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Abstract

Organizations developing software-intensive systems inevitably face increasing
complexity of developed products, mainly due to rapid advancements in all do-
mains of technology. Many such organizations are considering model-based sys-
tems engineering (MBSE) practices to cope with the increasing complexity. The
use of models, as a central role during product design, promises to provide ben-
efits such as enhanced communication among system stakeholders, continuous
verification, improved design integrity, traceability between requirements and
system artifacts and many more. Additionally, products are often built in many
variants. That is especially obvious in the automotive domain, where customers
have the ability to configure vehicles with hundreds of configuration options. To
deal with the variability, a product line engineering approach is often used. It al-
lows the development of a family of similar software-intensive systems that share
a common base while being adapted to individual customer requirements.

In this thesis, the overall goal is to evaluate and facilitate the combination
of the two mentioned approaches, model-based systems engineering and prod-
uct line engineering, in an industrial environment. To achieve the main thesis
goal, it was divided into three separate research goals. The first goal was to iden-
tify challenges when applying an annotation-based approach for variant manage-
ment in SysML models on a use case provided by Volvo Construction Equipment.
The aim was to identify and understand challenges when using existing tool sup-
port to manage variants in implementation artifacts of existing products. The
second research goal was to identify reuse-related challenges in the “clone-and-
own” based development process of Volvo CE. Moreover, we assess the effects
of model-based product line engineering on the identified challenges. Lastly,
the third research goal was to develop an approach for consistency checking be-
tween variability- and system models. To achieve that, we develop an integrated
toolchain for model-based product line engineering that allows the integration of
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variable artifacts, which are not documented in system models, into the devel-
opment process. Secondly, we define and develop an approach for consistency
checking between variability models that describe the system in terms of features
and implementation models that describe how variability is implemented in the
product itself, since such support does not exist in current state-of-the-art tools.

Based on the results from the results of case studies at Volvo CE, it was shown
that model-based product line engineering has the potential to improve commu-
nication and highlight implications of variability to stakeholders (e.g. to non-
technical staff), improve traceability between variability in requirements and vari-
ability in design and implementation, improve consistency through constraints
between variants and automate repetitive activities. In other words, it shows po-
tential for improving product quality while reducing the development lead time.
However, the evaluation and measurement of improvement will be left for future
work because measuring the product quality and lead time requires an organiza-
tional rollout of model-based product line engineering.
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Sammanfattning

På grund av dagens snabba tekniska föränding, möter organisationer som utveck-
lar programvaruintensiva system ofta växande komplexitet i sin produktutveck-
ling. Ett sätt att hantera denna växande komplexitet är genom att använda mod-
ellbaserad systemutveckling.

Användningen av modeller som en central del vid utveckling av programvaru-
intensiva system kan ge fördelar som förbättrad kommunikation, kontinuerlig
säkerställning av kvalitet, förbättrad design, och spårbarhet mellan krav och sys-
temkomponenter. Dessutom är produkter ofta byggda i olika varianter. Detta
är särskilt tydligt inom bilindustrin, där kunderna har möjlighet att konfigurera
fordon med hundratals olika konfigurationsalternativ. För att kunna hantera vari-
ationen används ofta produktlinjer för utveckling av dessa produkter. Produktlin-
jer möjliggör utveckling av en produktfamilj av liknande programvaruintensiva
system som kan konfigureras utifrån individuella kundbehov.

Avhandlingens övergripande mål är att utvärdera och förbättra hur modell-
baserad systemutveckling och produktlinjer kan kombineras i en industriell kon-
text. För att utreda den överliggande problemställningen har tre forskningsmål
tagits fram. Det första målet var att identifiera utmaningar när produktlinjer an-
vänds för hantering av variabilitet i SysML-modeller av produkter från Volvo
Construction Equipment. Syftet var att identifiera och förstå utmaningar när man
använder befintliga verktyg för att hantera varianter i modeller av befintliga pro-
dukter. Det andra forskningsmålet var att identifiera utmaningar i användnin-
gen av “clone-and-own" baserade utvecklingsprocessen på Volvo CE. Dessutom
utvärderar vi effekterna av modellbaserade produktlinjer på de utmaningar som
tidigare har identifierats. Det tredje forskningsmålet var att utveckla ett tillvä-
gagångssätt för konsistenskontroll mellan variabilitets- och systemmodeller. För
att uppnå detta utvecklade vi ett verktyg för modellbaserade produktlinjer som
möjliggör integrering i en utvecklingsprocess för variabla produktkomponenter
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som inte är dokumenterade i systemmodeller. Vi definierar och utvecklar ett
tillvägagångssätt för konsistenskontroll mellan variabilitetsmodeller och imple-
menteringsmodeller. Variabilitetsmodeller beskriver systemets variabilitet, men
implementeringsmodeller beskriver hur variabilitet implementeras i produkten.

Avhandligen visar att användingen av modellbaserade produktlinjer kan för-
bättra kommunikationen, belysa konsekvenserna av variabilitet för ingenjörer
men även personal utan teknisk bakgrund. Det kan även förbättra spårbarhet
mellan variabilitet i systemkrav, design och implementering, samt förbättra kon-
sistensen med begränsningar mellan variabla produktkomponenter och automa-
tisera repetitiva aktiviteter.

Modellbaserade produktlinjer möjliggör förbättringar av produktkvaliteten
samtidigt som utvecklingstiden minskas. Utvärdering och mätning av förbät-
tringar lämnas för framtida forskning, då företagsorganisationer först behöver
införa modellbaserad produktlinjeteknik i sin verksamhet.
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Chapter 1

Introduction

Successful and useful products are always built around the needs and require-
ments of customers. However, not all customers are identical. Some might need
subtle differences in the product, while others might need highly specialized so-
lutions. Besides customer requirements, legislations are often different in various
countries, regions and continents. One of the domains where such concerns be-
come apparent is the automotive domain. Often, customers request a product that
is configured specifically based on their needs. Then, the manufacturer needs to
produce such a customer-specific and configured vehicle. At the same time, the
legislation region in which a vehicle is sold defines the legal standards, such as
emissions, that need to be fulfilled. Developing a standardized product that is
configurable for all customers can be a challenging task, especially in software-
intensive systems, as software increases the complexity and variability of such
systems [72].

