective decision-making problem. The criterion in the software
testing can be interpreted as a property for each test case which also help us to
distinguish between test cases. Recognizing and measuring the criteria for each
test case is a challenging task; first all properties cannot be determined precisely.
Take for instance the test case property of fault detection probability, it can
be utilized for test case selection and prioritization. There is no precise value
for this property before the first execution but performing a historical analysis
of a system under test (SUT) can provide some clues about the probability
of detecting faults by each test case. In this regard, identifying most faulty
subsystems (e.g. the brake system in a train contains more faults than the radio
system) in the SUT can be used for comparing test cases with each other based
on this property. For instance, test case A (which tests the brake system) has
a higher probability of detecting faults than test case B (which tests the radio
system); thus, test case A should be ranked higher for execution. Secondly,
in some scenarios, measuring the test case properties requires being in close
proximity to the testing experts at industries. To account for this, several

40

2.4 Multiple-Criteria Decision-Making (MCDM) 17

criteria have previously been proposed by researchers in the testing domain
including code coverage, test case size, execution time and cost, line of code
and requirement coverage. In this thesis, we define, utilize and measure the
following criteria on each test case for addressing the test optimization issues
in the form of test case selection, prioritization and scheduling for manual
integration of test cases.

2.4.1 Requirement Coverage

Requirement coverage indicates the number of requirements which have been
covered by each test case. The coverage of requirements is a fundamental
necessity throughout the software development life cycle. In some scenarios,
one test case can test more than one requirement and occasionally several test
cases are assigned to test only a single requirement. Executing a test case with
a greater requirement coverage (than other test cases) during the testing process
can increase the value of requirement coverage in earlier stages. As part of this
thesis we also propose an automated approach for measuring the requirement
coverage for manual integration test cases (see Studies D and F).

2.4.2 Execution Time

As the title implies, test execution time is the total time that each test case
requires for execution. Note that each execution of a test case can also result in a
different execution time value. Knowing the execution time of test cases before
execution is one way that test managers can divide test cases among several
testers. Moreover, estimating the required time for each test case can provide a
better overview of the total required time for testing a software product. In this
doctoral thesis, we also introduce, apply and evaluate ESPRET as an automated
tool for execution time estimation of manual integration test cases (see Study
C).

2.4.3 Fault Detection Probability

It refers to the average probability of detecting a fault by each test case. Fault
detection probability can be determined through performing historical analysis
on the previously executed test cases. Sometimes, the fault detection probability
is directly related to the complexity of the test cases. Selecting those test cases
which have a higher chance for detecting the hidden faults in the system under

2.4 Multiple-Criteria Decision-Making (MCDM) 17

criteria have previously been proposed by researchers in the testing domain
including code coverage, test case size, execution time and cost, line of code
and requirement coverage. In this thesis, we define, utilize and measure the
following criteria on each test case for addressing the test optimization issues
in the form of test case selection, prioritization and scheduling for manual
integration of test cases.

2.4.1 Requirement Coverage

Requirement coverage indicates the number of requirements which have been
covered by each test case. The coverage of requirements is a fundamental
necessity throughout the software development life cycle. In some scenarios,
one test case can test more than one requirement and occasionally several test
cases are assigned to test only a single requirement. Executing a test case with
a greater requirement coverage (than other test cases) during the testing process
can increase the value of requirement coverage in earlier stages. As part of this
thesis we also propose an automated approach for measuring the requirement
coverage for manual integration test cases (see Studies D and F).

2.4.2 Execution Time

As the title implies, test execution time is the total time that each test case
requires for execution. Note that each execution of a test case can also result in a
different execution time value. Knowing the execution time of test cases before
execution is one way that test managers can divide test cases among several
testers. Moreover, estimating the required time for each test case can provide a
better overview of the total required time for testing a software product. In this
doctoral thesis, we also introduce, apply and evaluate ESPRET as an automated
tool for execution time estimation of manual integration test cases (see Study
C).

2.4.3 Fault Detection Probability

It refers to the average probability of detecting a fault by each test case. Fault
detection probability can be determined through performing historical analysis
on the previously executed test cases. Sometimes, the fault detection probability
is directly related to the complexity of the test cases. Selecting those test cases
which have a higher chance for detecting the hidden faults in the system under

41

18 Chapter 2. Background

test can lead to earlier fault detection in each execution cycle. In this thesis, this
criterion is measured by using a questionnaire-based study at BT (see Study A).

2.4.4 Test Case Dependencies

Previous studies have shown that executing test cases without considering
the dependencies between them can cause failure at each time point during
a testing process [39], [40]. The dependency issue becomes more visible in
the integration testing level, where testing the interactions between modules
can lead to a strong interdependency between the corresponding integration
test cases. The dependent test cases directly influence the execution results
of each other [39] and therefore the dependency issue can be considered as a
critical problem in the integration testing levels. Indeed, paying no attention to
the dependency between test cases can cause redundant test execution failures
during the testing process. Moreover, the concept of dependency is important
in a wide range of testing contexts (e.g. ranking test cases for execution,
selecting a subset of test candidates for automation) and dependency detection
has become a research challenge as well as an industrial challenge today [41].
There are several kinds of dependencies between test cases which have been
identified by researchers, such as functional dependency, temporal dependency,
semantic dependency and also abstract dependency. In our collaboration with
testers and engineers at Bombardier Transportation, the functional dependency
between integration test cases was identified as one of the most critical types of
dependency.

Definition 2.7. Test cases TC1 and TC2 are functionally dependent if they are
designed to test different parts of function F1 or if they are testing the interaction
between functions F1 and F2.

For instance, given two functions F1 and F2 of the same system, let the
function F2 be allowed to execute if its required conditions are already enabled
by function F1. Thus, function F2 is dependent on function F1. In this thesis,
we assume that all test cases which are designed to test F2 should be executed
any time after the assigned test cases for testing F1. Note that, in some testing
scenarios, it may be the case that just some of the corresponding test cases for
testing function F1 should be executed before the corresponding test cases for
testing function F2. For instance, the required conditions for testing function
F2 might be enabled after testing some (e.g. 90%) of the designed test cases for
function F1. However, this assumption needs to be relaxed in the future.

18 Chapter 2. Background

test can lead to earlier fault detection in each execution cycle. In this thesis, this
criterion is measured by using a questionnaire-based study at BT (see Study A).

2.4.4 Test Case Dependencies

Previous studies have shown that executing test cases without considering
the dependencies between them can cause failure at each time point during
a testing process [39], [40]. The dependency issue becomes more visible in
the integration testing level, where testing the interactions between modules
can lead to a strong interdependency between the corresponding integration
test cases. The dependent test cases directly influence the execution results
of each other [39] and therefore the dependency issue can be considered as a
critical problem in the integration testing levels. Indeed, paying no attention to
the dependency between test cases can cause redundant test execution failures
during the testing process. Moreover, the concept of dependency is important
in a wide range of testing contexts (e.g. ranking test cases for execution,
selecting a subset of test candidates for automation) and dependency detection
has become a research challenge as well as an industrial challenge today [41].
There are several kinds of dependencies between test cases which have been
identified by researchers, such as functional dependency, temporal dependency,
semantic dependency and also abstract dependency. In our collaboration with
testers and engineers at Bombardier Transportation, the functional dependency
between integration test cases was identified as one of the most critical types of
dependency.

Definition 2.7. Test cases TC1 and TC2 are functionally dependent if they are
designed to test different parts of function F1 or if they are testing the interaction
between functions F1 and F2.

For instance, given two functions F1 and F2 of the same system, let the
function F2 be allowed to execute if its required conditions are already enabled
by function F1. Thus, function F2 is dependent on function F1. In this thesis,
we assume that all test cases which are designed to test F2 should be executed
any time after the assigned test cases for testing F1. Note that, in some testing
scenarios, it may be the case that just some of the corresponding test cases for
testing function F1 should be executed before the corresponding test cases for
testing function F2. For instance, the required conditions for testing function
F2 might be enabled after testing some (e.g. 90%) of the designed test cases for
function F1. However, this assumption needs to be relaxed in the future.

42

2.4 Multiple-Criteria Decision-Making (MCDM) 19

Detecting functional dependencies between test cases can lead to a more
efficient use of testing resources by means of:

• avoiding redundant test executions,

• parallel execution of independent test cases,

• simultaneous execution of test cases that test the same functionality,

• any combination of the previous options.

The following three main approaches are proposed, applied and evaluated
for detecting the functional dependencies between manual integration test cases
in this doctoral thesis:

1. Questionnaire-based, participant observation + archival data: The
data collection for detecting the functional dependencies was done using partic-
ipant observation, questionnaire as well as taking help from archival data for
finding the cause of test case failures. The test experts at BT answered a ques-
tionnaire where the test dependencies were identified based on requirements.
A dependency graph is designed and proposed, which can help testers when
prioritizing test cases for execution based on the dependencies between test
cases (see Study A).

2. Signal analysis: A set of internal signals in the implemented software mod-
ules is analyzed for detecting the functional dependencies between requirements
and thereby identifying dependencies between test cases such that: module 2
depends on module 1 if an output internal signal from module 1 enters
as an input internal signal to module 2. Consequently, all requirements
(and thereby test cases) for module 2 are dependent on all the designed
requirements (and test cases) for module 1 (see Studies D and F).

3. Deep learning-based natural language processing: Since test specifica-
tions are usually written in a natural text, a natural language processing-based
approach can help the testers for detecting the dependencies between test cases.
To aid in this, we propose to use the Doc2Vec3 algorithm [42] that, given the
test specifications, allows automatic detection of test case dependencies and
converts each test case into a vector in n-dimensional space. These vectors

3Doc2Vec is used to generate representation vectors out of a document, regardless of its length
(see Study E and [42]).

2.4 Multiple-Criteria Decision-Making (MCDM) 19

Detecting functional dependencies between test cases can lead to a more
efficient use of testing resources by means of:

• avoiding redundant test executions,

• parallel execution of independent test cases,

• simultaneous execution of test cases that test the same functionality,

• any combination of the previous options.

The following three main approaches are proposed, applied and evaluated
for detecting the functional dependencies between manual integration test cases
in this doctoral thesis:

1. Questionnaire-based, participant observation + archival data: The
data collection for detecting the functional dependencies was done using partic-
ipant observation, questionnaire as well as taking help from archival data for
finding the cause of test case failures. The test experts at BT answered a ques-
tionnaire where the test dependencies were identified based on requirements.
A dependency graph is designed and proposed, which can help testers when
prioritizing test cases for execution based on the dependencies between test
cases (see Study A).

2. Signal analysis: A set of internal signals in the implemented software mod-
ules is analyzed for detecting the functional dependencies between requirements
and thereby identifying dependencies between test cases such that: module 2
depends on module 1 if an output internal signal from module 1 enters
as an input internal signal to module 2. Consequently, all requirements
(and thereby test cases) for module 2 are dependent on all the designed
requirements (and test cases) for module 1 (see Studies D and F).

3. Deep learning-based natural language processing: Since test specifica-
tions are usually written in a natural text, a natural language processing-based
approach can help the testers for detecting the dependencies between test cases.
To aid in this, we propose to use the Doc2Vec3 algorithm [42] that, given the
test specifications, allows automatic detection of test case dependencies and
converts each test case into a vector in n-dimensional space. These vectors

3Doc2Vec is used to generate representation vectors out of a document, regardless of its length
(see Study E and [42]).

