Blended Modelling —

Federico Ciccozzi
Milardalen University Ulm University
Viisterds, Sweden Ulm, Germany

federico.ciccozzi @mdh.se matthias.tichy @uni-ulm.de

Matthias Tichy

Abstract—Empirical studies indicate that user experience can
significantly be improved in model-driven engineering. Blended
modelling aims at mitigating this by enabling users to inter-
act with a single model through different notations. Blended
modelling contributes to various modelling qualities, including
comprehensibility, analysability, and acceptability. In this paper,
we define the notion of blended modelling and propose a set
of dimensions that characterise blended modelling. The dimen-
sions are grouped in two classes: user-oriented dimensions and
realisation-oriented dimensions. Each dimension describes a facet
that is relevant to blended modelling together with its domain
(i.e., the range of values for that dimension). The dimensions offer
a basic vocabulary to support tool developers with making well-
informed design decisions as well as users to select appropriate
tools and configure them according to the needs at hand. We
illustrate how the dimensions apply to different cases relying on
our experience with blended modelling. We discuss the impact of
blended modelling on usability and user experience and sketch
metrics to measure it. Finally, we outline a number of core
research directions in this increasingly important modelling area.

Index Terms—modelling, user experience, blended modelling,
abstract syntax, concrete syntax, notations, tools.

I. INTRODUCTION

Modelling is a common activity in most technical and
engineering domains that aims at representing a complex
problem in a simpler, more abstract, more understandable, or
more focused manner, for a specific purpose. Modelling yields
models that can be used for simplifying communication among
different stakeholders, serve as a blue-print for performing
engineering tasks, as sources (or targets) of specific analysis or
verification and validation (V&V) activities. Models together
with model manipulations are the core artefacts of Model-
Driven Engineering (MDE) [1]. MDE is an engineering ap-
proach that aims at raising the level of abstraction at which
engineers operate, moving from a problem-/reality-specific
complex and detailed world, to a less detailed, more flexible
and more comprehensive level. For example, in software en-
gineering, modelling allows moving from a detailed machine-
oriented code-centric level to an architecture level, allowing
engineers to focus on the coarse-grained structures and be-
haviours of a system, supporting reasoning about qualities of
the system, such as maintainability, reliability and security.

Modelling languages are commonly divided into two cate-
gories: general-purpose and domain-specific. General-purpose
languages are broadly applicable across domains (examples
are UML and XML); however these languages lack fea-

hans.vangheluwe @uantwerpen.be

What, Why and How

Hans Vangheluwe Danny Weyns

Univ. of Antwerp - Flanders Make KU Leuven and Linneaus Univ.

Antwerp, Belgium Leuven, Belgium

danny.weyns @kuleuven.be

tures specific for a particular domain of interest. In contrast,
domain-specific modelling languages (DSMLs) offer engi-
neers domain-specific modelling concepts and features that
formalise their communication for the domain at hand. The
heterogeneity and variability within a domain, the modelling
needs across development phases, and the diversity of stake-
holders and their roles, require DSMLs that offer a flexible set
of notations' by which stakeholders can interact with models.

Nevertheless, DSMLs usually focus on one reference nota-
tion (e.g., graphical or textual), restricting stakeholder com-
munication within a domain and across different disciplines.
A notation that is convenient for and well-understood by one
stakeholder may not be as convenient for another stakeholder.
Moreover, engineers may have different notation preferences,
possible for different modelling tasks. Hence, supporting only
a single notation may negatively affect the throughput of
engineers. The diversity of stakeholders calls for a variety
of domain-specific editing facilities, which can be graphical,
table-based, form-based, and also textual (e.g., formal speci-
fication [2]). Besides hampering communication and coopera-
tion, restricting modelling to one notation has the drawback of
limiting the pool of available tools to develop and manipulate
models. For example, choosing a diagrammatic representation
(without a corresponding textual representation) may limit
the usability of text manipulation tools, such as text-based
diff/merge, which is important for team collaboration. When
adopting MDE in large-scale projects, efficient modelling
support for a team is crucial. Therefore, DSMLs and related
tools are expected to enable different stakeholders to work
on overlapping parts of models using different notations. In
summary, modelling based on one single notation is often too
restrictive and undermines many MDE benefits.

