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Abstract: Cyber Physical Systems (CPSs) are systems that are developed by seamlessly integrating
computational algorithms and physical components, and they are a result of the technological
advancement in the embedded systems and distributed systems domains, as well as the availability
of sophisticated networking technology. Many industrial CPSs are subject to timing predictability,
security and functional safety requirements, due to which the developers of these systems are required
to verify these requirements during the their development. This position paper starts by exploring
the state of the art with respect to developing timing predictable and secure embedded systems.
Thereafter, the paper extends the discussion to time-critical and secure CPSs and highlights the key
issues that are faced when verifying the timing predictability requirements during the development
of these systems. In this context, the paper takes the position to advocate paramount importance of
security as a prerequisite for timing predictability, as well as both security and timing predictability as
prerequisites for functional safety. Moreover, the paper identifies the gaps in the existing frameworks
and techniques for the development of time- and safety-critical CPSs and describes our viewpoint
on ensuring timing predictability and security in these systems. Finally, the paper emphasises the
opportunities that artificial intelligence can provide in the development of these systems.

Keywords: timing predictability; cyber-physical systems; CPS; functional safety; security; embedded
systems; CPS eco-system

1. Introduction

There exist several definitions of Cyber-physical systems (CPSs) in the literature. For example,
according to the International Conference on CPSs (ICPPS) (http://iccps.acm.org), CPSs are defined
as the “physical and engineered systems whose operations are monitored, coordinated, controlled,
and integrated by computing and communication. In other words, CPSs are the systems with a
coupling of the cyber aspects of computing and communications with the physical aspects of dynamics
and engineering that must abide by the laws of physics”. According to Lee and Seshia [1,2], CPSs are
described as the systems that emphasise the link between computation and physical processes, thereby
linking time, space and energy. The physical processes are monitored and controlled by computers
that are embedded within these systems (also called embedded computers), and vice versa the
computations are affected by the physical processes. This paper focuses on Industrial CPSs (ICPSs) that
are commonly found in the automation and automotive domains, among others. Note that we overload
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the term CPS to refer to ICPSs. The radical transformation from an embedded system to a CPS comes
from the emphasis on integration of physical processes and a more broad networking aspect. Similar
to CPSs, there exist several definitions of embedded systems and there is no agreed-upon definition of
these systems, as stated by Li and Yao [3]. According to Barr and Massa [4,5], an embedded system
performs a dedicated functionality by means of computer hardware, software and perhaps additional
mechanical components, sensors and other parts.

As a CPS can include one or more embedded systems, it is crucial to clearly define the boundary
of embedded system (s) within the context of cyber-physical systems, which is often not clear. In this
regard, an embedded system is defined as the system consisting of hardware, software and interfaces
(ports) to receive/send sensor/actuator signals and network messages. The inputs (e.g., sensor signals)
arriving at the input interface and the computed outputs (e.g., actuation signals) delivered to the output
interface of the system are considered to be parts of the embedded system, as depicted in Figure 1.
The sensors, actuators and physical processes that are sensed and controlled, respectively, are not
considered to be parts of the embedded system. These entities, together with the embedded system and
possibly communication with the rest of the eco-system constitute a CPS, as depicted in Figure 1. By an
eco-system, we understand a set of communicating CPSs as well as their surrounding computation and
communication infrastructure, i.e., realised via fog nodes, that can provide some control functionalities
as well as a communication channel to Cloud. Thus, a CPS eco-system includes entities with which it
interacts as well as the entities that are required by the communication infrastructure. To ease depicting
of communication connections, we introduce a conceptual interface layer that captures all connections
towards and from a CPS. Let us consider the example of the airbag system in a car. If the car crashes
and its deceleration is fast enough, the crash sensors are triggered, which send crash signals to the
computation unit that computes and produces the actuation signals to inflate the airbag. The sensor
inputs, the computation unit (both hardware and software) and the actuation outputs are parts of the
embedded system. The embedded system together with the crash sensors and the physical process
(the environment) in which they are deployed, the airbag actuator and the airbag itself constitute the
CPS. It should be noted that, if two or more embedded systems are connected through an on-board bus
or a network, the system is still considered to be an embedded system (distributed embedded system
to be precise), as shown by the on-board interconnection of several embedded systems in Figure 1.

