Executable Modelling for Highly Parallel
Accelerators

Lorenzo Addazi, Federico Ciccozzi, Bjorn Lisper
School of Innovation, Design, and Engineering
Miilardalen University - Visteras, Sweden
{lorenzo.addazi, federico.ciccozzi, bjorn.lisper} @mdh.se

Abstract—High-performance embedded computing is develop-
ing rapidly since applications in most domains require a large and
increasing amount of computing power. On the hardware side,
this requirement is met by the introduction of heterogeneous
systems, with highly parallel accelerators that are designed to
take care of the computation-heavy parts of an application. There
is today a plethora of accelerator architectures, including GPUs,
many-cores, FPGAs, and domain-specific architectures such as Al
accelerators. They all have their own programming models, which
are typically complex, low-level, and involve explicit parallelism.
This yields error-prone software that puts the functional safety at
risk, unacceptable for safety-critical embedded applications. In
this position paper we argue that high-level executable modelling
languages tailored for parallel computing can help in the software
design for high performance embedded applications. In particu-
lar, we consider the data-parallel model to be a suitable candidate,
since it allows very abstract parallel algorithm specifications free
from race conditions. Moreover, we promote the Action Language
for fUML (and thereby fUML) as suitable host language.

Index Terms—parallel programming, fUML, Alf, UML, mod-
elling languages, high-performance computing, data-parallelism,
executable models

I. INTRODUCTION

There is an ever-growing need for computational power.
Recent advances in autonomous driving applications, for ex-
ample, integrate complex machine learning, signal processing
and computer vision algorithms into resource-constrained em-
bedded systems [1]. The response from the hardware industry
has been to develop increasingly integrated heterogeneous
hardware where computational accelerators are placed on the
chip or board to offload computationally heavy tasks from the
main processor. In this way, large computational resources can
be provided at low cost. Today we see a large proliferation of
accelerator architectures: General-Purpose Graphical Process-
ing Units (GPGPUs), many-cores, solutions involving Field
Programmable Gate Arrays (FPGAs), and even Application
Specific Integration Circuits (ASICs). Although these archi-
tectures are quite different, they have in common that they
typically rely on massive parallelism to boost performance.
Besides embedded systems, these kinds of accelerators are
also increasingly being used in traditional High-Performance
Computing (HPC) as well as cloud computing: an example of
the latter is Microsoft’s Catapult project that integrates FPGAs
into cloud servers'. However, languages and tools for software

This research was funded by the KK-foundation through the HERO project,
under grant no. 20180039.

Imicrosoft.com/research/project/project-catapult

development are lagging behind. Programming accelerators
needs device-specific expertise in computer architecture and
low-level parallel programming for the accelerator at hand.
Programming is error-prone and debugging can be very dif-
ficult due to potential race conditions: this is particularly
disturbing as many embedded applications, like autonomous
vehicles, are safety-critical, meaning that failures may have
lethal consequences. Furthermore software becomes hard to
port between different kinds of accelerators.

A convenient solution is to adopt a model-driven approach,
where the computation-intense parts of the application are
expressed in a high-level, accelerator-agnostic executable mod-
elling language that is apt for modelling massively parallel
computations. This allows flexibility in the choice of acceler-
ator and it enables early analysis of the chosen solution. Later
in the software development process these models can also be
used for verifying the functionality of hand-coded solutions
for the accelerator at hand; a more intriguing option would be
to generate accelerator code directly from them.

In this position paper we advocate the use of data-parallel
programming for this purpose. Data-parallel programming
languages originally arose as means to program Single In-
struction, Multiple Data (SIMD) and vector machines [3].
Nevertheless, they are not necessarily tied to specific processor
architectures, but they should rather be seen as general-
purpose implicitly parallel languages. They can be designed to
express massively parallel computations at a high level, hiding
implementation details. We therefore believe that they are apt
for modelling massively parallel computing on accelerators.
The modelling language identified to potentially host a data-
parallel programming paradigm is the Action Language for
Foundational UML (Alf) and the underlying Foundational
UML Subset (fUML); in the remainder of the paper we
will reason on why the combination fUML/AIf is a suitable
candidate and what challenges and benefits may arise in
providing implicit data-parallel facilities for it.