Complex systems such as in the automotive domain are rarely developed from
scratch. Rather, they are adaptations of one or several previous projects and prod-
ucts. Expectations from reuse practices are often similar, regardless of the domain
where the product is developed. Reduction of development and product costs is
very often the main driver for reuse with the assumption that the product quality
will be transferred or even increased through reuse [10, 35]. Improved mainte-
nance as well as reduced lead time and training costs are other reuse benefits,
which are reported in literature as well [10, 79]. Many organizations are reaping
the reuse benefits and that has been extensively researched and documented [57].
Such success stories commonly conclude that reuse practices have to be system-
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4 Chapter 1. Introduction

Figure 1.1: Volvo Construction Equipment Machinery

atically performed in order to achieve the expected benefits.

One such organization that is developing highly configurable and constantly
evolving systems is the Engine Controls department at Volvo Construction Equip-
ment (Volvo CE). Volvo CE, a subsidiary to the Volvo Group, develops and
manufactures construction equipment and heavy machinery including articulated
haulers, wheel loaders, excavators, pavers and forestry machinery, illustrated in
Figure 1.1. Within Volvo CE, the Engine Controls department delivers a range of
diesel engines for such heavy machines.

The engine department of Volvo CE joined the MegaM@Rt2 [1] research
project as a use case provider whose focus was on Model-based Systems Engi-
neering (MBSE, [65]). MBSE proposes the use of models as a means to represent
the complete system throughout various phases of its development cycle. System
engineering activities, which are traditionally performed and documented in tex-
tual documents, are to be performed by utilizing models. Models in MBSE are
often graphical representations of different aspects of the system that are to be de-
veloped [33], such as requirements, the system architecture, detailed design and
even test specifications. A common language for graphical modelling in MBSE
is SysML [38].

The main goal of Volvo CE, within MegaM@Rt2, was to exploit MBSE as
an attempt to cope with the increasing complexity of engine systems and improve
upon their reuse practices. An initial case study performed at Volvo CE has shown
that MBSE has the potential to address several issues during systems engineering:
(i) ambiguity of natural language requirements, (ii) communication within the
organization, (iii) traceability between requirements, design, implementation and
testing [75].
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1.1. Research context 5

Figure 1.2: Illustration of the clone-and-own process

1.1 Research context

A research objective within MegaM@Rt2 was to explore variability modeling in
model-based development approaches. This objective was also closely aligned
to the objectives of Volvo CE. To get a better understanding of the use case,
we have analyzed the systems engineering process at the engine department. It
was shown that during the systems engineering process, engineers rely heavily
on reusing already existing artifacts (such as requirements, component design,
tests, etc.) when building new engine products. This suggested that reuse and
variability could be one of the major factors in MBSE for the engine department
at Volvo CE. A major factor in the engine system development was the large
number of variants, where all engine variants were built on top of a small number
of highly configurable and extensible engine platforms.

The current reuse process can be more or less described as a clone-and-own
approach. Clone-and-own is a practice when currently existing systems, or parts
of them, are copied and adapted in order to create a new variant of the system.
The new product that is created using this approach usually has its own lifecy-
cle and is independent from the system (or systems) from which it was cloned.
As illustrated in Figure 1.2, the process starts with customer requirements for a
product. In addition to customers, for engine systems, the legislation require-
ments must be considered as well (e.g. exhaust emission regulations). Once
requirements are established, engineers proceed to step 2, the gap analysis. The
existing system variants are analysed in order to understand which parts can be
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6 Chapter 1. Introduction

reused for the new project. The "clone" part of clone-and-own starts with step 3.
In this step, the system elements to be reused are extracted and copied based on
the results of the gap analysis. Once copied, the lifecycle of the cloned elements
(or features as illustrated in Figure 1.2) is separated from the lifecycle of systems
of origin. Further, in step 4, the extracted elements are composed together and
adjusted if necessary, to form a base on which the requirements for new features
will be implemented. In step 5, new features are added to the cloned base. In step
6, the "and-own" part of the clone-and-own practices takes effect. The lifecycle
of both, cloned elements and new features, is now owned by the new product.
Since the new product has its own lifecycle, the consequences are for example
that bug fixes in a cloned system component will not necessarily be performed in
all system variants which use the same component.

In reality, these steps are not always performed in the presented order. The
cloning is often done ad-hoc without a proper gap analysis as it is usually a time
consuming task. Without a detailed gap analysis, some aspects that could have
been cloned can be overlooked, leading to situations where an already existing
feature will need to be implemented again. Furthermore, since cloned features
might be changed in step 4 of Figure 1.2, it is not always obvious from which
system to clone a feature as there can be multiple versions of it in various system
variants. Another issue is the interaction of system features. A part of the system
can behave differently depending on the presence or absence of other features in
the system. At Volvo CE, the engine system is based on a platform, therefore
the clone-and-own approach is not used for the complete system. Rather, engine
components, which are used to extend the platform and create variants, are built
by following the clone-and-own process. In other words, there exists a base that
is the same for all engines (the engine platform) on which variable features are
added to create individual engine variants. These variable elements, which are
added to the base engine, are mainly developed by following the clone-and-own
process.

1.2 Problem Formulation

Due to the fact that there exists a common base for all systems and variants are
built by extending the base with variable components, product line engineering
(PLE) came as a natural choice for the management of commonality and variabil-
ity in this environment. In PLE, a set of similar products is built from a number of
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1.2. Problem Formulation 7

core components, which are included in each product variant. Variable features
are then added to the core in order to build application specific variants [63]. In
the context of the described engine systems, the core for the complete product
family is the base engine platform. Here, auxiliary components1 are equivalent
to features in PLE. Since the goal is to explore variability management in MBSE,
our research will focus on the combination of MBSE and PLE, also known as
model-based product line engineering (MB-PLE) [86].

The described industrial use case was shown to be a fitting context for the
analysis of some open challenges in PLE as described in [56]. For example, Volvo
CE is looking into MBSE, where managing reuse in all phases of the development
process is an important aspect. At the same time, an open challenge in PLE is
the interrelation between variability models, system requirements, the design,
testing, etc. Furthermore, it is crucial to manage the consistency of variability
across the different development artifacts.