The CPS in the above example is a time- and safety-critical system. The system is required to
provide a logically correct response (or output) within a given amount of time that corresponds to
the specified timing predictability requirement. Failing to meet a timing predictability requirement
in a time-critical system can result in the system failure. Failing to meet a timing predictability
requirement in a safety-critical system can have catastrophic consequences such as endangerment of
human life or the environment. Assume that the car in which the CPS is deployed is an autonomous
vehicle that cooperates with other vehicles and road-side units (RSUs) to perform a certain cooperative
functionality, e.g., navigate collaboratively while avoiding accidents with other cars, pedestrians and
stationary objects. The above-mentioned CPS in the car together with the corresponding CPSs inside
the other vehicles or RSUs provide an example of a safety-critical CPS. Industrial environment of
safety-critical CPSs often brings tighter timing requirements together with an assumed infrastructure
that provides connectivity and can play a role of fog nodes. Generally speaking, a system is said to
be predictable if its state/behaviour can be forecasted at any point in time, given a known execution
environment or a set of assumptions. The prediction can be made either quantitatively or qualitatively,
and at different stages during the system lifecycle. Predictability of a system is related to proving,
demonstrating or verifying the fulfillment of the functional or extra-functional requirements that are
specified on the system. The focus of this paper is on the system development stage or the so-called
design time and on two extra-functional requirements that affect the predictability of a safety-critical
CPS: timing and security. The term predictability has also been used lately in the artificial intelligence
(AI) community, where a system is capable of predicting the future state changes and executing
appropriate actions beforehand (e.g., for predictive maintenance). Triggered by this usage of the term,
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we include a brief discussion on how AI can be used as a tool for addressing challenges in the light of
system predictability.

Figure 1. Defining the boundaries of embedded systems and CPSs in the CPS eco-system.

There is a plethora of existing research and initiatives that define and study timing
predictability [6–10] and security [11–13] in the embedded systems community. Security in a broad
sense can be defined as a system property that allows it “to perform its mission or critical functions
despite risks posed by threat” [14], where a threat can be defined as “the potential source of an adverse
event” [14]. A threat is realised by an attack that exploits a vulnerability, i.e., a flaw in the system, and
targets one of the system assets. A concrete threat realisation is an attack. One of the main security
objectives in embedded systems is to consider data integrity and authenticity, as it is crucial to have
enough confidence that the data received from the sensors represents the physical process correctly.
That is, the data are not modified by an adversary or injected by an adversary masking the real data.
To ensure that the input data is correct and not modified maliciously, we can as well use prediction
algorithms (extrapolation) and also security mechanisms for integrity and authentication checks. In
this paper, we focus only on the two security objectives mentioned above as being most common
for the time- and safety-critical CPSs; however, depending on the particular use-case, the relevant
security objectives for industrial CPSs can include confidentiality, anonymity, availability, auditability,
non-repudiability, third-party protection and conformance [15].

1.1. Paper Contributions

The main objective of this position paper is to conduct an investigation of the key issues involved
in supporting and verifying timing predictability and security in safety-critical industrial CPSs during
their development. In this regard, we pose three main Research Questions (RQs), as depicted in Figure 2
and presented at the end of this subsection. Before answering the research questions, we present
a concrete structure of the CPS eco-system providing clear boundaries among various constituting
components, as shown in Figure 1. To answer the posed research questions, we first explore the state
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of the art in verifying and supporting the above-mentioned properties in time- and safety-critical
embedded systems (a fundamental component of the CPSs) during the design time, and then identify
the level of existing support in a broader context of industrial CPSs. While investigating each research
question, we identify the existing solutions that can either address the research question or have the
potential for extensions to address the research question. In the latter case, we propose guidelines for
possible extensions. In the case a research question is not addressed by existing solutions, we identify
the gap in the state of the art. Finally, based on the outcomes of our investigation, we present our
position and highlight the opportunities for further research.

Figure 2. Research questions and expected outcomes contributing to the position and identification of
opportunities for further research.

RQ1 Are the existing frameworks for the development of safety-critical CPSs expressive enough to
specify timing predictability and security requirements on the various components in these
systems?

RQ2 Are there any existing techniques that can formally verify the specified timing predictability and
security requirements of safety-critical CPSs at the design time?

RQ2a If the answer to RQ2 is “yes”, can the identified techniques efficiently support and be
integrated to the existing safety analyses?

RQ3 Are there any existing techniques to support timing predictable and secure runtime environment
for safety-critical CPSs?

If the answer to any of the above research questions is “no” or “maybe”, we further investigate
the following two questions.

RQ (i) What is missing from the existing solutions?
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RQ (ii) How can the existing solutions be extended to support the development of time-critical, secure
and safety-critical CPSs?