II. THE DATA-PARALLEL PROGRAMMING MODEL

In the basic data-parallel programming model there is a
single control flow. The model specifies a number of collective
operations on homogeneous data structures such as arrays
or lists, similar to higher order functions such as “map”,
or “fold” in functional languages (see Table I for a more
complete list). These operations are inherently very parallel,

TABLE I

DATA-PARALLEL PRIMITIVES THAT WE WANT TO PROVIDE IN FUML/ALF

Primitive

Description

Example

Element-wise
scalar operations

Take one (or several) data structures, and apply a scalar operation to the respective
elements in each position k. The result is a new data structure

Add two arrays A[k], B[k] in a resulting
array C'k]

Parallel read A parallel read operation, where each processor k, in parallel, reads the element of a Receive elements k by X[k] from
data structure from some other processor G|k] Y[G[k]]
Parallel write A parallel write operation, where each processor k, in parallel, sends the element of a ~ Send elements k from Y[k] from

data structure to some target processor G/[k]

X[GK]

Replication

It consists of duplication of a single piece of data to many processors (a special case of
parallel read)

Replication of a 1-D vector into a matrix

Masking

It consists of selecting part of a data structure for some data-parallel operation, usually
done with respect to some boolean mask or guard

Selection of a submatrix from a matrix

Reduce

Let op be a binary, associative operation (like +, *, min max, ..), and X be a data
structure with positions 0, ...,n — 1 (e.g., an array): reduce(op, X) = X|[0] op ... op
X[n—1]

Computation of pairwise sums in an array
of integers

Scan

Let op be a binary, associative operation (like +, *, min max, ..), and X be a data
structure with positions 0, ...,n — 1 (e.g., an array), it computes an array of all partial

Computation of all partial sums in an
array of integers

op: scan(op, X) = X[0], X[0] op X[1],..., X[0] op ... op X[n — 1]

and all the parallelism in a data-parallel language is implicitly
present in them rather than in explicit threads or processes.
This has some consequences. If the data-parallel operations are
properly designed and implemented then there will be no race
conditions, due to the single flow of control. Similarly there
will be no deadlocks. If costs (like execution times, or energy
consumption) can be assigned to the data-parallel operations,
then cost analyses can be done in the same fashion as for
sequential programs. Thus, verifying functional correctness as
well as deciding non-functional properties such as resource
consumption has the potential to be be much simpler than for
general explicitly parallel software, where features such as race
conditions can make the software extremely hard to debug.
Another observation is that the use of data-parallel primitives
can lead to very clear and succinct code. Again this is similar
to the use of higher order functions such as map, fold, and
filter in functional languages, which often yields very succinct
code that is easy to understand for someone who is familiar
with these functions. Some data-parallel languages also offer
additional syntactic conveniences such as the MATLAB style
overloading of arithmetic operators to also work on matrices,
or the advanced array selection statements in ZPL [6]. Such
features also help writing code that is easy to understand and
maintain. Based on the above observations, we believe that
executable models for accelerator software can preferably be
based on the data-parallel programming paradigm.

III. INTEGRATION OF THE DATA-PARALLEL MODEL IN
FUML/ALF

If executable models for accelerators are to be based on the
data-parallel model, then a crucial issue is how to integrate this
model with existing modelling languages. The data-parallel
model is close to the functional paradigm, and indeed there
are several examples of data-parallel functional languages [4],
[11], [12]. However most modelling languages are object-
oriented. Thus, the question is how to integrate the data-

parallel and object-oriented paradigms in such a way that the
beneficial features of the data-parallel model are not lost. For
instance, the determinacy of the data-parallel primitives relies
on that the functions involved are side-effect free. The object-
oriented paradigm aims to encapsulate state, which naturally
yields side-effects that can be hard to find. Static program
analyses that can find all possible side-effects of functions
exist [20], but these analyses are formulated for higher order
functional languages such as the Meta Language (ML) [19].
We are not aware of any similar analyses for object-oriented
languages. Nevertheless, some attempts have been done to
combine object-orientation and data-parallelism [15], [23]. We
are currently investigating how these works can guide the
integration of the data-parallel model into the object-oriented
modelling language that we are targeting, Alf (together with
fUML).