43

20 Chapter 2. Background

Functional

Dependency

Detection

Signal Analysis

Requirement
Specification

Internal
Signal

Test
Specification

Deep learning-
based NLP

Test
Specification

Questionnaire
based Study

Test Result

Test
Specification

BR490 project-Bombardier
•1748 Test cases
•3938 Requirement
specifications
•Study D

C30 project- Bombardier
•1408 Test cases
•Study E and also [42]

Zefiro project- Bombardier
•4578 Test cases
•7305 Test results
•Study A

Figure 2.2: Three different approaches for functional dependency detection
between manual integration test cases evaluated at Bombardier Transportation.

are then grouped using the HDBSCAN 4 clustering algorithm into several clus-

4Hierarchical Density-Based Spatial Clustering of Applications with Noise.

20 Chapter 2. Background

Functional

Dependency

Detection

Signal Analysis

Requirement
Specification

Internal
Signal

Test
Specification

Deep learning-
based NLP

Test
Specification

Questionnaire
based Study

Test Result

Test
Specification

BR490 project-Bombardier
•1748 Test cases
•3938 Requirement
specifications
•Study D

C30 project- Bombardier
•1408 Test cases
•Study E and also [42]

Zefiro project- Bombardier
•4578 Test cases
•7305 Test results
•Study A

Figure 2.2: Three different approaches for functional dependency detection
between manual integration test cases evaluated at Bombardier Transportation.

are then grouped using the HDBSCAN 4 clustering algorithm into several clus-

4Hierarchical Density-Based Spatial Clustering of Applications with Noise.

44

2.4 Multiple-Criteria Decision-Making (MCDM) 21

ters. Finally, a set of cluster-based test scheduling strategies are proposed for
execution [42] (see Study E).

In order to show the feasibility of the proposed approaches, several industrial
testing projects at BT have been selected and analyzed as use cases. However,
the inputs for using the above approaches are different.

Figure 2.2 represents the proposed approaches for dependency detection,
the required inputs for the main approaches, the name and size of the analyzed
testing project at BT and also the corresponding completed study targeting each
approach.

2.4 Multiple-Criteria Decision-Making (MCDM) 21

ters. Finally, a set of cluster-based test scheduling strategies are proposed for
execution [42] (see Study E).

In order to show the feasibility of the proposed approaches, several industrial
testing projects at BT have been selected and analyzed as use cases. However,
the inputs for using the above approaches are different.

Figure 2.2 represents the proposed approaches for dependency detection,
the required inputs for the main approaches, the name and size of the analyzed
testing project at BT and also the corresponding completed study targeting each
approach.

45

46

Chapter 3

Research Overview

In this chapter, we provide an overview of the doctoral thesis. First, we describe
the research goals of the thesis. Later, the individual technical contributions

which address the research goals are presented. Concluding the chapter is a
comprehensive discussion of the research process and research methodology
that is applied in this doctoral thesis.

3.1 Goal of the Thesis

In the past decade, it has become highly competitive among software com-
panies to improve product quality [43], which in turn has also impacted the
testing process [44]. Improving the quality of the software sometimes leads
to increasing the final costs of the products [45]. Finding a trade-off between
quality assurance and allocated testing resources at industry is a challenging
issue and therefore optimizing the testing process has received much attention
from researchers and also industry [46], [47].

This thesis aims to enable the applications of the test optimization techniques
for improving the manual integration testing at industry. Under this target, we
define our main research goal as follows:

To provide methods for a more efficient manual integration testing process,
while decreasing unnecessary test execution failures and increasing the

requirement coverage at each testing cycle.

This doctoral thesis is built on the prequel licentiate thesis titled: A Deci-
sion Support System for Integration Test Selection (see [48]), where a manual

23

Chapter 3

Research Overview

In this chapter, we provide an overview of the doctoral thesis. First, we describe
the research goals of the thesis. Later, the individual technical contributions

which address the research goals are presented. Concluding the chapter is a
comprehensive discussion of the research process and research methodology
that is applied in this doctoral thesis.

3.1 Goal of the Thesis

In the past decade, it has become highly competitive among software com-
panies to improve product quality [43], which in turn has also impacted the
testing process [44]. Improving the quality of the software sometimes leads
to increasing the final costs of the products [45]. Finding a trade-off between
quality assurance and allocated testing resources at industry is a challenging
issue and therefore optimizing the testing process has received much attention
from researchers and also industry [46], [47].

This thesis aims to enable the applications of the test optimization techniques
for improving the manual integration testing at industry. Under this target, we
define our main research goal as follows:

To provide methods for a more efficient manual integration testing process,
while decreasing unnecessary test execution failures and increasing the

requirement coverage at each testing cycle.

This doctoral thesis is built on the prequel licentiate thesis titled: A Deci-
sion Support System for Integration Test Selection (see [48]), where a manual

23

47

24 Chapter 3. Research Overview

multi-criteria decision support system (DSS) for test case selection and prior-
itization was proposed by us and the performance of the proposed DSS was
evaluated at Bombardier Transportation through measuring the value of return
on investment (ROI). The economic models presented in the licentiate thesis
(included as Study B also in this doctoral thesis) confirms that there is a need
for an automated decision support system for test case selection, prioritization
and also scheduling at industry. While the licentiate thesis mainly focused on
the design and economical evaluation of the proposed DSS, this doctoral thesis
includes an automated version of the proposed DSS with industrial empirical
evaluations.

As mentioned in Chapter 2 and also in the licentiate thesis [48], executing
all generated test cases without any particular order may cause unnecessary
test execution failures and thereby leads to a waste of testing resources and
time. On the other hand, applying manual approaches for optimizing the testing
process is a time and cost consuming procedure and requires even more testing
resources [48]. In the licentiate thesis, the test case properties (criteria) had
been measured through performing a set of questionnaire-based studies, which
can be a taxing process and therefore prone to human error. Table 3.1 shows a
sample survey that had been sent to the testing experts at BT for measuring the
test case properties.

Test Case ID Execution Requirement Dependent on Execution Fault Detection
Time Coverage Cost Probability

Drive-S-046 VH H Air-S-005, Brake-S-25 M H
Speed-S-005 M VL Speed-S-21, Voltage-IVV-4 M L
Doors-S-011 VL H Brake-S-65, Air-S-005, Drive-S-09 L H
Doors-S-022 H L Battery-S-13, DVS-IVV-08 L L
Brake-IVV-31 VL M None L M
Brake-IVV-41 VL L Fire-IVV-125 M M
Drive-S-024 L H Speed-IVV-66, Battery-S-58 M H
Speed-IVV-04 L M HVAC-S-06, Speed-S-17, Brake-S-02 M M
Drive-IVV-30 L H None L M
Brake-S-044 L H None H M
Brake-S-042 VL H Bogies-IVV-225, Brake-S-88 M M
Drive-S-011 VL M Radio-S-25, Front-S-002 H M

Table 3.1: A sample survey with values very low (VL), low (L), medium (M),
high (H) and very high (VH), utilized for measuring five test case properties
(execution time, requirement coverage, dependency, execution cost and fault de-
tection probability) at BT in the licentiate thesis [48]. The highlighted columns
represent those properties which are measured automatically today.

Table 3.1 represents the testers’ opinions about five test properties captured

24 Chapter 3. Research Overview

multi-criteria decision support system (DSS) for test case selection and prior-
itization was proposed by us and the performance of the proposed DSS was
evaluated at Bombardier Transportation through measuring the value of return
on investment (ROI). The economic models presented in the licentiate thesis
(included as Study B also in this doctoral thesis) confirms that there is a need
for an automated decision support system for test case selection, prioritization
and also scheduling at industry. While the licentiate thesis mainly focused on
the design and economical evaluation of the proposed DSS, this doctoral thesis
includes an automated version of the proposed DSS with industrial empirical
evaluations.

As mentioned in Chapter 2 and also in the licentiate thesis [48], executing
all generated test cases without any particular order may cause unnecessary
test execution failures and thereby leads to a waste of testing resources and
time. On the other hand, applying manual approaches for optimizing the testing
process is a time and cost consuming procedure and requires even more testing
resources [48]. In the licentiate thesis, the test case properties (criteria) had
been measured through performing a set of questionnaire-based studies, which
can be a taxing process and therefore prone to human error. Table 3.1 shows a
sample survey that had been sent to the testing experts at BT for measuring the
test case properties.

Test Case ID Execution Requirement Dependent on Execution Fault Detection
Time Coverage Cost Probability

Drive-S-046 VH H Air-S-005, Brake-S-25 M H
Speed-S-005 M VL Speed-S-21, Voltage-IVV-4 M L
Doors-S-011 VL H Brake-S-65, Air-S-005, Drive-S-09 L H
Doors-S-022 H L Battery-S-13, DVS-IVV-08 L L
Brake-IVV-31 VL M None L M
Brake-IVV-41 VL L Fire-IVV-125 M M
Drive-S-024 L H Speed-IVV-66, Battery-S-58 M H
Speed-IVV-04 L M HVAC-S-06, Speed-S-17, Brake-S-02 M M
Drive-IVV-30 L H None L M
Brake-S-044 L H None H M
Brake-S-042 VL H Bogies-IVV-225, Brake-S-88 M M
Drive-S-011 VL M Radio-S-25, Front-S-002 H M

Table 3.1: A sample survey with values very low (VL), low (L), medium (M),
high (H) and very high (VH), utilized for measuring five test case properties
(execution time, requirement coverage, dependency, execution cost and fault de-
tection probability) at BT in the licentiate thesis [48]. The highlighted columns
represent those properties which are measured automatically today.

Table 3.1 represents the testers’ opinions about five test properties captured

48

3.1 Goal of the Thesis 25

by using a set of fuzzy linguistic variables1 (very low, low, high, etc.). However,
we were faced with several situations where testers had different opinions about
each property of the test cases.

In this doctoral thesis, the following test case properties are measured
automatically: requirement coverage, execution time and the dependencies
between test cases, which are also highlighted in Table 3.1.

Moreover, test cases have been semi-automatically prioritized for execution
by using two compensatory aggregation methods AHP2 and TOPSIS3 in the
licentiate thesis. As discussed previously, in order to continuously optimize
the testing process the execution results of each test case need be recorded
and analyzed, which requires using automated tools. For this reason, we have
extended the scope of our research on automation issues since the publication
of the licentiate thesis. Thus, in this doctoral thesis, we propose two automated
supportive tools which are empirically evaluated on several large-scale testing
projects at Bombardier Transportation.

By considering a large number of manual integration test cases and their
property measurements, together with dynamic decision making based on test
case execution results, the research goals can be defined as follows:

RG1: Defining approaches for automatically detecting dependencies be-

tween test cases.

Motivation: The dependencies between test cases have been identified as
one of the most important criteria for test optimization at the integration
testing level [50], [39], [51]. Paying no attention to the dependencies
between integration test cases might lead to sequential failure of test
cases [39], [52] and thereby a waste of testing resources. On the other
hand, the manual approaches for dependency detection are costly ap-
proaches and suffer from uncertainty. Since our final goal in this thesis
is to address test efficiency, we focus on semi and fully automated ap-
proaches for dependency detection between manual integration test cases.

RG2: Automatically estimating the execution time for manual test cases.

Motivation: Knowing the execution time of test cases in an early stage of
a testing process can help testers and test managers to select, prioritize and
schedule test cases for execution. Creating a database of the previously

1In a fuzzy partition, every fuzzy set corresponds to a linguistic concept such as very low, low,
average, high, very high [49].

2Analytic Hierarchy Process.
3Technique for Order of Preference by Similarity to Ideal Solution.