Since SysML is the most commonly used modeling language for MBSE [22],
it was necessary to explore modeling tools and approaches that support variability
modeling with SysML. When looking at the state-of-art and state-of-practice, the
majority of tools and approaches, which support variability modeling in SysML,
implement the annotation based approach for modeling product lines [85, 43, 30].
This approach itself will be described in more detail later in the background sec-
tion, but for now it is important to note that the majority of the studies suggests the
benefits of such an approach as: (i) enabling mass-customization: each product
can be customized to individual customers, (ii) reduced cost by building prod-
ucts from reusable parts, (iii) improved quality, (iv) reduced time-to-market, etc.
However, very few discuss potential impediments when creating models that in-
clude variability [30, 56]. It is not clear whether such approaches, for example,
increase the complexity of models or how they scale when a large number of
features is added to a single system model.

Having the open challenges in mind and the opportunity to apply and evalu-
ate model-based product line engineering on the described industrial use case, in
this thesis we have: (i) evaluated currently existing tool support in order identify
to understand challenges of annotation-based product line models, (ii) assessed
the requirements and consequences of migrating from the current clone-and-own

1Auxiliary component is the name for all physical components that are added to the base engine
in order to make a product variant, for example: Sensors, engine turbochargers, etc. In software,
they are reflected through configuration and calibration parameters.
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8 Chapter 1. Introduction

development process to a model-based PLE process, (iii) identified limitations in
the state-of-art tools to support model-based PLE and (iv) developed a consis-
tency checking approach for product line models based on SysML.

1.3 Thesis Overview

This thesis is based on a collection of research papers and is divided into two
parts. The first part of the thesis introduces the research topic, the research pro-
cess and the relations between the individual research papers. It starts with the
motivation and general introduction to the topic, which was described earlier in
the current chapter. Chapter 2 provides the theoretical background to the main
concepts that are the main research foci in the thesis: PLE and MBSE. Inline with
the background, Chapter 2 gives an overview of the related work on the relevant
aspects of MBSE and PLE.

Chapter 3 and Chapter 4 describe the research goals and contributions of this
thesis. Generally, the thesis aims to evaluate and facilitate the application of
model-based product line engineering (MB-PLE) in an industrial environment.
Firstly, we identify challenges when an annotation-based approach on SysML
models is used to to manage variants in existing industrial systems. Secondly,
we systematically identify reuse-related challenges in the clone-and-own based
development process of Volvo CE. Then we assess the effect of model-based
product line engineering on the identified challenges. We propose a PLE process
that is aligned with the MBSE practices which are being under pilot evaluations
at the Engine Controls department. We discuss the implications of MB-PLE on
the development activities as well as system artifacts.

Despite the fact that the modeling tool at Volvo CE supports variability mod-
eling, it was noted that it limits the applicability of the PLE process. Although we
did show that most of the development process phases can be documented in the
modeling environment, the organization expressed a need for flexibility, i.e. to
be able to include other variable system artifacts in the PLE process such as soft-
ware calibration files. The third objective was to create a MB-PLE toolchain that
allows for such flexibility. Lastly, we define an approach for consistency check-
ing between the variability model, which describes the variability of the system
and the system model, which describes how the system is implemented. SysML
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1.3. Thesis Overview 9

The first part of the thesis concludes with Chapter 5, a short discussion and
conclusion with a reflection on possible directions for future work. The second
part of the thesis contains the included papers whose abstracts are listed below:

Paper A

Title:

Model-Based Product Line Engineering in an Industrial Automotive Context:
An Exploratory Case Study [19]

Authors:

Damir Bilic, Daniel Sundmark, Wasif Afzal, Adnan Causevic, Peter Wallin,
Christoffer Amlinger

Venue:

The 1st International Workshop on Variability and Evolution of Software-
intensive Systems (VariVolution’18), Colocated with The 22nd International
Systems and Software Product Line Conference (SPLC’18)

Abstract:
Product Line Engineering is an approach to reuse assets of complex sys-
tems by taking advantage of commonalities between product families. Reuse
within complex systems usually means reuse of artifacts from different en-
gineering domains such as mechanical, electronics and software engineering.
Model-based systems engineering is becoming a standard for systems engi-
neering and collaboration within different domains. This paper presents an
exploratory case study on initial efforts of adopting Product Line Engineer-
ing practices within the model-based systems engineering process at Volvo
Construction Equipment (Volvo CE), Sweden. We have used SysML to create
overloaded models of the engine systems at Volvo CE. The variability within
the engine systems was captured by using the Orthogonal Variability Model-
ing language. The case study has shown us that overloaded SysML models
tend to become complex even on small-scale systems, which in turn makes
scalability of the approach a major challenge. For successful reuse and to,
possibly, tackle scalability, it is necessary to have a database of reusable as-
sets from which product variants can be derived.
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Paper B

Title:

An Integrated Model-based Tool Chain for Managing Variability in Complex
System Design [18]

Authors:

Damir Bilic, Etienne Brosse, Andrey Sadovykh, Dragos Druscan, Hugo
Bruneliere,
Uwe Ryssel

Venue:

The 13th International Workshop on Models and Evolution (ME’19), co-
located with The 22nd IEEE/ACM International Conference on Model Driven
Engineering Languages and Systems (MODELS’19)

Abstract:
Software-intensive systems in the automotive domain are often built in dif-
ferent variants, notably in order to support different market segments and
legislation regions. Model-based concepts are frequently applied to manage
complexity in such variable systems. However, the considered approaches are
often focused on single-product development. In order to support variable
products in a model-based systems engineering environment, we describe a
tool-supported approach that allows us to annotate SysML models with vari-
ability data. Such variability information is exchanged between the system
modeling tool and variability management tools through the Variability Ex-
change Language. The contribution of the paper includes the introduction of
the model-based product line engineering tool chain and its application on a
practical case study at Volvo Construction Equipment. Initial results suggest
an improved efficiency in developing such a variable system.

Paper C

Title:

Towards a Model-Driven Product Line Engineering Process – An Industrial
Case Study [20]

Authors:

Damir Bilic, Daniel Sundmark, Wasif Afzal, Adnan Causevic, Peter Wallin,
Christoffer Amlinger, Dani Barkah

Venue:
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The 13th International Conference on Innovations in Software Engineering
(ISEC’20)

Abstract:
Many organizations developing software-intensive systems face challenges
with high product complexity and large numbers of variants. Partly, due to
large numbers of both legal and customer-specific requirements. In order
to effectively maintain and develop these product variants, Product-Line En-
gineering (PLE) methods are often considered, while Model-based Systems
Engineering (MBSE) practices are commonly utilized to tackle product com-
plexity. In this paper, we report on an industrial case study concerning the
ongoing adoption of PLE in the MBSE environment at Volvo Construction
Equipment (Volvo CE) in Sweden. In the study, we identify and define a PLE
process that is aligned with MBSE activities at the Engine Controls depart-
ment of Volvo CE. Furthermore, we discuss the implications of the migration
from the current development process to a model-driven PLE-oriented pro-
cess. This process and its implications are derived by conducting and analyz-
ing interviews with Volvo CE employees, inspecting artifacts and documents,
and by means of participant observation. Based on the results of a first system
model iteration, we were able to document how MBSE and variability model-
ing will affect development activities, work products and stakeholders of the
work products.