A. Why fUML/Alf?

Among the many modelling languages currently available
in the MDE landscape, we consider UML to be the most
suitable for our purposes. UML is a general-purpose and multi-
faceted language, a de-facto standard in software industry [13]
and an ISO/IEC (19505) standard®. The formalisation of (i)
fUML, which gives a precise execution semantics to a subset
of UML limited to composite structures, classes, activities and
state-machines (application models designed with fUML are
executable by definition) [26], and (ii) the Alf textual action
language to express complex execution behaviours, has made
UML a full-fledged implementation quality language [22],
hence an excellent candidate as host language for our data-
parallel paradigm. We have identified Alf (and thereby fUML)
as an attractive host language for the following reasons.

Standard. Alf, as part of the UML family of languages,
Zhttps://www.iso.org/standard/52854.html

has been formalised by the OMG?. Its reference specification
represents a solid and unequivocal source for its syntactical
and semantic conformance.

Platform-independent. Despite being an object-oriented tex-
tual language, Alf inherits the high-level and, most impor-
tantly, platform-independent essence of UML. Since we be-
lieve that a data-parallel modelling language should permit
to describe parallel applications for multiple different target
architectures, platform-independence represents a core char-
acteristic of the host language.

Flexible. Being a modelling language that offers a textual
concrete syntax, which is seamlessly integrated with the dia-
grammatic concrete syntax of UML, Alf provides a much more
flexible “programming” style than common programming lan-
guages. Moreover, Alf can be used in combination with UML
profiles addressing domain-specific aspects (e.g., modelling of
parallel hardware), making it apt to also entail structural and
deployment needs of modelled applications [24].
Executable. According to its specification, Alf has three
prescribed ways to achieve semantic conformance, i.e. how
execution semantics is implemented, summarised as follows:

o Interpretive: Alf is directly interpreted and executed;

« Compilative: Alf is translated into a UML model conform-
ing to f{UML and executed on the actual target platform
according to fUML semantics;

o Translational: Alf and all surrounding UML concepts in
the model are translated into an executable for a non-UML
target platform, and executed on it.

The variety of execution possibilities entailed in the specifica-
tion permits to use Alf models for virtually any development
activity, from simulation and debugging (through interpretive
and compilative execution) [21], to transformation for deploy-
ment to and execution on the actual target platform (through
translational execution) [7].

Analysable. Thanks to a convenient trade-off between expres-
siveness and abstraction, Alf can be fruitfully used for early
model-based investigations, both to identify possible flaws
in the model through, e.g., static model-based analysis [17]
or to explore for possible optimisations of the modelled
applications, e.g. for parallelisable model portions [18].

B. Challenges

Currently, Alf provides a concept for enabling parallel
execution of potentially parallel algorithms, the annotation
@parallel, which can be used in combination with block
and for statements. The execution semantics is different
depending on the type of statement, but it can avoid race
conditions in both cases. In a parallel block statement for
instance, names assigned in one statement of the block cannot
be assigned in any subsequent statement in the same block.

Interestingly, the @parallel annotation enables both
data- and task-parallelism, depending on the statement it
annotates. When used in combination with a b1 ock statement

3https://www.omg.org/spec/ ALF/About- ALF/

it enables a parallel execution of a set of statements (task-
parallelism). On the other hand, when used with a for state-
ment it enables the parallel execution of identical operations
on a set of complex data structures (data-parallelism).

The latter is a powerful mechanism for implementing a
coarse-grained and rather explicit data-parallelism. Our aim is
to investigate whether Alf can support a complete set of im-
plicit data-parallel primitives, as introduced in Table I. Unlike
explicitly parallel languages, an implicit one does not provide
special primitives, but rather relies on the compiler/interpreter
to exploit the parallelism inherent to computations expressed
by some of the language primitives when applied to suitable
data structures, e.g. arrays. Implicit parallelism would imply
that the modeller is relieved from expressing when and where
to enforce parallelism and how, such task is instead left to
the compiler/interpreter. This is desirable for various reasons,
including:

o Usability: it may be more or less intricate to “program”
explicit parallelism for someone who is not used to parallel
programming. Implicit parallel procedures hide this com-
plexity from the modeller, who can continue modelling in
a “iterative” fashion (e.g., for statements).

« Platform-independency: the possibility to enforce paral-
lelism depends on the underlying hardware configuration.
At the level of an fUML/AIf model, the modeller is not
expected to be fully aware of such a configuration, and
in general should keep functional models detached and
agnostic of the target hardware configuration.

o Correctness: leaving the burden of identifying when implic-
itly parallel procedures can actually be run in parallel to an
automated mechanism, being it a compiler or an interpreter,
avoids potential human errors that may arise when explicitly
specifying parallelism.