In this paper we formalise the use of multiple modelling
notations as blended modelling and define it as follows:

Blended modelling is the activity of interacting
seamlessly with a single model (i.e., abstract syntax)
through multiple notations (i.e., concrete syntaxes),
allowing a certain degree of temporary inconsistencies.

Blended modelling entails the ability to seamlessly interleave
modelling and change operations at arbitrary times and across
multiple users working collaboratively. Moreover, blended
modelling can (and shall) provide variable degrees of non-
conformance of edited models to both the underlying language

'We use the term “notation” as a synonym for concrete syntax of a DSML.

‘ @ set of conforming models O non-conforming model h edit operation

Fig. 1. Illustrating the benefits of temporary non-conforming models

and the provided notations, to maximise modelling flexibility
and, consequently, productivity for the engineers. Figure 1
illustrates the benefits of temporary non-conforming models as
they allow, e.g., to “take shortcuts” during modelling activities.

In the next section, we relate blended modelling to other
paradigms in MDE and provide a motivation for a targeted
research effort on blended modelling. Section IIl provides
a snapshot of the state of the art and current practice in
blended modelling. In Section IV, we provide a discussion
of different dimensions of blended modelling grouped into
user-oriented and realisation-oriented dimensions. Section V
discusses the expected positive impact of blended modelling
on user experience. Finally, Section VI concludes the paper
with a set of core research directions.

II. CONTEXTUALISING BLENDED MODELLING

At first sight, the notion of blended modelling may seem
similar or overlapping with multi-view modelling [3] that is
based on the paradigm of viewpoint/view/model as formalised
in the ISO/IEC 42010 standard?.

Multi-view modelling is commonly based on viewpoints
(i.e. “conventions for the construction, interpretation and use of
architecture views to frame specific system concerns” [4]) that
are materialised through views that are composed of one or
more models. In blended modelling, the focus is not on iden-
tifying viewpoints and related views, but rather on providing
multiple blended editing and visualising notations to interact
with a set of concepts. In short, blended modelling could
be seen as orthogonal to multi-view modelling. While multi-
view modelling aims at defining viewpoints/views, blended
modelling aims at providing a powerful multi-notation charac-
terisation that may be used to define viewpoints/views. Multi-
view modelling approaches focus on the creation of view-
points/views and mechanisms for consistency management
across them [3], [5]. Blended modelling focuses on the specific
problems related to the provision of multiple concrete syntaxes

Zhttps://www.iso.org/standard/50508.html

e2
A\ : J/
b) Mt el e2 e3
sl s2 - N
s2 - s3 -
s3 s5 - s6
s4 - - -
s5 s6 s5 s2
s6 - s7 -
s? N . -

c)| stateMachine SM{
region Regionl{
initialState si;
state s2;

compositeState s4{
state s5;
state s6;
transition s5 to s6 with el;

3

Fig. 2. Model of a state-machine in three partially overlapping concrete
syntaxes: a) diagrammatic, b) tabular, c) textual

for a set of abstract syntactical concepts, independently of
whether the base modelling approach is multi-view or not.
User experience (UX) is a major concern in MDE, espe-
cially in relation to the way users can use modelling tools
to interact with models [6], [7]. Blended modelling aims at
improving UX by providing multiple notations suitable for
different aspects of design, development and stakeholder com-
munication in an MDE process. Consider the example in Fig. 2
that shows how three partially overlapping concrete syntaxes
can be used to model a state-machine. While the diagrammatic
notation (Fig. 2.a) is most appropriate for designing the state-
machine and grasping the model behaviour at a glance, a
tabular notation (Fig. 2.b) is more convenient for identifying
specific properties, e.g. check whether a specific state (s5)
covers all entailed events (el, e2, e3). The textual notation
(Fig. 2.c) on the other hand is the most convenient for complex
restructuring of the state-machine, e.g., moving internal states
and transitions from one composite state to another (e.g., from
s4 to s3), which can be done with a single copy & paste action.
The same would be particularly difficult using the tabular

notation since it does not carry information about composite
states, while it would require a set of editing actions in the
diagrammatic notation (at least in state of the art tools [8]).
In a preliminary work [8], we proposed a prototype frame-
work for blended modelling and experimented with the poten-
tial usefulness of it. We focused on mixed textual and graph-
ical notations, in particular for UML profiles. By seamlessly
combining graphical and textual modelling, the framework
showed potential to mitigate the drawbacks of both notations
and to exploit the synergy of combining their benefits. The
experiments highlighted several concrete benefits, such as
enhanced flexibility for separating concerns, improved features
for multi-view modelling, increase in convenience of text-
based editing operations, and increase in modelling efficiency.