1.2. Paper Outline

The rest of the paper is organised as follows. Section 2 introduces an autonomous quarry as
a running example for the paper, whereas Section 3 discusses timing predictability for embedded
systems and CPSs. Next, Section 4 points out the bounding of timing predictability, security and
functional safety. Section 5 outlines the authors position regarding the discussed challenges. Finally,
Section 6 concludes the paper.

2. Running Example: Autonomous Quarry

We use a running example of an autonomous quarry [16] to illustrate the proposed ideas in this
paper. The autonomous quarry shown in Figure 3 consists of several stages. Large stones are extracted
from the extraction site by the excavators. The extracted material is then transported to the crushing
site with the help of battery-powered autonomous haulers. At the crushing site, the large stones are
crushed by a crusher machine. The crushed stones are then transported by the autonomous haulers
that cooperate with each other for efficient transportation of the crushed material. It is critical for the
production efficiency that the haulers arrive at the battery charging stations in time to avoid stopping
unnecessarily in the middle of the quarry with drained batteries. To optimise the battery charge, the
haulers should not approach the charging stations too early with still enough amount of remaining
charge in their batteries.

Remote control room

Factory building

Extracting large stones

Crashing large stones into smaller ones

Charging station

Figure 3. A running example of an autonomous quarry.

Another important aspect in this regard is the safe and efficient transportation. The haulers need
to be equipped with an updated map of the quarry providing available routes and location of the
static objects along the routes to prevent any possible accidents. For example, crashing into obstacles
or falling into pits needs to be avoided. Each hauler needs to be aware of the location information
of all the other haulers to avoid collisions with each other. The haulers are assumed to receive this
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information (e.g., a map of dynamic objects) from a remote control centre, i.e., an infrastructure in
this case. The remote control centre has a pre-established communication link with each hauler in
the quarry. Furthermore, each hauler receives the control information, consisting of speed, direction
and required actions from the remote control centre. In the case of an immediately detected hazard or
a communication failure, the haulers are capable of overriding a command from the remote control
centre. In this regard, the hauler can fully rely on the information received from the on-board sensors.
Note that these systems operate in harsh environments, e.g., due to extreme amount of dust. In
addition, these systems also share the environment with humans, thus safety is a crucial property to
assure. In these systems, support for timing predictability is crucial in assuring safety. Interestingly,
wireless communication channels and increased connectivity among the vehicles impose security
threats that can affect predictability, thereby jeopardising the system’s safety.

An analysis of such a quarry can provide an example of a possible hazard: the navigation and
collision hazard. This hazard can occur due to the following reasons [17]: (i) a failure to timely
detect an object; (ii) increased latency due to a computation load of a processor being used for object
detection and localisation; (iii) incorrect localisation of a detected object; (iv) inability to stop the
vehicle remotely or in an emergency state; (v) lack of access to situational awareness information; (vi)
incorrect terrain data; (vii) lost or delayed command input; (viii) inaccurate positioning caused by a
loss of the Global Navigation Satellite System (GNSS) correction; and (ix) incomplete or improper
system updates and changes to the software.

3. Timing Predictability in CPSs

This section presents a comprehensive discussion on timing predictability in time-critical
embedded systems and CPSs. Based on this discussion, the section advocates to consider timing
predictability as a prerequisite for functional safety.

3.1. Predictability in Time-Critical Embedded Systems

This subsection discusses timing predictability in embedded systems with regards to on-board
embedded systems in each hauler in the example provided in Section 2. In time-critical embedded
systems, it is required that all actions by these systems are performed in a timely manner such that all
specified timing requirements are met. Hence, at the design time, the developers of these systems need
to verify that the systems are timing predictable. Timing predictability is a well-defined concept in the
real-time systems domain [6–10]. For a given system model and a set of assumptions, the system is
considered to be timing predictable if it is possible to show, prove or demonstrate that all specified
timing requirements will be satisfied when the system is executed.