Paper D

Title:

Detecting Inconsistencies in Annotated Product Line Models
Authors:

Damir Bilic, Daniel Sundmark, Wasif Afzal, Adnan Causevic, Peter Wallin
Venue:

The 24th International Systems and Software Product Line Conference
(SPLC’20)

Abstract:
Model-based product line engineering applies the reuse practices from prod-
uct line engineering with graphical modeling for the specification of software
intensive systems. Variability is usually described in separate variability mod-
els, while the implementation of the variable systems is specified in system
models that use modeling languages such as SysML. Most of the SysML mod-
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eling tools with variability support implement the annotation-based modeling
approach. Annotated product line models tend to be error-prone since the
modeler implicitly describes every possible variant in a single-system model.
To identifying variability-related inconsistencies, in this paper, we firstly de-
fine restrictions on the use of SysML for annotative modeling in order to avoid
situations where resulting instances of the annotated model may contain am-
biguous model constructs. Secondly, inter-feature constraints are extracted
from the annotated model, based on relations between elements that are an-
notated with features. By analyzing the constraints, we can identify if the
combined variability and system model can result in incorrect or ambiguous
instances. The evaluation of our prototype implementation shows the poten-
tial of our approach by identifying inconsistencies in the product line model
of our industrial partner which went undetected through several iterations of
the model.
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Chapter 2

Background and related work

In this chapter, we introduce the concepts of model-based systems engineering,
product line engineering and a combination of the two. The related work is dis-
cussed inline with the theoretical background.

2.1 Model-based Systems Engineering (MBSE)

Systems engineering is a multidisciplinary set of methods and processes that fa-
cilitates the transformation of stakeholder requirements into a system whose ob-
jectives are to accomplish the said requirements [46]. The technical activities
in the system engineering process include requirement elicitation and analysis,
specification and design of the system, as well as verification and validation,
which ensures that the objectives of the system are met and that stakeholder re-
quirements are satisfied [42].

MBSE is an approach that facilitates systems engineering. It consists of a set
of concepts which propose the use of models as a means to represent information
about the system that is being developed instead of the traditional, document-
based approach. Previously, models and related techniques have been used ex-
tensively as a part of the document-based approach. These might include control
flow diagrams, behavioral diagrams, schematics etc. However, these are mostly
used for representation of specific aspects of a system. In the document-based
approach, individual models are usually self-contained and not integrated with
models of other parts of the system to allow for an overall system view [38].

MBSE presents a shift from the document-based representation to a model-
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14 Chapter 2. Background and related work

based representation of the complete system [65] and includes the application of
modeling activities as a central role to support the specification of requirements,
design, integration, validation and operation of a system. It emphasizes the use
of models in order to carry out systems engineering activities that are tradition-
ally performed using a document-based approach [33]. The suggested benefits
of MBSE compared to the traditional approach are: enhanced communication,
possibility of continuous verification and validation of the design, enhanced de-
sign integrity, improved traceability between design artifacts, reuse of models for
design evolution, automated document generation, etc. [81].

In order to support MBSE, SysML has been introduced. It is a general-
purpose graphical modeling language that facilitates the representation of speci-
fication and architecture of systems [25]. It can represent the following aspects
of systems: structural composition, system behavior, constraints on physical and
performance properties, allocation between the different aspects, requirements
and relationship between other requirements as well as their relationships to other
design elements [38]. Systems can include hardware, software, data, personnel,
specific procedures etc. In order to represent these system elements, a set of nine
diagram types is available.

A comprehensive overview of SysML can be found in [38]. Through initial
case studies at Volvo CE, MBSE helps to address issues such as: (i) ambiguity
of natural language requirements, (ii) communication within the organization,
(iii) traceability between requirements, design, implementation and testing [75].
These benefits of MBSE are not only related to the use case of Volvo CE, but are
also documented in the literature [51, 23].

Industrial embedded systems are often developed by reusing already devel-
oped artifacts from previous products, and this is also true for Volvo CE. At the
Engine Controls department, new engine systems are developed by evolving and
improving on the functionality of previous systems. Although the new engine
systems are always an evolution of a previous system, the old systems still must
be maintained. The reason is the very long life cycle of engine systems that are
used in Volvo CE machines. Reuse of system artifacts, such as design specifi-
cations and test procedures, is a fairly common practice in the industry, however
reuse strategies in systems engineering are not so well defined [82].

Moreover, SysML does not support mechanisms for modeling of variability.
Nevertheless, it is possible to express variability by creating SysML profiles to
extend the language with variability concepts, as it can be seen in [83]. However
this approach struggles to represent variability in behavioral aspects.
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2.2. Product Line Engineering (PLE) 15

In order to address the needs of organizations that are using MBSE and devel-
oping variant-rich products, such as the previously mentioned Volvo CE example,
we apply and evaluate PLE as an approach to improve reuse and manage variabil-
ity in the MBSE environment.

2.2 Product Line Engineering (PLE)

PLE is a development process that allows for mass production of similar cus-
tomized systems while enabling individualism for each single product variant.
A group of similar products is developed and built from a reusable set of arti-
facts. These reusable artifacts can be common and variable. Common artifacts
are building blocks of the product line which are included in every product vari-
ant, while variable artifacts are combined together with common ones in order to
create the individual, customer-specific variants.

The research by Kang et al., [44], is what kick-started the topic of software
product line engineering. It was then that the term feature model was actually
introduced and the notion of a feature was defined. The notion of feature-oriented
domain analysis (FODA) has been one of the main topics in the PLE research
community.

An example where such development methods are necessary is the automo-
tive domain. Vehicles are being mass-produced, yet each final product is cus-
tomized based on the needs of the customer that ordered the vehicle. This mass-
customization is enabled by allowing the variable artifacts to be combined in
different ways based on the customer requirements.