III. RELATED WORK

Some of the issues related to blended modelling, espe-
cially from the point of view of consistency management
across models described in different concrete syntaxes, can
be similarly found in multi-view modelling. In this paper we
focus on a first classification and characterisation of blended
modelling solutions, thus leaving out other aspects of multi-
view modelling approaches. For the interested reader, an
empirical classification and characterisation of existing multi-
view modelling approaches can be found in [3].

Several solutions have been proposed to intermix differ-
ent concrete syntaxes (mostly textual and graphical); in the
following, we present them highlighting their strengths and
weaknesses in relation to our classification.

Umple [9] merges programming and modelling concepts
by adding modelling abstractions into programming languages
and offering features to actively perform model edits on both
textual and graphical concrete syntaxes. Some edit operations
are specific to one concrete syntax and not customisable.

A plethora of other tools such as FXDiagram [10], Eclipse
Sprotty [11], LightUML [12], TextUML [13], MetaUML [14],
PlantUML [15] focuses on textual concrete syntax for actively
editing the modelling artefacts, while providing a graphical
notation for visualisation purposes only. FXDiagram is based
on JavaFX 2 and provides on-the-fly graphical visualisation
of changes in the textual concrete syntax including change
propagation; the focus is on EMF models. Eclipse Sprotty,
as FXDiagram, focuses on the visualisation of textual mod-
els, but it also provides a limited degree of editing of the
models. LightUML focuses more on reverse engineering by
generating a class diagram representation of existing Java
classes and packages. TextUML allows modellers to leverage
a textual notation for defining UML models and providing
textual comparison, live graphical visualisation of the model
in terms of class diagrams, syntax highlighting and instant
validation. MetaUML is a MetaPost library for creating UML
diagrams through a textual concrete syntax and it supports
a few read-only diagrams. Similarly, PlantUML allows the
modelling of UML diagrams by using a textual notation;
graphical visualisations are read-only.

JetBrains MPS [16] is a meta-modelling environment for
the development of DSML tools, which support synchronised
editing in multiple (customisable) concrete syntaxes for non-
UML DSMLs, but lacks out-of-the-box support for UML
profiles and has limited automated support for integration
with domain-specific environments. Furthermore, the “textual”
view of a model in MPS is not actual text but a form-based
representation with a fixed format. This implies, not only that
these form-based editors restrict the user, but more critically,
standard text-based tools such as regex search/replace, or
diff/merge cannot be used on the model.

Similarly to JetBrains MPS, MelanEE [17] exploits the
projectional approach too. With projectional editing, the user
edits the model through a syntax-specific view or editor,
which itself updates the underlying abstract syntax model and
these changes are automatically reflected in other views or
editors for alternative concrete syntaxes. The main advantage
is that the model can be projected in various concrete syntaxes
depending on what the user prefers. However, it adds a
considerable overhead for the DSML developer as the user
actions (i.e., keyboard, trackpad and mouse events) have to
be translated into change actions on the abstract syntax tree.
For parser-based textual DSMLs (e.g., Xtext), a text editor in
combination with a lexer/parser combination can be used.

A textual editor for the Action Language for Foundational
UML (Alf) has been developed based on Xtext [18]. In [19],
the authors provide an approach for defining combined textual
and graphical DSMLs based on the AToM3 tool. Starting
from a metamodel definition, different diagram types can be
assigned to different parts of the metamodel. A graphical
concrete syntax is assigned by default, while a textual one can
be given by providing triple graph grammar rules to map it to
the specific metamodel portion. This approach targets specific
DSMLs defined through AToM3 and is not applicable to, e.g.,
UML. Charfi et al. [20] explore the possibilities to define a
single concrete syntax supporting both graphical and textual
notations specifically for UML actions only.

In [21], the authors provide the steps needed for embedding
generated EMF-based textual model editors into graphical
editors defined in terms of GMF. That approach provides pop-
up boxes to textually edit elements of graphical models rather
than allowing seamless editing of the entire model using a
chosen syntax. The change propagation mechanisms are on-
demand triggered by a modeller’s commit.