The timing requirements can be specified on various elements of the system model, e.g., on the
individual tasks, set of tasks and task chains in a node, network messages and chains of tasks and
messages in a distributed embedded system. Note that a node can be a single-core processor or a
multi-core processor. Traditionally, the timing requirements referred to the deadlines corresponding
to the response times of individual tasks, messages and task chains [18]. The response time of a task,
message or a task chain is counted from the arrival of the input value at the input interface until the
delivery of the corresponding computed output value. The response time of a task, message or a task
chain shall not exceed the corresponding deadline. In the past few years, the research community
extended the use of timing requirements beyond the traditional deadline requirement by considering
several other timing requirements by means of timing constraints. The reaction and age constraints are
two such constraints, among others. These requirements have been included in several domain-specific
modelling languages [19], e.g., Timing Augmented Description Language (TADL2) [20], EAST-ADL
[21] language, the Rubus Component Model (RCM) [22] and AMALTHEA [23]. These requirements
have also been incorporated with the domain-specific standards such as the automotive standard
AUTOSAR [24].
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The predictability of a time-critical embedded system is supported by verifying its timing
behaviour at the design time and providing a support for predictable execution environment at
the runtime. The timing behaviour of the system can be verified by using the schedulability
analyses, whereas the predictable runtime environment can be provided by means of a real-time
operating system (RTOS). There is a wealth of schedulability analysis techniques developed by the
research community [18,25,26]. Furthermore, there are many RTOSs that support predictable runtime
environment for embedded systems, e.g., VxWorks, Rubus and FreeRTOS, to mention a few. In
summary, the development of timing predictable embedded systems has already achieved significant
level of maturity.

3.2. Predictability in Time-Critical CPSs

The time-critical embedded systems represent only one component of a time-critical CPS.
Therefore, the span of timing predictability in the CPS should extend the boundaries of embedded
systems to include the timing predictability impact of sensors and actuators that are deployed in the
physical processes. The sensor values in the running example of the autonomous quarry can arrive
from the other haulers, RSUs or the remote control centre. In this regard, we identify the following
two key parameters [27].

1. Ready Time of Inputs: The ready time of inputs in the CPS is referred to as the interval of
time between the instant when the value of a sensor that is deployed in the physical process
changes and the instant when the changed value appears at the input interface of the embedded
system. The ready time of all sensor inputs coming from the physical processes should be timing
predictable.

2. Ready Order of Inputs: In the case of more than one sensor value arriving at the input interface of
an embedded system, the computed output that controls the physical processes depends heavily
on the arrival order of the inputs. The desired function of the CPS requires a specific arrival order
of the inputs from the sensors that are deployed in the physical processes, which must be timing
predictable. This is referred to as the order predictability.

It is interesting to note that these two parameters are not considered in the definition of timing
predictability for embedded systems as they exist outside the interfaces of these systems. A CPS
is considered to be timing predictable if it can be shown, proven or demonstrated that all the
specified timing requirements are satisfied at the design time. These requirements include the timing
requirements on the computations and communications as well as the timing requirements that
constrain the ready time and ready order of the inputs. If a CPS offloads computations to the cloud,
the definition of timing predictability should additionally consider the timing impact of the offloaded
computations [28]. We argue that, even if a time-critical CPS is proven to be timing predictable at the
design time, the predictability of the system can be jeopardised at runtime due to security threats to the
time-critical data entering the system, e.g., from sensors, networks or other CPSs. Therefore, security
of the data is integral to the timing predictability of the system. The security aspects are discussed in
the next sections.

3.3. Timing Predictability as a Prerequisite for Functional Safety

Based on the discussion in the previous subsection, we make a strong case about timing
predictability being a prerequisite for functional safety in time-critical CPSs. That is, if the CPS
cannot be verified to be timing predictable at the design time, then it cannot be guaranteed to meet one
or more of the timing requirements at run-time. Intuitively, the functional safety of the system cannot
be guaranteed. For example, consider the navigation and collision hazard in the autonomous quarry
discussed in Section 2. In this example, timely detection of objects is crucial in avoiding the hazard.
If the timing predictability verification techniques and tools at the design time conclude that any of
the timing requirements corresponding to the object detection functionality cannot be satisfied, the
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system is deemed not timing predictable. This, in turn, implies that, if such a system is run, then the
safety hazard can occur at runtime. Therefore, timing predictability should be considered as a vital
prerequisite to functional safety of time-critical CPSs.

4. Security in Time-Critical CPSs

This section discusses the design-time security challenges in embedded systems and relates them
to the security of time- and safety-critical CPSs. Further, it explores the feasibility of corresponding
security solutions in embedded systems to the security challenges in the CPSs.

4.1. Security Challenges and Solutions in Embedded Systems and CPSs

The security challenges in embedded systems have been extensively addressed in the
literature [11]. The main security challenges for embedded systems at the design time are the following.

1. Resource Gap: Many embedded systems struggle to fulfil the requirements on computation and
energy consumption required for security solutions.

2. Flexibility: Given that security is dynamic in nature, it can be challenging for embedded systems
(which are often static) to provide a platform that is flexible enough and able to support constant
security updates.

