
DEMAND-DRIVEN STATIC BACKWARD PROGRAM

SLICING BASED ON PREDICATED CODE BLOCK

GRAPHS

Husni Khanfar

H
u

sn
i K

h
a

n
fa

r D
EM

A
N

D
-D

R
IV

EN
 STA

TIC
 BA

C
K

W
A

R
D

 P
R

O
G

R
A

M
 SLIC

IN
G

 BA
SED

 O
N

 P
R

ED
IC

A
TED

 C
O

D
E B

LO
C

K
 G

R
A

P
H

S
2019

Mälardalen University Licentiate Thesis 284

ISBN 978-91-7485-440-4
ISSN 1651-9256

Address: P.O. Box 883, SE-721 23 Västerås. Sweden
Address: P.O. Box 325, SE-631 05 Eskilstuna. Sweden
E-mail: info@mdh.se Web: www.mdh.se

Mälardalen University Press Licentiate Theses
No. 284

DEMAND-DRIVEN STATIC BACKWARD PROGRAM
SLICING BASED ON PREDICATED CODE BLOCK GRAPHS

Husni Khanfar

2019

School of Innovation, Design and Engineering

Mälardalen University Press Licentiate Theses
No. 284

DEMAND-DRIVEN STATIC BACKWARD PROGRAM
SLICING BASED ON PREDICATED CODE BLOCK GRAPHS

Husni Khanfar

2019

School of Innovation, Design and Engineering

1

Copyright © Husni Khanfar, 2019
ISBN 978-91-7485-440-4
ISSN 1651-9256
Printed by E-Print AB, Stockholm, Sweden

Copyright © Husni Khanfar, 2019
ISBN 978-91-7485-440-4
ISSN 1651-9256
Printed by E-Print AB, Stockholm, Sweden

2

Abstract

Static backward program slicing is a technique to compute the set of pro-
gram statements, predicates and inputs that might affect the value of a partic-
ular variable at a program location. The importance of this technique comes
from being an essential part of many critical areas such as program mainte-
nance, testing, verification, debugging, among others. The state-of-art slicing
approach collects all the data- and control-flow information in the source code
before the slicing, but not all the collected information are used for computing
the slice. Thus, this approach causes a significant amount of unnecessary com-
putations, particularly for slicing large industrial systems, where unnecessary
computations lead to wastage of a considerable amount of processing time
and memory. Moreover, this approach often suffers from scalability issues.

The demand-driven slicing approaches aim at solving this problem by
avoiding unnecessary computations. However, some of these approaches
trade precision for performance, whereas others are not entirely
demand-driven, particularly for addressing unstructured programs, pointer
analysis, or inter-procedural cases.

This thesis presents a new demand-driven slicing approach that addresses
well-structured, unstructured, and inter-procedural programs. This approach
has four distinct features, each of which prevents a special type of unnece-
cessary computations. The effectiveness and correctness of the proposed ap-
proach are verified using experimental evaluation. In addition, the thesis pro-
poses an approach that can compute on the fly the control dependencies in
unstructured programs.

ii

Abstract

Static backward program slicing is a technique to compute the set of pro-
gram statements, predicates and inputs that might affect the value of a partic-
ular variable at a program location. The importance of this technique comes
from being an essential part of many critical areas such as program mainte-
nance, testing, verification, debugging, among others. The state-of-art slicing
approach collects all the data- and control-flow information in the source code
before the slicing, but not all the collected information are used for computing
the slice. Thus, this approach causes a significant amount of unnecessary com-
putations, particularly for slicing large industrial systems, where unnecessary
computations lead to wastage of a considerable amount of processing time
and memory. Moreover, this approach often suffers from scalability issues.

The demand-driven slicing approaches aim at solving this problem by
avoiding unnecessary computations. However, some of these approaches
trade precision for performance, whereas others are not entirely
demand-driven, particularly for addressing unstructured programs, pointer
analysis, or inter-procedural cases.

This thesis presents a new demand-driven slicing approach that addresses
well-structured, unstructured, and inter-procedural programs. This approach
has four distinct features, each of which prevents a special type of unnece-
cessary computations. The effectiveness and correctness of the proposed ap-
proach are verified using experimental evaluation. In addition, the thesis pro-
poses an approach that can compute on the fly the control dependencies in
unstructured programs.

ii

3

Sammanfattning

Static backwards program slicing är en teknik för att hitta alla de program-
satser, predikat och indata som möjligen kan påverka värdet av en viss vari-
abel i någon given programpunkt. Teknikens betydelse kommer av att den är
en viktig del inom många kritiska tillämpningar som till exempel mjukvaruun-
derhåll, testning, verifiering, och debuggning. Ett problem med de nuvarande
metoderna för slicing är att de beräknar alla data- och kontrollberoenden, för
hela programmet, innan slicingen äger rum. Därför utför dessa metoder ofta
onödigt arbete, speciellt när man slicar stora industriella system där detta då
kan leda till ett slöseri med processortid och minne. Dessutom lider dessa
metoder ofta av skalbarhetsproblem.

Demand-driven slicing syftar till att lösa detta problem genom att undvika
onödiga beräkningar. En del av dessa metoder betalar dock den ökande pre-
standan med minskad precision, medan andra inte är helt "demand-drivna"
speciellt vad beträffar ostrukturerade program, pekaranalys, eller interproce-
durell analys.

Denna avhandling presenterar en ny metod för demand-driven slicing som
hanterar både strukturerade och ostrukturerade program med procedurer.
Denna metod har fyra utmärkande egenskaper, där var och en förhindrar
en viss typ av onödig beräkning. Effektiviteten och korrektheten hos
den föreslagna tekniken har verifierats genom experiment. Dessutom
presenterar avhandlingen en metod som är demand-driven för att beräkna
kontrollberoendena i ostrukturerade program.

iii

Sammanfattning

Static backwards program slicing är en teknik för att hitta alla de program-
satser, predikat och indata som möjligen kan påverka värdet av en viss vari-
abel i någon given programpunkt. Teknikens betydelse kommer av att den är
en viktig del inom många kritiska tillämpningar som till exempel mjukvaruun-
derhåll, testning, verifiering, och debuggning. Ett problem med de nuvarande
metoderna för slicing är att de beräknar alla data- och kontrollberoenden, för
hela programmet, innan slicingen äger rum. Därför utför dessa metoder ofta
onödigt arbete, speciellt när man slicar stora industriella system där detta då
kan leda till ett slöseri med processortid och minne. Dessutom lider dessa
metoder ofta av skalbarhetsproblem.

Demand-driven slicing syftar till att lösa detta problem genom att undvika
onödiga beräkningar. En del av dessa metoder betalar dock den ökande pre-
standan med minskad precision, medan andra inte är helt "demand-drivna"
speciellt vad beträffar ostrukturerade program, pekaranalys, eller interproce-
durell analys.

Denna avhandling presenterar en ny metod för demand-driven slicing som
hanterar både strukturerade och ostrukturerade program med procedurer.
Denna metod har fyra utmärkande egenskaper, där var och en förhindrar
en viss typ av onödig beräkning. Effektiviteten och korrektheten hos
den föreslagna tekniken har verifierats genom experiment. Dessutom
presenterar avhandlingen en metod som är demand-driven för att beräkna
kontrollberoendena i ostrukturerade program.

iii

4

5

To My Family To My Family

6

7

Acknowledgements

First and foremost, I wish to express my appreciation to my supervisors
Björn Lisper, Hans Hansson, Saad Mubeen and Daniel Hedin for guiding me
in the past years. Without your patient, feedback and continuous support, there
is no possible for this thesis to appear. During my work in MDH, I met many
great people who deserve to be thanked, Sasikumar Punnekkat, Iain Bate, Jan
Calrsson, Jan Gustafsson, Radu Dobrin, Damir Isovic, and Christer Norström.

It is pretty beautiful to be surrounded by many people who do not forget
me in their daily praying wherever I am. From the bottom of my heart, I thank
my affectionate mother and generous father for their unlimited support at ev-
ery moment in my life. I also thank my brothers and sisters Maysoon, Aws,
Tasneem, Rowaa, Besher and Baraa for encouraging me to continue my high
studies in Sweden.

I must express my gratitude to Esraa, my wife. Thanks to accompanying me
away from your family to support me in the continuation of my high studies.
Ooh, I can not leave out mentioning the most important people, my kids Aws,
Maryam, Raghad, Zayd and Tamim, sorry guys for being busy. My office
mates in MDH are considered as part of my family members, all the thanks to
Omar Jaradat, Irfan Sljivo, Gabriel Companeu and Filip Markovik.

The work in this thesis has been supported by the Swedish Foundation for
Strategic Research (SSF), The Knowledge Foundation and VINNOVA via
projects SYNOPSIS, SPACES and ASSUME, respectively.

Husni Khanfar
Västerås, June 13, 2019

vii

Acknowledgements

First and foremost, I wish to express my appreciation to my supervisors
Björn Lisper, Hans Hansson, Saad Mubeen and Daniel Hedin for guiding me
in the past years. Without your patient, feedback and continuous support, there
is no possible for this thesis to appear. During my work in MDH, I met many
great people who deserve to be thanked, Sasikumar Punnekkat, Iain Bate, Jan
Calrsson, Jan Gustafsson, Radu Dobrin, Damir Isovic, and Christer Norström.

It is pretty beautiful to be surrounded by many people who do not forget
me in their daily praying wherever I am. From the bottom of my heart, I thank
my affectionate mother and generous father for their unlimited support at ev-
ery moment in my life. I also thank my brothers and sisters Maysoon, Aws,
Tasneem, Rowaa, Besher and Baraa for encouraging me to continue my high
studies in Sweden.

I must express my gratitude to Esraa, my wife. Thanks to accompanying me
away from your family to support me in the continuation of my high studies.
Ooh, I can not leave out mentioning the most important people, my kids Aws,
Maryam, Raghad, Zayd and Tamim, sorry guys for being busy. My office
mates in MDH are considered as part of my family members, all the thanks to
Omar Jaradat, Irfan Sljivo, Gabriel Companeu and Filip Markovik.

The work in this thesis has been supported by the Swedish Foundation for
Strategic Research (SSF), The Knowledge Foundation and VINNOVA via
projects SYNOPSIS, SPACES and ASSUME, respectively.

Husni Khanfar
Västerås, June 13, 2019

vii

8

9

List of Papers Included in the Thesis

This thesis is based on the following papers:

Paper A Static backward program slicing for safety-critical systems:
Husni Khanfar, Björn Lisper, and Abu Naser Masud. Ada-Europe
International Conference on Reliable Software Technologies, pages
50–65, Springer, 2015.

Paper B Enhanced PCB-based slicing: Husni Khanfar and Björn Lisper. Fifth
International Valentin Turchin Workshop on Metacomputation, pages
71–91, 2016

Paper C Demand-driven static backward slicing for unstructured programs:
Husni Khanfar, Björn Lisper, and Saad Mubeen, Technical Report
MDH-MRTC-324/2019-1-SE, May 2019.

List of Papers Not Included in the Thesis

• Static backward demand-driven slicing: Björn Lisper, Abu Naser Ma-
sud, and Husni Khanfar. InProceedings of the 2015 Workshop on Par-
tial Evaluation and Program Manipulation, ACM (pages 115–126), Jan
2015.

Reprints were made with permission from the publishers.

ix

List of Papers Included in the Thesis

This thesis is based on the following papers:

Paper A Static backward program slicing for safety-critical systems:
Husni Khanfar, Björn Lisper, and Abu Naser Masud. Ada-Europe
International Conference on Reliable Software Technologies, pages
50–65, Springer, 2015.

Paper B Enhanced PCB-based slicing: Husni Khanfar and Björn Lisper. Fifth
International Valentin Turchin Workshop on Metacomputation, pages
71–91, 2016

Paper C Demand-driven static backward slicing for unstructured programs:
Husni Khanfar, Björn Lisper, and Saad Mubeen, Technical Report
MDH-MRTC-324/2019-1-SE, May 2019.

List of Papers Not Included in the Thesis

• Static backward demand-driven slicing: Björn Lisper, Abu Naser Ma-
sud, and Husni Khanfar. InProceedings of the 2015 Workshop on Par-
tial Evaluation and Program Manipulation, ACM (pages 115–126), Jan
2015.

Reprints were made with permission from the publishers.

ix

10

11

Contents

Part I:
1 Introduction . 7

1.1 Program Dependence Graph Based Slicing 8
1.2 Reaching Definitions and Data Dependencies 11
1.3 Post-domination and Control Dependency 13
1.4 System Dependence Graph (SDG) . 14
1.5 Motivation . 15
1.6 Research Objective . 16
1.7 Research Problem and Questions . 16
1.8 Thesis Overview . 18

2 Introduction to PCB-based Slicing . 19
3 Technical Contributions . 23

3.1 Contributions . 23
3.2 Included Publications . 25
3.3 Map of Contributions . 26

4 Research Methodology . 27
5 Experimental Evaluations . 29
6 Related Work . 33

6.1 Basic Program Slicing Techniques . 33
6.2 Inter-procedural Program Slicing . 34
6.3 Computing the Control Dependencies in Unstructured Programs 34
6.4 Demand-Driven Slicing Approaches . 35

7 Conclusion and Future Work . 39
8 Bibliography . 41

Part II:
9 Static Backward Program Slicing for Safety-Critical Systems 46

9.1 Introduction . 46
9.2 Preliminaries . 48
9.3 An Overview of the Slicing Algorithm 50
9.4 Predicated Code Blocks . 50
9.5 The Slicing Approach . 52
9.6 Interprocedural Slicing . 55
9.7 Experimental Evaluations . 56
9.8 Related Work . 59
9.9 Conclusiosn and Future Work . 59

Contents

Part I:
1 Introduction . 7

1.1 Program Dependence Graph Based Slicing 8
1.2 Reaching Definitions and Data Dependencies 11
1.3 Post-domination and Control Dependency 13
1.4 System Dependence Graph (SDG) . 14
1.5 Motivation . 15
1.6 Research Objective . 16
1.7 Research Problem and Questions . 16
1.8 Thesis Overview . 18

2 Introduction to PCB-based Slicing . 19
3 Technical Contributions . 23

3.1 Contributions . 23
3.2 Included Publications . 25
3.3 Map of Contributions . 26

4 Research Methodology . 27
5 Experimental Evaluations . 29
6 Related Work . 33

6.1 Basic Program Slicing Techniques . 33
6.2 Inter-procedural Program Slicing . 34
6.3 Computing the Control Dependencies in Unstructured Programs 34
6.4 Demand-Driven Slicing Approaches . 35

7 Conclusion and Future Work . 39
8 Bibliography . 41

Part II:
9 Static Backward Program Slicing for Safety-Critical Systems 46

9.1 Introduction . 46
9.2 Preliminaries . 48
9.3 An Overview of the Slicing Algorithm 50
9.4 Predicated Code Blocks . 50
9.5 The Slicing Approach . 52
9.6 Interprocedural Slicing . 55
9.7 Experimental Evaluations . 56
9.8 Related Work . 59
9.9 Conclusiosn and Future Work . 59

12

9.10 Acknowledgments . 60
9.11 References . 60

10 Enhanced PCB-Based Slicing . 62
10.1 Introduction . 62
10.2 Preliminaries . 64
10.3 PCB-Based Slicing . 66
10.4 Partial Data-Dependency Graph (PDDG) 70
10.5 SLV Filtering . 71
10.6 Two-Mode PCB Slicing Algorithm . 73
10.7 On-the-fly Interprocedural Slicing . 73
10.8 Results and Discussion . 78
10.9 Related Work . 80
10.10Conclusion and Future Work . 81
10.11Acknowledgments . 81
10.12References . 81

11 Demand-Driven Static Backward Program Slicing for Unstructured
Programs . 83

11.1 Introduction . 83
11.2 Preliminaries . 85
11.3 Program Flows . 88
11.4 On-the-fly Computation of Control Dependencies 96
11.5 Optimization . 108
11.6 Predicated Code Block Graph Representation 113
11.7 Demand-Driven PCB-Based Slicing for Unstructured Programs 119
11.8 Related Work . 125
11.9 Discussion and Future Work . 127
11.10References . 128

xii

9.10 Acknowledgments . 60
9.11 References . 60

10 Enhanced PCB-Based Slicing . 62
10.1 Introduction . 62
10.2 Preliminaries . 64
10.3 PCB-Based Slicing . 66
10.4 Partial Data-Dependency Graph (PDDG) 70
10.5 SLV Filtering . 71
10.6 Two-Mode PCB Slicing Algorithm . 73
10.7 On-the-fly Interprocedural Slicing . 73
10.8 Results and Discussion . 78
10.9 Related Work . 80
10.10Conclusion and Future Work . 81
10.11Acknowledgments . 81
10.12References . 81

11 Demand-Driven Static Backward Program Slicing for Unstructured
Programs . 83

11.1 Introduction . 83
11.2 Preliminaries . 85
11.3 Program Flows . 88
11.4 On-the-fly Computation of Control Dependencies 96
11.5 Optimization . 108
11.6 Predicated Code Block Graph Representation 113
11.7 Demand-Driven PCB-Based Slicing for Unstructured Programs 119
11.8 Related Work . 125
11.9 Discussion and Future Work . 127
11.10References . 128

xii

13

List of Tables

5.1 Adding incremental slicing feature to the PCB-based slicing
approach . 32

6.1 Comparison Between Six Demand-Driven Slicing
Approaches . 36

xiii

List of Tables

5.1 Adding incremental slicing feature to the PCB-based slicing
approach . 32

6.1 Comparison Between Six Demand-Driven Slicing
Approaches . 36

xiii

14

15

List of Figures

1.1 Slicing example . 8
1.2 The Stages of constructing a Program Dependence Graph 8
1.3 The Control Flow Graph (CFG) of the program shown in Fig-

ure 1.1(a) . 10
1.4 The PDG of the program in Figure 1.1 11

2.1 The PCB graph of the source code in Figure 1.1 19
2.2 Example of Connecting the Call Sites with Procedure Headers

in PCB Graphs . 20
2.3 Unstructured program and its PCB-graph 21

3.1 The contributions map: publications → contributions → re-
search questions . 26

4.1 The Research Method . 27

5.1 PCB-based slicing vs. PDG-based slicing 30
5.2 Relation between the Speedup (PCB-slicing-using-

whitelists/PCB-slicing-using-blacklists) and the number of
variables in intraprocedural programs. 31

5.3 This chart illustrates sumA and sumB shown in Table 5.1 32

1

List of Figures

1.1 Slicing example . 8
1.2 The Stages of constructing a Program Dependence Graph 8
1.3 The Control Flow Graph (CFG) of the program shown in Fig-

ure 1.1(a) . 10
1.4 The PDG of the program in Figure 1.1 11

2.1 The PCB graph of the source code in Figure 1.1 19
2.2 Example of Connecting the Call Sites with Procedure Headers

in PCB Graphs . 20
2.3 Unstructured program and its PCB-graph 21

3.1 The contributions map: publications → contributions → re-
search questions . 26

4.1 The Research Method . 27

5.1 PCB-based slicing vs. PDG-based slicing 30
5.2 Relation between the Speedup (PCB-slicing-using-

whitelists/PCB-slicing-using-blacklists) and the number of
variables in intraprocedural programs. 31

5.3 This chart illustrates sumA and sumB shown in Table 5.1 32

1

16

17

3 3

18

19

Part I:

Thesis
Part I:

Thesis

20

21

1. Introduction

Program slicing [1] is a static program analysis technique that decomposes a
program based on a program’s property. Slicing identifies the program parts
that affect that property and produces from those parts a smaller program that
still produces that property. The reduced program is called “slice". Program
slicing techniques aims to find the minimal form of the slice. Program slicing
is an essential part of many areas such as the program understanding, main-
tenance, debugging, verification, testing and much more. This technique is
classified to backward and forward.