3.1 Goal of the Thesis 25

by using a set of fuzzy linguistic variables1 (very low, low, high, etc.). However,
we were faced with several situations where testers had different opinions about
each property of the test cases.

In this doctoral thesis, the following test case properties are measured
automatically: requirement coverage, execution time and the dependencies
between test cases, which are also highlighted in Table 3.1.

Moreover, test cases have been semi-automatically prioritized for execution
by using two compensatory aggregation methods AHP2 and TOPSIS3 in the
licentiate thesis. As discussed previously, in order to continuously optimize
the testing process the execution results of each test case need be recorded
and analyzed, which requires using automated tools. For this reason, we have
extended the scope of our research on automation issues since the publication
of the licentiate thesis. Thus, in this doctoral thesis, we propose two automated
supportive tools which are empirically evaluated on several large-scale testing
projects at Bombardier Transportation.

By considering a large number of manual integration test cases and their
property measurements, together with dynamic decision making based on test
case execution results, the research goals can be defined as follows:

RG1: Defining approaches for automatically detecting dependencies be-

tween test cases.

Motivation: The dependencies between test cases have been identified as
one of the most important criteria for test optimization at the integration
testing level [50], [39], [51]. Paying no attention to the dependencies
between integration test cases might lead to sequential failure of test
cases [39], [52] and thereby a waste of testing resources. On the other
hand, the manual approaches for dependency detection are costly ap-
proaches and suffer from uncertainty. Since our final goal in this thesis
is to address test efficiency, we focus on semi and fully automated ap-
proaches for dependency detection between manual integration test cases.

RG2: Automatically estimating the execution time for manual test cases.

Motivation: Knowing the execution time of test cases in an early stage of
a testing process can help testers and test managers to select, prioritize and
schedule test cases for execution. Creating a database of the previously

1In a fuzzy partition, every fuzzy set corresponds to a linguistic concept such as very low, low,
average, high, very high [49].

2Analytic Hierarchy Process.
3Technique for Order of Preference by Similarity to Ideal Solution.

49

26 Chapter 3. Research Overview

executed test cases and performing various regression analysis techniques
may provide clues to estimate the required time needed for executing new
generated test cases on the same system under test. A supporting tool can
be connected to a database to predict the execution time for the new test
cases. This research goal addresses the automation of test case execution
time estimation.

RG3: Automatically measuring the requirement coverage for manual test

cases.

Motivation: Comparing and measuring the number of allocated require-
ments to each test case can be considered as a solution for ranking test
cases for execution. Comparing and ordering test cases for execution
based on their requirement coverage can lead to the testing of more re-
quirements with overall fewer test cases which thereby minimizes the
total testing time. However, this information is not always available in test
case specifications and sometimes we need to analyze the requirement
specifications for measuring this value. This research goal addresses the
automation of requirement coverage measurements.

RG4: Proposing automated (and semi-automated) methods for test case

selection, prioritization and scheduling.

Motivation: Meeting research goals 1 and 2 can help us to optimize
the execution orders of test cases based on their dependencies and also
execution time. Moreover, an automated approach in the form of a
decision support system can be utilized as a supportive tool for test case
selection, prioritization and scheduling, which also monitors the results
of each test execution.

RG5: Measuring the effectiveness in terms of cost and time reduction of

using the proposed optimization approaches.

Motivation: Evaluation of feasibility and efficiency of the proposed
optimization approaches in terms of reducing redundant tests execution
failures and increasing the requirement coverage at each testing cycle.
Applying the proposed approaches in this thesis can lead to decreasing
required troubleshooting time and thereby minimizing testing cost. The
usage of the proposed optimization approaches can also lead to increasing
the value of return on investment (ROI) for the testing companies.

Figure 3.1 illustrates a holistic overview of six performed studies (A-to-F),
which supports the main objective of this PhD thesis. Moreover, the performed

26 Chapter 3. Research Overview

executed test cases and performing various regression analysis techniques
may provide clues to estimate the required time needed for executing new
generated test cases on the same system under test. A supporting tool can
be connected to a database to predict the execution time for the new test
cases. This research goal addresses the automation of test case execution
time estimation.

RG3: Automatically measuring the requirement coverage for manual test

cases.

Motivation: Comparing and measuring the number of allocated require-
ments to each test case can be considered as a solution for ranking test
cases for execution. Comparing and ordering test cases for execution
based on their requirement coverage can lead to the testing of more re-
quirements with overall fewer test cases which thereby minimizes the
total testing time. However, this information is not always available in test
case specifications and sometimes we need to analyze the requirement
specifications for measuring this value. This research goal addresses the
automation of requirement coverage measurements.

RG4: Proposing automated (and semi-automated) methods for test case

selection, prioritization and scheduling.

Motivation: Meeting research goals 1 and 2 can help us to optimize
the execution orders of test cases based on their dependencies and also
execution time. Moreover, an automated approach in the form of a
decision support system can be utilized as a supportive tool for test case
selection, prioritization and scheduling, which also monitors the results
of each test execution.

RG5: Measuring the effectiveness in terms of cost and time reduction of

using the proposed optimization approaches.

Motivation: Evaluation of feasibility and efficiency of the proposed
optimization approaches in terms of reducing redundant tests execution
failures and increasing the requirement coverage at each testing cycle.
Applying the proposed approaches in this thesis can lead to decreasing
required troubleshooting time and thereby minimizing testing cost. The
usage of the proposed optimization approaches can also lead to increasing
the value of return on investment (ROI) for the testing companies.

Figure 3.1 illustrates a holistic overview of six performed studies (A-to-F),
which supports the main objective of this PhD thesis. Moreover, the performed

50

3.2 Technical Contributions 27

studies provide contributions to the body of knowledge in the field of test
optimization.

Main Research Goal

RG2RG1 RG3 RG4 RG5

Study A

Study D

Study E

Study C Study D

Study F

Study A Study B

Figure 3.1: Holistic overview of how the studies included in this PhD thesis
support the research goals.

3.2 Technical Contributions

This section provides an overview of the contributions included in this doctoral
thesis. The next section describes a high-level overview of the provided con-
tributions and also how they together achieve the main goal of test efficiency.
Later in this section, we discuss individual contributions in detail.

3.2.1 Overview of the Proposed Approach

In order to realize the main goal of this doctoral thesis, we proposed, applied
and evaluated approaches for improving the manual integration testing process
through gathering the empirical evidence, both for or against, the use of proposed
optimization methods in industrial practice.

3.2.2 Discussion of Individual Contributions

The technical contributions presented in this thesis can be categorized into five
main contributions:

3.2 Technical Contributions 27

studies provide contributions to the body of knowledge in the field of test
optimization.

Main Research Goal

RG2RG1 RG3 RG4 RG5

Study A

Study D

Study E

Study C Study D

Study F

Study A Study B

Figure 3.1: Holistic overview of how the studies included in this PhD thesis
support the research goals.

3.2 Technical Contributions

This section provides an overview of the contributions included in this doctoral
thesis. The next section describes a high-level overview of the provided con-
tributions and also how they together achieve the main goal of test efficiency.
Later in this section, we discuss individual contributions in detail.

3.2.1 Overview of the Proposed Approach

In order to realize the main goal of this doctoral thesis, we proposed, applied
and evaluated approaches for improving the manual integration testing process
through gathering the empirical evidence, both for or against, the use of proposed
optimization methods in industrial practice.

3.2.2 Discussion of Individual Contributions

The technical contributions presented in this thesis can be categorized into five
main contributions:

51

28 Chapter 3. Research Overview

C1: Recognizing the challenges of test optimization

Software quality is playing a more important role than ever before and
therefore an increase in cost in the software product itself is expected [53].
The increasing demand for quality, fast turnover, and limitations in re-
sources have encouraged researchers to provide and utilize optimization
techniques in the software testing domain [54], [55], [56]. Test case
selection, prioritization and scheduling have been identified as potential
approaches for optimizing the testing process. Previously in [33] and [32],
we proposed two methods of compensatory aggregation for addressing
the mentioned issues, where test cases are selected and prioritized for
execution based on their properties. Organizing test cases for execution
without paying attention to their execution results might yield less than
an optimal outcome. In fact, the process of test case selection and prioriti-
zation should be performed dynamically until all test cases are executed
successfully (challenge 1). Moreover, the problem of test optimization is
a multi-criteria decision making problem (challenge 2). However, identi-
fying and measuring the test case properties (criteria) is a challenge being
taken on by researchers, one of the reasons being that it requires a close
proximity to industry. The following test case properties have been rec-
ognized by us as critical properties, which directly impact the process of
test optimization: dependency between test cases, requirement coverage,
execution time and cost and fault detection probability. Measuring the
effects of the mentioned properties automatically for each test case is a
research challenge, especially in a manual testing procedure, where test
cases are written by testers in a natural language (challenge 3).

Targeting Research Goal: RG3, RG4

Included Study: Study A, D, F

C2: Execution time prediction

As discussed in challenge 2, proposing an automated way for measuring
test case execution time is required. The increased complexity of today’s
test optimization, together with the increased number of test cases that
are created during a testing process, require prediction models for execu-
tion time prediction. We investigate ESPRET4 as an automated tool for
execution time estimation and prediction of manual integration test cases.

Targeting Research Goal: RG2

Included Study: Study C

4EStimation and PRediction of Execution Time.

28 Chapter 3. Research Overview

C1: Recognizing the challenges of test optimization

Software quality is playing a more important role than ever before and
therefore an increase in cost in the software product itself is expected [53].
The increasing demand for quality, fast turnover, and limitations in re-
sources have encouraged researchers to provide and utilize optimization
techniques in the software testing domain [54], [55], [56]. Test case
selection, prioritization and scheduling have been identified as potential
approaches for optimizing the testing process. Previously in [33] and [32],
we proposed two methods of compensatory aggregation for addressing
the mentioned issues, where test cases are selected and prioritized for
execution based on their properties. Organizing test cases for execution
without paying attention to their execution results might yield less than
an optimal outcome. In fact, the process of test case selection and prioriti-
zation should be performed dynamically until all test cases are executed
successfully (challenge 1). Moreover, the problem of test optimization is
a multi-criteria decision making problem (challenge 2). However, identi-
fying and measuring the test case properties (criteria) is a challenge being
taken on by researchers, one of the reasons being that it requires a close
proximity to industry. The following test case properties have been rec-
ognized by us as critical properties, which directly impact the process of
test optimization: dependency between test cases, requirement coverage,
execution time and cost and fault detection probability. Measuring the
effects of the mentioned properties automatically for each test case is a
research challenge, especially in a manual testing procedure, where test
cases are written by testers in a natural language (challenge 3).

Targeting Research Goal: RG3, RG4

Included Study: Study A, D, F

C2: Execution time prediction

As discussed in challenge 2, proposing an automated way for measuring
test case execution time is required. The increased complexity of today’s
test optimization, together with the increased number of test cases that
are created during a testing process, require prediction models for execu-
tion time prediction. We investigate ESPRET4 as an automated tool for
execution time estimation and prediction of manual integration test cases.

Targeting Research Goal: RG2

Included Study: Study C

4EStimation and PRediction of Execution Time.

52

3.2 Technical Contributions 29

C3: Requirement coverage measurement

Through performing a pairwise comparison of identified test case proper-
ties (criteria), we came to the realization that the requirement coverage
has the highest priority (around 67.5%) for test case selection and prioriti-
zation at BT [33], [57]. In this thesis, we propose an automated approach
for measuring the number of requirements covered by each test case.
Targeting Research Goal: RG3

Included Study: Study D, F

C4: Dependency detection

Our studies indicate that integration test cases can fail based on four main
reasons: (i) there is a mismatch between test case and its corresponding
requirement, (ii) the testing environment is not yet adequate for testing
efficiently, (iii) there exist bugs in the system which is under test and
(iv) no attention is paid to the dependencies between test cases. Among
the mentioned causes, failures based on failures between interdependent
test cases are preventable. As illustrated in Figure 2.2, the dependency
between manual integration test cases is detected through applying three
different approaches in this doctoral thesis.