The main benefits and expectations of PLE are, [6]: (i) mass-customization:
instead of a small set of preconfigured products, products are configured for in-
dividual customers, (ii) reduced cost: instead of developing each product from
scratch for each customer, systems are built by combining reusable parts in dif-
ferent ways based on customer needs, (iii) improved quality: frequently used and
standardized product artifacts are tested in many products, potentially leading
to more reliable products, (iv) reduced time-to-market: compared to developing
each individual product completely from scratch, building a system based on a
set of already developed and reusable assets can result in significant time savings.

In [6], the theoretical principles behind software PLE are explained. The
main two driving principles are the concepts of problem domain and solution
domain. For illustration purposes, we show a simplified version of the PLE de-
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16 Chapter 2. Background and related work

Figure 2.1: A generic approach for combining variability modeling with system
modeling

velopment approach in Figure, 2.1 [18]. The left side in the figure depicts the
problem domain. It defines the “what" aspect of the system, i.e., it describes the
system in terms of features that include always-present (common) and variable
features, the relations and the constraints between them.

The term "feature" for PLE was initially defied by Kang et. al. in [44] as
"a prominent or distinctive user-visible aspect, quality, or characteristic of a soft-
ware system or systems". Throughout the thesis, when referring to a feature, we
refer to the same definition except that the feature does not necessarily have to
be user-visible. Some features might be there, for example, due to legislation re-
quirements, which require changes in aspects of the systems that are not always
user-visible.

The information about features in the system (problem domain) is usually
captured in separate models [29]. Feature models [44] and decision models [26]
are a common way of representing variability in the problem domain. Several
feature-based modeling methods can be identified in literature and comprehensive
studies on feature models can be found in [14, 72, 29]. Feature models describe
the common and variable aspects or features of a product line, with relationships
between them.

After the system common and variable characteristics are described as fea-
tures with relations between them in the variability model, the variability must
also be implemented in the solution domain. The middle part of Figure 2.1 de-
picts the solution domain. This part describes the “how". This is where the
system model is created and it describes how the system is implemented together
with all the system features.

When considering graphical models, three common approaches to represent
variability in the solution domain are: annotative approaches [28], compositional
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2.2. Product Line Engineering (PLE) 17

approaches [77, 7] and delta-based approaches [71]. These approaches are de-
scribed in more detail later in the text.

It is important to point out that in this thesis, the focus is mainly on the an-
notative approach [28], i.e. all system variants are modeled within a single over-
specified model. In the solution domain, the goal is to implement both variable
and common features such that they can be combined together in order to create
individual product variants. Ideally, features should be built as standardized parts
of the system that need not to be changed when creating an individual variant of
the product line.

Apel et al. [6] explain possible approaches for implementing and analyzing
the problem domain and solution domain. Moreover, they define a PLE-based de-
velopment process which illustrates how the problem and solution domain should
be integrated together in order to be able to develop products in such an environ-
ment.

Variability models in the problem domain serve as a starting point for cus-
tomers during the definition of a product variant. Customers select variable prod-
uct features based on their needs. Constraints and relations between features
restrict how features can be combined. As illustrated in Figure 2.1, features from
the problem domain are mapped to implementation artifacts, which realize the
individual features in the solution domain.

Based on the customer selection of features and mapping between the prob-
lem domain and solution domain, the product derivation is performed. During
product derivation, the individual parts that represent the selected features are
combined together to form a complete product variant. When new features are
requested by customers or when currently existing features need to be adapted,
the work is to be done within the solution domain. To prevent architecture ero-
sion, in PLE, one must be careful when implementing new features or modifying
currently existing features, especially during application engineering [87].

As illustrated in the right part of Figure 2.1, the derived system should in-
clude only features from the solution domain that were selected during feature
selection. As the work in this thesis deals with PLE with SysML models, the de-
rived variant includes for example: requirement models, the system architecture,
component design, verification procedures, etc. However, PLE is not only a task
that is reflected in the development process of an organization. It is necessary to
consider the business aspect of PLE. Moreover, the architecture of the system has
to be adapted to support the variability. A change in all of these aspects usually
also requires an organizational restructuring. The business, architecture, process
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and organization aspects are discussed in the book by Linden et al. [78]. Further-
more, they discuss industrial applications of PLE and discuss the effect of PLE
on the adopting organizations by providing feedback from industrial experiences.

2.3 Model-based Product Line Engineering

To manage variability in the solution domain with models, several different ap-
proaches are proposed. One possibility is the annotative approach in which all
system variants should be modeled within a single over-specified model (some-
times called 150% model) [28, 52]. The annotated product line model contains
all system variations within a single model. In this approach, variants are cre-
ated by removing features, which are not selected from the over-specified model,
leaving only the desired parts in the system. An annotative approach for the man-
agement of variability in SysML models is also the main focus of the research in
this thesis.

In an annotative approach, SysML can be extended with profiles and stereo-
types to support variability [83]. This approach does not require a separate vari-
ability management tool. However, it does not support modeling of variability
in SysML behavior diagrams, which are an important part in the system design.
Another approach for modeling variability with SysML is presented in [54]. But
then again, it is not clear how variability is captured in behavior models. As
stated in an extensive literature survey [84], activity and state machine diagrams
are widely used in systems engineering.

An approach that allows the combination of variability models from the prob-
lem domain with over-specified models from the solution domain is proposed
in [63]. Orthogonal Variability Modeling (OVM) is an annotative approach which
enables the annotation of SysML models with variability constructs. In this case,
both design and variability are presented in the same model with explicit links
between variants and parts of the design models.

In contrast to annotative approaches, there exist compositional approaches in
which features are created as reusable assets and then combined together to create
a single product variant. Such approaches are mainly based on feature-oriented
programming, [12, 8], but applied on graphical models (instead of code) [77,
7, 80]. In such approaches, variants are, usually, created through automated
model transformations which compose the individual models of features into a
complete, interconnected, system variant that contains only the desired features.
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2.4. Analysis of Models in Product Lines 19

In addition to compositional and annotative approaches, there exists the delta-
oriented programming approach [71] or delta oriented modeling when applied to
graphical models instead of code [70]. In the delta-based approach, the product
line is firstly implemented as a single system, which implements the common fea-
tures of all systems in the product line. Then, a set of deltas, i.e. a set of changes
and steps on how to apply the changes is defined. The deltas represent differ-
ent features of the product line. Depending how the base system is changed, i.e.
which deltas are applied to the system, it is possible to derive different variants.