Backward program slicing is a technique that identifies the set of program
statements, predicates1, and inputs that might influence a slicing criterion,
which is a pair of <loc,var>, wherein (var) is the value of a variable at a pro-
gram location (loc). Forward program slicing [2] identifies the program state-
ments that are influenced by a slicing criterion. This feature makes it suitable
for removing dead code and maintaining source codes [3]. A statement can be
dependent on another statement due to data or control dependence. For exam-
ple, a statement s2 is data dependent on a statement s1 if a variable updated or
assigned by the execution of s1 might be read by the execution of s2. A state-
ment s2 is control dependent on the predicate s1 if the execution of s1 decides
the possible execution of s2.

Weiser [1], who was the first to define the program slicing, used the term
executable slice to define a slice that can be compiled and run. Such slices
give results on the program points identical to those in the original program in
the case of using the same input values. The contrast is non-executable slice.
A slice is said to be static if it does not consider any predefined value of any
input variable or any particular execution. On the other hand, dynamic slicing
takes into account a specific execution, where input variables are predefined.
Since the value of the predicates in the dynamic slicing are determined, the
size of dynamically computed slice is often smaller than the corresponding
statically computed slice for the same slicing criteria [3]. In the perspective
of the number of procedures in the program, intra-procedural slicing analyses
programs that have strictly one procedure. On the other hand, inter-procedural
slicing handles multiple-procedure programs.

Figure 1.1(a) demonstrates an example of a program that computes the val-
ues of y and z, where y is the product of an integer n1 and 10 to the power
of variable x. Similarly, z is the product of an integer n2 and 10 to the power

1Predicates appear in conditional statements.

7

1. Introduction

Program slicing [1] is a static program analysis technique that decomposes a
program based on a program’s property. Slicing identifies the program parts
that affect that property and produces from those parts a smaller program that
still produces that property. The reduced program is called “slice". Program
slicing techniques aims to find the minimal form of the slice. Program slicing
is an essential part of many areas such as the program understanding, main-
tenance, debugging, verification, testing and much more. This technique is
classified to backward and forward.

Backward program slicing is a technique that identifies the set of program
statements, predicates1, and inputs that might influence a slicing criterion,
which is a pair of <loc,var>, wherein (var) is the value of a variable at a pro-
gram location (loc). Forward program slicing [2] identifies the program state-
ments that are influenced by a slicing criterion. This feature makes it suitable
for removing dead code and maintaining source codes [3]. A statement can be
dependent on another statement due to data or control dependence. For exam-
ple, a statement s2 is data dependent on a statement s1 if a variable updated or
assigned by the execution of s1 might be read by the execution of s2. A state-
ment s2 is control dependent on the predicate s1 if the execution of s1 decides
the possible execution of s2.

Weiser [1], who was the first to define the program slicing, used the term
executable slice to define a slice that can be compiled and run. Such slices
give results on the program points identical to those in the original program in
the case of using the same input values. The contrast is non-executable slice.
A slice is said to be static if it does not consider any predefined value of any
input variable or any particular execution. On the other hand, dynamic slicing
takes into account a specific execution, where input variables are predefined.
Since the value of the predicates in the dynamic slicing are determined, the
size of dynamically computed slice is often smaller than the corresponding
statically computed slice for the same slicing criteria [3]. In the perspective
of the number of procedures in the program, intra-procedural slicing analyses
programs that have strictly one procedure. On the other hand, inter-procedural
slicing handles multiple-procedure programs.

Figure 1.1(a) demonstrates an example of a program that computes the val-
ues of y and z, where y is the product of an integer n1 and 10 to the power
of variable x. Similarly, z is the product of an integer n2 and 10 to the power

1Predicates appear in conditional statements.

7

22

Figure 1.1: Slicing example

Source Code
Control Flow

Graph

Reaching
Definitions

Analysis

Post
Dominator

Tree

Data
Dependency

Graph

Control
Dependency

Graph

Program
Dependence Graph

(PDG)

Figure 1.2: The Stages of constructing a Program Dependence Graph

of variable x. Hence, this example implements the equations y := n1∗10x and
z := n2∗10x. The backward static slice of this program concerning the slicing
criterion < 12,z> is shown in Figure 1.1(b). The backward dynamic slice for
the same slicing criterion, when the value of the program input x is 0, is shown
in Figure 1.1(c).

1.1 Program Dependence Graph Based Slicing
The first essential step that is required to analyse a program is in decomposing
its source code lines to extract some basic information. Afterwards, that in-
formation is organised in a graph format. Next, such forms make the base for
other analyses to build on these algorithms. These graphical forms are called
program representations.

8

Figure 1.1: Slicing example

Source Code
Control Flow

Graph

Reaching
Definitions

Analysis

Post
Dominator

Tree

Data
Dependency

Graph

Control
Dependency

Graph

Program
Dependence Graph

(PDG)

Figure 1.2: The Stages of constructing a Program Dependence Graph

of variable x. Hence, this example implements the equations y := n1∗10x and
z := n2∗10x. The backward static slice of this program concerning the slicing
criterion < 12,z> is shown in Figure 1.1(b). The backward dynamic slice for
the same slicing criterion, when the value of the program input x is 0, is shown
in Figure 1.1(c).

1.1 Program Dependence Graph Based Slicing
The first essential step that is required to analyse a program is in decomposing
its source code lines to extract some basic information. Afterwards, that in-
formation is organised in a graph format. Next, such forms make the base for
other analyses to build on these algorithms. These graphical forms are called
program representations.

8

23

The primary three known representations used by the static program analy-
sis2 methods are Abstract Syntax Tree (AST), Control Flow Graph (CFG), and
Program Dependence Graph (PDG). AST is used in abstracting the hierarchi-
cal syntactic structure of the software. It represents every program statement
as a sub-tree, where the node is the operator, procedure name, or condition,
while the leaves represent operands, argument lists, an expression of a con-
dition (predicate), or inner statements inside the body of the condition. The
sub-trees are ordered from left to right with respect to their locations in the
source code. The AST does not represent explicitly the control flows in the
well-structured source codes, and it does not represent at all the control flows
in unstructured source codes.

The CFG represents program statements as nodes and the transfer of con-
trols as edges. Representing the control flows in the CFGs enabled it to be
the best choice for the early scientists who developed the basis of the state-of-
the-art slicing techniques [4, 5, 6, 7, 8, 9]. The CFG for an intra-procedural
program P is a 4-tuple (N,E,Entry,End):

1. N is a set of nodes, where each node represents an elementary program
statement in P.

2. E is a set of edges, where each edge represents a possible program flow
from one node to another. E ⊆ (N×N).

3. Entry: is a unique start node. Entry ∈ N.

4. End: is a unique exit node. End ∈ N.

The programs that are represented by a CFG must have the following features:

• There is a path from Entry(P) to every n ∈ N.

• There is a path from every n ∈ N to End.

Figure 1.3 shows the CFG of the program in Figure 1.1(a).
The analyses in this thesis are achieved using a simple programming lan-

guage called While [10]. This language comprises statements of assignments
to local variables, if conditional statements, while loops, and simple integer
and boolean expressions. In the syntax of the While language, some types of
program pieces are indicated by metavariables as shown below, where the let-
ter on the left is a metavariable, and the kind of its program piece is described
on the right:

2Static program analysis methods are the approaches that are used to understand the behavior
of a software program without running it. Static program slicing is one of these methods.

9

The primary three known representations used by the static program analy-
sis2 methods are Abstract Syntax Tree (AST), Control Flow Graph (CFG), and
Program Dependence Graph (PDG). AST is used in abstracting the hierarchi-
cal syntactic structure of the software. It represents every program statement
as a sub-tree, where the node is the operator, procedure name, or condition,
while the leaves represent operands, argument lists, an expression of a con-
dition (predicate), or inner statements inside the body of the condition. The
sub-trees are ordered from left to right with respect to their locations in the
source code. The AST does not represent explicitly the control flows in the
well-structured source codes, and it does not represent at all the control flows
in unstructured source codes.

The CFG represents program statements as nodes and the transfer of con-
trols as edges. Representing the control flows in the CFGs enabled it to be
the best choice for the early scientists who developed the basis of the state-of-
the-art slicing techniques [4, 5, 6, 7, 8, 9]. The CFG for an intra-procedural
program P is a 4-tuple (N,E,Entry,End):

1. N is a set of nodes, where each node represents an elementary program
statement in P.

2. E is a set of edges, where each edge represents a possible program flow
from one node to another. E ⊆ (N×N).

3. Entry: is a unique start node. Entry ∈ N.

4. End: is a unique exit node. End ∈ N.

The programs that are represented by a CFG must have the following features:

• There is a path from Entry(P) to every n ∈ N.

• There is a path from every n ∈ N to End.

Figure 1.3 shows the CFG of the program in Figure 1.1(a).
The analyses in this thesis are achieved using a simple programming lan-

guage called While [10]. This language comprises statements of assignments
to local variables, if conditional statements, while loops, and simple integer
and boolean expressions. In the syntax of the While language, some types of
program pieces are indicated by metavariables as shown below, where the let-
ter on the left is a metavariable, and the kind of its program piece is described
on the right:

2Static program analysis methods are the approaches that are used to understand the behavior
of a software program without running it. Static program slicing is one of these methods.

9

24

Entry read(n1) read(n2) read(x) y:=n1 z:=n2

c:=1

write(y)

write(z)

y:=y*10 z:=z*10 c:=c+1c<=x

Exit

Figure 1.3: The Control Flow Graph (CFG) of the program shown in Figure 1.1(a)

s statement
a arithmetic expression
x program variable
n numerical constant
b boolean predicate

The syntax of the While language is as follows:

s := [x := a]` | [skip]` | s1;s2 | If b` then s1 else s2 | while b` do s
a := x | n | a1 opa a1

b := true | false | not b | b1 opb b2 | a1 opa a2

opb := < | <= | >= | > | and | or
opa := + | − | ∗ | ÷

In this syntax, each elementary statement (e.g. x := a) or a predicate of a
conditional statement gets a unique label (`). These labels correspond to the
nodes in the CFG that is constructed for the While program.

In the state-of-the-art slicing technique, the CFG is subjected to many algo-
rithms to obtain all the data and control dependencies in the program. Those
dependencies are added as edges to the CFG. This addition of dependence
edges upgrades the CFG to a PDG. Figure 1.2 shows how the PDG is con-
structed from a CFG. First, the source code is converted into a CFG. Sec-

10

Entry read(n1) read(n2) read(x) y:=n1 z:=n2

c:=1

write(y)

write(z)

y:=y*10 z:=z*10 c:=c+1c<=x

Exit

Figure 1.3: The Control Flow Graph (CFG) of the program shown in Figure 1.1(a)

s statement
a arithmetic expression
x program variable
n numerical constant
b boolean predicate

The syntax of the While language is as follows:

s := [x := a]` | [skip]` | s1;s2 | If b` then s1 else s2 | while b` do s
a := x | n | a1 opa a1

b := true | false | not b | b1 opb b2 | a1 opa a2

opb := < | <= | >= | > | and | or
opa := + | − | ∗ | ÷

In this syntax, each elementary statement (e.g. x := a) or a predicate of a
conditional statement gets a unique label (`). These labels correspond to the
nodes in the CFG that is constructed for the While program.

In the state-of-the-art slicing technique, the CFG is subjected to many algo-
rithms to obtain all the data and control dependencies in the program. Those
dependencies are added as edges to the CFG. This addition of dependence
edges upgrades the CFG to a PDG. Figure 1.2 shows how the PDG is con-
structed from a CFG. First, the source code is converted into a CFG. Sec-

10

25

ond, the Reaching Definition (RD) dataflow analysis3 is applied to the CFG
to determine for every program the definitions that reach this point. These
analyses construct use-def chains4, which are essential to finding out the data
dependencies. Third, another algorithm is applied to the same CFG to build a
post-dominator tree5, which is used later to take out the control dependencies.
Since each data or control dependence reflects a direct relationship between
two nodes in the CFG, such dependencies are translated to edges, encoded in
the CFG to produce a PDG.

The PDG is used in the state-of-the-art slicing approach to slice the pro-
gram for particular slicing criteria. To do so, the reachability analysis slices
each node in the PDG that reaches the slicing criterion node by a sequence of
program dependence edges [4]. As an example, Figure 1.4 shows the PDG of
the source code shown in Figure 1.1(a). In Figure 1.4, all the nodes that could
reach the slicing criterion< 10, p> are shaded, and their corresponding state-
ments form the slice shown in Figure 1.1(b).

Entry

read(n1) read(n2) read(x) y:=n1 z:=n2 c:=1 while(c<=x) write(y) write(z)

y:=y*10 z:=z*10 c:=c+1

data dependence

control dependence

Figure 1.4: The PDG of the program in Figure 1.1

1.2 Reaching Definitions and Data Dependencies
Dataflow analysis techniques rely on generating, propagating and killing data
queries to explore the source code. Each of these techniques works to find
out a special type of facts by propagating a particular type of data queries.
Dataflow analyses are designed to use the nodes and edges in the CFG. For-
ward dataflow analyses propagate the data queries with the direction of the

3Sec. 1.2 provides a discussion on the RD analysis
4use-def chain concerning variable x used in s1 refers to the definitions defining x and reaching
s1.
5The post-domination concept is introduced in Sec. 1.3.

11

ond, the Reaching Definition (RD) dataflow analysis3 is applied to the CFG
to determine for every program the definitions that reach this point. These
analyses construct use-def chains4, which are essential to finding out the data
dependencies. Third, another algorithm is applied to the same CFG to build a
post-dominator tree5, which is used later to take out the control dependencies.
Since each data or control dependence reflects a direct relationship between
two nodes in the CFG, such dependencies are translated to edges, encoded in
the CFG to produce a PDG.

The PDG is used in the state-of-the-art slicing approach to slice the pro-
gram for particular slicing criteria. To do so, the reachability analysis slices
each node in the PDG that reaches the slicing criterion node by a sequence of
program dependence edges [4]. As an example, Figure 1.4 shows the PDG of
the source code shown in Figure 1.1(a). In Figure 1.4, all the nodes that could
reach the slicing criterion< 10, p> are shaded, and their corresponding state-
ments form the slice shown in Figure 1.1(b).

Entry

read(n1) read(n2) read(x) y:=n1 z:=n2 c:=1 while(c<=x) write(y) write(z)

y:=y*10 z:=z*10 c:=c+1

data dependence

control dependence

Figure 1.4: The PDG of the program in Figure 1.1

1.2 Reaching Definitions and Data Dependencies
Dataflow analysis techniques rely on generating, propagating and killing data
queries to explore the source code. Each of these techniques works to find
out a special type of facts by propagating a particular type of data queries.
Dataflow analyses are designed to use the nodes and edges in the CFG. For-
ward dataflow analyses propagate the data queries with the direction of the

3Sec. 1.2 provides a discussion on the RD analysis
4use-def chain concerning variable x used in s1 refers to the definitions defining x and reaching
s1.
5The post-domination concept is introduced in Sec. 1.3.

11

26

edges, while backward dataflow analyses propagate them against the direc-
tion of the edges. Each node n in the CFG has two program points; entry(n)
and exit(n). In the forward dataflow analyses, entry(n) is immediately before
n, and exit(n) is immediately after it [10].

Dataflow analyses track the movement of their queries by keeping a copy
of each query at every program point that it reaches. Thus, a dataset is as-
sociated with every point. The denotations of Sentry(n) and Sexit(n) refer to
the sets of entry(n) and exit(n), respectively. In the forward dataflow analy-
ses, Sentry(n) is computed from the exit point sets of the predecessors of n,
while the value of Sexit(n) is computed from n as well as Sentry(n). Such a
way in tracking the data flow facts adds many operations in the level of each
data set (e.g. checking, removing and copying) and in the level between the
data sets (e.g.intersecting and unifying). Further, this method requires extra
memory space to be available, which becomes considerable with slicing large
industrial systems. However, some techniques can reduce the consumption of
resources. One of them is based on using bit vectors6.

Since the values of the program sets are strongly connected, changing the
value of any set might cause a chain of changes to other sets. Thus, the
dataflow analysis usually requires many iterations until reaching the fixed-
point status7, where all the sets become saturated. At this moment, it is not
possible to add more queries to any data set.