Targeting Research Goal: RG1

Included Study: Study A, D, E

C5: An automated decision support system and measures of effectiveness

Using manual or semi-automated approaches for selecting, prioritizing
or scheduling test cases for execution requires testing resources and
human judgment and suffers from uncertainty and ambiguity. Executing
a large set of test cases several times during a testing project is difficult
to handle manually. An automated decision support system (DSS) can
analyze the test cases and make decisions for execution orders of test
cases more easily. However, the mentioned test case properties can be
measured automatically inside the DSS. Some of the properties (e.g.
dependency between test cases) can be changed after execution, and
therefore the properties should be re-measured after each test execution.
Optimizing the execution orders of test cases based on their execution
results can provide a more efficient way of using testing resources. In this
doctoral thesis, we investigate sOrTES5as a supportive tool for stochastic
scheduling of manual integration test cases. Additionally, sOrTES is able
to measure the requirement coverage for each test case and also detects

5Stochastic Optimizing of TEst case Scheduling.

3.2 Technical Contributions 29

C3: Requirement coverage measurement

Through performing a pairwise comparison of identified test case proper-
ties (criteria), we came to the realization that the requirement coverage
has the highest priority (around 67.5%) for test case selection and prioriti-
zation at BT [33], [57]. In this thesis, we propose an automated approach
for measuring the number of requirements covered by each test case.
Targeting Research Goal: RG3

Included Study: Study D, F

C4: Dependency detection

Our studies indicate that integration test cases can fail based on four main
reasons: (i) there is a mismatch between test case and its corresponding
requirement, (ii) the testing environment is not yet adequate for testing
efficiently, (iii) there exist bugs in the system which is under test and
(iv) no attention is paid to the dependencies between test cases. Among
the mentioned causes, failures based on failures between interdependent
test cases are preventable. As illustrated in Figure 2.2, the dependency
between manual integration test cases is detected through applying three
different approaches in this doctoral thesis.

Targeting Research Goal: RG1

Included Study: Study A, D, E

C5: An automated decision support system and measures of effectiveness

Using manual or semi-automated approaches for selecting, prioritizing
or scheduling test cases for execution requires testing resources and
human judgment and suffers from uncertainty and ambiguity. Executing
a large set of test cases several times during a testing project is difficult
to handle manually. An automated decision support system (DSS) can
analyze the test cases and make decisions for execution orders of test
cases more easily. However, the mentioned test case properties can be
measured automatically inside the DSS. Some of the properties (e.g.
dependency between test cases) can be changed after execution, and
therefore the properties should be re-measured after each test execution.
Optimizing the execution orders of test cases based on their execution
results can provide a more efficient way of using testing resources. In this
doctoral thesis, we investigate sOrTES5as a supportive tool for stochastic
scheduling of manual integration test cases. Additionally, sOrTES is able
to measure the requirement coverage for each test case and also detects

5Stochastic Optimizing of TEst case Scheduling.

53

30 Chapter 3. Research Overview

the dependencies between manual integration test cases. Moreover, the
effectiveness of sOrTES and manual and semi-automated approaches in
this thesis is measured in terms of maximizing the return on investment
through applying the approaches at BT.

Targeting Research Goal: RG5

Included Study: Study F, B

3.3 Research Process and Methodology

Industrial research includes more than just publishing research results or techni-
cal reports [58]. In fact, it requires a close cooperation between industry and
academia during the entire research process, where the academic research results
can be evaluated in a real industrial setting and thereby improve the industrial de-
velopment process [59]. A close and dynamic collaboration between researchers
and practitioners is the golden key to success [60]. Additionally, choosing a
proper research strategy can help the researchers to achieve valid answers to
their research questions. The research conducted in this doctoral thesis utilized
case studies6 and various data collection strategies (unstructured interviews,
document analysis and observation). In summary the research methodology
used in this research is described in the following process:

(i) Identifying the research problems and challenges through reviewing the
state of the art, current issues and observation and also employing semi-
structured interviews with the testing experts at Bombardier Transporta-
tion in Sweden.

(ii) Selecting challenges to solve and designing the research objectives, goals
and questions.

(iii) Proposing a set of solutions for the identified research goals.

(iv) Evaluating the proposed solutions with testing experts at Bombardier
Transportation by running simulations of illustrative examples and also
conducting empirical evaluations.

The structure of the research process and framework can be summarized as
depicted in Figure 3.2, which has been adapted from the proposed technology
transfer model by Gorschek et.al in [58].

6The provided industrial case studies in this doctoral thesis are following the proposed guidelines
for conducting and reporting case study research in software engineering by Runeson and Höst [61].

30 Chapter 3. Research Overview

the dependencies between manual integration test cases. Moreover, the
effectiveness of sOrTES and manual and semi-automated approaches in
this thesis is measured in terms of maximizing the return on investment
through applying the approaches at BT.

Targeting Research Goal: RG5

Included Study: Study F, B

3.3 Research Process and Methodology

Industrial research includes more than just publishing research results or techni-
cal reports [58]. In fact, it requires a close cooperation between industry and
academia during the entire research process, where the academic research results
can be evaluated in a real industrial setting and thereby improve the industrial de-
velopment process [59]. A close and dynamic collaboration between researchers
and practitioners is the golden key to success [60]. Additionally, choosing a
proper research strategy can help the researchers to achieve valid answers to
their research questions. The research conducted in this doctoral thesis utilized
case studies6 and various data collection strategies (unstructured interviews,
document analysis and observation). In summary the research methodology
used in this research is described in the following process:

(i) Identifying the research problems and challenges through reviewing the
state of the art, current issues and observation and also employing semi-
structured interviews with the testing experts at Bombardier Transporta-
tion in Sweden.

(ii) Selecting challenges to solve and designing the research objectives, goals
and questions.

(iii) Proposing a set of solutions for the identified research goals.

(iv) Evaluating the proposed solutions with testing experts at Bombardier
Transportation by running simulations of illustrative examples and also
conducting empirical evaluations.

The structure of the research process and framework can be summarized as
depicted in Figure 3.2, which has been adapted from the proposed technology
transfer model by Gorschek et.al in [58].

6The provided industrial case studies in this doctoral thesis are following the proposed guidelines
for conducting and reporting case study research in software engineering by Runeson and Höst [61].

54

3.3 Research Process and Methodology 31

Release
Solution

6

Industrial
Need

1
Dynamic
Validation

5

Academic
Validation4

Candidate
Solution

3

Problem
Formulation

2
State of
the Art

Industry

Academia

Figure 3.2: The research model and technology transfer overview used in this
doctoral thesis, adapted from Gorschek et.al [58].

As can be seen by Figure 3.2, the proposed research model by Gorschek
et.al [58] is divided into two main phases: industry and academia, where
both phases are dynamically communicating with each other throughout six
individual steps. We now present how the technology transfer model outlined in
Figure 3.2 is applied in this doctoral thesis.

• Step 1. Identify potential improvement areas based on industry needs

It is critical to consider the demands of the industry before designing
research questions [60]. Thus, we started our research by observing
an industrial setting. During this process, several potential areas of
improvement at various testing levels at BT were identified, of which
the integration testing level has been selected as a viable candidate for
improvement. Moreover, the test optimization problem in the form of test
case selection, prioritization and scheduling has been recognized as a real
industrial challenge at BT during our process assessment and observation
activities.

• Step 2. Problem formulation

Based on the identified demands in the previous step and by collaborating
closely with the testing experts at BT, the problem statement was for-
mulated. The testing department at BT consists of several testing teams

3.3 Research Process and Methodology 31

Release
Solution

6

Industrial
Need

1
Dynamic
Validation

5

Academic
Validation4

Candidate
Solution

3

Problem
Formulation

2
State of
the Art

Industry

Academia

Figure 3.2: The research model and technology transfer overview used in this
doctoral thesis, adapted from Gorschek et.al [58].

As can be seen by Figure 3.2, the proposed research model by Gorschek
et.al [58] is divided into two main phases: industry and academia, where
both phases are dynamically communicating with each other throughout six
individual steps. We now present how the technology transfer model outlined in
Figure 3.2 is applied in this doctoral thesis.

• Step 1. Identify potential improvement areas based on industry needs

It is critical to consider the demands of the industry before designing
research questions [60]. Thus, we started our research by observing
an industrial setting. During this process, several potential areas of
improvement at various testing levels at BT were identified, of which
the integration testing level has been selected as a viable candidate for
improvement. Moreover, the test optimization problem in the form of test
case selection, prioritization and scheduling has been recognized as a real
industrial challenge at BT during our process assessment and observation
activities.

• Step 2. Problem formulation

Based on the identified demands in the previous step and by collaborating
closely with the testing experts at BT, the problem statement was for-
mulated. The testing department at BT consists of several testing teams

55

32 Chapter 3. Research Overview

including software developers, testers, testing team leaders and middle
managers [48]. The researchers from academic partners in the several
research projects (e.g. TESTOMAT7, MegaM@RT28, IMPRINT9 and
TOCSYC10 projects) have regular meetings with BT. Furthermore, a set
of non-directive interviews were employed in this step, which established
a common core and vocabulary of the research area and the system under
test [58] between researchers and testing experts.

• Step 3. Formulate candidate solutions

In a continuous collaboration with the testing teams at BT, a set of can-
didate solutions for improvement of the integration testing process were
designed. In this step, BT covered the role of keeping the proposed solu-
tions compatible with their testing environment [48]. On the other hand,
we as the research partners took on the main responsibility for keeping
track of state of the art in the test optimization domain and applying the
proposed solutions with a combination of new ideas [58]. We designed a
multi-criteria decision support system for execution test case scheduling.
The main purpose of the proposed solution was to measure test case
properties and schedule them for execution based on those properties.
With an agreement with BT, the proposed solution was selected as the
most promising solution for test optimization at the integration testing
level at BT.

• Step 4. Academic validation

In the principal technology transfer model proposed by Gorschek et.al
in [58], several steps are considered for evaluating the candidate solutions
proposed in the previous step. In this doctoral thesis, we employed aca-
demic and dynamic validation methods to evaluate the proposed solution
for solving the test optimization problem at BT. Our scientific work was
evaluated by international review committees from the venues where we
published our research results, of which six studies have been selected
and presented in this doctoral thesis (Study A-to-F). In this step the limi-
tations of the various approaches are identified and certain solutions for
addressing these limitations are provided as future work. Two initial

7The Next Level of Test Automation [62].
8An scalable model-based framework for continuous development and run-time validation of

complex system [63].
9Innovative Model-Based Product Integration Testing [64].

10Testing of Critical System Characteristics [65].

32 Chapter 3. Research Overview

including software developers, testers, testing team leaders and middle
managers [48]. The researchers from academic partners in the several
research projects (e.g. TESTOMAT7, MegaM@RT28, IMPRINT9 and
TOCSYC10 projects) have regular meetings with BT. Furthermore, a set
of non-directive interviews were employed in this step, which established
a common core and vocabulary of the research area and the system under
test [58] between researchers and testing experts.