3. Tamper Resistance: Embedded systems struggle to counteract attacks caused by malware, which
are capable of executing downloaded applications.

4. Security Assurance: Assurance of security for embedded systems that tend to have increased
complexity is a challenge.

5. Cost: Security solutions are usually costly, hence it is a challenge to find the right balance in
regard to an acceptable security level and the system design investment given low-cost devices.

To address the first challenge of limited resources, many lightweight security solutions have
been developed by the research community [29,30]. Overall, this challenge does not concern CPSs as
they can have relatively more resources, e.g., the haulers in the running example may contain large
batteries, powerful processors (e.g., multi-cores) and onboard networks supporting a high-bandwidth
(e.g., CAN FD [31] or Ethernet). Hence, CPSs do not have strict resource limitations from a security
perceptive.

CPSs inherited the second challenge concerning development of flexible platforms supporting
security updates, from embedded systems. Even though this challenge is already addressed in
embedded systems [32], it is yet to be tackled in CPSs, which have a higher connectivity compared to
embedded systems and hence posses higher risks and stricter security requirements. The hauler in
the running example has more vulnerabilities that can be exploited by security attacks as compared
to an ES (e.g., a brake-by-wire system), due to having more attack surfaces, e.g., the hauler receives
time-sensitive information via wireless links from the other haulers and the control centre. Thus, an
investigation is required to check feasibility of the solutions from the embedded systems domain for
CPSs.

The challenge of tamper resistance is addressed for embedded systems via lightweight security
solutions and overall by incorporating security considerations into the system design. For CPSs
which have an increased connectivity and especially for safety-critical CPSs, the challenge requires a
dedicated effort starting from the concept phase of the system design.

Security assurance complex system is challenging as the system security is not composable, i.e., a
security level of a system composed from components cannot be argued only upon security levels of
those components. Hence, given a secure ES as a part of the CPS, it is not straightforward to assure an
overall system-level security. The assurance of embedded systems is addressed for real-time properties
[33] and safety [34], e.g., the ISO 26262 [35] functional-safety standard for road vehicles provides
guidelines for assuring that any unreasonable risks due to malfunctions of electrical and electronic
systems are mitigated or prevented. However, there is still work to be done for solving the challenge
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of security assurance for embedded systems. The notion of the security assurance case exists [36];
however, there are not yet that many works in the area. The main showstopper is the dynamic nature
of security due to new threats and vulnerabilities constantly being discovered [37]. In the case of
time- and safety-critical CPSs, this challenge gets even more complex as the system’s decisions rely on
time-sensitive information coming from other systems often via wireless communication links.

Given the cost of security solutions for embedded systems, there is a number of risk assessment
techniques exploring a trade-off between the possible possessed risk and the solution to avoid it.
Similar to the As Low As Reasonable Practicable (ALARP) [38] from the safety domain, an appropriate
level of system security is defined when the resources required to be invested in breaching the
security are compared to the value of the system assets. Many time-critical and cooperative CPSs are
safety-critical, meaning that the expenses threshold for the design phase of the system is high due to
the criticality level.

4.2. Security as a Prerequisite for Timing Predictability

Time predictability is based on assumptions regarding the considered system and surrounding it
environment. One of the common assumptions in embedded systems is systems’ input integrity, i.e.,
that the inputs are not forged, deleted, injected or modified by an adversary.

However, the possibility of an adversary to physically access the system is not captured by the
classical assumptions of time predictability in ESs. Thus, time predictability has an implicit dependency
on the input data security. Given the shift from embedded systems to CPSs, a concern regarding the
assumption covering security rises even higher, as the system becomes more open and complex. For
CPSs in industrial context, increased connectivity of these systems makes securing the data integrity
more challenging. It also brings new attack surfaces and possible vulnerabilities unless security is not
addressed properly at the design time. For instance, once the time predictability of the autonomous
haulers in the considered example is analysed, it can be guaranteed under a set of assumptions, which
includes the assumption regarding the sensor data integrity being intact. An autonomous hauler
receives command information regarding its movement from the control centre. The assumption is also
that the hauler has local intelligence that allows it to sustain a temporary loss or disruption of control
information, e.g., caused by a failure in the communication channel [39]. To make its own decisions
about its current actions, a hauler requires an updated map of the quarry and the approximated
location of the other vehicles. If command information, e.g., the speed, acceleration and direction, can
be forged by an adversary, the time predictability of the system verified at the design time will not
hold any more. One more possible scenario can be created by a failure occurring in the communication
channel due to communication quality degradation or jamming, the time predictability of the system
can be jeopardised, e.g., by forged sensor information or map. Hence, to support time predictability in
time- and safety-critical industrial CPSs, the systems’ security must also be supported.