The dataflow analyses can be classified into MAY and MUST analyses.
MAY dataflow analyses compute the entry point set as a union of the prede-
cessor exit point sets, whereas it is an intersection from the same predecessor
sets in MUST analyses. The equations of MAY dataflow analyses that com-
pute the Sentry(n) and Sexit(n) for a node n in a CFG are formed as [11, 10, 12]:

Reaching Definition (RD) dataflow analysis is classified as forward and
MAY. It generates RD data queries from the assignments (definitions) and
propagates them forward to recognise every program point that each assign-
ment might reach [10]. The RD data query is a pair < v,n >, where v is a
variable defined in a program node n. Based on that, if < v,n > is stored in
Sentry(n′), then this means that v is defined at n and there is a path from n to n′

6In the bit-vector data flow analysis, the data set is represented by a bit-vector, where one bit is
allocated for each data query. Thus, the size of the bit-vector equals the number of data queries
in the program. The simple OR and AND bit operations are used to compute the union and
intersection operations of bit vectors.
7The iterated function is a function that is applied a certain number of times f 0, f 1, f 3.. f n,
where the output of each function f n is an input to the next one f n+1. So, the function itself
is composed with itself and produces a sequence of values where xn+1 = f (x). The fixed-point
status in iterated functions occurs when xn+1 = x. In this case, the output of f becomes steady,
and there is no use from applying f more than n+1 from the same initial status. Since dataflow
analyses apply their equations many times until they become satisfied, we consider these equa-
tions as iterated functions. Also, since such data sets are subsets of a finite number of variables
and locations, dataflow analyses are indeed fixed-point iterative techniques.

12

edges, while backward dataflow analyses propagate them against the direc-
tion of the edges. Each node n in the CFG has two program points; entry(n)
and exit(n). In the forward dataflow analyses, entry(n) is immediately before
n, and exit(n) is immediately after it [10].

Dataflow analyses track the movement of their queries by keeping a copy
of each query at every program point that it reaches. Thus, a dataset is as-
sociated with every point. The denotations of Sentry(n) and Sexit(n) refer to
the sets of entry(n) and exit(n), respectively. In the forward dataflow analy-
ses, Sentry(n) is computed from the exit point sets of the predecessors of n,
while the value of Sexit(n) is computed from n as well as Sentry(n). Such a
way in tracking the data flow facts adds many operations in the level of each
data set (e.g. checking, removing and copying) and in the level between the
data sets (e.g.intersecting and unifying). Further, this method requires extra
memory space to be available, which becomes considerable with slicing large
industrial systems. However, some techniques can reduce the consumption of
resources. One of them is based on using bit vectors6.

Since the values of the program sets are strongly connected, changing the
value of any set might cause a chain of changes to other sets. Thus, the
dataflow analysis usually requires many iterations until reaching the fixed-
point status7, where all the sets become saturated. At this moment, it is not
possible to add more queries to any data set.

The dataflow analyses can be classified into MAY and MUST analyses.
MAY dataflow analyses compute the entry point set as a union of the prede-
cessor exit point sets, whereas it is an intersection from the same predecessor
sets in MUST analyses. The equations of MAY dataflow analyses that com-
pute the Sentry(n) and Sexit(n) for a node n in a CFG are formed as [11, 10, 12]:

Reaching Definition (RD) dataflow analysis is classified as forward and
MAY. It generates RD data queries from the assignments (definitions) and
propagates them forward to recognise every program point that each assign-
ment might reach [10]. The RD data query is a pair < v,n >, where v is a
variable defined in a program node n. Based on that, if < v,n > is stored in
Sentry(n′), then this means that v is defined at n and there is a path from n to n′

6In the bit-vector data flow analysis, the data set is represented by a bit-vector, where one bit is
allocated for each data query. Thus, the size of the bit-vector equals the number of data queries
in the program. The simple OR and AND bit operations are used to compute the union and
intersection operations of bit vectors.
7The iterated function is a function that is applied a certain number of times f 0, f 1, f 3.. f n,
where the output of each function f n is an input to the next one f n+1. So, the function itself
is composed with itself and produces a sequence of values where xn+1 = f (x). The fixed-point
status in iterated functions occurs when xn+1 = x. In this case, the output of f becomes steady,
and there is no use from applying f more than n+1 from the same initial status. Since dataflow
analyses apply their equations many times until they become satisfied, we consider these equa-
tions as iterated functions. Also, since such data sets are subsets of a finite number of variables
and locations, dataflow analyses are indeed fixed-point iterative techniques.

12

27

that does not overwrite v. In this case, providing n′ uses v, meaning that there
is a flow of data from n to n′, and n′ is data dependent on n.

In dataflow analyses, the nodes generate and kill data queries by a set of
functions that are used in dataflow equations such as what is found in Equa-
tion 1.1. RD functions are formed in (1.2):

Sentry(Entry) = Sinit

Sexit(Entry) = Sentry(Entry)
Sexit(End) = Sentry(End)
Sexit(n) = (Sentry(n)\ kill(n))∪gen(n),

where n 6∈ Entry,n 6∈ End
Sentry(n) =

⋃
n′∈pred(n) Sexit(n′),

where n 6∈ {Entry}
and pred(n) is the set of n predecessors

(1.1)

The time complexity of the RD analysis is O(t ·h · |N|) [12], where h is the size
of the largest possible set at a program point and |N| is the number of nodes in
the CFG. h · |N| is the maximum possible number of fixed-point iterations. The
expression O(t · h · |N|) is the worst execution time, where t is the maximum
time needed to perform one fixed-point iteration.

Sinit = {(x,?)|x is a program variable}
where (x, ?): the ? refers to the Enty node.

gen([x := a]`) = {(x, `)}
kill([x := a]`) = {(x, `′)|`′ ∈ N}∪{(x,?)}

where N is the set of nodes in the CFG
kill([b]`) = /0 where b is a predicate
gen([b]`) = /0 where b is a predicate

(1.2)

1.3 Post-domination and Control Dependency
In the CFG, a node n post-dominates another node n′ if all the paths from n′ to
the End node contain n. The importance of the post-domination information is
in being the basis of defining the control dependence relationship as follows:
a node n is control dependent on a node b iff b is a predicate, there is a path
in the CFG from b to n, wherein n post-dominates all the nodes in it except b,
and there is a path from b to the End node, which does not contain n.

13

that does not overwrite v. In this case, providing n′ uses v, meaning that there
is a flow of data from n to n′, and n′ is data dependent on n.

In dataflow analyses, the nodes generate and kill data queries by a set of
functions that are used in dataflow equations such as what is found in Equa-
tion 1.1. RD functions are formed in (1.2):

Sentry(Entry) = Sinit

Sexit(Entry) = Sentry(Entry)
Sexit(End) = Sentry(End)
Sexit(n) = (Sentry(n)\ kill(n))∪gen(n),

where n 6∈ Entry,n 6∈ End
Sentry(n) =

⋃
n′∈pred(n) Sexit(n′),

where n 6∈ {Entry}
and pred(n) is the set of n predecessors

(1.1)

The time complexity of the RD analysis is O(t ·h · |N|) [12], where h is the size
of the largest possible set at a program point and |N| is the number of nodes in
the CFG. h · |N| is the maximum possible number of fixed-point iterations. The
expression O(t · h · |N|) is the worst execution time, where t is the maximum
time needed to perform one fixed-point iteration.

Sinit = {(x,?)|x is a program variable}
where (x, ?): the ? refers to the Enty node.

gen([x := a]`) = {(x, `)}
kill([x := a]`) = {(x, `′)|`′ ∈ N}∪{(x,?)}

where N is the set of nodes in the CFG
kill([b]`) = /0 where b is a predicate
gen([b]`) = /0 where b is a predicate

(1.2)

1.3 Post-domination and Control Dependency
In the CFG, a node n post-dominates another node n′ if all the paths from n′ to
the End node contain n. The importance of the post-domination information is
in being the basis of defining the control dependence relationship as follows:
a node n is control dependent on a node b iff b is a predicate, there is a path
in the CFG from b to n, wherein n post-dominates all the nodes in it except b,
and there is a path from b to the End node, which does not contain n.

13

28

In the state-of-art slicing approach [4], a post-dominator tree is built to
conclude from it all the control dependence facts in the program. The time
complexity of all the algorithms constructing post-dominator trees is strongly
related to the number of nodes in the corresponding CFG. Cooper et al. [13]
described the algorithm of Lengauer and Tarjan [14] as the best-known al-
gorithm that builds a post-dominator tree, and it is almost linear. Based on
that, the time complexity of building a post-dominator tree by any algorithm
is directly proportional to the number of the nodes in the CFG or the program
size.

1.4 System Dependence Graph (SDG)
The PDG represents program statements, inputs, predicates and dependencies
in a one-procedure program. It cannot work with multiple-procedures pro-
grams. To address this problem, Horwitz, Reps, and Binkley (HRB) extended
the PDG to a so-called System Dependence Graph (SDG) [6]. The SDG rep-
resents each procedure by a PDG, and it also adds to those PDGs new vertices
and edges to represent the call sites, procedure headers, formal parameters,
actual parameters, the parameters passing between the call sites and their pro-
cedures. So, the leading role of the SDG is to link the different PDGs properly.

The SDG introduces new types of vertices and edges. In the SDG, the call
site is represented by a call vertex. The actual parameter is represented by an
actual-in vertex, and if its value might be updated due to the calling of the
procedure, then this parameter is also represented by an actual-out vertex. An
entry vertex represents a procedure header. A formal-in vertex represents the
formal parameter, and if this parameter corresponds to an actual-out param-
eter, then it is also represented by a formal-out vertex. Regarding the edges,
each actual vertex is control dependent on its call vertex. Similarly, each pa-
rameter vertex is control dependent on its entry vertex. Control edges repre-
sent these control dependencies.

The SDG is formed by PDGs that are connected by call edges, formal-
in edges, and formal-out edges. The call edge connects the call site vertex
with its corresponding entry vertex. The parameter-in and parameter-out edges
represent parameter passing. Parameter-in edges run from actual-in vertices to
their corresponding formal-in vertices. Parameter-out edges run from formal-
out edges to their corresponding actual-out vertices.

Transitive dependence appears in a call site between two of its actual pa-
rameters, suppose x and y, if the value of y is updated due to the calling and
it might be affected by x. In this case, we say that y is a transitive dependence
on x. This dependency is represented by a summary edge from the actual-in
vertex of x to the actual-out vertex of y. The summary edges help the slicing
approach not to dig into the called procedure whenever one of its call sites is
encountered.

14

In the state-of-art slicing approach [4], a post-dominator tree is built to
conclude from it all the control dependence facts in the program. The time
complexity of all the algorithms constructing post-dominator trees is strongly
related to the number of nodes in the corresponding CFG. Cooper et al. [13]
described the algorithm of Lengauer and Tarjan [14] as the best-known al-
gorithm that builds a post-dominator tree, and it is almost linear. Based on
that, the time complexity of building a post-dominator tree by any algorithm
is directly proportional to the number of the nodes in the CFG or the program
size.

1.4 System Dependence Graph (SDG)
The PDG represents program statements, inputs, predicates and dependencies
in a one-procedure program. It cannot work with multiple-procedures pro-
grams. To address this problem, Horwitz, Reps, and Binkley (HRB) extended
the PDG to a so-called System Dependence Graph (SDG) [6]. The SDG rep-
resents each procedure by a PDG, and it also adds to those PDGs new vertices
and edges to represent the call sites, procedure headers, formal parameters,
actual parameters, the parameters passing between the call sites and their pro-
cedures. So, the leading role of the SDG is to link the different PDGs properly.

The SDG introduces new types of vertices and edges. In the SDG, the call
site is represented by a call vertex. The actual parameter is represented by an
actual-in vertex, and if its value might be updated due to the calling of the
procedure, then this parameter is also represented by an actual-out vertex. An
entry vertex represents a procedure header. A formal-in vertex represents the
formal parameter, and if this parameter corresponds to an actual-out param-
eter, then it is also represented by a formal-out vertex. Regarding the edges,
each actual vertex is control dependent on its call vertex. Similarly, each pa-
rameter vertex is control dependent on its entry vertex. Control edges repre-
sent these control dependencies.

The SDG is formed by PDGs that are connected by call edges, formal-
in edges, and formal-out edges. The call edge connects the call site vertex
with its corresponding entry vertex. The parameter-in and parameter-out edges
represent parameter passing. Parameter-in edges run from actual-in vertices to
their corresponding formal-in vertices. Parameter-out edges run from formal-
out edges to their corresponding actual-out vertices.

Transitive dependence appears in a call site between two of its actual pa-
rameters, suppose x and y, if the value of y is updated due to the calling and
it might be affected by x. In this case, we say that y is a transitive dependence
on x. This dependency is represented by a summary edge from the actual-in
vertex of x to the actual-out vertex of y. The summary edges help the slicing
approach not to dig into the called procedure whenever one of its call sites is
encountered.

14

29

Similar to the PDG-based slicing, the SDG-based slicing approach uses
the reachability analysis, which tracks backward the dependence edges from
the vertex of the slicing criterion. This leads to the Calling Context Problem.
This problem occurs with the procedures that are called by many calling sites.
When the analysis encounters a call site cs vertex of a procedure P, the analy-
sis descends into P, slices it, and then ascends to cs again. Since P’s formal-out
parameters are connected with all the actual-out parameters in all the call sites
of P, the calling context problem occurs when the analysis might ascend to an-
other call site or to all the call sites. Therefore, preserving the calling context
is essential to produce precise slices.

The SDG-based backward slicing applies the reachability analysis in two
phases. The first phase uses the data, control, summary and parameter-in edges
to track backwards the dependence edges, but not along parameter-out edges.
The second phase uses all the types of edges except parameter-in edges. Based
on that, providing the slicing criterion is located in a procedure p, the first
phase starts from p for this criterion, then it ascends to every procedure calling
p, but it does not descend into the procedures called by p. The call sites that are
encountered in the first phase are marked. The second phase starts its analysis
from the marked procedures, and it descends into every called procedure, but
the choice of edges in the second phase limits the traversal from ascending
into calling procedures.

The two-phase interprocedural slicing is designed to avoid the context-
insensitive problem. This problem occurs when the procedure p is reached
from an actual-out y vertex for a call site and exit to an actual-in vertex x′

for another call site. The essence of this problem comes from creating the
false fact that y is transitive dependent on x′. The context-insensitive problem
happens due to the existence of invalid dependence paths, which are formed
due to connecting the formal parameter vertices with all corresponding actual
parameters in the different call sites. Two-phase SDG-based slicing prevents
this problem, because the first phase ascends to all the calling procedures. The
second phase slices the called procedures without going up again to their call
sites. Consequently, the procedure which is sliced due to reaching one of its
parameter-out edges of one of the call sites could not use a parameter-in edge
for another call site. As a result, no invalid paths are formed, and the context-
sensitivity is preserved.

1.5 Motivation
The PDG-based slicing approach makes a comprehensive analysis for get-
ting all the data and control dependencies in the program. In this approach,
all the dependencies are obtained at the beginning, although not all of them
are included in the final slice. In using this approach, slicing large systems
causes a high overhead. Several works identify this problem. Atkisson and

15

Similar to the PDG-based slicing, the SDG-based slicing approach uses
the reachability analysis, which tracks backward the dependence edges from
the vertex of the slicing criterion. This leads to the Calling Context Problem.
This problem occurs with the procedures that are called by many calling sites.
When the analysis encounters a call site cs vertex of a procedure P, the analy-
sis descends into P, slices it, and then ascends to cs again. Since P’s formal-out
parameters are connected with all the actual-out parameters in all the call sites
of P, the calling context problem occurs when the analysis might ascend to an-
other call site or to all the call sites. Therefore, preserving the calling context
is essential to produce precise slices.

The SDG-based backward slicing applies the reachability analysis in two
phases. The first phase uses the data, control, summary and parameter-in edges
to track backwards the dependence edges, but not along parameter-out edges.
The second phase uses all the types of edges except parameter-in edges. Based
on that, providing the slicing criterion is located in a procedure p, the first
phase starts from p for this criterion, then it ascends to every procedure calling
p, but it does not descend into the procedures called by p. The call sites that are
encountered in the first phase are marked. The second phase starts its analysis
from the marked procedures, and it descends into every called procedure, but
the choice of edges in the second phase limits the traversal from ascending
into calling procedures.

The two-phase interprocedural slicing is designed to avoid the context-
insensitive problem. This problem occurs when the procedure p is reached
from an actual-out y vertex for a call site and exit to an actual-in vertex x′

for another call site. The essence of this problem comes from creating the
false fact that y is transitive dependent on x′. The context-insensitive problem
happens due to the existence of invalid dependence paths, which are formed
due to connecting the formal parameter vertices with all corresponding actual
parameters in the different call sites. Two-phase SDG-based slicing prevents
this problem, because the first phase ascends to all the calling procedures. The
second phase slices the called procedures without going up again to their call
sites. Consequently, the procedure which is sliced due to reaching one of its
parameter-out edges of one of the call sites could not use a parameter-in edge
for another call site. As a result, no invalid paths are formed, and the context-
sensitivity is preserved.

1.5 Motivation
The PDG-based slicing approach makes a comprehensive analysis for get-
ting all the data and control dependencies in the program. In this approach,
all the dependencies are obtained at the beginning, although not all of them
are included in the final slice. In using this approach, slicing large systems
causes a high overhead. Several works identify this problem. Atkisson and

15

30

Griswold [15] noted that the time and space performance is of major con-
cern for dataflow analyses which are employed by the PDG-based slicing
approach. In particular, this becomes evident when the data and control de-
pendencies are computed a priori in large systems where significant amounts
of time and space are required [16]. Hajnal and Forgács [17] had a concern in
slicing legacy Cobol industrial systems because the construction of the PDG
of such systems is expensive. They said that none of the existing slicing tools
are suitable for such large systems. Duesterwald et al. [18] explained why the
traditional dataflow analyses require a considerable amount of space and time.

The demand-driven slicing approach is an attractive option to overcome
the potential overhead of the PDG-based slicing. This approach aims at com-
puting only the necessary information (dependencies). Some previous works
introduced this approach. Duesterwald et al. [18] described the advantages of
demand-driven slicing analysis techniques, and they introduced a work that
avoids the collection of unnecessary information (dependencies).