• Step 3. Formulate candidate solutions

In a continuous collaboration with the testing teams at BT, a set of can-
didate solutions for improvement of the integration testing process were
designed. In this step, BT covered the role of keeping the proposed solu-
tions compatible with their testing environment [48]. On the other hand,
we as the research partners took on the main responsibility for keeping
track of state of the art in the test optimization domain and applying the
proposed solutions with a combination of new ideas [58]. We designed a
multi-criteria decision support system for execution test case scheduling.
The main purpose of the proposed solution was to measure test case
properties and schedule them for execution based on those properties.
With an agreement with BT, the proposed solution was selected as the
most promising solution for test optimization at the integration testing
level at BT.

• Step 4. Academic validation

In the principal technology transfer model proposed by Gorschek et.al
in [58], several steps are considered for evaluating the candidate solutions
proposed in the previous step. In this doctoral thesis, we employed aca-
demic and dynamic validation methods to evaluate the proposed solution
for solving the test optimization problem at BT. Our scientific work was
evaluated by international review committees from the venues where we
published our research results, of which six studies have been selected
and presented in this doctoral thesis (Study A-to-F). In this step the limi-
tations of the various approaches are identified and certain solutions for
addressing these limitations are provided as future work. Two initial

7The Next Level of Test Automation [62].
8An scalable model-based framework for continuous development and run-time validation of

complex system [63].
9Innovative Model-Based Product Integration Testing [64].

10Testing of Critical System Characteristics [65].

56

3.3 Research Process and Methodology 33

prototype versions of the proposed approaches were implemented by our
master thesis students in the software engineering program at Mälardalen
University and also applied mathematics program at KTH Royal Institute
of Technology.

• Steps 5. Dynamic validation

This step has been performed through two research projects (TESTOMAT
and MegaM@RT2). According to the project’s plan, a physical weekly
meeting needs to be held at BT between all industrial and academic
partners who are involved in the mentioned research projects [48]. The
results of the conducted case studies, prototypes and experiments are
presented by researchers during the meetings. Moreover, some small
workshops are organized by us for the team members of different internal
testing projects (mostly BR49011and C3012 projects) at BT. The industrial
partners (testing expert at BT) gave valuable feedback, some of which are
applied in this step. Tool support was the main feedback for the proposed
solutions that we received from BT.

• Step 6. Release the solution

After receiving and analyzing the feedback from the academic and dy-
namic validation steps, the proposed solutions are then implemented as
actual supportive tools. The initial versions of the proposed solutions are
then implemented by our master thesis students and BT engineers. In
this regard, first ESPRET is released as a supportive tool for estimating
and predicting the execution time of manual test cases based on their
test specifications (see Study C). ESPRET is a Python based tool which
helps testers and test managers to estimate the required execution time
for running manual test cases and can be employed for test case selection,
prioritization and scheduling. As outlined in Chapter 2, the execution
time is one of the test case properties which needs to be identified in an
early stage of the testing process. Today, this property is measured auto-
matically at BT by using ESPRET, of which is highlighted in Table 3.1 as
an automatically measured property. Secondly, sOrTES is implemented
and released by us as an automated decision support system for stochastic
scheduling of manual integration test cases for execution (see Study F).

11is an electric rail car specifically for the S-Bahn Hamburg GmbH network in production at
Bombardier Hennigsdorf facility [66].

12is the project name of the new subway carriages ordered by Stockholm public transport in
2008 [67].

3.3 Research Process and Methodology 33

prototype versions of the proposed approaches were implemented by our
master thesis students in the software engineering program at Mälardalen
University and also applied mathematics program at KTH Royal Institute
of Technology.

• Steps 5. Dynamic validation

This step has been performed through two research projects (TESTOMAT
and MegaM@RT2). According to the project’s plan, a physical weekly
meeting needs to be held at BT between all industrial and academic
partners who are involved in the mentioned research projects [48]. The
results of the conducted case studies, prototypes and experiments are
presented by researchers during the meetings. Moreover, some small
workshops are organized by us for the team members of different internal
testing projects (mostly BR49011and C3012 projects) at BT. The industrial
partners (testing expert at BT) gave valuable feedback, some of which are
applied in this step. Tool support was the main feedback for the proposed
solutions that we received from BT.

• Step 6. Release the solution

After receiving and analyzing the feedback from the academic and dy-
namic validation steps, the proposed solutions are then implemented as
actual supportive tools. The initial versions of the proposed solutions are
then implemented by our master thesis students and BT engineers. In
this regard, first ESPRET is released as a supportive tool for estimating
and predicting the execution time of manual test cases based on their
test specifications (see Study C). ESPRET is a Python based tool which
helps testers and test managers to estimate the required execution time
for running manual test cases and can be employed for test case selection,
prioritization and scheduling. As outlined in Chapter 2, the execution
time is one of the test case properties which needs to be identified in an
early stage of the testing process. Today, this property is measured auto-
matically at BT by using ESPRET, of which is highlighted in Table 3.1 as
an automatically measured property. Secondly, sOrTES is implemented
and released by us as an automated decision support system for stochastic
scheduling of manual integration test cases for execution (see Study F).

11is an electric rail car specifically for the S-Bahn Hamburg GmbH network in production at
Bombardier Hennigsdorf facility [66].

12is the project name of the new subway carriages ordered by Stockholm public transport in
2008 [67].

57

34 Chapter 3. Research Overview

sOrTES consists of two separate phases: extractor and scheduler, where
the dependencies between test cases and their requirements coverage are
measured in the extractor phase (highlighted in Table 3.1 as an automat-
ically measured property). The scheduler phase embedded in sOrTES
ranks test cases for execution based on their dependencies, requirement
coverage, execution time (extracted from ESPRET) and also test case
execution results. Full implementation of the released solutions in this
doctoral thesis is pending on results from the trial releases. However, our
ultimate goal is to integrate ESPRET and sOrTES and to incrementally
release it as an open source tool.

34 Chapter 3. Research Overview

sOrTES consists of two separate phases: extractor and scheduler, where
the dependencies between test cases and their requirements coverage are
measured in the extractor phase (highlighted in Table 3.1 as an automat-
ically measured property). The scheduler phase embedded in sOrTES
ranks test cases for execution based on their dependencies, requirement
coverage, execution time (extracted from ESPRET) and also test case
execution results. Full implementation of the released solutions in this
doctoral thesis is pending on results from the trial releases. However, our
ultimate goal is to integrate ESPRET and sOrTES and to incrementally
release it as an open source tool.

58

Chapter 4

Conclusions and Future

Work

This chapter concludes the doctoral thesis. A summary of the main contributions
is presented in Section 4.1, while Section 4.2 contains some suggestions for
future research of this thesis.

4.1 Summary and Conclusion

The overall goal of this doctoral thesis is to provide methods for a more efficient
manual integration testing process. To work towards this goal, we have con-
ducted research in three sequential stages: (i) measuring the properties of test
cases automatically, (ii) prioritizing and scheduling test cases for execution auto-
matically in terms of a decision support system, and (iii) empirically evaluating
the effectiveness of the proposed approach. All included publications in this
doctoral thesis build on empirical research through performing several industrial
case studies at Bombardier Transportation AB in Sweden. The measurement
stage of the test case properties is presented by five studies. In Study A we were
able to assess the test case properties based upon a questionnaire conducted on
an industrial use case. Moreover, in Study A we show that a fuzzy linguistic
variable can be assigned to each test case as a property, however, this process
is a time consuming process as it requires human judgment and assessment. We
also show that applying methods of compensatory aggregation can be utilized
for ranking and prioritizing test cases for execution.

35

Chapter 4

Conclusions and Future

Work

This chapter concludes the doctoral thesis. A summary of the main contributions
is presented in Section 4.1, while Section 4.2 contains some suggestions for
future research of this thesis.

4.1 Summary and Conclusion

The overall goal of this doctoral thesis is to provide methods for a more efficient
manual integration testing process. To work towards this goal, we have con-
ducted research in three sequential stages: (i) measuring the properties of test
cases automatically, (ii) prioritizing and scheduling test cases for execution auto-
matically in terms of a decision support system, and (iii) empirically evaluating
the effectiveness of the proposed approach. All included publications in this
doctoral thesis build on empirical research through performing several industrial
case studies at Bombardier Transportation AB in Sweden. The measurement
stage of the test case properties is presented by five studies. In Study A we were
able to assess the test case properties based upon a questionnaire conducted on
an industrial use case. Moreover, in Study A we show that a fuzzy linguistic
variable can be assigned to each test case as a property, however, this process
is a time consuming process as it requires human judgment and assessment. We
also show that applying methods of compensatory aggregation can be utilized
for ranking and prioritizing test cases for execution.

35

59

36 Chapter 4. Conclusions and Future Work

Study B reports an economic model in terms of return on investment (ROI)
value for the proposed manual approach in Study A. Moreover, a semi and also a
fully automated approach for data gathering, data analysis and decision making
are simulated in Study B in order to a find a trade-off between effort and return.
In Study B we show that even performing a manual approach for ranking test
cases for execution can reduce unnecessary test execution failures and yields
a positive value for ROI. Furthermore, having a semi and a fully automated
DSS leads to gaining additional value for ROI. Since the publication of Study
B we have extended the scope of our research on automation of the proposed
approaches in Study A.

Three test case properties are selected for automation: execution time,
dependency and requirement coverage. Moreover, providing an automated tool
support which can schedule test cases for execution is also considered in this
doctoral thesis. In this regard, in Study C we introduce, apply and evaluate
ESPRET as a Python based supportive tool for estimating execution time for
manual integration test cases. In Study C we show that the execution time of
manual test cases is predictable through parsing their test specifications and
performing regression analysis techniques on the previously executed test cases.

Study D provides an automated approach for functional dependency detec-
tion between manual test cases at the integration testing level. The necessary
inputs for running the proposed approach in Study D are test case and require-
ment specifications. Study D indicates that the signal communications between
software modules provide some clues about the dependency between them and
thereby the dependency between their corresponding requirements and test
cases.

Since the signal information and requirement specifications are not avail-
able for all systems under test, we proposed another automated approach for
dependency detection which only requires the test case specifications. Study
E shows that the dependency between manual test cases can be detected by
analyzing their test specifications using deep learning-based NLP techniques.
However, the similarity between test cases can also be discovered by applying
the proposed approach.

Study F builds on Study D, where we propose sOrTES as an automated tool
for stochastic scheduling of test cases. The proposed automated approach in
Study D is embedded in sOrTES for dependency detection for those situations
where the signal information and requirement specifications are available. In
Study F we schedule test cases for execution based on their requirement coverage
and also dependencies, where after each test execution, a new test schedule
will be proposed based on the results of the previous execution of each test

36 Chapter 4. Conclusions and Future Work

Study B reports an economic model in terms of return on investment (ROI)
value for the proposed manual approach in Study A. Moreover, a semi and also a
fully automated approach for data gathering, data analysis and decision making
are simulated in Study B in order to a find a trade-off between effort and return.
In Study B we show that even performing a manual approach for ranking test
cases for execution can reduce unnecessary test execution failures and yields
a positive value for ROI. Furthermore, having a semi and a fully automated
DSS leads to gaining additional value for ROI. Since the publication of Study
B we have extended the scope of our research on automation of the proposed
approaches in Study A.

Three test case properties are selected for automation: execution time,
dependency and requirement coverage. Moreover, providing an automated tool
support which can schedule test cases for execution is also considered in this
doctoral thesis. In this regard, in Study C we introduce, apply and evaluate
ESPRET as a Python based supportive tool for estimating execution time for
manual integration test cases. In Study C we show that the execution time of
manual test cases is predictable through parsing their test specifications and
performing regression analysis techniques on the previously executed test cases.