2.4 Analysis of Models in Product Lines

An important aspect to consider in PLE is quality assurance. In contrast to tra-
ditional single-product development, in PLE, the whole product family (i.e. all
variants) must be verified and validated. When looking from a problem domain
perspective, where feature models are the most commonly used way of represent-
ing variability [17], extensive research has been done on their analysis [15, 16].
Moreover, the same analysis approaches can be extended to other types of vari-
ability models such as OVM [67, 64]. These variability models can be expressed
as a Boolean satisfiability problems and SAT solver-based methods are the most
common approach for analysing and verifying the variability models [55, 13].

Other than analysing the variability models, one needs to consider that the
implementation of the product line might introduce additional dependencies and
constraints between features. Model checking in the PLE domains has been a
topic of interest almost since model-based product line engineering has been in-
troduced [69]. When looking at model-based product lines, work has been done
on the mentioned types of product lines, i.e. over-specified product lines [4, 27],
composition-based product lines [3], as well as delta oriented product lines [48].

Shortly after introducing the concept of over-specified product line models
in [28], the authors have noted that such types of product line models tend to
become complex even with a small number of features [4]. The reason is that
every possible product variant is implicitly described in a single-system model.
Furthermore, they noted that such errors usually happen in only a small number of
system variants. To deal with these inconsistencies, the authors have introduced
new semantics for OCL, which they then apply on the specification of UML class
diagrams, instead of their instances as it is intended with OCL and UML. Similar
work has been done on UML class diagrams by Buchmann et al. in [24].
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However, in the work of this thesis, the annotative approach differs in the
way how relations on model elements are handled. A relation can be removed
from the over-specified model when instantiating a variant even if it is not ex-
plicitly annotated itself. In our approach, a relation will be removed if any of
the two related blocks are to be removed when creating a variant. Thus in con-
trast, our approach can result in faulty variants even though the variant model
is well-formed with respect to the underlying metamodel. Section 4.2 describes
our approach for handling relations during the derivation process as well as the
analysis approach for over-specified product line in more detail.

2.5 Product Line Engineering in the Industry

MBSE with SysML has been widely used in the industry in several domains, for
example, in aerospace [5] and in automotive domains [40].

Related to the adoption of PLE in industrial settings, a number of articles can
be found. In [36], experiences from introducing PLE at General Motors are re-
ported. In [9], the application of PLE and exploration of MBSE was reported. It
was done in a domain related to the use case organization in this thesis: aircraft
engine systems. They explored MBSE to model at the system level but reported
limited success due to the fact that intended users of the model were not familiar
with the modeling language. Significant time savings, however, were reported
during requirement elicitation. Another study [58], published by researchers
from the Mitsubishi Electric Corporation, was also done in a very similar con-
text to ours. In [58], the development of the actual product itself was outsourced
to a technology provider. Over a five-year period, they report a gradual decrease
of productivity after applying PLE, attributed to architecture erosion during ap-
plication engineering and improper implementation of mechanisms for product
derivation. The product line at Testo AG was evaluated in [45]. Results indicated
that PLE allows organizations to develop more complex products while main-
taining the costs and development lead time. A study on the use of MBSE within
product lines from the rail transportation industry is presented in [39]. They re-
port on first steps towards introducing MBSE into PLE by creating a product line
of a metro train. The product line includes development artifacts from which
all possible alternatives can be derived. The Orthogonal Variability Modeling
language [63] was used to define problem space variability. They estimate cost
savings on fixed engineering costs in the specification phase for up to 50%.
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2.5. Product Line Engineering in the Industry 21

Moreover, a number of industrial experience reports can be found in the book
by Linden et al. [78]. The book summarizes the effects of PLE on business,
architecture, process and organizational aspects. It also includes the results of
applying PLE in the combustion engine domain at Bosch [74, 76], reporting that
a clear understanding of the process prior to the introduction of PLE was an
important success factor. Addressing the process part at Volvo CE is also a large
part of the research work performed in this thesis.

A systematic mapping study on the adoption of PLE in industrial practice
can be found in [11]. The authors describe several adoption approaches based on
the current literature and compile a summary of adoption barriers that should be
considered in practice. The experience report from Danfoss [37] is another long-
term evaluation report of PLE, reporting on the complete PLE experience from
planning to technical execution and evaluation. In the industrial report from [59],
it was noted that most of the challenges when adopting product lines and variabil-
ity modeling in an automotive context arise from the lack of modeling guidelines
and limited scalability of current approaches.
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Chapter 3

Research Overview

This chapter provides the research problem formulation through a description of
the industrial context in which the work for the thesis was performed. Further-
more, the research goals which have driven the work are described. The reason-
ing for the use of research goals was to allow flexibility in the research studies.
The research followed an exploratory process, meaning that the results of the one
research goal prompted the definition of subsequent research goals.

3.1 Research Goals

The overall goal of this thesis, which we aim to accomplish is stated as follows:

Thesis Goal: Apply, facilitate and evaluate model-based product line engi-
neering with SysML in an industrial environment.

The main motivation for the migration from a traditional, clone-and-own-
based, reuse and development approach towards a model-based PLE develop-
ment approach was, firstly, to manage complexity with graphical models and
secondly, to improve upon the currently inefficient reuse practices within the use
case provider.

As it is with any complex problem, there is rarely a silver bullet that can solve
all of the problems’ aspects. Therefore, we approach the variability management
in MBSE challenge carefully by, firstly, describing the challenge related to vari-
ability in more detail and evaluating how currently existing tool support at Volvo
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CE can cope with the challenge.

Research Goal 1: Identify challenges when overloaded variability models
are used to manage variants in existing industrial systems.

This goal has driven research that explored how the annotative modeling ap-
proach with over-specified (also known as 150%) models can be used to describe
variability in SysML diagrams of already implemented systems. The intent was
to explore potential benefits as well as issues and challenges, which might arise
when such an approach is applied in the described industrial context.

Research Goal 2: Identify reuse-related challenges in a "clone-and-own"
based development process, and assess the effects of model-based product line
engineering on the identified challenges.

The second goal expands the scope of the first research goal. over-specified
models significantly increase complexity of models, even when simple systems
are represented. This research goal has driven research that explored the feasi-
bility of applying annotative modeling in other phases of the development cycle,
from requirement engineering to testing.

Research Goal 3: Define and develop an extensible toolchain for model-
based product line engineering that allows integration of non-model artifacts
with SysML models and supports consistency checking between variability mod-
els and SysML implementation models.