Demand-driven slicing approaches are divided into two categories. The
main concern of the first category [12, 19, 17] is in computing the required
data and control dependencies. The slicing approach presented in this thesis
falls into this category. The second category parses and builds a PDG of the
procedure if one of its call sites is visited during the analysis. This trend was
found in a series of Atkinson and Griswold works [16, 20, 21, 15]. However,
as we will see in Section 6.4, the current demand-driven slicing approaches
suffer from either providing imprecise results or not being entirely demand-
driven.

In brief, the motivation of this work comes from the fact that the current
slicing approaches either use prohibitive time and space, compute on-demand
imprecise results, or are not fully demand-driven.

1.6 Research Objective
This thesis aims to develop an entirely demand-driven slicing approach
that computes only the required program dependencies, avoids the
unnecessary computations, and provides precise results, for intra-procedural,
inter-procedural, well-structured8 and unstructured programs.

1.7 Research Problem and Questions
The state-of-the-art slicing approach holds unnecessary computations. As
what is shown in Section 1.2, the computations of the data dependencies

8The constructs of well-structured programming languages do not allow for overlapping or
intersecting the control flows. This makes the reading, understanding, and debugging such pro-
grams easier than the unstructured programs.

16

Griswold [15] noted that the time and space performance is of major con-
cern for dataflow analyses which are employed by the PDG-based slicing
approach. In particular, this becomes evident when the data and control de-
pendencies are computed a priori in large systems where significant amounts
of time and space are required [16]. Hajnal and Forgács [17] had a concern in
slicing legacy Cobol industrial systems because the construction of the PDG
of such systems is expensive. They said that none of the existing slicing tools
are suitable for such large systems. Duesterwald et al. [18] explained why the
traditional dataflow analyses require a considerable amount of space and time.

The demand-driven slicing approach is an attractive option to overcome
the potential overhead of the PDG-based slicing. This approach aims at com-
puting only the necessary information (dependencies). Some previous works
introduced this approach. Duesterwald et al. [18] described the advantages of
demand-driven slicing analysis techniques, and they introduced a work that
avoids the collection of unnecessary information (dependencies).

Demand-driven slicing approaches are divided into two categories. The
main concern of the first category [12, 19, 17] is in computing the required
data and control dependencies. The slicing approach presented in this thesis
falls into this category. The second category parses and builds a PDG of the
procedure if one of its call sites is visited during the analysis. This trend was
found in a series of Atkinson and Griswold works [16, 20, 21, 15]. However,
as we will see in Section 6.4, the current demand-driven slicing approaches
suffer from either providing imprecise results or not being entirely demand-
driven.

In brief, the motivation of this work comes from the fact that the current
slicing approaches either use prohibitive time and space, compute on-demand
imprecise results, or are not fully demand-driven.

1.6 Research Objective
This thesis aims to develop an entirely demand-driven slicing approach
that computes only the required program dependencies, avoids the
unnecessary computations, and provides precise results, for intra-procedural,
inter-procedural, well-structured8 and unstructured programs.

1.7 Research Problem and Questions
The state-of-the-art slicing approach holds unnecessary computations. As
what is shown in Section 1.2, the computations of the data dependencies

8The constructs of well-structured programming languages do not allow for overlapping or
intersecting the control flows. This makes the reading, understanding, and debugging such pro-
grams easier than the unstructured programs.

16

31

entails the first of such computations, because to find the definitions that
reach a particular statement, then all the definitions in the program must be
propagated. This comprehensive solution is expensive.

The algorithm that obtains the control dependencies in the state-of-the-art
slicing approach builds on the post-dominator tree. As shown in Section 1.3,
constructing such a tree requires a comprehensive iterative technique and this
type of techniques does not distinguish between the necessary and unneces-
sary information. As a result, obtaining the control dependencies is another
source of unnecessary computation.

The straightforward implementation of the dataflow analyses requires a set
of data flow facts at each program point. Each of those sets stores the data
queries that visit its program point. Using the data sets to store the dataflow
queries helps to track the flow of the queries, but it adds many operations
in the level of each data set (e.g. checking, removing and copying) and in
the level between the data sets (e.g. intersecting and unifying). Further, this
method requires extra memory space to be available. The amount of memory
space becomes considerable in slicing large industrial systems, which causes
scalability difficulties. However, there are some techniques such as “copy-on-
write" and “bit-vector" to reduce the memory needs for traditional dataflow
analyses. The question is asked here whether storing the data queries for every
program point is really necessary for achieving the primary goal of the slicing
(producing a slice).

Traditional dataflow analyses generate and propagate dataflow queries in all
the forward or backward paths. Often, the query is propagated in a big tree of
irrelevant paths. These propagations waste time and memory space.

Demand-driven slicing approaches try to avoid as much as possible the
computation of entire program dependencies before the slicing. These ap-
proaches compute the needed dependencies while the program is being sliced.
This is great for avoiding getting unneeded relations, but on the other side,
when the same program is sliced many times for different slicing criteria, the
same program dependence might be obtained many times. Hence, generating
many slices in a demand-driven way entails undoubtedly significant wasteful
efforts.

In inter-procedural programs, the procedure has a set of formal parameters
that are classified into input parameter and output parameter. Computing the
transitive dependencies on the fly for one of the parameters is the challenge
that we should solve for building a demand-driven inter-procedural slicing
approach.
From the above problems, the following research questions are formulated:

RQ1 How to compute on-the fly the data and control dependencies?

RQ2 How to eliminate the computations that are wasted due to propagating
the data queries into unrelated paths, tracing the data queries, and slic-
ing the same program many times?

17

entails the first of such computations, because to find the definitions that
reach a particular statement, then all the definitions in the program must be
propagated. This comprehensive solution is expensive.

The algorithm that obtains the control dependencies in the state-of-the-art
slicing approach builds on the post-dominator tree. As shown in Section 1.3,
constructing such a tree requires a comprehensive iterative technique and this
type of techniques does not distinguish between the necessary and unneces-
sary information. As a result, obtaining the control dependencies is another
source of unnecessary computation.

The straightforward implementation of the dataflow analyses requires a set
of data flow facts at each program point. Each of those sets stores the data
queries that visit its program point. Using the data sets to store the dataflow
queries helps to track the flow of the queries, but it adds many operations
in the level of each data set (e.g. checking, removing and copying) and in
the level between the data sets (e.g. intersecting and unifying). Further, this
method requires extra memory space to be available. The amount of memory
space becomes considerable in slicing large industrial systems, which causes
scalability difficulties. However, there are some techniques such as “copy-on-
write" and “bit-vector" to reduce the memory needs for traditional dataflow
analyses. The question is asked here whether storing the data queries for every
program point is really necessary for achieving the primary goal of the slicing
(producing a slice).

Traditional dataflow analyses generate and propagate dataflow queries in all
the forward or backward paths. Often, the query is propagated in a big tree of
irrelevant paths. These propagations waste time and memory space.

Demand-driven slicing approaches try to avoid as much as possible the
computation of entire program dependencies before the slicing. These ap-
proaches compute the needed dependencies while the program is being sliced.
This is great for avoiding getting unneeded relations, but on the other side,
when the same program is sliced many times for different slicing criteria, the
same program dependence might be obtained many times. Hence, generating
many slices in a demand-driven way entails undoubtedly significant wasteful
efforts.

In inter-procedural programs, the procedure has a set of formal parameters
that are classified into input parameter and output parameter. Computing the
transitive dependencies on the fly for one of the parameters is the challenge
that we should solve for building a demand-driven inter-procedural slicing
approach.
From the above problems, the following research questions are formulated:

RQ1 How to compute on-the fly the data and control dependencies?

RQ2 How to eliminate the computations that are wasted due to propagating
the data queries into unrelated paths, tracing the data queries, and slic-
ing the same program many times?

17

32

RQ3 How to compute properly and on-the-fly the calling-context9 of calling
sites?

1.8 Thesis Overview
The first part is an overall summary of the thesis, organized as follows. Chap-
ter 2 introduces the concept of the Predicated Code Block graph and the slic-
ing approach based on this graph. Chapter 3 summarizes the contributions of
the thesis. Chapter 4 explains the research methods used in developing the
new slicing technique. Section 5 presents some experimental evaluations that
show the effectiveness of the new slicing technique. Section 6 discusses re-
lated work. Finally, Section 7 states the conclusion. The second part is a col-
lection of publications included in this thesis, listed as follows:

Paper A
Static Backward Program Slicing for Safety Critical Systems

Husni Khanfar, Björn Lisper, Masud Abu Naser
Presented in ADA-Europe conference, 2015 [22]

Paper B
Enhanced PCB Based Slicing

Husni Khanfar, Björn Lisper
Presented in META 2016 workshop [23]

Paper C
Demand-Driven Static Backward Slicing for Unstructured Programs

Husni Khanfar, Björn Lisper, Saad Mubeen
Technical Report, Mälardalen University, Sweden 2019

9In the calling site, the actual parameters are classified into two categories; Actual-Out and
Acutal In. The actual-out parameter holds a value that the calling side sends it to the proce-
dure header, while the actual-in parameter receives a value sent from a return statement in the
procedure body to the calling site. Usually, each Actual-in parameter is data dependent on all
or some actual-out parameters. This data dependence is named a transitive data dependence in
accordance to Horwitz et al. [6].

18

RQ3 How to compute properly and on-the-fly the calling-context9 of calling
sites?

1.8 Thesis Overview
The first part is an overall summary of the thesis, organized as follows. Chap-
ter 2 introduces the concept of the Predicated Code Block graph and the slic-
ing approach based on this graph. Chapter 3 summarizes the contributions of
the thesis. Chapter 4 explains the research methods used in developing the
new slicing technique. Section 5 presents some experimental evaluations that
show the effectiveness of the new slicing technique. Section 6 discusses re-
lated work. Finally, Section 7 states the conclusion. The second part is a col-
lection of publications included in this thesis, listed as follows:

Paper A
Static Backward Program Slicing for Safety Critical Systems

Husni Khanfar, Björn Lisper, Masud Abu Naser
Presented in ADA-Europe conference, 2015 [22]

Paper B
Enhanced PCB Based Slicing

Husni Khanfar, Björn Lisper
Presented in META 2016 workshop [23]

Paper C
Demand-Driven Static Backward Slicing for Unstructured Programs

Husni Khanfar, Björn Lisper, Saad Mubeen
Technical Report, Mälardalen University, Sweden 2019

9In the calling site, the actual parameters are classified into two categories; Actual-Out and
Acutal In. The actual-out parameter holds a value that the calling side sends it to the proce-
dure header, while the actual-in parameter receives a value sent from a return statement in the
procedure body to the calling site. Usually, each Actual-in parameter is data dependent on all
or some actual-out parameters. This data dependence is named a transitive data dependence in
accordance to Horwitz et al. [6].

18

33

2. Introduction to PCB-based Slicing

This thesis proposes a new program slicing approach. The new slicing ap-
proach builds on a new program representation that is referred to Predicated
Code Block (PCB) graph. The main purpose of this graph is to preserve the
syntactic structure of the source code. The main unit in the PCB-graph is the
PCB, which represents a conditional statement (e.g. if-then, while) and the
main body of the function. The PCBs are connected together by interfaces1

to construct a PCB graph. The original place of every PCB is represented by
a placeholder. The PCBs and the interfaces form a PCB graph representation.
Figure 2.1 shows the PCB graph of the program in Figure 1.1.

 P0

0 [true]
0

1 [read(n1)]
1

2 [read(n2)]
2

3 [read(x)]
3

4 [y:=n1]
6

5 [z:=n2]
7

6 [c:=1]
10

7 [skip]
11

8 [write(y)]
11

9 [write(z)]
12

10 [END]
15
;

 P8

0 [c≤z]
8

1 [y:=y*10]
8

2 [z:=z*10]
9

3 [c:=c+1]
9

Figure 2.1: The PCB graph of the source code in Figure 1.1

1The interface corresponds to the uni-directional edges in the CFGs

19

2. Introduction to PCB-based Slicing

This thesis proposes a new program slicing approach. The new slicing ap-
proach builds on a new program representation that is referred to Predicated
Code Block (PCB) graph. The main purpose of this graph is to preserve the
syntactic structure of the source code. The main unit in the PCB-graph is the
PCB, which represents a conditional statement (e.g. if-then, while) and the
main body of the function. The PCBs are connected together by interfaces1

to construct a PCB graph. The original place of every PCB is represented by
a placeholder. The PCBs and the interfaces form a PCB graph representation.
Figure 2.1 shows the PCB graph of the program in Figure 1.1.

 P0

0 [true]
0

1 [read(n1)]
1

2 [read(n2)]
2

3 [read(x)]
3

4 [y:=n1]
6

5 [z:=n2]
7

6 [c:=1]
10

7 [skip]
11

8 [write(y)]
11

9 [write(z)]
12

10 [END]
15
;

 P8

0 [c≤z]
8

1 [y:=y*10]
8

2 [z:=z*10]
9

3 [c:=c+1]
9

Figure 2.1: The PCB graph of the source code in Figure 1.1

1The interface corresponds to the uni-directional edges in the CFGs

19

34

ɩ5

ɩ2

ɩ4

[true] 0;

[i:=4] 1;

[j:=1] 2;

[u:=2] 3;

[call F(t,h,i,j,u)] 5;

[k:=8] 8;

[m:=12] 9;

[n:=9] 10;

[call F(a,b,c,m,n)] 11;

[m = t1 + t4] 13;

[F(out r,out k,in

x,in y,in z)] 20

[if(x > y)] 21 {

[r = x * y] 22;

[return] 23;

}

else

[r = 2 * x] 24;

[k = y — z] 25;

[return] 26;

Figure 2.2: Example of Connecting the Call Sites with Procedure Headers in PCB
Graphs

In Figure 2.1, there are two PCBs, the first PCB represents the main body
of the program, while the second PCB represents the While conditional state-
ment.

In the PCB-based slicing, the slicing criterion, e.g. < z,12 >, is converted
to a dataflow query < z,12 >. Afterward, each PCB processes its dataflow
queries. As instance, the dataflow query < z,12 > propagates backward from
P0-9 to P0-0. In this path, the query < z,12 > is killed when it visits the
first statement that assigns a value to z. In our case it is P0-5. Killing the
dataflow query at any statement slices this statement. When the dataflow query
< z,12 > arrives the outgoing side of an interface, it is reproduced inside the
ingoing side of the PCB. In our case, it becomes < z,3 > in P8, and P8 pro-
cesses it in the same manner. The prorogations obtain the data dependencies
between the statements in the source code. In structured source codes, as soon
as one of the statements is sliced, the first statement in the PCB, whose in-
dex is 0, is sliced. This is the method whereby the control dependencies are
captured immediately from the PCB graph.

In slicing inter-procedural programs, all the sites are connected through a
super interface with the procedure header and its return statements. The super
interface consists of many thin parts linked through a joint to a single thick
part. The thick part holds some general information that are required from all
the call sites, whereas the thin parts hold other information that are exclusively
linked to individual call sites.

Fig. 2.3 shows an example of an unstructured program. Three phases com-
pute the control dependencies in such programs. In our example, if the re-
quirement is to find the predicates that control the execution of the statements
whose label is d, then the following phases are applied: The first phase checks
whether d exists in a conditional statement that does not comprise a jump pro-

20

ɩ5

ɩ2

ɩ4

[true] 0;

[i:=4] 1;

[j:=1] 2;

[u:=2] 3;

[call F(t,h,i,j,u)] 5;

[k:=8] 8;

[m:=12] 9;

[n:=9] 10;

[call F(a,b,c,m,n)] 11;

[m = t1 + t4] 13;

[F(out r,out k,in

x,in y,in z)] 20

[if(x > y)] 21 {

[r = x * y] 22;

[return] 23;

}

else

[r = 2 * x] 24;

[k = y — z] 25;

[return] 26;

Figure 2.2: Example of Connecting the Call Sites with Procedure Headers in PCB
Graphs

In Figure 2.1, there are two PCBs, the first PCB represents the main body
of the program, while the second PCB represents the While conditional state-
ment.

In the PCB-based slicing, the slicing criterion, e.g. < z,12 >, is converted
to a dataflow query < z,12 >. Afterward, each PCB processes its dataflow
queries. As instance, the dataflow query < z,12 > propagates backward from
P0-9 to P0-0. In this path, the query < z,12 > is killed when it visits the
first statement that assigns a value to z. In our case it is P0-5. Killing the
dataflow query at any statement slices this statement. When the dataflow query
< z,12 > arrives the outgoing side of an interface, it is reproduced inside the
ingoing side of the PCB. In our case, it becomes < z,3 > in P8, and P8 pro-
cesses it in the same manner. The prorogations obtain the data dependencies
between the statements in the source code. In structured source codes, as soon
as one of the statements is sliced, the first statement in the PCB, whose in-
dex is 0, is sliced. This is the method whereby the control dependencies are
captured immediately from the PCB graph.

In slicing inter-procedural programs, all the sites are connected through a
super interface with the procedure header and its return statements. The super
interface consists of many thin parts linked through a joint to a single thick
part. The thick part holds some general information that are required from all
the call sites, whereas the thin parts hold other information that are exclusively
linked to individual call sites.