Related to the switching between graphical and textual
syntaxes, two approaches are proposed to ease transformations
of models containing both graphical and textual elements.
The first is Grammarware [22], by which a mixed model is
exported as text. The second is Modelware [22], by which a
model containing graphical and textual content is transformed
into a fully graphical model. Transformation from mixed
models to either text or graphics is on demand rather than
on-the-fly and the approach does not allow concurrent editing.

Maro et al. [23] provide a solution blended modelling of a
specific UML profile, based on Ecore as pivot-language be-
tween graphical and concrete syntaxes and higher-order trans-

formations for on-demand synchronisation purposes. Addazi et
al. [8] propose a solution for blended modelling of UML and
profiles, where both graphical and textual editing is done on
a common persistent model resource, thus reducing the need
for synchronisation among the two concrete syntaxes (more
flexible but less performant than projectional approaches);
the authors report on a small-scale experiment showing the
potential benefits of blended modelling too.

Although there are several works on the topics related to
blended modelling, a reference classification and characterisa-
tion of it has not been proposed yet.

IV. CLASSIFICATION

We now discuss all relevant dimensions for blended mod-
elling. While many of them are applicable for general mod-
elling, they are specifically needed for blended modelling. We
give a domain for each dimension, a description as well as
an example. We distinguish between dimensions relevant for
a user of a blended modelling tool and technical dimensions
relevant for a developer of a blended modelling tool.

A. User-Oriented Dimensions

Table I shows the user-oriented dimensions. We highly
value the flexibility provided by blended modelling to increase
productivity as discussed in the introduction. Specifically, we
distinguish two dimensions of flexibility: language flexibility
and notation flexibility. The first dimension describes how
much the abstract syntax of a model is allowed to deviate from
the language specification. For example, a state machine model
might temporarily contain unconnected transitions, which is
useful for re-factoring operations. The second dimension de-
scribes how much the notation of the model might deviate
from the notation defined for the language. For example, the
states of a state machine describing a traffic light might be
shown as pictographs of the traffic light in its states to improve
comprehensibility of the state machine.

While these dimensions are applicable to single notations,
the dimension degree of overlap between the elements shown
in multiple notations and the dimensions related to incon-
sistency focus on multiple notations. Similarly to above’s
discussion on flexibility, bearing with inconsistencies is a
vital ingredient of blended modelling to increase productivity.
This includes the ability to support temporary inconsistencies
between the different notations of a model while being fully
able to edit it as well as propagating changes in local,
consistent parts of the model. This requires different variants
of inconsistency detection and inconsistency resolutions.

B. Realisation-Oriented Dimensions

Table II shows some technical dimensions of blended mod-
elling. The Mapping cardinality refers to how the multiple
notations can be technically realised. The easiest case is when
one abstract syntax (N=1) can be shown in multiple (M >1)
different notations. However, often technical constraints of
the used modelling frameworks require also multiple (N >1)
abstract syntaxes. E.g., some frameworks require for each

notation element a corresponding object in the abstract syntax
even though sometimes a link between objects in the abstract
syntax would be enough to capture the same information.

The mapping technology refers to the different implemen-
tation variants of how the mapping between abstract and con-
crete syntax is kept consistent. Here, we see two extremes that
have a notable impact on the other blended modelling dimen-
sions: parsing-based and projection-based. Parsing is mostly
used for textual notations whereas projections are mainly
used for diagrammatic and other notations. Those technologies
differ mostly in usability and inconsistency handling. While
parsing-based approaches offer a broad variety of user inter-
actions, independently of the language constraints, projection-
based approaches follow the correct-by-construction paradigm,
thus leading to easier realisation of blended modelling, but
suffering from lower usability (cf. [24], [25]).

Finally, the change propagation dimension covers how
changes between the different notations and the abstract syntax
are propagated. Here, we distinguish between sequential and
concurrent change propagation, buffered or not, as well as
whether and how multiple changes are merged.