4.3. Security as a Prerequisite for Functional Safety

Safety and security are interconnected and can influence each other; there is a recognised need to
consider them jointly [40]. A connected safety-critical CPS, cannot be argued as being acceptably safe
unless security impact on safety is considered [41]. Security breaches may lead to safety hazards and
in this way change the probability of their occurrence, which leads to a necessity to re-assess risks. The
term security informed safety can be applied in the case when safety is the overall goal of an effort and
security is considered as a supportive property.

Safety as well as security is not composable, thus an impact of CPS security on CPS safety has to
be considered on the system level. There are many research works focusing on safety and security
co-analysis [42] and its different phases such as requirements engineering or Hazard Analysis and Risk
Assessment (HARA) [43] and Threat Assessment and Remediation Analysis (TARA) [44]. However,
one of the main remaining gaps in the direction of safety and security co-analysis, is run-time support.
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Looking at the example of an autonomous quarry the navigation and collision hazard can be
triggered by security causes such as Denial of Service or forgery attacks [17], i.e., by an attacker making
a communication media unavailable or modifying control messages. Incorporating such security
causes into safety analyses implies providing safety arguments that cover security considerations and
performing a joint safety-security risk assessment. In an ideal case, safety and security process are joint
to fully capture all interconnections and make work on the dependencies more efficient [45].

5. Position and Opportunities for Further Research

5.1. Timing Predictability of Safety-Critical CPSs

To support the development of time-critical CPSs, the research questions posed in Section 1 are
refined as follows.

1. Are the existing models, languages and frameworks for the development of the CPSs expressive
enough to specify the timing requirements not only on the computation and communication
times but also on the ready times and ready order of the inputs that are acquired from the
physical processes?

2. Are there any existing methods and techniques that can formally verify the specified timing
requirements at the design time to support pre-runtime timing predictability verification of
the CPSs?

If the answer to Research Question 2 is “yes”, can the identified techniques efficiently
support and be integrated to the existing safety analyses?

3. Are there any existing techniques to support timing predictable run-time environment for the
CPSs that can provide bounded delays with regards to the computation, communication, ready
times and ready order of the sensor inputs?

To answer the first research question, we explore the existing development models, languages
and frameworks for CPSs. The existing works in the computation and communication parts support
the specification of timing requirements, which are sufficient to support the corresponding part of
time-critical CPSs. For example, the timing model in the AUTOSAR standard (used in the automotive
domain) provides 21 different timing constraints that can be specified on the system. Similarly,
the EAST-ADL software architecture description language and several other component models
including RCM support the specification of the timing requirements [22,46]. Another example can be
seen in the avionics domain, where several existing frameworks support the specification of timing
requirements [47,48].

However, we identify that the existing techniques, methods and frameworks do not support
the specification of timing requirements corresponding to the input ready times and the input ready
order. There are a few recent works that discuss the input ready times and the input ready order
in the context of CPSs [27]. However, the formal semantics of these terms and their corresponding
timing requirements are still missing from the state of the art. This, in turn, hampers the specification
of holistic or end-to-end timing requirements in time-critical CPSs, i.e., the timing requirements that
constrain the delivery time of the output of an actuator corresponding to the time when a new input is
generated from a sensor that is deployed in the physical process.

The timing model of the AUTOSAR standard includes several timing constraints, e.g., the Order
Constraint. This constraint is also supported by several other modelling languages such as EAST-ADL,
TADL2 and RCM. We believe this constraint can be extended to support the input ready order timing
requirement in the CPSs. Basically, the Order Constraint constrains an order among the occurrences of
events [22,24]. If this constraint is adapted to constrain the arrival order of the sensor values from the
physical process, then it can be applied to constrain the input ready order in the CPSs. On the other
hand, the semantics of the input ready times and the corresponding requirement need to be properly
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defined and included in the existing techniques and frameworks that are used for the development of
the CPSs.

The second research question is answered by exploring the existing schedulability
techniques [18,25,49–52]. The support to verify timing predictability at the design time in the
computation and communication parts are quite mature. If the Order Constraint is extended to
support the specification of timing requirement on the inputs arrival order in CPSs, the corresponding
timing analysis can be used to verify this requirement at the design time [22]. To the best of our
knowledge, the timing analysis to verify the timing requirements on the input ready times is still
missing from the state of the art.