Fig. 2.3 shows an example of an unstructured program. Three phases com-
pute the control dependencies in such programs. In our example, if the re-
quirement is to find the predicates that control the execution of the statements
whose label is d, then the following phases are applied: The first phase checks
whether d exists in a conditional statement that does not comprise a jump pro-

20

35

[h:=1]a;

[x:=1]b;

if[b1]
c then

 [h:=h+1]d;

 [goto g]e;

[h:=h*3]f

[x:=x+1]g

[t:=2]h

(a) Unstructured program

 P0

0 [true]
0

1 [h:=1]a

2 [x:=1]b

3 [skip]

4 [h:=h*3]f

6 [x:=x+1]g

8 [t:=2]h

9 End

 P7

0 [b1]
7

1 [h:=h+1]d;

2 [goto g]e

(b) The PCB of the unstructured program in (a)

Figure 2.3: Unstructured program and its PCB-graph

gram flow. If this is the case, then d is control dependent only on the predicate
of this conditional statement. Otherwise, other predicates might control d. In
the case, d exists in the conditional statement cs whose predicate is c and its
boundaries are from c to e. Since cs comprises a jump program flow, then d is
not control dependent only on c. Thus, the analysis should move to the next
phase. The second phase finds the sequence of overlapping flows Seq that by-
passes d. The predicates which might control d are those in the outgoing side
of the flows in Seq. Herein, the sequence of overlapping flows that bypasses
d is [c→ f,e→ g], and the potential predicates to control d is {c}. The third
phase checks carefully whether d is control dependent on c. To do so, the paths
from c are explored, provided no explorations go beyond d. We get two paths
from c. The first path is [c,g,f,h] and the second path is [d]. Since one of the
paths reaches the last statement and the second path stops at d, we find that d
is control dependent on c.

21

[h:=1]a;

[x:=1]b;

if[b1]
c then

 [h:=h+1]d;

 [goto g]e;

[h:=h*3]f

[x:=x+1]g

[t:=2]h

(a) Unstructured program

 P0

0 [true]
0

1 [h:=1]a

2 [x:=1]b

3 [skip]

4 [h:=h*3]f

6 [x:=x+1]g

8 [t:=2]h

9 End

 P7

0 [b1]
7

1 [h:=h+1]d;

2 [goto g]e

(b) The PCB of the unstructured program in (a)

Figure 2.3: Unstructured program and its PCB-graph

gram flow. If this is the case, then d is control dependent only on the predicate
of this conditional statement. Otherwise, other predicates might control d. In
the case, d exists in the conditional statement cs whose predicate is c and its
boundaries are from c to e. Since cs comprises a jump program flow, then d is
not control dependent only on c. Thus, the analysis should move to the next
phase. The second phase finds the sequence of overlapping flows Seq that by-
passes d. The predicates which might control d are those in the outgoing side
of the flows in Seq. Herein, the sequence of overlapping flows that bypasses
d is [c→ f,e→ g], and the potential predicates to control d is {c}. The third
phase checks carefully whether d is control dependent on c. To do so, the paths
from c are explored, provided no explorations go beyond d. We get two paths
from c. The first path is [c,g,f,h] and the second path is [d]. Since one of the
paths reaches the last statement and the second path stops at d, we find that d
is control dependent on c.

21

36

37

3. Technical Contributions

This thesis presents two main contributions. The first is a novel slicing ap-
proach that builds on a new program representation (PCB graph). The main
feature of this approach is in avoiding many types of unnecessary computa-
tions performed in the state-of-the-art slicing approach. The second contribu-
tion is a novel approach that can compute on the fly the control dependencies
in unstructured programs. The later is designed to be integrated into the PCB-
based slicing, but it is presented as a separate contribution because it could be
used with other slicing approaches or for other purposes than program slicing.

3.1 Contributions
The complete list of contributions is as follows. Each contribution is denoted
by C.

C1: PCB-based Static Backward Slicing Approach

The PCB-based slicing is a new slicing approach that is designed especially
to target the least possible computation required for forming slices from their
original programs. This approach provides many distinct features. First, it
computes only the required program dependencies to form the slice. Second,
it implements the dataflow analysis in a particular way to avoid using data
sets that are growing along the analysis. Instead, it stops when all the data sets
become empty. Third, an incremental slicing feature can be integrated in the
PCB-based slicing to save the data dependencies. Finally, the propagation of
data queries is controlled to prevent unnecessary propagations into irrelevant
paths.
Empirical experiments have been conducted to test the correctness of the PCB-
based slicing approach, measure its performance, test the effect of controlling
the propagation of data sets, and measure the performance gained from using
the incremental slicing feature.
The proposed slicing approach works with well-structured programs with pro-
cedures, and unstructured programs without procedures. This contribution ad-
dresses the research questions RQ1 and RQ2. The major parts of this approach
are as follows:

23

3. Technical Contributions

This thesis presents two main contributions. The first is a novel slicing ap-
proach that builds on a new program representation (PCB graph). The main
feature of this approach is in avoiding many types of unnecessary computa-
tions performed in the state-of-the-art slicing approach. The second contribu-
tion is a novel approach that can compute on the fly the control dependencies
in unstructured programs. The later is designed to be integrated into the PCB-
based slicing, but it is presented as a separate contribution because it could be
used with other slicing approaches or for other purposes than program slicing.

3.1 Contributions
The complete list of contributions is as follows. Each contribution is denoted
by C.

C1: PCB-based Static Backward Slicing Approach

The PCB-based slicing is a new slicing approach that is designed especially
to target the least possible computation required for forming slices from their
original programs. This approach provides many distinct features. First, it
computes only the required program dependencies to form the slice. Second,
it implements the dataflow analysis in a particular way to avoid using data
sets that are growing along the analysis. Instead, it stops when all the data sets
become empty. Third, an incremental slicing feature can be integrated in the
PCB-based slicing to save the data dependencies. Finally, the propagation of
data queries is controlled to prevent unnecessary propagations into irrelevant
paths.
Empirical experiments have been conducted to test the correctness of the PCB-
based slicing approach, measure its performance, test the effect of controlling
the propagation of data sets, and measure the performance gained from using
the incremental slicing feature.
The proposed slicing approach works with well-structured programs with pro-
cedures, and unstructured programs without procedures. This contribution ad-
dresses the research questions RQ1 and RQ2. The major parts of this approach
are as follows:

23

38

1. A new program representation is introduced. This representation trans-
lates each conditional statement to a Predicated Code Block (PCB).
Then, The PCBs are connected to form the PCB graph. This graph is an
alternative to the well-known CFG representation that also keeps some
structure, which is useful when analyzing the program dependencies.

2. The Strongly Live Variable SLV dataflow analysis is employed to find
the data dependencies. Since the direction of both the SLV analysis and
the PCB-based slicing is backward, the employment of the SLV analysis
allows computing the data dependencies in a demand-driven fashion.

3. The dataflow analysis is implemented in a particular way. It uses data
sets that are shrinking during the analysis and reaches the fixed-point
when these sets become empty.

4. The propagation of the dataflow queries towards irrelevant PCBs are
prevented in order to decrease the amount of unnecessary computation.

5. For the inter-procedural case, the transitive dependence d at the call
site of a procedure is computed on the fly when this dependence is de-
manded. Afterwards, the correspondent transitive dependencies to d in
other call sites are concluded directly from d.

6. The control dependencies in well-structured programs are captured im-
mediately from the PCB-graph. For unstructured programs, a new ap-
proach is developed to compute on the fly the control dependencies1.

7. When slicing the same code several times with respect to different slic-
ing criteria, the incremental slicing feature can be integrated in the PCB-
based slicing to avoid computing the same data dependence for every
slice that requires it.

C2: Computing on the fly the Control Dependencies

The second contribution introduces the first approach that can compute in a
demand-driven fashion the control dependencies in unstructured programs.
The approach is based on three theorems:

1. The first theorem can be used to quickly decide whether a particular
predicate is the only predicate on which the statement of interest is con-
trol dependent.

2. The second theorem is used to determine a set of statements that are
certainly not control dependent on a particular predicate.

3. The third theorem can be used to check whether a given statement is
control dependent on a particular predicate.

1This approach is presented in C2

24

1. A new program representation is introduced. This representation trans-
lates each conditional statement to a Predicated Code Block (PCB).
Then, The PCBs are connected to form the PCB graph. This graph is an
alternative to the well-known CFG representation that also keeps some
structure, which is useful when analyzing the program dependencies.

2. The Strongly Live Variable SLV dataflow analysis is employed to find
the data dependencies. Since the direction of both the SLV analysis and
the PCB-based slicing is backward, the employment of the SLV analysis
allows computing the data dependencies in a demand-driven fashion.

3. The dataflow analysis is implemented in a particular way. It uses data
sets that are shrinking during the analysis and reaches the fixed-point
when these sets become empty.

4. The propagation of the dataflow queries towards irrelevant PCBs are
prevented in order to decrease the amount of unnecessary computation.

5. For the inter-procedural case, the transitive dependence d at the call
site of a procedure is computed on the fly when this dependence is de-
manded. Afterwards, the correspondent transitive dependencies to d in
other call sites are concluded directly from d.

6. The control dependencies in well-structured programs are captured im-
mediately from the PCB-graph. For unstructured programs, a new ap-
proach is developed to compute on the fly the control dependencies1.

7. When slicing the same code several times with respect to different slic-
ing criteria, the incremental slicing feature can be integrated in the PCB-
based slicing to avoid computing the same data dependence for every
slice that requires it.

C2: Computing on the fly the Control Dependencies

The second contribution introduces the first approach that can compute in a
demand-driven fashion the control dependencies in unstructured programs.
The approach is based on three theorems:

1. The first theorem can be used to quickly decide whether a particular
predicate is the only predicate on which the statement of interest is con-
trol dependent.

2. The second theorem is used to determine a set of statements that are
certainly not control dependent on a particular predicate.

3. The third theorem can be used to check whether a given statement is
control dependent on a particular predicate.

1This approach is presented in C2

24

39

This approach builds on three phases, each of which is based on one of
the theorems. The first phase is exact and fast, but it cannot be applied to
all the cases. It reads the control dependencies directly from the PCB-graph.
The second phase makes another layer of a fast filtration, which narrows the
set of predicates that might control the execution of a statement of interest.
The last phase makes in-depth path explorations from a predicate to check
whether it controls the execution of a given statement. It gives accurate results
without using fixed-point iterations. This contribution addresses the research
question RQ1.

3.2 Included Publications
This thesis is based on a collection of three publications of which Husni
Khanfar is the main author. The main approach and methods are suggested
by Khanfar, but some contributions are suggested by others, as shown below.

Paper A

Static Backward Program Slicing for Safety Critical Systems
Husni Khanfar, Björn Lisper, Masud Abu Naser
Presented in ADA-Europe conference, 2015 [22]

This paper addresses the contribution C1.

In this paper, there are some contributions provided from others:

• Masud Abu Naser suggested representing the procedure body as a PCB,
predicate of which is always true.

• The transfer function of slicing the PCB was implemented and
described first by Husni Khanfar, then it was written, suggested and
formalized by Masud Abu Naser.

• Masud Abu Naser suggested using the placeholder in-child to preserve
the original place of the if-else conditional statement in the PCB graph.

• Husni Khanfar and Masud Abu Naser worked together to develop an ap-
proach for constructing PCBs and interfaces from intraprocedural pro-
grams.

Paper B

Enhanced PCB Based Slicing
Husni Khanfar, Björn Lisper

25

This approach builds on three phases, each of which is based on one of
the theorems. The first phase is exact and fast, but it cannot be applied to
all the cases. It reads the control dependencies directly from the PCB-graph.
The second phase makes another layer of a fast filtration, which narrows the
set of predicates that might control the execution of a statement of interest.
The last phase makes in-depth path explorations from a predicate to check
whether it controls the execution of a given statement. It gives accurate results
without using fixed-point iterations. This contribution addresses the research
question RQ1.

3.2 Included Publications
This thesis is based on a collection of three publications of which Husni
Khanfar is the main author. The main approach and methods are suggested
by Khanfar, but some contributions are suggested by others, as shown below.

Paper A

Static Backward Program Slicing for Safety Critical Systems
Husni Khanfar, Björn Lisper, Masud Abu Naser
Presented in ADA-Europe conference, 2015 [22]

This paper addresses the contribution C1.

In this paper, there are some contributions provided from others:

• Masud Abu Naser suggested representing the procedure body as a PCB,
predicate of which is always true.

• The transfer function of slicing the PCB was implemented and
described first by Husni Khanfar, then it was written, suggested and
formalized by Masud Abu Naser.

• Masud Abu Naser suggested using the placeholder in-child to preserve
the original place of the if-else conditional statement in the PCB graph.

• Husni Khanfar and Masud Abu Naser worked together to develop an ap-
proach for constructing PCBs and interfaces from intraprocedural pro-
grams.

Paper B

Enhanced PCB Based Slicing
Husni Khanfar, Björn Lisper

25

40

Presented in META 2016 workshop [23]

This paper addresses the contribution C1.

Some contributions from others:

• Husni Khanfar implements the conversion of the source code to a PCB
graph. Daniel Hedin contributed a formal and recursive definition de-
scribing how to derive a PCB graph from a While program.

• Daniel Hedin contributed by using the placeholder skip to preserve the
original location of if-then and while conditional statements.

• Masud Abu Naser suggested using a transfer function to formalize
Husni’s method in interprocedural slicing.

Paper C

Demand-Driven Static Backward Slicing for Unstructured Programs
Husni Khanfar, Björn Lisper, Saad Mubeen
Technical Report. Mälardalen University, Sweden 2019

This paper addresses the contributions C1 and C2.

3.3 Map of Contributions

RQ1 RQ2 RQ3

C1

Paper A Paper B Paper C

C2

Figure 3.1: The contributions map: publications → contributions → research ques-
tions

Figure 3.1 Mapping among research questions, research contributions and
publications.

26

Presented in META 2016 workshop [23]

This paper addresses the contribution C1.

Some contributions from others:

• Husni Khanfar implements the conversion of the source code to a PCB
graph. Daniel Hedin contributed a formal and recursive definition de-
scribing how to derive a PCB graph from a While program.

• Daniel Hedin contributed by using the placeholder skip to preserve the
original location of if-then and while conditional statements.

• Masud Abu Naser suggested using a transfer function to formalize
Husni’s method in interprocedural slicing.

Paper C

Demand-Driven Static Backward Slicing for Unstructured Programs
Husni Khanfar, Björn Lisper, Saad Mubeen
Technical Report. Mälardalen University, Sweden 2019

This paper addresses the contributions C1 and C2.

3.3 Map of Contributions

RQ1 RQ2 RQ3

C1

Paper A Paper B Paper C

C2

Figure 3.1: The contributions map: publications → contributions → research ques-
tions

Figure 3.1 Mapping among research questions, research contributions and
publications.

26

41

4. Research Methodology

The selection of an appropriate research methodology is critical to ensure that
the work achieves the research objective and makes an adequate contribution.
The research methodology used in this paper consists of the following iterative
steps:

1. Formulating the problem:
We conduct a complete literature review of the program slicing. This
review assists us in formulating the research motivation, research ques-
tions, and research objective.

2. Proposing a solution:
A solution is proposed to achieve the research objective. We suppose
that every solution should bridge a gap in the current knowledge, and
can be formulated theoretically with a promise of significant practical
results.

3. Implementing and evaluating the solution:
The practical implementation and the mathematical or logical deduction
from the current knowledge assists in proving both the correctness and
effectiveness of the new proposed solution.

Research Question Proposed Solution Implementation

Evaluation

Final Solution

Current Knowledge

Figure 4.1: The Research Method

27

4. Research Methodology

The selection of an appropriate research methodology is critical to ensure that
the work achieves the research objective and makes an adequate contribution.
The research methodology used in this paper consists of the following iterative
steps:

1. Formulating the problem:
We conduct a complete literature review of the program slicing. This
review assists us in formulating the research motivation, research ques-
tions, and research objective.

2. Proposing a solution:
A solution is proposed to achieve the research objective. We suppose
that every solution should bridge a gap in the current knowledge, and
can be formulated theoretically with a promise of significant practical
results.

3. Implementing and evaluating the solution:
The practical implementation and the mathematical or logical deduction
from the current knowledge assists in proving both the correctness and
effectiveness of the new proposed solution.

Research Question Proposed Solution Implementation

Evaluation

Final Solution

Current Knowledge

Figure 4.1: The Research Method

27

42

Since the proposed solution might be adjusted after evaluating the solution
to keep it more and more consistent with the expectations, many iterations
might take place between (1) to (3). The contributions were developed us-
ing the workflow depicted in Figure 4.1. Every research question is addressed
separately from other questions. For solving a research question, some source
code examples that create a challenge to this question are formed. The collec-
tion of such examples is used to induce a solution. The new proposed solu-
tion is proven in constructing an implementation to apply experimental eval-
uations, scaling the correctness and measuring the performance. These three
steps (proposing or improving a solution, implementing it, and evaluating it)
constitute a single iteration, which is repeated many times until the proposed
solution becomes stable and its outcome agrees well with the expectations. At
this moment, we select the proposed solution to be the final solution.

28

Since the proposed solution might be adjusted after evaluating the solution
to keep it more and more consistent with the expectations, many iterations
might take place between (1) to (3). The contributions were developed us-
ing the workflow depicted in Figure 4.1. Every research question is addressed
separately from other questions. For solving a research question, some source
code examples that create a challenge to this question are formed. The collec-
tion of such examples is used to induce a solution. The new proposed solu-
tion is proven in constructing an implementation to apply experimental eval-
uations, scaling the correctness and measuring the performance. These three
steps (proposing or improving a solution, implementing it, and evaluating it)
constitute a single iteration, which is repeated many times until the proposed
solution becomes stable and its outcome agrees well with the expectations. At
this moment, we select the proposed solution to be the final solution.

28

43

5. Experimental Evaluations

The contribution C1 is evaluated by means of experimental evaluation that
is presented in Papers A and B. This evaluation is obtained for structured
programs. The aim of the evaluation is to test the correctness and estimate
the performance gain. The evaluation contributed in finding the bottlenecks,
faults and imprecise results. Therefore, the evaluation plays an essential role
in developing the algorithms.

The practical implementations are designed based on the syntax of the sim-
ple imperative While language that is used for academic purposes. This lan-
guage is not used to implement real programs. Thus, a code generator is de-
veloped to generate synthetic programs. These programs are produced to have
deterministic specifications, which consist of a set of individual factors such
as the number of variables and statements. This control enables to study the
effect of each factor on the performance of the PCB-based slicing.