V. IMPACT ON USABILITY AND USER EXPERIENCE

In the following, we discuss those usability attributes, based
on the ISO 9241-110 standard®, which we believe blended
modelling will positively impact, leading to a better user
experience.

o Understandability: Understandability is the ability to be
understood. Blended modelling supports understandabil-
ity as different concrete syntaxes support understanding
activities differently. In the case of a state-machine, a
diagrammatic concrete syntax gives a good overview of
the different states and their transitions, while a tabular
concrete syntax easily shows whether a state reacts to any
event in the state-machine.

« Learnability: Learnability is the capability of a software
artefact to enable the user to learn how to use it [26]. Di-
agrammatic concrete syntaxes and corresponding editors
provide a better learnability for domain experts as they
can show the model using the visual shapes of domain
elements, which a textual concrete syntax cannot.

o Changeability: Changeability is the ability to change or
be changed. Different changes might be easier or harder
to perform in different concrete syntaxes. Blended mod-
elling allows users to choose, for each type of change, the
concrete syntax where a specific change type is easier
to perform. For example, creating a transition between
states might be easier in a state-machine diagram since
the states are easily identifiable compared to a textual
syntax, where one would need to refer to the state name
that might be defined in a different location in the text.
However, moving a set of states into a composite state
might be much easier to do in a textual syntax as one
could simply cut&paste the text representing the states

3https://www.iso.org/standard/38009.html

TABLE I

USER-ORIENTED BLENDED MODELLING DIMENSIONS

Dimension

Dimension scope

Description

Example

Number of concrete syntaxes

From 2 to N

Blended modelling requires at least
two different concrete syntaxes.

A combination of diagram, text, and
table. For example, a state machine
could be shown in a diagrammatic
way to give an overview, a textual way
to easily re-factor, and a table to easily
analyse for completeness

Degree of language flexibility

No deviation from abstract syntax,
deviation only from well-formedness
rules, deviation from the metamodel

Switchable degree of flexibility to de-
viate temporarily from the rules of the
language

a correct-by-construction editor does
not allow the deviation from the ab-
stract syntax, a textual editor may
allow deviations from the base meta-
model/grammar

Degree of notation flexibility

No deviation from the shapes of the
notation, deviation from the shapes of
the notation

Switchable degree of flexibility to de-
viate temporarily from the rules of the
notation

A graphical editor for state machines
might allow to use different shapes for
states

Degree of overlap

From partial to complete

The percentage of language constructs
expressible in multiple concrete syn-
taxes

A diagrammatic language shows a
state machine fully whereas a table
only shows which states have transi-
tions to which states

Inconsistency detection On-the-fly, on-demand, time- Inconsistency detection between the Each time a user changes a diagram-
triggered, condition-triggered multiple concrete syntax representa- matic representation of a state ma-
tions chine, its consistency with the table

is automatically checked
Inconsistency resolution From manual to automatic How the system supports resolution of If a transition between two states is
inconsistencies added, a corresponding table entry is

changed
TABLE II

REALISATION-ORIENTED BLENDED MODELLING DIMENSIONS

Dimension

Dimension scope

Description

Example

Number of abstract syntaxes re-
quired for multiple concrete syntax

#0S > 1,1 <=
#CS

#AS <=

Cardinality of the technical mapping
between abstract and concrete syn-
taxes

Different abstract syntaxes have to
be used for diagram and table nota-
tions of hierarchical state machines
due to technical constraints by the
underlying frameworks

Mapping process between abstract

and concrete syntaxes

matic, graph)

Projectional, parsing (text, diagram-

This dimension covers how ele-
ments of the abstract syntax are
technically kept consistent with the
representational elements

While text is usually parsed against
a, e.g., context-free grammar, a di-
agrammatic tabular notation is usu-
ally a projection of a specific part of
the underlying model

Change propagation

Sequential, concurrent

How changes are propagated be-
tween concrete syntax and abstract
syntax as well as when and how
multiple concurrent changes are
merged

A change of the name of a state in
a concrete syntax is propagated first
to the abstract syntax and then to all
other overlapping concrete syntaxes

into the composite state. In a diagrammatic concrete syn-
tax, this change requires a specific re-factoring operation

to be performed swiftly.

« Analysability: Analysability is the ability of something
to be analysed. A tabular concrete syntax makes it easy
to check whether a state has transitions for each potential
event, which is often a requirement in state-machines

representing safety-critical behaviours.
o Acceptability: Acceptability is the quality of being ac-

cepted. A lack in user acceptance hinders the adoption

different concrete syntaxes, e.g., software developers of-
ten prefer textual syntax, while electrical engineers are
more used and prefer diagrammatic notations.