Regarding the sub-question of the second research question, several existing timing predictability
verification techniques for the computation and communication parts have already been integrated
to the existing safety processes. For example, the classical safety analysis Failure Mode and Effects
Analysis (FMEA) [53] includes such failures modes as late or early relating to the timing of inputs.

However, to the best of our knowledge, the integration of timing predictability of inputs arrival
order and inputs ready times to the existing safety analyses is yet to be done.

The answer to the third research question is similar to the answer of the second research question.
The existing execution frameworks and tools support predictable runtime environments in the
computation and communication parts, as discussed in Section 3.1. However, these frameworks
and underlying techniques need to be extended to provide upper bounds on the input ready times
and to enforce the inputs ready order.

5.2. Security of Safety-Critical CPSs

To address the security aspects of safety-critical CPS, the research questions discussed in Section 1
are refined as follows.

1. Are the existing models, languages and frameworks for the development of CPSs expressive
enough to specify security requirements in CPSs?

2. Are there any existing methods and techniques that can formally verify the specified security
requirements in CPSs?

If the answer to Research Question 2 is “yes”, can the identified techniques efficiently
support and be integrated to the existing safety analyses?

3. Are there any existing techniques to support secure run-time environment for CPSs?

It can be observed that there exist several approaches, analyses and even frameworks addressing
security in time- and safety-critical industrial CPSs. Although, the systematic incorporation of
security into the system development during the design time and its run-time assessment at the
operational phase, which is of special importance for safety-critical CPSs, is not yet mature. The
solutions considered in this paper that support time time predictability hold only if the data integrity,
authentication and authorisation and other relevant security objectives are supported. Given the
strong dependency between timing predictability, safety and security, this paper states security as a
prerequisite for timing predictability in time- and safety-critical CPSs.

In the development secure CPSs, one of the main challenges is coming from the fact that a
particular solution (e.g., a hash-function insuring messages integrity) cannot provide any guarantees
just by itself, as its implementation and security policies specifying the solution usage play a crucial
role in verification of whether it actually covers the required security objective. Hence, we advocate
addressing security via the top-down approach at the system level and building a security assurance
case in order to systematise the way security is provided and supported. An assurance case can be
defined as “an enabling mechanism to show that the system meets its prioritized requirements” [54]. The
system trustworthiness and reasoning upon it is the core of an assurance case. It can be built for a
system property such as safety [55], security [36] or ethics [56]. We envision the security assurance case
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as a way to collect and structure arguments over the system being acceptably secure. Being dynamic
by its nature, security requires run-time updates and refinements, e.g., patches. However, it is not
feasible in terms of time, money and efficiency to develop a security case from the scratch each time
there is an update. The challenge of handling the updates in an efficient way within a security case
is a gap in the current research that needs to be addressed. There are also works on joint safety and
security assurance cases [42] that allow addressing security-informed safety.

Now, we answer the research questions (posed in Section 1) given the state of the art in
safety-critical CPSs. First, there are several existing methods for requirements elicitation in the security
domain [57,58] as well as for joint consideration of safety and security [59,60]. Second, there are many
existing techniques and tools for the formal verification of these requirements [61,62]. Moreover,
many works are aiming on alignment of safety and security process in their different phases including
requirements engineering one [42]. However, there is a gap in supporting run-time frameworks that
can provide a secure run-time environment for the systems, which is crucial given how often updates
and patches can be required.

5.3. Artificial Intelligence for Safety-Critical ICPS

CPS are challenging to get right, therefore formal verification provides rigorous ways of
establishing safety of controllers with respect to a physical model of the system under control.
However, formal verification can guarantee safe system operation, but only if there are no discrepancies
between the real implementation and the verified model. Such discrepancies between reality and
model are imminent in physical systems operating in open environments. Moreover, to overcome
complexity challenges and to make it possible to be analysed, often the verifiable models of a system
use simplifying abstractions.