In Paper A, for evaluating the new proposed slicing approach, a local im-
plementation for the PCB-based slicing and another local implementation for
the PDG-based slicing were developed. Further, the slicer of CodeSurfer from
GrammaTech1 was used to participate in the evaluation. The evaluation ob-
tains many observations. First of all, the evaluation shows that the PCB based
slicing produces equal slices to those produced from the PDG-based slicing.
So, the correctness of the new approach is proved. Second, the PCB-based
slicing performs higher speedups2 with smaller slices relative to the size of
the original programs. This fact is stated in Figure 5.1a. Third, in studying the
relationship between the number of variables in the program and the speedup,
it is observed that there is a steady rise in the speed up until peaked at a certain
point. After that, the speedup decreases. This fact is depicted in Figure 5.1b.
Fourth, Figure 5.1c plots the speedup relative to the CodeSurfer which in-
creases as long as the number of predicates increases, but this is not the case
with the local implementation of the PDG-based slicing, where the speedup
is peaked at the middle, then it is decreased. Finally, the evaluation studies
the relationship between the speed up and the number of statements in the
program. Figure 5.1d shows that the speedup over the local implementation
of the PDG-based slicing remains steady with varying the number of program

1www.grammatech.com
2The Speedup = the time consumed to slice the program by the PCB-based slicing ÷ the time
consumed to slice the same program by the PDG-based slicing.

29

5. Experimental Evaluations

The contribution C1 is evaluated by means of experimental evaluation that
is presented in Papers A and B. This evaluation is obtained for structured
programs. The aim of the evaluation is to test the correctness and estimate
the performance gain. The evaluation contributed in finding the bottlenecks,
faults and imprecise results. Therefore, the evaluation plays an essential role
in developing the algorithms.

The practical implementations are designed based on the syntax of the sim-
ple imperative While language that is used for academic purposes. This lan-
guage is not used to implement real programs. Thus, a code generator is de-
veloped to generate synthetic programs. These programs are produced to have
deterministic specifications, which consist of a set of individual factors such
as the number of variables and statements. This control enables to study the
effect of each factor on the performance of the PCB-based slicing.

In Paper A, for evaluating the new proposed slicing approach, a local im-
plementation for the PCB-based slicing and another local implementation for
the PDG-based slicing were developed. Further, the slicer of CodeSurfer from
GrammaTech1 was used to participate in the evaluation. The evaluation ob-
tains many observations. First of all, the evaluation shows that the PCB based
slicing produces equal slices to those produced from the PDG-based slicing.
So, the correctness of the new approach is proved. Second, the PCB-based
slicing performs higher speedups2 with smaller slices relative to the size of
the original programs. This fact is stated in Figure 5.1a. Third, in studying the
relationship between the number of variables in the program and the speedup,
it is observed that there is a steady rise in the speed up until peaked at a certain
point. After that, the speedup decreases. This fact is depicted in Figure 5.1b.
Fourth, Figure 5.1c plots the speedup relative to the CodeSurfer which in-
creases as long as the number of predicates increases, but this is not the case
with the local implementation of the PDG-based slicing, where the speedup
is peaked at the middle, then it is decreased. Finally, the evaluation studies
the relationship between the speed up and the number of statements in the
program. Figure 5.1d shows that the speedup over the local implementation
of the PDG-based slicing remains steady with varying the number of program

1www.grammatech.com
2The Speedup = the time consumed to slice the program by the PCB-based slicing ÷ the time
consumed to slice the same program by the PDG-based slicing.

29

44

80% 40% 20% 10% 1.5%

1000

900

800

700

600

500

400

300

200

100

0

PCB/PDG

PCB/CodeSurfer

S
pe

ed
up

Slice Size / Program Size

(a) varying number of slice percentages

40 80 120 160 200 300 500

100

90

80

70

60

50

40

30

20

10

0

PCB/PDG

PCB/CodeSurfer

S
pe

ed
up

No. Variables

(b) varying number of variables

7% 14% 28%

200

180

160

140

120

100

80

60

40

20

0

PCB/PDG

PCB/CodeSurfer

S
pe

ed
up

No. predicates / No. statements

(c) varying number of control predicates

10K 20K 50K 100K 150k 200K

200

180

160

140

120

100

80

60

40

20

0

PCB/PDG

PCB/CodeSurfer

S
pe

ed
up

No. statements

(d) varying number of program sizes

Figure 5.1: PCB-based slicing vs. PDG-based slicing

statements, but it increases as the number of program statements increases
with the Code Surfer implementation.

Paper B presents two sets of practical evaluations. The first set of evalua-
tions aims at measuring the performance gained due to using whitelists3 over
the conventional growing dataflow sets. This evaluation is achieved by pro-
ducing six different files, with a number of variables varying from 25 to 800,
and they share other factors such as the program size and the number of predi-
cates. Figure 5.2 indicates that the PCB-based slicing works much better with
whitelists than the growing sets. The figure shows that higher speedups can be
achieved for a program having a higher number of variables. The tremendous
improvement shown in Figure 5.2 is due to getting rid of the unnecessary com-
putations caused by propagating the dataflow queries toward irrelevant paths.

The second set of experiments in Paper B assesses the incremental fea-
ture. For doing this, a comparison is made between three applications (A), (B)
and (C), where both (A) and (B) implement the PCB-based slicing technique.

3It is essential to mention that the PCB-based slicing implementations shown in Fig. 5.1 use
whitelists

30

80% 40% 20% 10% 1.5%

1000

900

800

700

600

500

400

300

200

100

0

PCB/PDG

PCB/CodeSurfer

S
pe

ed
up

Slice Size / Program Size

(a) varying number of slice percentages

40 80 120 160 200 300 500

100

90

80

70

60

50

40

30

20

10

0

PCB/PDG

PCB/CodeSurfer

S
pe

ed
up

No. Variables

(b) varying number of variables

7% 14% 28%

200

180

160

140

120

100

80

60

40

20

0

PCB/PDG

PCB/CodeSurfer

S
pe

ed
up

No. predicates / No. statements

(c) varying number of control predicates

10K 20K 50K 100K 150k 200K

200

180

160

140

120

100

80

60

40

20

0

PCB/PDG

PCB/CodeSurfer

S
pe

ed
up

No. statements

(d) varying number of program sizes

Figure 5.1: PCB-based slicing vs. PDG-based slicing

statements, but it increases as the number of program statements increases
with the Code Surfer implementation.

Paper B presents two sets of practical evaluations. The first set of evalua-
tions aims at measuring the performance gained due to using whitelists3 over
the conventional growing dataflow sets. This evaluation is achieved by pro-
ducing six different files, with a number of variables varying from 25 to 800,
and they share other factors such as the program size and the number of predi-
cates. Figure 5.2 indicates that the PCB-based slicing works much better with
whitelists than the growing sets. The figure shows that higher speedups can be
achieved for a program having a higher number of variables. The tremendous
improvement shown in Figure 5.2 is due to getting rid of the unnecessary com-
putations caused by propagating the dataflow queries toward irrelevant paths.

The second set of experiments in Paper B assesses the incremental fea-
ture. For doing this, a comparison is made between three applications (A), (B)
and (C), where both (A) and (B) implement the PCB-based slicing technique.

3It is essential to mention that the PCB-based slicing implementations shown in Fig. 5.1 use
whitelists

30

45

1000

800

600

400

200

7.1

25

6.7

50

22.2

10
0

74.3

20
0

256

40
0

883

80
0

Number of Variables

S
pe

ed
up

Figure 5.2: Relation between the Speedup (PCB-slicing-using-whitelists/PCB-
slicing-using-blacklists) and the number of variables in intraprocedural programs.

The difference is that (A) uses the incremental feature, while (B) does not.
The application (C) is an implementation of the PDG-based slicing. Table 5.1
presents the results for slicing a particular program 15 times for 15 slicing
criteria. The table shows the time for each slice as well as the sum of the times
from the first slice to the current slice.

The first column displays the number of the slice. The second column mea-
sures the slice size relative to the original program size. The times, which are
required to produce every slice by the implementations (A), (B) and (C), are
presented in the third, fifth and seventh columns, respectively. For every slice
N, the corresponding cells in the fourth, sixth and eighth columns accumulate
the times from the slice no.1 to the slice no.N in the third, fifth and seventh
columns, respectively. What is interesting in this data is that after 5-6 slices,
(A) behaves similarly to (C). It analyses the program in linear time due to us-
ing reachability analysis on the PDDG. It is worthwhile to notice that SumA
for N is always much less than SumC. In Figure 5.3, it is observed that SumB
ever increases with new slices and SumA is almost constant after 5 to 6 slices.
These results state the fact that the incremental slicing feature eliminates un-
necessary computations resulting from slicing the same program many times
in a demand-driven fashion.

31

1000

800

600

400

200

7.1

25

6.7

50

22.2
10

0
74.3

20
0

256

40
0

883

80
0

Number of Variables

S
pe

ed
up

Figure 5.2: Relation between the Speedup (PCB-slicing-using-whitelists/PCB-
slicing-using-blacklists) and the number of variables in intraprocedural programs.

The difference is that (A) uses the incremental feature, while (B) does not.
The application (C) is an implementation of the PDG-based slicing. Table 5.1
presents the results for slicing a particular program 15 times for 15 slicing
criteria. The table shows the time for each slice as well as the sum of the times
from the first slice to the current slice.

The first column displays the number of the slice. The second column mea-
sures the slice size relative to the original program size. The times, which are
required to produce every slice by the implementations (A), (B) and (C), are
presented in the third, fifth and seventh columns, respectively. For every slice
N, the corresponding cells in the fourth, sixth and eighth columns accumulate
the times from the slice no.1 to the slice no.N in the third, fifth and seventh
columns, respectively. What is interesting in this data is that after 5-6 slices,
(A) behaves similarly to (C). It analyses the program in linear time due to us-
ing reachability analysis on the PDDG. It is worthwhile to notice that SumA
for N is always much less than SumC. In Figure 5.3, it is observed that SumB
ever increases with new slices and SumA is almost constant after 5 to 6 slices.
These results state the fact that the incremental slicing feature eliminates un-
necessary computations resulting from slicing the same program many times
in a demand-driven fashion.

31

46

no. Slice Size A (m.s.) SumA B(m.s.) SumB C(m.s.) SumC
1 63% 234 234 180 180 12204 12204
2 33% 468 702 108 288 1 12205
3 14% 1 703 54 342 1 12206
4 15% 1 704 54 396 1 12207
5 51% 234 938 144 540 1 12208
6 21% 1 939 72 612 1 12209
7 79% 18 957 216 828 1 12210
8 58% 1 958 180 1008 1 12211
9 40% 1 959 108 1116 1 12212

10 37% 1 960 108 1224 1 12213
11 45% 1 961 126 1350 1 12214
12 10% 1 962 18 1368 1 12215
13 20% 1 963 72 1440 1 12216
14 39% 1 964 108 1548 1 12217
15 50% 1 965 144 1692 1 12218

Table 5.1: Adding incremental slicing feature to the PCB-based slicing approach

E
xe

cu
tio

n
T

im
e

The Slices

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

2000 m.s.

1600 m.s.

1200 m.s.

800 m.s.

400 m.s.

0 m.s.

sumA sumB

milli seconds

Figure 5.3: This chart illustrates sumA and sumB shown in Table 5.1

32

no. Slice Size A (m.s.) SumA B(m.s.) SumB C(m.s.) SumC
1 63% 234 234 180 180 12204 12204
2 33% 468 702 108 288 1 12205
3 14% 1 703 54 342 1 12206
4 15% 1 704 54 396 1 12207
5 51% 234 938 144 540 1 12208
6 21% 1 939 72 612 1 12209
7 79% 18 957 216 828 1 12210
8 58% 1 958 180 1008 1 12211
9 40% 1 959 108 1116 1 12212

10 37% 1 960 108 1224 1 12213
11 45% 1 961 126 1350 1 12214
12 10% 1 962 18 1368 1 12215
13 20% 1 963 72 1440 1 12216
14 39% 1 964 108 1548 1 12217
15 50% 1 965 144 1692 1 12218

Table 5.1: Adding incremental slicing feature to the PCB-based slicing approach

E
xe

cu
tio

n
T

im
e

The Slices

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

2000 m.s.

1600 m.s.

1200 m.s.

800 m.s.

400 m.s.

0 m.s.

sumA sumB

milli seconds

Figure 5.3: This chart illustrates sumA and sumB shown in Table 5.1

32

47

6. Related Work

A considerable amount of literature has been published on program slicing. In
this section, we only consider related work in static backwards slicing. There
are four groups of work that are directly related to the thesis: Basic Program
Slicing, Inter-procedural Program Slicing, Computing Control Dependencies
in Unstructured Programs and Demand-Driven Slicing Approaches. The first
group contains the works establishing the fundamentals of the state-of-the-art
slicing method. The second focuses on computing the control dependencies in
unstructured programs, whereas the last group collects the previous demand-
driven slicing techniques.

6.1 Basic Program Slicing Techniques
Mark Weiser [1] was the first to define the program slicing concept in the con-
text of debugging. The major criticism of Weiser’s work is that his approach
does not identify the minimal slice. Some techniques were developed later
based on the data flow equations [5]. Ottenstein and Ottenstein [4] introduced
the PDG as a basis for the slicing. Ottenstein’s approach does not take into its
account inter-procedural and unstructured cases. Horwitz et al. [6] extended
the PDG to the System Dependence Graph (SDG) to represent the dependen-
cies in programs having many procedures. Furthermore, they presented a new
inter-procedural slicing technique.

Danicic et al. [25] presented a new algorithm that computes the static slices,
backward and in parallel. They relied on dividing the CFG into a set of inter-
connected concurrent processes. Chung et al. [26, 27] presented a method to
slice the programs with respect to the pre and post conditions in order to obtain
more precise slices.

The main works in program slicing either compute over-approximated
slices or make a comprehensive analysis that depends on obtaining all the
program dependencies. The slicing approach presented in this thesis suggests
a new method that computes the minimal slice in a demand-driven fashion.

33

6. Related Work

A considerable amount of literature has been published on program slicing. In
this section, we only consider related work in static backwards slicing. There
are four groups of work that are directly related to the thesis: Basic Program
Slicing, Inter-procedural Program Slicing, Computing Control Dependencies
in Unstructured Programs and Demand-Driven Slicing Approaches. The first
group contains the works establishing the fundamentals of the state-of-the-art
slicing method. The second focuses on computing the control dependencies in
unstructured programs, whereas the last group collects the previous demand-
driven slicing techniques.

6.1 Basic Program Slicing Techniques
Mark Weiser [1] was the first to define the program slicing concept in the con-
text of debugging. The major criticism of Weiser’s work is that his approach
does not identify the minimal slice. Some techniques were developed later
based on the data flow equations [5]. Ottenstein and Ottenstein [4] introduced
the PDG as a basis for the slicing. Ottenstein’s approach does not take into its
account inter-procedural and unstructured cases. Horwitz et al. [6] extended
the PDG to the System Dependence Graph (SDG) to represent the dependen-
cies in programs having many procedures. Furthermore, they presented a new
inter-procedural slicing technique.

Danicic et al. [25] presented a new algorithm that computes the static slices,
backward and in parallel. They relied on dividing the CFG into a set of inter-
connected concurrent processes. Chung et al. [26, 27] presented a method to
slice the programs with respect to the pre and post conditions in order to obtain
more precise slices.

The main works in program slicing either compute over-approximated
slices or make a comprehensive analysis that depends on obtaining all the
program dependencies. The slicing approach presented in this thesis suggests
a new method that computes the minimal slice in a demand-driven fashion.

33

48

6.2 Inter-procedural Program Slicing
Weiser [1] was the first in introducing an interprocedural-slicing algorithm
that provides executable slices. Weiser’s algorithm suffers from including
large portions of the source code that do not affect the slicing criterion. This
failure occurs because it includes all the call sites if one of them is sliced, as
well as, this algorithm treats the call sites as indivisible components, where
all the parameters are included in the slice if one of them is sliced.

Most of the inter-procedural slicing works study concerns related to extend-
ing the HRB1 approach such as improving its performance [28, 29, 30, 30,
31, 32, 33], producing executable slices [34], working with aliasing parame-
ters [35], treating recursive cases [30, 36, 37], working with pointers [37, 37],
studying the trade-off between context-sensitivity and accuracy [38, 39, 40,
41], preserving the syntax [42], and finding the arbitrary inter-procedural con-
trol dependencies [43]. From our perspective, using the SDG itself holds many
unnecessary computations, which we are trying to avoid by using the PCB-
graph as an alternative.

6.3 Computing the Control Dependencies in
Unstructured Programs
The main challenge in working with unstructured programs is the presence
of arbitrary control flows, which makes the source code difficult to be un-
derstood. Such flows make finding the control dependencies harder than such
dependencies in well-structured programs. The essential step in finding the
control dependencies in the state-of-the-art slicing approach is in computing
the post-domination information. There are many algorithms that find such
information. They differ in the internal algorithm, but they share one thing,
they need to make an iterative and global analysis in the level of the entire
source code, where all the nodes or program statements have to be included
in the analysis. Lowry and Medlock [44] designed an algorithm that finds all
the paths from the entry node to each node. Afterwards, the algorithm re-
moves every node in order to check which nodes become unreachable. By
this, it determines the dominator2 for each node. Allen [24] in 1970 used
the dataflow equations to find the dominators, and she suggested equations,
which can be solved with time complexity of O(N2). In 1975, Hecht and Ull-
man [45] suggested dataflow equations that work in linear time. Aho and Ull-
man [46] developed an algorithm that works in quadratic time, in the number
of edges. Purdom et al. [47] suggested an algorithm whose time complexity

1HRB denotes to the work of Horwitz, Reps, and Binkley in [6]
2We say that ` dominates `′ if all the paths from the entry node to `′ go through `. Usually, the
algorithms used to compute the post-dominators can be applied for computing the dominators,
and vice versa.

34

6.2 Inter-procedural Program Slicing
Weiser [1] was the first in introducing an interprocedural-slicing algorithm
that provides executable slices. Weiser’s algorithm suffers from including
large portions of the source code that do not affect the slicing criterion. This
failure occurs because it includes all the call sites if one of them is sliced, as
well as, this algorithm treats the call sites as indivisible components, where
all the parameters are included in the slice if one of them is sliced.