Study D provides an automated approach for functional dependency detec-
tion between manual test cases at the integration testing level. The necessary
inputs for running the proposed approach in Study D are test case and require-
ment specifications. Study D indicates that the signal communications between
software modules provide some clues about the dependency between them and
thereby the dependency between their corresponding requirements and test
cases.

Since the signal information and requirement specifications are not avail-
able for all systems under test, we proposed another automated approach for
dependency detection which only requires the test case specifications. Study
E shows that the dependency between manual test cases can be detected by
analyzing their test specifications using deep learning-based NLP techniques.
However, the similarity between test cases can also be discovered by applying
the proposed approach.

Study F builds on Study D, where we propose sOrTES as an automated tool
for stochastic scheduling of test cases. The proposed automated approach in
Study D is embedded in sOrTES for dependency detection for those situations
where the signal information and requirement specifications are available. In
Study F we schedule test cases for execution based on their requirement coverage
and also dependencies, where after each test execution, a new test schedule
will be proposed based on the results of the previous execution of each test

60

4.2 Future Work 37

case. Study F indicates that the automatic scheduling of test cases based on
their properties and execution results can reduce unnecessary redundant test
execution failure by up to 40%, which leads to an increase in the requirements
coverage of up to 9.6%.

As mentioned earlier in this chapter, in order to show the feasibility of
all proposed approaches in the doctoral thesis (Study A-to-F), several empir-
ical evaluations have been performed on a railway use-case at Bombardier
Transportation in Sweden.

4.2 Future Work

Work on this doctoral thesis has opened several future research directions for
us:

• Future development of sOrTES and integration possibilities for merg-
ing ESPRET and sOrTES as one open source tool for integration test
stochastic scheduling. Today, we predict the execution time for each
test case using ESPRET and the results are inserted manually into the
extractor phase of sOrTES. Embedding ESPRET into the extractor phase
of sOrTES can help us to measure three test case properties automatically
by using only a single tool.

• The proposed deep learning-based NLP approach for dependency detec-
tion in Study E can also be added to the extractor phase of sOrTES, where
it captures the test case specifications as input and clusters the dependent
test cases. Thus, sOrTES can be used in those situations where any of the
test process artifacts (e.g. signal information, requirement specification,
test specification) are available.

• As outlined in Table 3.1, there are two properties (execution cost and
fault detection probability) of test cases which are still candidates for
automation. Execution cost can be calculated by using the execution time
of each test case. It can also be calculated by adding more parameters such
as the complexity of the test case, the testing level and also the number
of requirements which have been assigned to each test case. Moreover,
the probability of detecting faults by each test case is also measurable via
performing historical analysis on some previously tested project within
the same testing environment. For instance, the brake system at BT is
the most faulty system and thus test cases which are assigned to test the

4.2 Future Work 37

case. Study F indicates that the automatic scheduling of test cases based on
their properties and execution results can reduce unnecessary redundant test
execution failure by up to 40%, which leads to an increase in the requirements
coverage of up to 9.6%.

As mentioned earlier in this chapter, in order to show the feasibility of
all proposed approaches in the doctoral thesis (Study A-to-F), several empir-
ical evaluations have been performed on a railway use-case at Bombardier
Transportation in Sweden.

4.2 Future Work

Work on this doctoral thesis has opened several future research directions for
us:

• Future development of sOrTES and integration possibilities for merg-
ing ESPRET and sOrTES as one open source tool for integration test
stochastic scheduling. Today, we predict the execution time for each
test case using ESPRET and the results are inserted manually into the
extractor phase of sOrTES. Embedding ESPRET into the extractor phase
of sOrTES can help us to measure three test case properties automatically
by using only a single tool.

• The proposed deep learning-based NLP approach for dependency detec-
tion in Study E can also be added to the extractor phase of sOrTES, where
it captures the test case specifications as input and clusters the dependent
test cases. Thus, sOrTES can be used in those situations where any of the
test process artifacts (e.g. signal information, requirement specification,
test specification) are available.

• As outlined in Table 3.1, there are two properties (execution cost and
fault detection probability) of test cases which are still candidates for
automation. Execution cost can be calculated by using the execution time
of each test case. It can also be calculated by adding more parameters such
as the complexity of the test case, the testing level and also the number
of requirements which have been assigned to each test case. Moreover,
the probability of detecting faults by each test case is also measurable via
performing historical analysis on some previously tested project within
the same testing environment. For instance, the brake system at BT is
the most faulty system and thus test cases which are assigned to test the

61

38 Chapter 4. Conclusions and Future Work

brake system have a higher probability of detecting these hidden faults
in the system compared with other test cases. Prioritizing the systems
and the subsystems for implementation and testing can be considered as
another possibility for contributing to the existing research.

• The concept of requirement coverage indicates the number of require-
ments assigned to be tested by each test case. In some testing scenarios,
one requirement can be assigned to more than one test case. In all pre-
sented studies in this thesis, the number of allocated requirements to each
test case are summed and presented as a numerical value. In the future,
this value will be modified through combining with a unique requirement
coverage value. A unique requirement coverage indicates the number of
requirements which are only assigned to one test case. Considering this
value in the test execution helps testers to test all requirements at least
once in any particular proposed test execution order.

• The dependency between the functions can also be expressed as a ratio.
For instance, the total dependency ratio for function F1 and function F2 is
90% (F2 depends on F1), meaning that, after 90% successful executions
of the designed test cases for function F1, we are able to test the assigned
test cases to function F2. Finding the dependency ratio between the
functions can help us to relax the assumption that, all test cases which
are designed to test F2 should be executed any time after the assigned
test cases for testing F1. Indeed, some of the dependent test cases can
be tested in parallel with other test cases, which leads to saving time
in a testing cycle. Since the dependencies between software modules,
functions, requirements and test cases are detected in this doctoral thesis,
analyzing the test records on the previously executed dependent test cases
might provide clues about the dependency ratio between dependent test
cases.

38 Chapter 4. Conclusions and Future Work

brake system have a higher probability of detecting these hidden faults
in the system compared with other test cases. Prioritizing the systems
and the subsystems for implementation and testing can be considered as
another possibility for contributing to the existing research.

• The concept of requirement coverage indicates the number of require-
ments assigned to be tested by each test case. In some testing scenarios,
one requirement can be assigned to more than one test case. In all pre-
sented studies in this thesis, the number of allocated requirements to each
test case are summed and presented as a numerical value. In the future,
this value will be modified through combining with a unique requirement
coverage value. A unique requirement coverage indicates the number of
requirements which are only assigned to one test case. Considering this
value in the test execution helps testers to test all requirements at least
once in any particular proposed test execution order.

• The dependency between the functions can also be expressed as a ratio.
For instance, the total dependency ratio for function F1 and function F2 is
90% (F2 depends on F1), meaning that, after 90% successful executions
of the designed test cases for function F1, we are able to test the assigned
test cases to function F2. Finding the dependency ratio between the
functions can help us to relax the assumption that, all test cases which
are designed to test F2 should be executed any time after the assigned
test cases for testing F1. Indeed, some of the dependent test cases can
be tested in parallel with other test cases, which leads to saving time
in a testing cycle. Since the dependencies between software modules,
functions, requirements and test cases are detected in this doctoral thesis,
analyzing the test records on the previously executed dependent test cases
might provide clues about the dependency ratio between dependent test
cases.

62

Bibliography

[1] M. Cook and R. Gunning. Mathematicians: An Outer View of the Inner
World. Princeton University Press, 2009.

[2] M. Young. Software Testing and Analysis: Process, Principles, and
Techniques. Wiley India Private Limited, 2008.

[3] A. Bertolino. Software testing research: Achievements, challenges,
dreams. In Future of Software Engineering (FOSE ’07). IEEE, 2007.

[4] V. Casey. Software Testing and Global Industry: Future Paradigms.
Cambridge Scholars Publisher, 2008.

[5] M. Ould. Testing in Software Development. Cambridge University Press,
1987.

[6] A. Srikanth, K. Nandakishore, N. Venkat, S. Puneet, and S. Praveen Ranjan.
Test case optimization using artificial bee colony algorithm. In Advances
in Computing and Communications. Springer Berlin Heidelberg, 2011.

[7] S. Yoo and M. Harman. Regression testing minimization, selection and
prioritization: A survey. Software Testing, Verification and Reliability,
22(2):67–120, 2012.

[8] M. Harman. Making the case for morto: Multi objective regression test
optimization. In The 4th International Conference on Software Testing,
Verification and Validation Workshops (ICSTW’11). IEEE, 2011.

[9] B. Baudry, F. Fleurey, J. Jezequel, and Y. Le Traon. Genes and bacteria
for automatic test cases optimization in the .net environment. In The 13th
International Symposium on Software Reliability Engineering (ISSRE’02).
ACM, 2002.

39

Bibliography

[1] M. Cook and R. Gunning. Mathematicians: An Outer View of the Inner
World. Princeton University Press, 2009.

[2] M. Young. Software Testing and Analysis: Process, Principles, and
Techniques. Wiley India Private Limited, 2008.

[3] A. Bertolino. Software testing research: Achievements, challenges,
dreams. In Future of Software Engineering (FOSE ’07). IEEE, 2007.

[4] V. Casey. Software Testing and Global Industry: Future Paradigms.
Cambridge Scholars Publisher, 2008.

[5] M. Ould. Testing in Software Development. Cambridge University Press,
1987.

[6] A. Srikanth, K. Nandakishore, N. Venkat, S. Puneet, and S. Praveen Ranjan.
Test case optimization using artificial bee colony algorithm. In Advances
in Computing and Communications. Springer Berlin Heidelberg, 2011.

[7] S. Yoo and M. Harman. Regression testing minimization, selection and
prioritization: A survey. Software Testing, Verification and Reliability,
22(2):67–120, 2012.

[8] M. Harman. Making the case for morto: Multi objective regression test
optimization. In The 4th International Conference on Software Testing,
Verification and Validation Workshops (ICSTW’11). IEEE, 2011.

[9] B. Baudry, F. Fleurey, J. Jezequel, and Y. Le Traon. Genes and bacteria
for automatic test cases optimization in the .net environment. In The 13th
International Symposium on Software Reliability Engineering (ISSRE’02).
ACM, 2002.

39

63

40 Bibliography

[10] D. Di Nardo, N. Alshahwan, L. Briand, and Y. Labiche. Coverage-based
regression test case selection, minimization and prioritization: A case study
on an industrial system. Software Testing, Verification and Reliability,
25(4):371–396, 2015.

[11] S. Elbaum, G. Rothermel, and J. Penix. Techniques for improving re-
gression testing in continuous integration development environments. In
The 22nd ACM SIGSOFT International Symposium on Foundations of
Software Engineering (FSE-22). ACM, 2014.

[12] D. Berthier. Pattern-Based Constraint Satisfaction and Logic Puzzles
(Second Edition). Lulu Publishing, 2015.

[13] M. Khan and F. Khan. Importance of software testing in software develop-
ment life cycle. International Journal of Computer Science Issues (IJCSI),
11(2), 2014.

[14] E. Alégroth, R. Feldt, and P. Kolström. Maintenance of automated test
suites in industry: An empirical study on visual gui testing. Information
and Software Technology, 73:66 – 80, 2016.

[15] "ISO/IEC/IEEE" international standard - software and systems engineering
–software testing –part 1:concepts and definitions. "ISO/IEC/IEEE" 29119-
1:2013(E), pages 1–64, 2013.