These quality attributes can be measured through different
metrics, design complexity, like number of modelling steps,
fault density, number of concrete syntax elements, steepness of
the learning curve. Eventually, improvement of these attributes
will improve productivity and, thus, reduce costs [27].

VI. CORE RESEARCH DIRECTIONS

and fruitful use of MDE. Our experience from several

industrial projects shows that different developers prefer

To realise the vision of blended modelling, we believe that
research efforts should concentrate on the following directions.

a) Diagrammatic parsing: in Section IV we sketched the
idea of leveraging parsing approaches instead of projectional
approaches for graphical editing. More precisely, starting from
a set of basic graphical elements, e.g., rectangles for shapes
and arrows for transitions, and a set of (grammar) rules how
diagrams are constructed, a model is generated. Grammar rules
could be for example, if two shapes, previously recognised as
states, are connected via an arrow, the arrow is recognised as
a transition connecting the two shapes. Similarly, if a state
shape is graphically fully contained in another state shape, the
state is a sub-state of the other state.

b) Architectures for blended modelling user interfaces:
complementary to the previous point, the architecture of
graphical modelling frameworks is based on the model-
view-controller paradigm [28], which works well for projec-
tional approaches. However, if a diagram parsing approach is
adopted, the architecture may need to be adapted to accommo-
date a unidirectional data flow from diagrammatic notation to
model, particularly, at times when the diagrammatic notation
is not parseable, e.g., if two states overlap. Notwithstanding,
changes in the model need also to be performed and reflected
back to the diagrammatic notation, e.g., if a re-factoring like
moving states into a hierarchical state is carried out. In this
case, underlying model and its diagrammatic representation
must conform to each other.

c) Flexibility of blended modelling frameworks: one of
the major advantages that blended modelling can bring is
flexibility in modelling activities. A flexible modelling ap-
proach enables the language/framework engineer to customise
both the modelling language and related modelling notations
independently. Mechanisms for automatically generating ad-
hoc blended editors and synchronisation facilities from a given
language, as well as for gracefully co-evolving the blended
modelling framework (i.e., editors and synchronisation) as
consequence of, e.g., the manual customisation of the context-
free grammar representing a textual notation, are needed. Par-
ticularly designed higher-order transformations and mapping
metamodels may be helpful for this.

d) User studies on benefits of blended modelling: while
we strongly believe that blended modelling will improve user
experience and productivity, see also preliminary studies [8],
this needs to be thoroughly investigated. For example, we need
to identify the classes of use cases that would benefit the
most from blended modelling. Furthermore, we would like to
know when and why people switch between notations. With
respect to temporary non-conformance, it would be interesting
to investigate possible patterns regarding its use by developers
(when, how often, and why). Finally, while the aforementioned
aspects can be addressed with qualitative studies, we also need
to perform additional and more extensive quantitative studies
to capture how much usability and productivity are actually
improvable through blended modelling.

REFERENCES

[1] J. Hutchinson, J. Whittle, M. Rouncefield, and S. Kristoffersen, “Empir-
ical assessment of MDE in industry,” in Software Engineering (ICSE),
2011 33rd International Conference on. 1EEE, 2011, pp. 471-480.

[2] J. Lilius and I. P. Paltor, “Formalising uml state machines for model
checking,” in International Conference on the Unified Modeling Lan-
guage. Springer, 1999, pp. 430-444.

[3] A. Cicchetti, F. Ciccozzi, and A. Pierantonio, “Multi-view approaches
for software and system modelling: a systematic literature review,”
Software & Systems Modeling, 2019.

[4] D. Emery and R. Hilliard, “Every architecture description needs a
framework: Expressing architecture frameworks using iso/iec 42010,”
in 2009 Joint Working IEEE/IFIP Conference on Software Architecture
& European Conference on Software Architecture, 2009.

[5] N. Boucke, D. Weyns, R. Hilliard, T. Holvoet, and A. Helleboogh,
“Characterizing relations between architectural views,” European Con-
ference on Software Architecture, 2008.