Most of the inter-procedural slicing works study concerns related to extend-
ing the HRB1 approach such as improving its performance [28, 29, 30, 30,
31, 32, 33], producing executable slices [34], working with aliasing parame-
ters [35], treating recursive cases [30, 36, 37], working with pointers [37, 37],
studying the trade-off between context-sensitivity and accuracy [38, 39, 40,
41], preserving the syntax [42], and finding the arbitrary inter-procedural con-
trol dependencies [43]. From our perspective, using the SDG itself holds many
unnecessary computations, which we are trying to avoid by using the PCB-
graph as an alternative.

6.3 Computing the Control Dependencies in
Unstructured Programs
The main challenge in working with unstructured programs is the presence
of arbitrary control flows, which makes the source code difficult to be un-
derstood. Such flows make finding the control dependencies harder than such
dependencies in well-structured programs. The essential step in finding the
control dependencies in the state-of-the-art slicing approach is in computing
the post-domination information. There are many algorithms that find such
information. They differ in the internal algorithm, but they share one thing,
they need to make an iterative and global analysis in the level of the entire
source code, where all the nodes or program statements have to be included
in the analysis. Lowry and Medlock [44] designed an algorithm that finds all
the paths from the entry node to each node. Afterwards, the algorithm re-
moves every node in order to check which nodes become unreachable. By
this, it determines the dominator2 for each node. Allen [24] in 1970 used
the dataflow equations to find the dominators, and she suggested equations,
which can be solved with time complexity of O(N2). In 1975, Hecht and Ull-
man [45] suggested dataflow equations that work in linear time. Aho and Ull-
man [46] developed an algorithm that works in quadratic time, in the number
of edges. Purdom et al. [47] suggested an algorithm whose time complexity

1HRB denotes to the work of Horwitz, Reps, and Binkley in [6]
2We say that ` dominates `′ if all the paths from the entry node to `′ go through `. Usually, the
algorithms used to compute the post-dominators can be applied for computing the dominators,
and vice versa.

34

49

is quadratic. Lengauer and Tarjan [14] provide the best algorithm for find-
ing the dominators that works in linear time. Cooper et al. [13] presented an
algorithm for finding the post-domination information. Their algorithm is the-
oretically worse than Lengauer algorithm, but its implementation works better
than Lengauer’s algorithm.

6.4 Demand-Driven Slicing Approaches
This subsection compares the PCB-based slicing method with five different
demand-driven slicing methods. The comparisons try to realise the differences
in the mechanisms used for computing the data dependencies, control depen-
dencies, inter-procedural slicing and the pointer analysis.

Kraft [19] presented Katana, a tool that uses a new program slicing ap-
proach to extract simulation models from source codes. Kraft invented his
tool because the existing tools for program slicing were not scalable enough,
and they could not work with large industrial systems, where the number of
source code lines might reach to millions. The computation of data depen-
dencies is flow-insensitive, which makes the results over-approximated and
leads to produce larger slices. Katana obtains the control dependencies of
well-structured programs directly from the source code similar to the PCB-
based slicing approach, but it neglects unstructured control flows. Similar to
the way of computing the data dependencies, Katana also suffers from being
over-approximated in analysing inter-procedural cases and pointer analysis.

Sandberg et al. [48] proposed another demand-driven slicing approach
called SimpleSlice. This approach aims to accelerate Worst-Case Execution
Time analysis by slicing the statements affecting the variables in the
control-flow conditions. These variables with their locations constitute the
slicing criteria. Every statement that assigns a value to a variable of a slicing
criterion is sliced, and the variables used in this statement are considered
relevant variables. The iterations go on until no more relevant variables
are available. SimpleSlice is similar to Katana in using flow-insensitive
information to compute the data dependencies. SimpleSlice does not need to
provide any analysis to find control dependencies because all the conditions
are sliced at the beginning. SimpleSlice uses Steensgaard’s algorithm [19],
which is not demand-driven, for computing the points-to sets3. There is no
explanation about the inter-procedural slicing.

Lisper et al. [12] presented a slicing approach called static backward
demand-driven slicing. This approach resembles the PCB approach in using
SLV data flow analysis for obtaining the data dependencies, but it differs in
using conventional data flow equations, which depend on storing the data
flow queries at the program points. Lisper’s method presents a solution for

3The points-to set for a specific pointer consists of all the variables which are possibly derefer-
enced by the pointer

35

is quadratic. Lengauer and Tarjan [14] provide the best algorithm for find-
ing the dominators that works in linear time. Cooper et al. [13] presented an
algorithm for finding the post-domination information. Their algorithm is the-
oretically worse than Lengauer algorithm, but its implementation works better
than Lengauer’s algorithm.

6.4 Demand-Driven Slicing Approaches
This subsection compares the PCB-based slicing method with five different
demand-driven slicing methods. The comparisons try to realise the differences
in the mechanisms used for computing the data dependencies, control depen-
dencies, inter-procedural slicing and the pointer analysis.

Kraft [19] presented Katana, a tool that uses a new program slicing ap-
proach to extract simulation models from source codes. Kraft invented his
tool because the existing tools for program slicing were not scalable enough,
and they could not work with large industrial systems, where the number of
source code lines might reach to millions. The computation of data depen-
dencies is flow-insensitive, which makes the results over-approximated and
leads to produce larger slices. Katana obtains the control dependencies of
well-structured programs directly from the source code similar to the PCB-
based slicing approach, but it neglects unstructured control flows. Similar to
the way of computing the data dependencies, Katana also suffers from being
over-approximated in analysing inter-procedural cases and pointer analysis.

Sandberg et al. [48] proposed another demand-driven slicing approach
called SimpleSlice. This approach aims to accelerate Worst-Case Execution
Time analysis by slicing the statements affecting the variables in the
control-flow conditions. These variables with their locations constitute the
slicing criteria. Every statement that assigns a value to a variable of a slicing
criterion is sliced, and the variables used in this statement are considered
relevant variables. The iterations go on until no more relevant variables
are available. SimpleSlice is similar to Katana in using flow-insensitive
information to compute the data dependencies. SimpleSlice does not need to
provide any analysis to find control dependencies because all the conditions
are sliced at the beginning. SimpleSlice uses Steensgaard’s algorithm [19],
which is not demand-driven, for computing the points-to sets3. There is no
explanation about the inter-procedural slicing.

Lisper et al. [12] presented a slicing approach called static backward
demand-driven slicing. This approach resembles the PCB approach in using
SLV data flow analysis for obtaining the data dependencies, but it differs in
using conventional data flow equations, which depend on storing the data
flow queries at the program points. Lisper’s method presents a solution for

3The points-to set for a specific pointer consists of all the variables which are possibly derefer-
enced by the pointer

35

50

slicing the inter-procedural cases on-the-fly. However, this work did not
propose a pointer analysis technique and its control dependence analysis is
not entirely demand-driven.

D
at

a
D

ep
en

de
nc

ie
s

W
el

l-S
tru

ct
ur

ed

U
ns

tru
ct

ur
ed

Pr
og

ra
m

s

In
te

r-
pr

oc
ed

ur
al

Pr
og

ra
m

s

Po
in

te
rs

PCB X X X X B
Lisper X X × X ×
Katana × X × × ×

SimpleSlice × × × × ×
Sprite X × × X ×
Hajnal X X × X ×

Table 6.1: Comparison Between Six Demand-Driven Slicing Approaches

Atkinson and Griswold have published a series of works [15, 21, 49, 16]
for presenting a method that works in a demand-driven fashion. These pub-
lications made the theoretical basis for developing a new slicing tool called
Sprite. The primary concern of Sprite is to address the scalability issues that
arise in large industrial systems. Sprite constructs the CFG of the procedure in
isolation, from other procedures, for the first time the data flow analysis visits
one of its call sites. After that, the intraprocedural algorithms are applied to
this CFG to compute the entire data and control dependencies in this proce-
dure. Sprite is similar to Lisper’s approach in translating the slicing criteria to
live variables and then applying conventional Live Variable dataflow analysis
to get the use-definitions chains. The Sprite tool employs the Steensgaard’s
algorithm [19] for computing the points-to set.

Hajnal and Forgács [17] have designed a demand-driven slicing approach
to maintain already ageing COBOL legacy systems. Their method relies on
propagating queries to compute the data and control dependencies. It works
well for direct data dependencies and well-structured code, but it neglects in-
direct data dependencies, generated due to the existence of pointers, unstruc-
tured codes and inter-procedural cases.

Table 6.1 summarizes the above information. The symbol X denotes the
support to compute accurately and on-demand. The symbol ×denotes either

36

slicing the inter-procedural cases on-the-fly. However, this work did not
propose a pointer analysis technique and its control dependence analysis is
not entirely demand-driven.

D
at

a
D

ep
en

de
nc

ie
s

W
el

l-S
tru

ct
ur

ed

U
ns

tru
ct

ur
ed

Pr
og

ra
m

s

In
te

r-
pr

oc
ed

ur
al

Pr
og

ra
m

s

Po
in

te
rs

PCB X X X X B
Lisper X X × X ×
Katana × X × × ×

SimpleSlice × × × × ×
Sprite X × × X ×
Hajnal X X × X ×

Table 6.1: Comparison Between Six Demand-Driven Slicing Approaches

Atkinson and Griswold have published a series of works [15, 21, 49, 16]
for presenting a method that works in a demand-driven fashion. These pub-
lications made the theoretical basis for developing a new slicing tool called
Sprite. The primary concern of Sprite is to address the scalability issues that
arise in large industrial systems. Sprite constructs the CFG of the procedure in
isolation, from other procedures, for the first time the data flow analysis visits
one of its call sites. After that, the intraprocedural algorithms are applied to
this CFG to compute the entire data and control dependencies in this proce-
dure. Sprite is similar to Lisper’s approach in translating the slicing criteria to
live variables and then applying conventional Live Variable dataflow analysis
to get the use-definitions chains. The Sprite tool employs the Steensgaard’s
algorithm [19] for computing the points-to set.

Hajnal and Forgács [17] have designed a demand-driven slicing approach
to maintain already ageing COBOL legacy systems. Their method relies on
propagating queries to compute the data and control dependencies. It works
well for direct data dependencies and well-structured code, but it neglects in-
direct data dependencies, generated due to the existence of pointers, unstruc-
tured codes and inter-procedural cases.

Table 6.1 summarizes the above information. The symbol X denotes the
support to compute accurately and on-demand. The symbol ×denotes either

36

51

over-approximated or not entirely demand-driven approach. B denotes ongo-
ing activities.

37

over-approximated or not entirely demand-driven approach. B denotes ongo-
ing activities.

37

52

53

7. Conclusion and Future Work

In this thesis, a new static backward slicing technique is introduced. This tech-
nique makes a significant improvement in performance and creates accurate
minimal slices.

In response to the first research question, this technique employs the SLV
dataflow analysis to compute on-the-fly the data dependencies. This tech-
nique builds on a new program representation called PCB-graph. This rep-
resentation facilitates getting the control dependencies immediately in well-
structured programs. The control dependencies for unstructured programs are
obtained on-the-fly because of using a more efficient technique that looks to
the source code from two sides; location-based information and flow-based
information. As a solution to the second research question, the new technique
is designed to avoid many types of unnecessarily computations. It avoids re-
peating unnecessarily the same computations when a program is sliced many
times for different slicing criteria. This is implemented by saving every data
dependence relation found in the source code. Further, it avoids saving unnec-
essarily a copy of each data query at every program point that it visits. Finally,
it works to curb the propagation of dataflows as much as possible. The third
research question is solved by enabling the PCB-based slicing approach from
working with inter-procedural cases. The key in this solution is in enabling the
procedure to share its global results with all its call sites and in exchanging
dedicated special data with each of its call sites.

Many future works could expand the findings in this thesis to make them
applicable to modern programming languages. One of the chief issues is to
produce an executable slice that behaves like the original program for a par-
ticular slicing criterion. Producing such slices requires to slice both the state-
ments as well as the dependencies which affect the criterion. For doing so with
unstructured programs, the goto statements that are relevant to building these
dependencies have to be included in executable slices. This inclusion deserves
to be studied carefully in the future. Besides the relevant goto statements,
making on-the-fly pointer analysis enables us to apply the PCB-based slicing
approach in many languages such as C. Finally, this thesis implemented the
SLV dataflow analysis in a new way to improve performance. It is attractive
to study whether other types of dataflow analyses can be implemented in a
similar way.

This thesis focuses on computing one type of control dependencies (stan-
dard control dependencies). Some efforts are needed to compute on-demand

39

7. Conclusion and Future Work

In this thesis, a new static backward slicing technique is introduced. This tech-
nique makes a significant improvement in performance and creates accurate
minimal slices.

In response to the first research question, this technique employs the SLV
dataflow analysis to compute on-the-fly the data dependencies. This tech-
nique builds on a new program representation called PCB-graph. This rep-
resentation facilitates getting the control dependencies immediately in well-
structured programs. The control dependencies for unstructured programs are
obtained on-the-fly because of using a more efficient technique that looks to
the source code from two sides; location-based information and flow-based
information. As a solution to the second research question, the new technique
is designed to avoid many types of unnecessarily computations. It avoids re-
peating unnecessarily the same computations when a program is sliced many
times for different slicing criteria. This is implemented by saving every data
dependence relation found in the source code. Further, it avoids saving unnec-
essarily a copy of each data query at every program point that it visits. Finally,
it works to curb the propagation of dataflows as much as possible. The third
research question is solved by enabling the PCB-based slicing approach from
working with inter-procedural cases. The key in this solution is in enabling the
procedure to share its global results with all its call sites and in exchanging
dedicated special data with each of its call sites.

Many future works could expand the findings in this thesis to make them
applicable to modern programming languages. One of the chief issues is to
produce an executable slice that behaves like the original program for a par-
ticular slicing criterion. Producing such slices requires to slice both the state-
ments as well as the dependencies which affect the criterion. For doing so with
unstructured programs, the goto statements that are relevant to building these
dependencies have to be included in executable slices. This inclusion deserves
to be studied carefully in the future. Besides the relevant goto statements,
making on-the-fly pointer analysis enables us to apply the PCB-based slicing
approach in many languages such as C. Finally, this thesis implemented the
SLV dataflow analysis in a new way to improve performance. It is attractive
to study whether other types of dataflow analyses can be implemented in a
similar way.

This thesis focuses on computing one type of control dependencies (stan-
dard control dependencies). Some efforts are needed to compute on-demand

39

54

other types of control dependencies such as the strong control dependen-
cies [50]. Finally, the computation of the inter-procedural control dependen-
cies1 is another suggested potential future work.

1The inter-procedural control dependencies refer to dependencies that appear because the called
procedure halts the operation of the program and does not return back to the calling procedure.

40

other types of control dependencies such as the strong control dependen-
cies [50]. Finally, the computation of the inter-procedural control dependen-
cies1 is another suggested potential future work.

1The inter-procedural control dependencies refer to dependencies that appear because the called
procedure halts the operation of the program and does not return back to the calling procedure.

40

55

8. Bibliography

[1] Mark Weiser. Program slicing. In Proceedings of the 5th International Confer-
ence on Software engineering, pages 439–449. IEEE Press, 1981.

[2] Jean-Francois Bergeretti and Bernard A Carré. Information-flow and data-flow
analysis of while-programs. ACM Transactions on Programming Languages
and Systems (TOPLAS), 7(1):37–61, 1985.

[3] Josep Silva. A vocabulary of program slicing-based techniques. ACM Comput-
ing Surveys (CSUR), 44(3):12, 2012.

[4] Karl J Ottenstein and Linda M Ottenstein. The program dependence graph in a
software development environment. In ACM Sigplan Notices, volume 19, pages
177–184. ACM, 1984.

[5] Bogdan Korel and Janusz Laski. Dynamic program slicing. Information Pro-
cessing Letters, 29(3):155–163, 1988.

[6] Susan Horwitz, Thomas Reps, and David Binkley. Interprocedural slicing us-
ing dependence graphs. ACM Transactions on Programming Languages and
Systems (TOPLAS), 12(1):26–60, 1990.

[7] Thomas Ball and Susan Horwitz. Slicing programs with arbitrary control-flow.
In International Workshop on Automated and Algorithmic Debugging, pages
206–222. Springer, 1993.

[8] Hiralal Agrawal. On slicing programs with jump statements. In ACM Sigplan
Notices, volume 29, pages 302–312. ACM, 1994.

[9] Jong-Deok Choi and Jeanne Ferrante. Static slicing in the presence of goto state-
ments. ACM Transactions on Programming Languages and Systems (TOPLAS),
16(4):1097–1113, 1994.

[10] F. Nielson, H.R. Nielson, and C. Hankin. Principles of Program Analysis.
Springer Berlin Heidelberg, 2015.

[11] Björn Lisper and Husni Khanfar. Fast and precise slicing of low-level code.
Mälardalen University - Technical Report, 2013.

[12] Björn Lisper, Abu Naser Masud, and Husni Khanfar. Static backward demand-
driven slicing. In Proceedings of the 2015 Workshop on Partial Evaluation and
Program Manipulation, pages 115–126. ACM, 2015.

41

8. Bibliography

[1] Mark Weiser. Program slicing. In Proceedings of the 5th International Confer-
ence on Software engineering, pages 439–449. IEEE Press, 1981.

[2] Jean-Francois Bergeretti and Bernard A Carré. Information-flow and data-flow
analysis of while-programs. ACM Transactions on Programming Languages
and Systems (TOPLAS), 7(1):37–61, 1985.

[3] Josep Silva. A vocabulary of program slicing-based techniques. ACM Comput-
ing Surveys (CSUR), 44(3):12, 2012.

[4] Karl J Ottenstein and Linda M Ottenstein. The program dependence graph in a
software development environment. In ACM Sigplan Notices, volume 19, pages
177–184. ACM, 1984.

[5] Bogdan Korel and Janusz Laski. Dynamic program slicing. Information Pro-
cessing Letters, 29(3):155–163, 1988.

[6] Susan Horwitz, Thomas Reps, and David Binkley. Interprocedural slicing us-
ing dependence graphs. ACM Transactions on Programming Languages and
Systems (TOPLAS), 12(1):26–60, 1990.