The third research goal has two parts. Firstly, it states the need for a model-
based PLE tool that allows integration of non-model elements to the product line.
Secondly, it emphasizes the fact that it is necessary to define a method for main-
taining the consistency between variability models in the problem domain and
system models in the solution domain.

3.2 Research Process

Initially in this thesis, the research was primarily based on qualitative research
methods [41], i.e. research methods which help us understand and describe the
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3.2. Research Process 25

Figure 3.1: Illustration of the research process for this thesis

characteristics and concepts applied during the development of engine systems at
Volvo CE.

The two case studies (papers A and C) were aimed at understanding the reuse
phenomena in industrial settings by performing empirical exploratory case stud-
ies and generating research problems and research questions in an inductive man-
ner. Through observation and identification of patterns, we have tried to reason
about the reuse phenomena, derive conclusions and define further research ques-
tions. These studies were following the yellow-green colored loop in Figure 2.1
and were performed by following guidelines from Runeson and Höst [68]. As
the case organization was already known beforehand, the unit of analysis was
defined based on case organizations’ initial problem formulation.

• The first step in both case studies (A and C) was to formulate the initial
problem that was intended to be evaluated at Volvo CE. Based on the prob-
lem formulation, a suitable unit of analysis was defined.

• After the initial problem formulation, a review of the state of the art was
carried out in step 2 of Figure 3.1.

• In step 3, based on the identified research in the state of the art, we have
refined the problem formulation and defined research goals.

• The next point (step 4-a) was to identify the state of practice that is cur-
rently present in the organization under analysis.
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• Then in step 5-a, the state-of-the-art approaches were evaluated in the in-
dustrial settings and compared to the current state of practice.

• Lessons learned were generated and general challenges were pointed out
in step 6-a.

• In the end, in step 7-a, the studies were further reviewed by the industrial
partner and actions for further research were identified.

On the other hand, in studies B and D, the focus was on the implementation
of solutions for identified challenges from papers A and C. These have followed
the yellow-blue colored loop in Figure 2.1.

• After reviewing the lessons learned an challenges when applying state-of-
the-art tools, together with the industrial partner, a new problem formula-
tion was defined in step 1. The problem formulation was intended to drive
research towards addressing the previously identified challenges.

• Again, a state-of-the-art analysis on that particular problem was performed
in step 2.

• Further, in step 3, the problem formulation was refined and more specific
research goals were defined.

• Based on the state-of-the-art review results and research goals, a potential
solution was proposed in step 4-b.

• Then, the solution was developed, as illustrated with step 5-b. After the
development, the solution was evaluated on a small-scale study in step 6-b.

• In the end, in step 7-c, the solution was reviewed by the industrial partners
and room for further improvement was identified.

The yellow-blue loop was an iterative loop in which one solution proposal could
be refined a number of times, with the extension of the study’s scope until the
industrial partner needs were satisfied.
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Chapter 4

Thesis Contribution

This chapter gives an overview of the contributions which are a direct result of
research work driven by the previously described research goals. This chapter
is divided into two sections. Figure 4.1 illustrates the relations between the in-
dividual research goals, publications and how these resulted in the contributions
presented in this chapter.

Figure 4.1: Relation between research goals, papers and contributions.

Illustrated on the left side of Figure 4.1, the first part of this chapter describes
two contributions about the state-of-practice in model-based PLE as well as feed-
back from an industrial perspective on the challenges and benefits of its appli-
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cation in an industrial pilot study. We have initially defined RG1, and the work
toward it resulted in Paper A. These results are also the basis for Contribution 1:
an evaluation of the annotative approach for variability management in SysML
models of hardware and software in an industrial case study. The decision to
go with the annotation-based approach is driven by the fact that this approach
is commonly implemented in commercial SysML modeling tools which support
variability modeling [85, 43, 30].

The results of Paper A inspired RG2, which in turn resulted in Paper C. The
results of Paper C were the basis for Contribution 2, but also contributed towards
C1. In Contribution 2, we describe the challenges of the clone-and-own practice
throughout the complete development process of Volvo CE. Then, we perform
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Figure 4.2: Urea Dosing System Functional Architecture

the amount of Nitrogen Oxides (NOx) in the exhaust gasses of the diesel engine.
The functional architecture of the UDS is shown in Figure 4.2. It is injecting
a special fluid (urea) into the exhaust stream and initiating a chemical reaction
that reduces harmful emissions. Urea is stored in a tank within the UDS until a
demand from the engine system is received. In addition to storage and injection,
the UDS has a defrost functionality, which ensures that the system can operate in
cold conditions.

The UDS system has been modeled with all variable features and combined
into a single overloaded SysML model. The model was annotated with Orthog-
onal Variability Modeling constructs, which maps variability from the variability
diagram to the corresponding system artifacts. A successful derivation of indi-
vidual UDS variants from the overloaded mode has been demonstrated, however,
with some challenges:

• Complexity. The process of creating the overloaded models was complex
and prone to errors. The system, which was modeled for Contribution 1,
was rather small with 11 features in total. When combined into a single
model, it was difficult to manually analyse, especially for engineers that do
not have experience with annotative modeling. The added complexity of
annotative modeling makes scalability a great challenge.

• Scalability. The added complexity of models, and partially, the scalabil-
ity issues can be addressed through introducing several layers of abstrac-
tions during the design process of models. It is necessary to organise the
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model in a way, which will reduce the scattering of elements belonging
to the same feature. Although cross-cutting feature elements are explic-
itly exposed with annotations, they tend to increase complexity of models.
The possibility to separate concerns mainly depends on the system itself,
whether it can be separated into cohesive components or not. In cases
where the system architecture requires a large number of cross-cutting fea-
tures, it might be more feasible to redesign the architecture rather than
dealing with many such features afterwards, as it increases complexity of
models significantly. With many cross-cutting features, it is also difficult
to understand feature dependencies.

These challenges were mainly observed when modeling the physical archi-
tecture of the UDS. Modeling all hardware components within a single model and
having multiple parts connect to the same interface in different ways significantly
increases the perceived complexity of the system, i.e. the model becomes more
complex than what the actual system is. However, the benefit of such models is
that they facilitated the analysis of feature dependencies. By having all features
in a single SysML model, with all relations towards other elements, explicitly
modeled, it is possible to (manually) trace feature-related model elements to all
parts (and features) with which a certain feature interacts.