CPSs can leverage artificial intelligence and machine learning (ML) algorithms to act well in
open environments, and therefore, in recent years, there has been a big interest in applying ML
components into safety-critical CPS. In difference to formal methods, ML does not need a knowledge
of the behaviour of the whole system and, instead, uses learning algorithms that generalise responses
from static data (e.g., a set of labelled images to classify) or from dynamic experience (e.g., responses
to trial and error). However, it is challenging to achieve high-levels of safety assurance due to the
complexity and unpredictability of ML techniques. Moreover, ML algorithms also raise additional
safety issues since: (1) most expressive and powerful ML models are not transparent and behave as a
black box; and (2) the ML training data are usually incomplete. In reinforcement learning (RL) [63],
for example, a controller or an agent perceives the state of the environment, and it acts in order to
maximise the long-term return that is based on a real valued reward signal, without a need for a
perfect model of the environment. The RL agent needs to balance exploitation with exploration, where
exploitation is the strategy to select best action based on previously learned policy (i.e., behaviour),
while exploration is a strategy to search for better policies using actions outside the current, learned,
policy. Exploration creates opportunities, but also induces risk that actions selected during this phase
will not generate increased reward. Therefore, most approaches towards reinforcement learning
provide no guarantee about the safety of the learned controller or about the safety of actions taken
during learning, which is against the best practices demands of safety critical CPS, such as planes [64]
or vehicles [65]. Safe reinforcement learning [66] is am emerging field in artificial intelligence that
addresses control problems in which it is important to respect safety constraints.

Another aspect related to artificial intelligence and CPS is the introduction of cloud platforms.
While the fog and cloud bring immense computational power to CPS, which can be further used
for artificial intelligence training and inference, they also introduce system level resilience and
communication latency assurance challenges which can be fundamentally important to resolve in
the CPSs that have real-time and safety-criticality requirements. In practise, the more safety critical
a system is, the closer to the system the inference and decisions should be made. Finally, in relation
to the research questions posed in Section 1, artificial intelligence and formal verification combined
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can be of great help in the development of time-critical and secure CPSs. Nevertheless, there is a need
for future work to resolve the above mentioned challenges in utilising the combination of artificial
intelligence and formal verification techniques in time- and safety-critical CPSs.

5.4. Limitations

There are several limitations of the work presented in this paper. The first limitation is concerned
with the definition of CPSs and the CPS eco-system presented in Figure 1. As discussed in Section 1,
there exist several definitions of CPSs. Our definition conforms to the well-known definitions of CPSs
by Lee and Seshia [1,2] and by the International Conference on CPSs (ICPPS). The second limitation is
concerned with the magnitude of the gaps identified in the state of the art. We have not performed a
systematic literature review [67,68]; instead, we have investigated the design-time support for specific
properties of time-critical CPSs, including timing predictability, functional safety and security. Another
limitation is the consideration of timing predictability verification only at the design-time and not at the
run-time. Finally, we have answered the posed research questions after investigating the state-of-the-art
solutions. However, we have not thoroughly investigated the commercial/proprietary solutions and
tools, especially those that do not expose the underlying models, techniques and methods.

6. Conclusions and Future Work

Cyber-physical systems require a tight combination of and coordination between computational
and physical processes. These systems resulted in the recent years from the confluence of technologies
in embedded systems, distributed systems, dependable systems and often real-time systems with
advances in networking, microcontrollers, sensors, actuators and even artificial intelligence. Time-
and safety-critical CPSs must operate safely, securely, efficiently and in real-time, and therefore
predictability with regards to timing and security requirements is critical for their development. To
identify the key issues involved in the development of these systems, in this position paper, we first
draw a parallel between embedded systems and CPSs. We then explore the research and look into a
number of existing frameworks and techniques devoted to developing timing predictable and secure
safety-critical embedded systems. We conclude that the state of the art in the embedded systems
domain is inadequate for the more complex and open industrial CPSs, as the boundaries of the CPS
extend beyond the system’s network interfaces. Furthermore, the existing techniques and frameworks
for the verification of timing predictability in embedded systems are based on the assumptions about
the system and its environment. Shifting from embedded systems to CPSs, these assumptions do not
hold anymore, as even if a time-critical CPS is proven to be timing predictable at the design time, the
predictability of the system can be jeopardized when the system is executed at the run-time due to
security threats on the data entering the system via its sensors, networks, other CPSs or even the cloud.
We make a strong case to advocate that timing predictability should be considered a prerequisite for
functional safety, while security should be considered a prerequisite for both timing predictability
and functional safety. We also conclude that the existing techniques and frameworks for building
timing predictable CPSs hold only if the data integrity, authentication and authorization are supported.
Therefore, we argue that there is a gap and future work should be devoted to developing frameworks
that render security as a prerequisite for time- and safety-critical CPSs. In addition to all the above,
we highlight that CPSs can leverage formal verification to guarantee safe system operation at design
time, as well as use artificial intelligence to act well in open environments. We illustrate our ideas and
position on one such system, namely the autonomous quarry.
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