[16] D. Mosley and B. Posey. Just Enough Software Test Automation. Just
enough series. Prentice Hall PTR, 2002.

[17] G. Yu-Hsin Chen and P. Wang. Test case prioritization in a specification-
based testing environment. Journal of Software (JSW), 9:2056–2064,
2014.

[18] G. Myers. The Art of Software Testing. A Wiley-Interscience publication.
Wiley, 1979.

[19] A. Basu. Software quality assurance, testing and metrics. Prentice hall of
India private limited, 2015.

[20] T. Ostrand, E. Weyuker, and R. Bell. Where the bugs are. In The ACM
SIGSOFT International Symposium on Software Testing and Analysis
(ISSTA’04). ACM, 2004.

40 Bibliography

[10] D. Di Nardo, N. Alshahwan, L. Briand, and Y. Labiche. Coverage-based
regression test case selection, minimization and prioritization: A case study
on an industrial system. Software Testing, Verification and Reliability,
25(4):371–396, 2015.

[11] S. Elbaum, G. Rothermel, and J. Penix. Techniques for improving re-
gression testing in continuous integration development environments. In
The 22nd ACM SIGSOFT International Symposium on Foundations of
Software Engineering (FSE-22). ACM, 2014.

[12] D. Berthier. Pattern-Based Constraint Satisfaction and Logic Puzzles
(Second Edition). Lulu Publishing, 2015.

[13] M. Khan and F. Khan. Importance of software testing in software develop-
ment life cycle. International Journal of Computer Science Issues (IJCSI),
11(2), 2014.

[14] E. Alégroth, R. Feldt, and P. Kolström. Maintenance of automated test
suites in industry: An empirical study on visual gui testing. Information
and Software Technology, 73:66 – 80, 2016.

[15] "ISO/IEC/IEEE" international standard - software and systems engineering
–software testing –part 1:concepts and definitions. "ISO/IEC/IEEE" 29119-
1:2013(E), pages 1–64, 2013.

[16] D. Mosley and B. Posey. Just Enough Software Test Automation. Just
enough series. Prentice Hall PTR, 2002.

[17] G. Yu-Hsin Chen and P. Wang. Test case prioritization in a specification-
based testing environment. Journal of Software (JSW), 9:2056–2064,
2014.

[18] G. Myers. The Art of Software Testing. A Wiley-Interscience publication.
Wiley, 1979.

[19] A. Basu. Software quality assurance, testing and metrics. Prentice hall of
India private limited, 2015.

[20] T. Ostrand, E. Weyuker, and R. Bell. Where the bugs are. In The ACM
SIGSOFT International Symposium on Software Testing and Analysis
(ISSTA’04). ACM, 2004.

64

Bibliography 41

[21] J. Moré, B. Garbow, and K. Hillstrom. Testing unconstrained optimization
software. ACM Transactions on Mathematical Software, 7(1):17–41, 1981.

[22] J. Pintér. Global Optimization: Software, Test Problems, and Applications,
pages 515–569. Springer, 2002.

[23] G. Fraser and F. Wotawa. Redundancy based test-suite reduction. In Fun-
damental Approaches to Software Engineering, pages 291–305. Springer
Berlin Heidelberg, 2007.

[24] K. Alagarsamy. A synthesized overview of test case optimization tech-
niques. Journal of Recent Research in Engineering and Technology,
1(2):1–10, 2014.

[25] S. Biswas, M. Kaiser, and S. Mamun. Applying ant colony optimization
in software testing to generate prioritized optimal path and test data. In
The International Conference on Electrical Engineering and Information
Communication Technology (ICEEICT’15). IEEE, 2015.

[26] A. Windisch, S. Wappler, and J. Wegener. Applying particle swarm
optimization to software testing. In The 9th Annual Conference on Genetic
and Evolutionary Computation (GECCO ’07). ACM, 2007.

[27] S. Dahiya, J. Chhabra, and S. Kumar. Application of artificial bee colony
algorithm to software testing. In The 21st Australian Software Engineering
Conference (ASWEC’10). ACM, 2010.

[28] P. Srivastava. Optimization of software testing using genetic algorithm. In
The Information Systems, Technology and Management (ISM’09). Springer,
2009.

[29] G. Rothermel, R. Untch, and C. Chengyun. Prioritizing test cases for re-
gression testing. IEEE Transactions on Software Engineering, 27(10):929–
948, 2001.

[30] G. Rothermel and M. J. Harrold. Analyzing regression test selection
techniques. IEEE Transactions on Software Engineering, 22(8):529–551,
1996.

[31] E. Engström, P. Runeson, and M. Skoglund. A systematic review on
regression test selection techniques. Information and Software Technology,
52(1):14 – 30, 2010.

Bibliography 41

[21] J. Moré, B. Garbow, and K. Hillstrom. Testing unconstrained optimization
software. ACM Transactions on Mathematical Software, 7(1):17–41, 1981.

[22] J. Pintér. Global Optimization: Software, Test Problems, and Applications,
pages 515–569. Springer, 2002.

[23] G. Fraser and F. Wotawa. Redundancy based test-suite reduction. In Fun-
damental Approaches to Software Engineering, pages 291–305. Springer
Berlin Heidelberg, 2007.

[24] K. Alagarsamy. A synthesized overview of test case optimization tech-
niques. Journal of Recent Research in Engineering and Technology,
1(2):1–10, 2014.

[25] S. Biswas, M. Kaiser, and S. Mamun. Applying ant colony optimization
in software testing to generate prioritized optimal path and test data. In
The International Conference on Electrical Engineering and Information
Communication Technology (ICEEICT’15). IEEE, 2015.

[26] A. Windisch, S. Wappler, and J. Wegener. Applying particle swarm
optimization to software testing. In The 9th Annual Conference on Genetic
and Evolutionary Computation (GECCO ’07). ACM, 2007.

[27] S. Dahiya, J. Chhabra, and S. Kumar. Application of artificial bee colony
algorithm to software testing. In The 21st Australian Software Engineering
Conference (ASWEC’10). ACM, 2010.

[28] P. Srivastava. Optimization of software testing using genetic algorithm. In
The Information Systems, Technology and Management (ISM’09). Springer,
2009.

[29] G. Rothermel, R. Untch, and C. Chengyun. Prioritizing test cases for re-
gression testing. IEEE Transactions on Software Engineering, 27(10):929–
948, 2001.

[30] G. Rothermel and M. J. Harrold. Analyzing regression test selection
techniques. IEEE Transactions on Software Engineering, 22(8):529–551,
1996.

[31] E. Engström, P. Runeson, and M. Skoglund. A systematic review on
regression test selection techniques. Information and Software Technology,
52(1):14 – 30, 2010.

65

42 Bibliography

[32] S. Tahvili, W. Afzal, M. Saadatmand, M Bohlin, D. Sundmark, and S. Lars-
son. Towards earlier fault detection by value-driven prioritization of test
cases using fuzzy topsis. In The 13th International Conference on Infor-
mation Technology : New Generations (ITNG’16). ACM, 2016.

[33] S. Tahvili, M. Saadatmand, and M. Bohlin. Multi-criteria test case prioriti-
zation using fuzzy analytic hierarchy process. In The 10th International
Conference on Software Engineering Advances (ICSEA’15). IARIA, 2015.

[34] A. Rikalovic, I. Cosic, and D. Lazarevic. Gis based multi-criteria analysis
for industrial site selection. Procedia Engineering, 69:1054 – 1063, 2014.

[35] S. Elbaum, A. Malishevsky, and G. Rothermel. Test case prioritization: A
family of empirical studies. IEEE Transactions on Software Engineering,
28(2):159–182, 2002.

[36] R. Abid and A. Nadeem. A novel approach to multiple criteria based test
case prioritization. In The 13th International Conference on Emerging
Technologies (ICET’17). IEEE, 2017.

[37] K. Wang, T. Wang, and X. Su. Test case selection using multi-criteria
optimization for effective fault localization. Computing, 100(8):787–808,
2018.

[38] J. Jones and M. Harrold. Test-suite reduction and prioritization for modi-
fied condition/decision coverage. IEEE Transactions on Software Engi-
neering, 29(3):195–209, 2003.

[39] S. Arlt, T. Morciniec, A. Podelski, and S. Wagner. If a fails, can b
still succeed? inferring dependencies between test results in automotive
system testing. In The 8th International Conference on Software Testing,
Verification and Validation (ICST’15). IEEE, 2015.

[40] P. Caliebe, T. Herpel, and R. German. Dependency-based test case se-
lection and prioritization in embedded systems. In The 5th International
Conference on Software Testing, Verification and Validation (ICST’12).
IEEE, 2012.

[41] M. Broy. Challenges in Automotive Software Engineering. In The 28th
International Conference on Software Engineering (ICSE’06). IEEE, 2006.

42 Bibliography

[32] S. Tahvili, W. Afzal, M. Saadatmand, M Bohlin, D. Sundmark, and S. Lars-
son. Towards earlier fault detection by value-driven prioritization of test
cases using fuzzy topsis. In The 13th International Conference on Infor-
mation Technology : New Generations (ITNG’16). ACM, 2016.

[33] S. Tahvili, M. Saadatmand, and M. Bohlin. Multi-criteria test case prioriti-
zation using fuzzy analytic hierarchy process. In The 10th International
Conference on Software Engineering Advances (ICSEA’15). IARIA, 2015.

[34] A. Rikalovic, I. Cosic, and D. Lazarevic. Gis based multi-criteria analysis
for industrial site selection. Procedia Engineering, 69:1054 – 1063, 2014.

[35] S. Elbaum, A. Malishevsky, and G. Rothermel. Test case prioritization: A
family of empirical studies. IEEE Transactions on Software Engineering,
28(2):159–182, 2002.

[36] R. Abid and A. Nadeem. A novel approach to multiple criteria based test
case prioritization. In The 13th International Conference on Emerging
Technologies (ICET’17). IEEE, 2017.

[37] K. Wang, T. Wang, and X. Su. Test case selection using multi-criteria
optimization for effective fault localization. Computing, 100(8):787–808,
2018.

[38] J. Jones and M. Harrold. Test-suite reduction and prioritization for modi-
fied condition/decision coverage. IEEE Transactions on Software Engi-
neering, 29(3):195–209, 2003.

[39] S. Arlt, T. Morciniec, A. Podelski, and S. Wagner. If a fails, can b
still succeed? inferring dependencies between test results in automotive
system testing. In The 8th International Conference on Software Testing,
Verification and Validation (ICST’15). IEEE, 2015.

[40] P. Caliebe, T. Herpel, and R. German. Dependency-based test case se-
lection and prioritization in embedded systems. In The 5th International
Conference on Software Testing, Verification and Validation (ICST’12).
IEEE, 2012.

[41] M. Broy. Challenges in Automotive Software Engineering. In The 28th
International Conference on Software Engineering (ICSE’06). IEEE, 2006.

66

Bibliography 43

[42] S. Tahvili, L. Hatvani, M. Felderer, W. Afzal, M. Saadatmand, and
M. Bohlin. Cluster-based test scheduling strategies using semantic rela-
tionships between test specifications. In The 5th International Workshop
on Requirements Engineering and Testing (RET’18), 2018.

[43] N. Iqbal, W. Rizwan, and J. Qureshi. Improvement of key problems of
software testing in quality assurance. Computing Research Repository
(CoRR), 1202.2506, 2012.

[44] S. Naik and P. Tripathy. Software Testing and Quality Assurance: Theory
and Practice. Wiley, 2008.