[6] S. Abrahdo, F. Bourdeleau, B. H. C. Cheng, S. Kokaly, R. F. Paige,
H. Storrle, and J. Whittle, “User experience for model-driven engineer-
ing: Challenges and future directions,” in 20th ACM/IEEE International
Conference on Model Driven Engineering Languages and Systems,
2017, pp. 229-236.

[71 G. Liebel, N. Marko, M. Tichy, A. Leitner, and J. Hansson, “Model-
based engineering in the embedded systems domain: an industrial survey
on the state-of-practice,” Software and System Modeling, vol. 17, no. 1,
pp. 91-113, 2018.

[8] L. Addazi, F. Ciccozzi, P. Langer, and E. Posse, “Towards Seamless
Hybrid Graphical-Textual Modelling for UML and Profiles,” in Procs
of ECMFA. Springer, 2017, pp. 20-33.

[9]1 “Umple,” http://cruise.eecs.uottawa.ca/umple/, latest access: 2019-02-06.

[10] “FXDiagram,” http://jankoehnlein.github.io/FXDiagram/, latest access:
2019-02-06.

[11] “Eclipse Sprotty,” https://projects.eclipse.org/proposals/eclipse-sprotty,
latest access: 2019-02-06.

[12] “LightUML,” http://lightuml.sourceforge.net/, latest access: 2019-02-06.

[13] “TextUML,” http://abstratt.github.io/textuml/, latest access: 2019-02-06.

[14] “MetaUML,” https://github.com/ogheorghies/MetaUML, latest access:
2019-02-06.

[15] “PlantUML,” http://plantuml.com/, latest access: 2019-02-06.

[16] “Jetbrains MPS,” https://www.jetbrains.com/mps/, latest access: 2019-
02-06.

[17] C. Atkinson and R. Gerbig, “Harmonizing textual and graphical visu-
alizations of domain specific models,” in 2nd Workshop on Graphical
Modeling Language Development. ACM, 2013, pp. 32-41.

[18] C.-L. Lazdr, “Integrating Alf editor with Eclipse UML editors,” Studia
Universitatis Babes-Bolyai, Informatica, vol. 56, no. 3, 2011.

[19] F. P. Andrés, J. De Lara, and E. Guerra, “Domain specific languages
with graphical and textual views,” in International Symposium on
Applications of Graph Transformations with Industrial Relevance, 2007.

[20] A. Charfi, A. Schmidt, and A. Spriestersbach, “A hybrid graphical and
textual notation and editor for UML actions,” in European Conference
on Model Driven Architecture-Foundations and Applications, 2009.

[21] M. Scheidgen, “Textual modelling embedded into graphical modelling,”
in European Conference on Model Driven Architecture-Foundations and
Applications. Springer, 2008, pp. 153-168.

[22] M. Wimmer and G. Kramler, “Bridging grammarware and modelware,”
in International Conference on Model Driven Engineering Languages
and Systems. Springer, 2005, pp. 159-168.

[23] S. Maro, J.-P. Steghofer, A. Anjorin, M. Tichy, and L. Gelin, “On
Integrating Graphical and Textual Editors for a UML Profile Based Do-
main Specific Language: An Industrial Experience,” in ACM SIGPLAN
International Conference on Software Language Engineering, 2015.

[24] C. H. Damm, K. M. Hansen, and M. Thomsen, “Tool support for coop-
erative object-oriented design: gesture based modelling on an electronic
whiteboard,” in Conference on Human factors in computing systems.
ACM, 2000, pp. 518-525.

[25] Qi Chen, J. Grundy, and J. Hosking, “An e-whiteboard application
to support early design-stage sketching of UML diagrams,” in IEEE
Symposium on Human Centric Computing Languages and Environments,
2003. Proceedings. 2003, Oct 2003, pp. 219-226.

[26] A. Abran, A. Khelifi, W. Suryn, and A. Seffah, “Usability meanings and
interpretations in iso standards,” Software quality journal, vol. 11, no. 4,
pp. 325-338, 2003.

[27] A. Holzinger, “Usability engineering methods for software developers,”
Communications of the ACM, vol. 48, no. 1, pp. 71-74, 2005.

[28] A. Syromiatnikov and D. Weyns, “A journey through the land of model-
view-design patterns,” in 2014 IEEE/IFIP Conference on Software
Architecture, April 2014, pp. 21-30.