[7] Thomas Ball and Susan Horwitz. Slicing programs with arbitrary control-flow.
In International Workshop on Automated and Algorithmic Debugging, pages
206–222. Springer, 1993.

[8] Hiralal Agrawal. On slicing programs with jump statements. In ACM Sigplan
Notices, volume 29, pages 302–312. ACM, 1994.

[9] Jong-Deok Choi and Jeanne Ferrante. Static slicing in the presence of goto state-
ments. ACM Transactions on Programming Languages and Systems (TOPLAS),
16(4):1097–1113, 1994.

[10] F. Nielson, H.R. Nielson, and C. Hankin. Principles of Program Analysis.
Springer Berlin Heidelberg, 2015.

[11] Björn Lisper and Husni Khanfar. Fast and precise slicing of low-level code.
Mälardalen University - Technical Report, 2013.

[12] Björn Lisper, Abu Naser Masud, and Husni Khanfar. Static backward demand-
driven slicing. In Proceedings of the 2015 Workshop on Partial Evaluation and
Program Manipulation, pages 115–126. ACM, 2015.

41

56

[13] Keith D Cooper, Timothy J Harvey, and Ken Kennedy. A simple, fast dominance
algorithm. Software Practice & Experience, 4(1-10):1–8, 2001.

[14] Thomas Lengauer and Robert Endre Tarjan. A fast algorithm for finding dom-
inators in a flowgraph. ACM Transactions on Programming Languages and
Systems (TOPLAS), 1(1):121–141, 1979.

[15] Darren C Atkinson and William G Griswold. Implementation techniques for
efficient data-flow analysis of large programs. In Proceedings of the IEEE In-
ternational Conference on Software Maintenance (ICSM’01), page 52. IEEE
Computer Society, 2001.

[16] Darren C Atkinson and William G Griswold. The design of whole-program
analysis tools. In Proceedings of the 18th international Conference on Software
engineering, pages 16–27. IEEE Computer Society, 1996.

[17] Ákos Hajnal and István Forgács. A demand-driven approach to slicing legacy
cobol systems. Journal of Software: Evolution and Process, 24(1):67–82, 2012.

[18] Evelyn Duesterwald, Rajiv Gupta, and Mary Lou Soffa. Demand-driven compu-
tation of interprocedural data flow. In Proceedings of the 22nd ACM SIGPLAN-
SIGACT Symposium on Principles of Programming Languages, pages 37–48.
ACM, 1995.

[19] Johan Kraft. Enabling timing analysis of complex embedded software systems.
PhD thesis, Mälardalen University, 2010.

[20] Mark Harman and Sebastian Danicic. A new algorithm for slicing unstructured
programs. Journal of Software Maintenance: Research and Practice, 10(6):415–
441, 1998.

[21] Leeann Bent, D Atkinson, and W Griswold. A qualitative study of two whole-
program slicers for c. Technical Report, 2000.

[22] Husni Khanfar, Björn Lisper, and Abu Naser Masud. Static backward program
slicing for safety-critical systems. In Ada-Europe International Conference on
Reliable Software Technologies, pages 50–65. Springer, 2015.

[23] Husni Khanfar and Björn Lisper. Enhanced PCB-based slicing. In Fifth Inter-
national Valentin Turchin Workshop on Metacomputation, page 71, 2016.

[24] Frances E Allen. Control flow analysis. In ACM Sigplan Notices, volume 5,
pages 1–19. ACM, 1970.

[25] Sebastian Danicic, Mark Harman, and Yoga Sivagurunathan. A parallel algo-
rithm for static program slicing. Information Processing Letters, 56(6):307–313,
1995.

[26] In Sang Chung, Wan Kwon Lee, Gwang Sik Yoon, and Yong Rae Kwon. Pro-
gram slicing based on specification. In Proceedings of the 2001 ACM Sympo-
sium on Applied computing, pages 605–609. ACM, 2001.

42

[13] Keith D Cooper, Timothy J Harvey, and Ken Kennedy. A simple, fast dominance
algorithm. Software Practice & Experience, 4(1-10):1–8, 2001.

[14] Thomas Lengauer and Robert Endre Tarjan. A fast algorithm for finding dom-
inators in a flowgraph. ACM Transactions on Programming Languages and
Systems (TOPLAS), 1(1):121–141, 1979.

[15] Darren C Atkinson and William G Griswold. Implementation techniques for
efficient data-flow analysis of large programs. In Proceedings of the IEEE In-
ternational Conference on Software Maintenance (ICSM’01), page 52. IEEE
Computer Society, 2001.

[16] Darren C Atkinson and William G Griswold. The design of whole-program
analysis tools. In Proceedings of the 18th international Conference on Software
engineering, pages 16–27. IEEE Computer Society, 1996.

[17] Ákos Hajnal and István Forgács. A demand-driven approach to slicing legacy
cobol systems. Journal of Software: Evolution and Process, 24(1):67–82, 2012.

[18] Evelyn Duesterwald, Rajiv Gupta, and Mary Lou Soffa. Demand-driven compu-
tation of interprocedural data flow. In Proceedings of the 22nd ACM SIGPLAN-
SIGACT Symposium on Principles of Programming Languages, pages 37–48.
ACM, 1995.

[19] Johan Kraft. Enabling timing analysis of complex embedded software systems.
PhD thesis, Mälardalen University, 2010.

[20] Mark Harman and Sebastian Danicic. A new algorithm for slicing unstructured
programs. Journal of Software Maintenance: Research and Practice, 10(6):415–
441, 1998.

[21] Leeann Bent, D Atkinson, and W Griswold. A qualitative study of two whole-
program slicers for c. Technical Report, 2000.

[22] Husni Khanfar, Björn Lisper, and Abu Naser Masud. Static backward program
slicing for safety-critical systems. In Ada-Europe International Conference on
Reliable Software Technologies, pages 50–65. Springer, 2015.

[23] Husni Khanfar and Björn Lisper. Enhanced PCB-based slicing. In Fifth Inter-
national Valentin Turchin Workshop on Metacomputation, page 71, 2016.

[24] Frances E Allen. Control flow analysis. In ACM Sigplan Notices, volume 5,
pages 1–19. ACM, 1970.

[25] Sebastian Danicic, Mark Harman, and Yoga Sivagurunathan. A parallel algo-
rithm for static program slicing. Information Processing Letters, 56(6):307–313,
1995.

[26] In Sang Chung, Wan Kwon Lee, Gwang Sik Yoon, and Yong Rae Kwon. Pro-
gram slicing based on specification. In Proceedings of the 2001 ACM Sympo-
sium on Applied computing, pages 605–609. ACM, 2001.

42

57

[27] Wan Kwon Lee, In Sang Chung, Gwang Sik Yoon, and Yong Rae Kwon.
Specification-based program slicing and its applications. Journal of Systems
Architecture, 47(5):427–443, 2001.

[28] Arun Lakhotia. Improved interprocedural slicing algorithm. Report CACS TR-
92-5-8, University of Southwestern Louisiana, 1992.

[29] Alessandro Orso, Saurabh Sinha, and Mary Jean Harrold. Incremental slicing
based on data-dependences types. In Proceedings of the IEEE International
Conference on Software Maintenance (ICSM’01), page 158. IEEE Computer
Society, 2001.

[30] Panos E Livadas and Stephen Croll. System dependence graph construction
for recursive programs. In Computer Software and Applications Conference,
1993. COMPSAC 93. Proceedings., Seventeenth Annual International, pages
414–420. IEEE, 1993.

[31] Thomas Reps, Susan Horwitz, Mooly Sagiv, and Genevieve Rosay. Speeding
up slicing. ACM SIGSOFT Software Engineering Notes, 19(5):11–20, 1994.

[32] Istvan Forgács and Tibor Gyimóthy. An efficient interprocedural slicing method
for large programs. 1996.

[33] Panos E Livadas and Stephen Croll. System dependence graphs based on parse
trees and their use in software maintenance. Information Sciences, 76(3-4):197–
232, 1994.

[34] David Binkley. Precise executable interprocedural slices. ACM Letters on Pro-
gramming Languages and Systems (LOPLAS), 2(1-4):31–45, 1993.

[35] David Binkley. Slicing in the presence of parameter aliasing. In Software Engi-
neering Research Forum, pages 261–268, 1993.

[36] Panos E Livadas and Theodore Johnson. An optimal algorithm for the construc-
tion of the system dependence graph. Information Sciences, 125(1-4):99–131,
2000.

[37] Donglin Liang and Mary Jean Harrold. Reuse-driven interprocedural slicing in
the presence of pointers and recursions. In International Conference on Software
Maintenance, page 421. IEEE, 1999.

[38] Gagan Agrawal and Liang Guo. Evaluating explicitly context-sensitive program
slicing. In Proceedings of the 2001 ACM SIGPLAN-SIGSOFT Workshop on
Program analysis for Software Tools and Engineering, pages 6–12. ACM, 2001.

[39] David Binkley and Mark Harman. A large-scale empirical study of forward
and backward static slice size and context sensitivity. In Software Mainte-
nance, 2003. ICSM 2003. Proceedings. International Conference on, pages 44–
53. IEEE, 2003.

[40] Jens Krinke. Evaluating context-sensitive slicing and chopping. In International
Conference on Software Maintenance, page 0022. IEEE, 2002.

43

[27] Wan Kwon Lee, In Sang Chung, Gwang Sik Yoon, and Yong Rae Kwon.
Specification-based program slicing and its applications. Journal of Systems
Architecture, 47(5):427–443, 2001.

[28] Arun Lakhotia. Improved interprocedural slicing algorithm. Report CACS TR-
92-5-8, University of Southwestern Louisiana, 1992.

[29] Alessandro Orso, Saurabh Sinha, and Mary Jean Harrold. Incremental slicing
based on data-dependences types. In Proceedings of the IEEE International
Conference on Software Maintenance (ICSM’01), page 158. IEEE Computer
Society, 2001.

[30] Panos E Livadas and Stephen Croll. System dependence graph construction
for recursive programs. In Computer Software and Applications Conference,
1993. COMPSAC 93. Proceedings., Seventeenth Annual International, pages
414–420. IEEE, 1993.

[31] Thomas Reps, Susan Horwitz, Mooly Sagiv, and Genevieve Rosay. Speeding
up slicing. ACM SIGSOFT Software Engineering Notes, 19(5):11–20, 1994.

[32] Istvan Forgács and Tibor Gyimóthy. An efficient interprocedural slicing method
for large programs. 1996.

[33] Panos E Livadas and Stephen Croll. System dependence graphs based on parse
trees and their use in software maintenance. Information Sciences, 76(3-4):197–
232, 1994.

[34] David Binkley. Precise executable interprocedural slices. ACM Letters on Pro-
gramming Languages and Systems (LOPLAS), 2(1-4):31–45, 1993.

[35] David Binkley. Slicing in the presence of parameter aliasing. In Software Engi-
neering Research Forum, pages 261–268, 1993.

[36] Panos E Livadas and Theodore Johnson. An optimal algorithm for the construc-
tion of the system dependence graph. Information Sciences, 125(1-4):99–131,
2000.

[37] Donglin Liang and Mary Jean Harrold. Reuse-driven interprocedural slicing in
the presence of pointers and recursions. In International Conference on Software
Maintenance, page 421. IEEE, 1999.

[38] Gagan Agrawal and Liang Guo. Evaluating explicitly context-sensitive program
slicing. In Proceedings of the 2001 ACM SIGPLAN-SIGSOFT Workshop on
Program analysis for Software Tools and Engineering, pages 6–12. ACM, 2001.

[39] David Binkley and Mark Harman. A large-scale empirical study of forward
and backward static slice size and context sensitivity. In Software Mainte-
nance, 2003. ICSM 2003. Proceedings. International Conference on, pages 44–
53. IEEE, 2003.

[40] Jens Krinke. Evaluating context-sensitive slicing and chopping. In International
Conference on Software Maintenance, page 0022. IEEE, 2002.

43

58

[41] Jens Krinke. Context-sensitivity matters, but context does not. In Source
Code Analysis and Manipulation, 2004. Fourth IEEE International Workshop
on, pages 29–35. IEEE, 2004.

[42] Mark Harman, Lin Hu, Malcolm Munro, Xingyuan Zhang, Sebastian Danicic,
Mohammed Daoudi, and Lahcen Ouarbya. An interprocedural amorphous slicer
for wsl. In Source Code Analysis and Manipulation, 2002. Proceedings. Second
IEEE International Workshop on, pages 105–114. IEEE, 2002.

[43] Saurabh Sinha, Mary Jean Harrold, and Gregg Rothermel. System-dependence-
graph-based slicing of programs with arbitrary interprocedural control flow. In
Software Engineering, 1999. Proceedings of the 1999 International Conference
on, pages 432–441. IEEE, 1999.

[44] Edward S Lowry and Cleburne W Medlock. Object code optimization. Com-
munications of the ACM, 12(1):13–22, 1969.

[45] Matthew S Hecht. Flow analysis of computer programs. Elsevier Science Inc.,
1977.

[46] Alfred V Aho and Jeffrey D Ullman. Principles of Compiler Design (Addison-
Wesley series in computer science and information processing). Addison-
Wesley Longman Publishing Co., Inc., 1977.

[47] Paul W Purdom Jr and Edward F Moore. Immediate predominators in a directed
graph. Communications of the ACM, 15(8):777–778, 1972.

[48] Christer Sandberg, Andreas Ermedahl, Jan Gustafsson, and Björn Lisper. Faster
WCET flow analysis by program slicing. In ACM SIGPLAN Notices, volume 41,
pages 103–112. ACM, 2006.

[49] Darren C Atkinson and William G Griswold. Effective whole-program analy-
sis in the presence of pointers. ACM SIGSOFT Software Engineering Notes,
23(6):46–55, 1998.

[50] Andy Podgurski and Lori A. Clarke. A formal model of program dependences
and its implications for software testing, debugging, and maintenance. IEEE
Transactions on Software Engineering, 16(9):965–979, 1990.

44

[41] Jens Krinke. Context-sensitivity matters, but context does not. In Source
Code Analysis and Manipulation, 2004. Fourth IEEE International Workshop
on, pages 29–35. IEEE, 2004.

[42] Mark Harman, Lin Hu, Malcolm Munro, Xingyuan Zhang, Sebastian Danicic,
Mohammed Daoudi, and Lahcen Ouarbya. An interprocedural amorphous slicer
for wsl. In Source Code Analysis and Manipulation, 2002. Proceedings. Second
IEEE International Workshop on, pages 105–114. IEEE, 2002.

[43] Saurabh Sinha, Mary Jean Harrold, and Gregg Rothermel. System-dependence-
graph-based slicing of programs with arbitrary interprocedural control flow. In
Software Engineering, 1999. Proceedings of the 1999 International Conference
on, pages 432–441. IEEE, 1999.

[44] Edward S Lowry and Cleburne W Medlock. Object code optimization. Com-
munications of the ACM, 12(1):13–22, 1969.

[45] Matthew S Hecht. Flow analysis of computer programs. Elsevier Science Inc.,
1977.

[46] Alfred V Aho and Jeffrey D Ullman. Principles of Compiler Design (Addison-
Wesley series in computer science and information processing). Addison-
Wesley Longman Publishing Co., Inc., 1977.

[47] Paul W Purdom Jr and Edward F Moore. Immediate predominators in a directed
graph. Communications of the ACM, 15(8):777–778, 1972.

[48] Christer Sandberg, Andreas Ermedahl, Jan Gustafsson, and Björn Lisper. Faster
WCET flow analysis by program slicing. In ACM SIGPLAN Notices, volume 41,
pages 103–112. ACM, 2006.

[49] Darren C Atkinson and William G Griswold. Effective whole-program analy-
sis in the presence of pointers. ACM SIGSOFT Software Engineering Notes,
23(6):46–55, 1998.

[50] Andy Podgurski and Lori A. Clarke. A formal model of program dependences
and its implications for software testing, debugging, and maintenance. IEEE
Transactions on Software Engineering, 16(9):965–979, 1990.

44

59

 HistoryItem_V1
 TrimAndShift

 Range: current page
 Trim: cut right edge by 20.98 points
 Shift: none
 Normalise (advanced option): 'original'

 32
 1
 0
 No
 1293
 300
 None
 Up
 0.0000
 0.0000

 Both
 2
 CurrentPage
 17

 CurrentAVDoc

 Smaller
 20.9764
 Right

 QITE_QuiteImposingPlus2
 Quite Imposing Plus 2.9b
 Quite Imposing Plus 2
 1

 0
 1
 0
 1

 1

 HistoryItem_V1
 TrimAndShift

 Range: current page
 Trim: cut bottom edge by 20.98 points
 Shift: none
 Normalise (advanced option): 'original'

 32
 1
 0
 No
 1293
 300
 None
 Up
 0.0000
 0.0000

 Both
 2
 CurrentPage
 17

 CurrentAVDoc

 Smaller
 20.9764
 Bottom

 QITE_QuiteImposingPlus2
 Quite Imposing Plus 2.9b
 Quite Imposing Plus 2
 1

 0
 1
 0
 1

 1

 HistoryItem_V1
 TrimAndShift

 Range: current page
 Trim: cut top edge by 20.98 points
 Shift: none
 Normalise (advanced option): 'original'

 32
 1
 0
 No
 1293
 300
 None
 Up
 0.0000
 0.0000

 Both
 2
 CurrentPage
 17

 CurrentAVDoc

 Smaller
 20.9764
 Top

 QITE_QuiteImposingPlus2
 Quite Imposing Plus 2.9b
 Quite Imposing Plus 2
 1

 0
 1
 0
 1

 1

 HistoryItem_V1
 TrimAndShift

 Range: current page
 Trim: cut left edge by 530.08 points
 Shift: none
 Normalise (advanced option): 'original'

 32
 1
 0
 No
 1293
 300

 None
 Up
 0.0000
 0.0000

 Both
 2
 CurrentPage
 17

 CurrentAVDoc

 Smaller
 530.0787
 Left

 QITE_QuiteImposingPlus2
 Quite Imposing Plus 2.9b
 Quite Imposing Plus 2
 1

 0
 1
 0
 1

 1

 HistoryList_V1
 qi2base