Alf is particularly interesting for implicit parallelism since,
as per specification, when the semantics of some computations
is specified as concurrent, there is no strict requirement on
their actual execution, meaning that they be executed in any
particular sequential order by the execution tool. Concepts pro-
vided by Alf, such as @parallel, forall, for, select,
will be the basis for integrating the implicitly parallel primi-
tives introduced in Table I. Note that, as prescribed in the Alf
specification, “the portion of the execution corresponding to
an Alf input text must have the equivalent effect to mapping
that text to fUML per the Alf specification and executing
the resulting model per the semantics specified in the f{UML
specification”. An example is the Alf parallel for statement,
which is mapped to an fUML expansion region, tagged with
mode parallel.

This means that, besides exploiting Alf’s syntax to express
the aforementioned concepts, we will most importantly have to
investigate how to suitably map them to the f{UML specifica-
tion without disrupting its execution semantics, which, notably,
is already inherently concurrent for activities.

IV. RELATED WORK

A limited number of approaches supporting the design and
development of parallel embedded systems has been proposed
in the literature. The GASPARD framework is the one that
comes closest to our objectives [9]. There, high-level descrip-
tions of the system are defined using the MARTE UML stan-
dard profile. Software and hardware parallelism is described
using RMoC, an extension of the Array-OL domain-specific
language for multidimensional signal processing [10]. Com-
plex behaviours are represented as compositions of elementary
specifications written in C. The main drawbacks of integrating
general-purpose code snippets in models result from the fact
these are at a different semantic level than model elements,
hence their correct mapping and consistency management is
delegated to the users. Furthermore, behavioural specifications
expressed using general-purpose programming languages are
often not platform-independent, hence clashing with a core
objective of modelling. The HOE modelling language in-
troduces an action language supporting data-parallelism and
operations over compound data in Hierarchical State Ma-
chines (HSMs) [16]. Automated code generation is provided
to produce efficient, low-level code using OpenCL [25] and
C. However, the modelling language does not provide support
for neither hardware nor software allocation modelling. Con-
sequently, platform-specific refinements of the generated code
are not supported.

High-level, portable data-parallel languages were around
long before the term ‘“data-parallel” was coined. Already
APL [14] provided a large set of advanced array operations.
A strand of development has been to introduce explicit array
operations into languages for numerical processing to facilitate
automatic vectorization, as in ZPL [6] for example. The set
of array operations is quite restricted in the first, whereas
the second also has support for strided and sparse arrays. A
recent heir to ZPL is Chapel [5], which also provides means
for more explicit parallel programming. Data-parallelism and
functional programming languages are a good match. Ex-
amples of functional data-parallel languages are data-parallel
Haskell [4], which extends Haskell with data-parallel arrays,
and Data Field Haskell [12] which uses data fields, an abstract
array data type that encompasses both sparse and dense arrays.
NESL [2] uses nested sequences as the parallel data structure
and comes with a cost model for the data-parallel operations.
A recent addition is Futhark [11], a high-level functional array
language for GPU programming. We are currently synthesising
the results of a systematic literature review on parallel pro-
gramming and modelling languages. Besides confirming that
what we are outlining in this paper is not yet available in the
literature, the review results will be used to take the best of
existing parallel languages and avoid known mistakes.

V. OUTLOOK

To be able to freely experiment with Alf, we have re-
implemented the specification using Xtext in Eclipse and we
are currently investigating how to integrate the implicit data-
parallel paradigm described in this paper. For the actual inte-

gration we will exploit the review results especially in relation
to previous attempts of integration of data-parallel models into
object-oriented languages. To have control over the manage-
ment of implicit parallelism and related optimisations, we are
also developing a Low-Level Virtual Machine (LLVM) front-
end for our Alf implementation [8]. At the same time, we are
deepening an orthogonal investigation [24] on how to prop-
erly model heterogeneous massive parallel architectures and
software to hardware allocations using (f)UML and MARTE.

REFERENCES

[11 S. Aldegheri, S. Manzato, and N. Bombieri. Enhancing performance of
computer vision applications on low-power embedded systems through
heterogeneous parallel programming. In Proc. VLSI-SoC, 2018.