[45] D. Harter, K. Mayuram, and S. Slaughter. Effects of process maturity on
quality, cycle time, and effort in software product development. Manage-
ment Science, 46(4):451–466, 2000.

[46] M. Harman. Making the case for morto: Multi objective regression test
optimization. In The 4th International Conference on Software Testing,
Verification and Validation Workshops (ICSTW’11). IEEE, 2011.

[47] P. McMinn. Search-based software test data generation: A survey: Re-
search articles. Software Testing, Verification and Reliability, 14(2):105–
156, 2004.

[48] S. Tahvili. A Decision Support System for Integration Test Selection. 2016.
Licentiate Thesis Dissertation, Mälardalen University, Sweden.

[49] L. Biacino and G. Giangiacomo. Fuzzy logic, continuity and effectiveness.
Archive for Mathematical Logic, 41(7):643–667, 2002.

[50] S. Ulewicz and B. Vogel-Heuser. System regression test prioritization in
factory automation: Relating functional system tests to the tested code
using field data. In The 42nd Annual Conference of the IEEE Industrial
Electronics Society (IECON’16). IEEE, 2016.

[51] S. Vöst and S. Wagner. Trace-based test selection to support continuous
integration in the automotive industry. In The International Workshop on
Continuous Software Evolution and Delivery (CSED’16). IEEE, 2016.

[52] M. Parsa, A. Ashraf, D. Truscan, and I. Porres. On optimization of test
parallelization with constraints. In The 1st Workshop on Continuous
Software Engineering co-located with Software Engineering (CSE’16).
CEUR-WS, 2016.

Bibliography 43

[42] S. Tahvili, L. Hatvani, M. Felderer, W. Afzal, M. Saadatmand, and
M. Bohlin. Cluster-based test scheduling strategies using semantic rela-
tionships between test specifications. In The 5th International Workshop
on Requirements Engineering and Testing (RET’18), 2018.

[43] N. Iqbal, W. Rizwan, and J. Qureshi. Improvement of key problems of
software testing in quality assurance. Computing Research Repository
(CoRR), 1202.2506, 2012.

[44] S. Naik and P. Tripathy. Software Testing and Quality Assurance: Theory
and Practice. Wiley, 2008.

[45] D. Harter, K. Mayuram, and S. Slaughter. Effects of process maturity on
quality, cycle time, and effort in software product development. Manage-
ment Science, 46(4):451–466, 2000.

[46] M. Harman. Making the case for morto: Multi objective regression test
optimization. In The 4th International Conference on Software Testing,
Verification and Validation Workshops (ICSTW’11). IEEE, 2011.

[47] P. McMinn. Search-based software test data generation: A survey: Re-
search articles. Software Testing, Verification and Reliability, 14(2):105–
156, 2004.

[48] S. Tahvili. A Decision Support System for Integration Test Selection. 2016.
Licentiate Thesis Dissertation, Mälardalen University, Sweden.

[49] L. Biacino and G. Giangiacomo. Fuzzy logic, continuity and effectiveness.
Archive for Mathematical Logic, 41(7):643–667, 2002.

[50] S. Ulewicz and B. Vogel-Heuser. System regression test prioritization in
factory automation: Relating functional system tests to the tested code
using field data. In The 42nd Annual Conference of the IEEE Industrial
Electronics Society (IECON’16). IEEE, 2016.

[51] S. Vöst and S. Wagner. Trace-based test selection to support continuous
integration in the automotive industry. In The International Workshop on
Continuous Software Evolution and Delivery (CSED’16). IEEE, 2016.

[52] M. Parsa, A. Ashraf, D. Truscan, and I. Porres. On optimization of test
parallelization with constraints. In The 1st Workshop on Continuous
Software Engineering co-located with Software Engineering (CSE’16).
CEUR-WS, 2016.

67

44 Bibliography

[53] I. Burnstein, T. Suwanassart, and R. Carlson. Developing a testing maturity
model for software test process evaluation and improvement. In The
International Test Conference on Test and Design Validity (ITC’96). IEEE,
1996.

[54] M. Usaola and P. Mateo. Mutation testing cost reduction techniques: A
survey. IEEE Software, 27(3):80–86, 2010.

[55] S. Slaughter, D. Harter, and K. Mayuram. Evaluating the cost of software
quality. Communications of the ACM, 41(8):67–73, 1998.

[56] B. Boehm and V. Basili. Software defect reduction top 10 list. The
Computer Journal, 34(1):135–137, 2001.

[57] S. Tahvili, M. Saadatmand, S. Larsson, W. Afzal, M. Bohlin, and D. Sund-
mark. Dynamic integration test selection based on test case dependencies.
In The 11th Workshop on Testing: Academia-Industry Collaboration, Prac-
tice and Research Techniques (TAICPART’16). IEEE, 2016.

[58] T. Gorschek, P. Garre, S. Larsson, and C. Wohlin. A model for technology
transfer in practice. IEEE Software, 23(6):88–95, 2006.

[59] S. Fleeger and W. Menezes. Marketing technology to software practition-
ers. IEEE Software, 17(1):27–33, 2000.

[60] V. Basili, F. E. McGarry, R. Pajerski, and M. Zelkowitz. Lessons learned
from 25 years of process improvement: the rise and fall of the nasa
software engineering laboratory. In The 24th International Conference on
Software Engineering (ICSE’02). ACM, 2002.

[61] P. Runeson and M. Höst. Guidelines for conducting and reporting case
study research in software engineering. Empirical Software Engineering,
14(2):131, 2008.

[62] Testomat project- the next level of test automation.
http://www.testomatproject.eu.

[63] W. Afzal, H. Bruneliere, W. Di Ruscio, A. Sadovykh, S. Mazzini, E. Car-
iou, D. Truscan, J. Cabot, A. Gómez, J. Gorroñogoitia, L. Pomante, and
P. Smrz. The megam@rt2 ecsel project: Megamodelling at runtime –
scalable model-based framework for continuous development and runtime
validation of complex systems. Microprocessors and Microsystems, 61:86
– 95, 2018.

44 Bibliography

[53] I. Burnstein, T. Suwanassart, and R. Carlson. Developing a testing maturity
model for software test process evaluation and improvement. In The
International Test Conference on Test and Design Validity (ITC’96). IEEE,
1996.

[54] M. Usaola and P. Mateo. Mutation testing cost reduction techniques: A
survey. IEEE Software, 27(3):80–86, 2010.

[55] S. Slaughter, D. Harter, and K. Mayuram. Evaluating the cost of software
quality. Communications of the ACM, 41(8):67–73, 1998.

[56] B. Boehm and V. Basili. Software defect reduction top 10 list. The
Computer Journal, 34(1):135–137, 2001.

[57] S. Tahvili, M. Saadatmand, S. Larsson, W. Afzal, M. Bohlin, and D. Sund-
mark. Dynamic integration test selection based on test case dependencies.
In The 11th Workshop on Testing: Academia-Industry Collaboration, Prac-
tice and Research Techniques (TAICPART’16). IEEE, 2016.

[58] T. Gorschek, P. Garre, S. Larsson, and C. Wohlin. A model for technology
transfer in practice. IEEE Software, 23(6):88–95, 2006.

[59] S. Fleeger and W. Menezes. Marketing technology to software practition-
ers. IEEE Software, 17(1):27–33, 2000.

[60] V. Basili, F. E. McGarry, R. Pajerski, and M. Zelkowitz. Lessons learned
from 25 years of process improvement: the rise and fall of the nasa
software engineering laboratory. In The 24th International Conference on
Software Engineering (ICSE’02). ACM, 2002.

[61] P. Runeson and M. Höst. Guidelines for conducting and reporting case
study research in software engineering. Empirical Software Engineering,
14(2):131, 2008.

[62] Testomat project- the next level of test automation.
http://www.testomatproject.eu.

[63] W. Afzal, H. Bruneliere, W. Di Ruscio, A. Sadovykh, S. Mazzini, E. Car-
iou, D. Truscan, J. Cabot, A. Gómez, J. Gorroñogoitia, L. Pomante, and
P. Smrz. The megam@rt2 ecsel project: Megamodelling at runtime –
scalable model-based framework for continuous development and runtime
validation of complex systems. Microprocessors and Microsystems, 61:86
– 95, 2018.

68

[64] Imprint-innovative model-based product integration testing.
http://www.sics.se/projects/imprint.

[65] Tocsyc - testing of critical system characteristics.
https://www.sics.se/projects/tocsyc2.

[66] Electric multiple unit class 490 – hamburg, germany.
https://www.bombardier.com/en/transportation/projects/project.ET-
490-Hamburg-Germany.html.

[67] Bombardier wins order to supply new generation movia metro fleet
for stockholm. http://ir.bombardier.com/en/press-releases/press-
releases/44772-bombardier-wins-order-to-supply-new-generation-
movia-metro-fleet-for-stockholm.

[64] Imprint-innovative model-based product integration testing.
http://www.sics.se/projects/imprint.

[65] Tocsyc - testing of critical system characteristics.
https://www.sics.se/projects/tocsyc2.

[66] Electric multiple unit class 490 – hamburg, germany.
https://www.bombardier.com/en/transportation/projects/project.ET-
490-Hamburg-Germany.html.

[67] Bombardier wins order to supply new generation movia metro fleet
for stockholm. http://ir.bombardier.com/en/press-releases/press-
releases/44772-bombardier-wins-order-to-supply-new-generation-
movia-metro-fleet-for-stockholm.

69

 HistoryItem_V1
 TrimAndShift

 Range: all pages
 Trim: cut right edge by 20.98 points
 Shift: none
 Normalise (advanced option): 'original'

 32
 1
 0
 No
 1241
 262
 None
 Up
 0.0000
 0.0000

 Both
 11
 AllDoc
 26

 CurrentAVDoc

 Smaller
 20.9764
 Right

 QITE_QuiteImposingPlus2
 Quite Imposing Plus 2.9b
 Quite Imposing Plus 2
 1

 0
 1
 0
 1

 1

 HistoryItem_V1
 TrimAndShift

 Range: all pages
 Trim: cut bottom edge by 20.98 points
 Shift: none
 Normalise (advanced option): 'original'

 32
 1
 0
 No
 1241
 262
 None
 Up
 0.0000
 0.0000

 Both
 11
 AllDoc
 26

 CurrentAVDoc

 Smaller
 20.9764
 Bottom

 QITE_QuiteImposingPlus2
 Quite Imposing Plus 2.9b
 Quite Imposing Plus 2
 1

 0
 1
 0
 1

 1

 HistoryItem_V1
 TrimAndShift

 Range: all pages
 Trim: cut top edge by 20.98 points
 Shift: none
 Normalise (advanced option): 'original'

 32
 1
 0
 No
 1241
 262
 None
 Up
 0.0000
 0.0000

 Both
 11
 AllDoc
 26

 CurrentAVDoc

 Smaller
 20.9764
 Top

 QITE_QuiteImposingPlus2
 Quite Imposing Plus 2.9b
 Quite Imposing Plus 2
 1

 0
 1
 0
 1

 1

 HistoryItem_V1
 TrimAndShift

 Range: all pages
 Trim: cut left edge by 553.61 points
 Shift: none
 Normalise (advanced option): 'original'

 32
 1
 0
 No
 1241
 262

 None
 Up
 0.0000
 0.0000

 Both
 11
 AllDoc
 26

 CurrentAVDoc

 Smaller
 553.6063
 Left

 QITE_QuiteImposingPlus2
 Quite Imposing Plus 2.9b
 Quite Imposing Plus 2
 1

 0
 1
 0
 1

 1

 HistoryList_V1
 qi2base