[2] G. E. Blelloch. Programming parallel algorithms. Comm. ACM, 1996.

[3] G. E. Blelloch, S. Chatterjee, J. C. Hardwick, J. Sipelstein, and M. Za-
gha. Implementation of a portable nested data-parallel language. J.
Farallel Distrib. Comput., 1994.

[4] M. M. T. Chakravarty, R. Leshchinskiy, S. Peyton Jones, G. Keller, and
S. Marlow. Data Parallel Haskell: A status report. In Proc. DAMP.
ACM, 2007.

[5] B. L. Chamberlain. Chapel.
Computing. MIT Press, 2015.

[6] B. L. Chamberlain, S.-E. Choi, E. C. Lewis, C. Lin, L. Snyder, and
W. D. Weathersby. The case for high level parallel programming in
ZPL. IEEE Computational Science and Engineering, 1998.

[7] F. Ciccozzi. On the automated translational execution of the action
language for foundational UML. Software & Systems Modeling, 2018.

[8] F. Ciccozzi. UniComp: a semantics-aware model compiler for optimised
predictable software. In ICSE - NIER, 2018.

[9]1 A. Gamatié, S. Le Beux, E. Piel, R. Ben Atitallah, A. Etien, P. Marquet,

and J.-L. Dekeyser. A Model-Driven Design Framework for Massively

Parallel Embedded Systems. ACM Trans. Embed. Comput. Syst., 2011.

C. Glitia, P. Dumont, and P. Boulet. Array-OL with delays, a domain

specific specification language for multidimensional intensive signal

processing. Multidimensional Systems and Signal Processing, 2010.

T. Henriksen, N. G. W. Serup, M. Elsman, F. Henglein, and C. E.

Oancea. Futhark: Purely functional GPU-programming with nested

parallelism and in-place array updates. In Proc. PLDI. ACM, 2017.

[12] J. Holmerin and B. Lisper. Data Field Haskell. In G. Hutton, editor,
Proc. Fourth Haskell Workshop, 2000.

[13] J. Hutchinson, J. Whittle, M. Rouncefield, and S. Kristoffersen. Empir-
ical Assessment of MDE in Industry. In Proc. ICSE. ACM, 2011.

[14] K. E. Iverson. A Programming Language. Wiley, 1962.

[15] J. Larus. C**: A large-grain, object-oriented, data-parallel programming

language. In Proc. LCPC. Springer, 1993.

I. Llopard, C. Fabre, and A. Cohen. From a Formalized Parallel Action

Language to Its Efficient Code Generation. ACM Trans. Embed. Comput.

Syst., 2017.

[17] J. Malm, F. Ciccozzi, J. Gustafsson, B. Lisper, and J. Skoog. Static flow

analysis of the Action Language for Foundational UML. In Proc. ETFA.

IEEE, 2018.

A. N. Masud, B. Lisper, and F. Ciccozzi. Automatic inference of task

parallelism in task-graph-based actor models. IEEE Access, 2018.

[19] R. Milner, M. Tofte, and R. Harper. Definition of standard ML. 1990.

[20] F. Nielson, H. R. Nielson, and C. Hankin. Principles of Program

Analysis, 2™ edition. Springer, 2005.

E. Seidewitz. UML with meaning: executable modeling in foundational

UML and the Alf action language. In SIGAda Ada Letters. ACM, 2014.

B. Selic. The Less Well Known UML. Formal Methods for Model-

Driven Engineering, 7320:1-20, 2012.

T. J. Sheffler and S. Chatterjee. An object-oriented approach to nested

data parallelism. In Proc. Frontiers, 1995.

V. Stoico. A Model-Driven Approach for modeling Heterogeneous

Embedded Systems, 2019. Master thesis - Milardalen University.

[25] J. E. Stone, D. Gohara, and G. Shi. OpenCL: A Parallel Programming
Standard for Heterogeneous Computing Systems. Computing in Science
Engineering, 2010.

[26] J. Tatibouét, A. Cuccuru, S. Gérard, and F. Terrier. ~Formalizing
Execution Semantics of UML Profiles with f{UML. In Proc. MoDELS.
2014.

In Programming Models for Parallel

[10]

(11]

[16]

[18]

[21]
(22]
[23]

[24]