In contrast to the physical architecture, modeling the software in this ap-
proach did not introduce additional complexity. The reason is that the software
was already designed in an over-specified fashion. All variants of the UDS were
based on the same software, which was developed in an approach where vari-
ous parts software platform could be enabled or disabled by setting necessary
parameters. That is also the basic idea behind annotative product lines, features
are enabled or disabled based on whether feature presence conditions evaluate to
true or false.

The necessity of a development process that takes variability into account
at early stages of development was brought to light by the lessons learned from
Research Goal 1. It became obvious that configuration management of the im-
plementation artifacts alone is not enough and that variability must be taken into
account starting right from the project planning and customer requirements. This
means that management of variability should be taken into account in a system-
atic fashion across different phases of the system development process.
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Figure 4.3: Current development process at the Engine Controls department at
Volvo CE

Contribution 2

In the second contribution, we strive to, firstly, document the current develop-
ment process of the Engine Controls department at Volvo CE and secondly, to
propose a model-based PLE approach based on the current development process.
The contribution is a systematic definition of a model-driven PLE process at the
Engine Controls department of Volvo CE.

The current development process is illustrated in Figure 4.3. Based on an
interview study through which the process was mapped, several reuse-related
challenges were identified.

During requirements engineering in the first phase of the process, the major
challenges were attributed to the fact that expert knowledge was not always read-
ily accessible during requirement elicitation. This lead to issues like requests for
obsolete and difficult-to-maintain features. Dependencies between various vari-
able parts of the system are not explicitly documented, leading to requirement
change requests in later phases of the process, inducing delays and requiring re-
work of some aspects of the system. It was noted that there was a large amount
of duplicate documents for each system variant individually.

During the system design, challenges were related to the fact that specifica-
tions are based on natural language where graphical illustrations have no unified
format. It was reported that reuse of system components required extensive expe-
rience in the domain, mainly due to outdated and ambiguous specifications and
lack of traceability between requirements and system design. Improper reuse
of one system part often resulted in unexpected behavior in other aspects of the
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Figure 4.4: Proposed product line engineering process

system, requiring significant testing efforts to isolate the source of errors. De-
pendencies between variable system features were not explicitly documented in
the current development process, resulting in repetitive bottom-up analysis of the
system in order to understand dependencies.

Software calibration and configuration (Phases 5 and 6 in Figure 4.3) are
time consuming tasks as engine system have more than ten thousand software
parameters. Incorrect performance goals (due to lacking requirement elicitation)
can result in a need to re-calibrate, inquiring a significant cost as physical engine
calibration cells are a scarce resource. The source of such issues is often the large
variability of requirements for performance parameters. Software calibration and
configuration maps are manually cloned from previous projects, however, it is
not always obvious from which variant these should be cloned.

Challenges regarding testing are mainly related to the fact that testing often
focuses on aspects of the system, which did not change compared to the variant
from which the system was cloned. This issue comes from the fact that feature
dependencies are not explicitly documented, resulting in the need to test every
functionality even if it did not change.

In the second part of Contribution 2, we have proposed an adaptation of the
current development process towards a PLE-based process, as illustrated in 4.4.
Further, we discuss the implications model-based product line engineering (MB-
PLE) may have on the identified challenges as well as system artifacts.

Requirement elicitation should start with the variability diagram as illustrated
in Figure 4.4. The variability diagram describes the variability of the complete
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system and traces to all phases of the development process, from requirements to
testing and test procedures. It has been proven as a useful tool for managers, as
it provides them with an overview of the dependencies and implications between
features without requiring extensive domain knowledge.

MBSE can help with issues such as outdated, ambiguous, incomplete infor-
mation and traceability, especially during the system design phase [75]. However,
variability still needs to be taken into account by tracing the variation points to all
relevant system artifacts. Constraints and dependencies in the variability model
from the problem domain restrict the system such that incompatible components
can never appear in any variant of the system. This correctness is ensured by the
mapping from the problem domain variability model to the system model in the
solution domain. The mapping, however, is performed manually and must also
be maintained manually.

PLE has also shown a positive effect during the testing phase. Usually, test
engineers need support from system engineers to understand the expected out-
come of test cases, a process that can sometimes take a significant amount of
time. With PLE however, the test procedures can be automatically derived based
on the features, which are present in the system variant.

After comparing the existing document-based development process to the
model-based PLE process, it was noted that although it might be possible to rep-
resent the necessary system information in models, it would have been useful if
flexibility was provided that allows to include system artifacts, which are main-
tained by other means, such as calibration parameters files or documents that are
developed by other departments, which do not follow the MBSE approach.

Moreover, it was noted that the consistency between the variability model and
SysML model annotated with variability had to be maintained manually. To ad-
dress these needs, we had defined research goal 3, which was addressed through
contributions 3 and 4.

4.2 Modelling and Consistency Checking of Product

Line Models

It was noted in both industrial case studies (Papers A and C) that over-specified
models can introduce additional constraints on features in the product line, e.g.
due to well-formedness requirements for all variants of the product line. How-
ever, existing modeling tools that support variability modeling and SysML did
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not provide us with the ability to extend their functionality, e.g. to add consis-
tency checking. Moreover, the SysML modeling tools do not provide the ability
to integrate non-model feature artifacts into the product line. We firstly started by
addressing the latter requirement in Contribution 3. The former requirement has
been addressed through Contribution 4.

Contribution 3

We have extended an existing SysML modeling tool to support variability mod-
eling and integrate it with state-of-the art variability management tools in order
to create a toolchain that allows us to extend it with additional functionality such
as consistency checking, but also supports the integration of variable non-model-
based development artifacts (e.g. code, documents etc.). This is done by us-
ing the pure::variants1 tool to manage variability in the problem domain and the
Modelio2 modeling tool to model the system in the solution domain. In order to
integrate the two tools, the Variability Exchange Language (VEL) was used. It
allows us to exchange variability information between the problem and solution
domain. The toolchain has been applied in industrial settings and an evaluation
according to the quality criteria, [78], for product lines was performed. The main
aspects of this contribution are:

• The definition of mechanisms for how an 100% model should be instan-
tiated from an 150% model based on the feature selection. Compared to
other approaches ([28, 50]), we have defined that during the derivation
process, removing a block removes all its properties, associations, aggre-
gations, compositions, generalizations and dependency links connected to
the block. This approach ensures well-formedness, but comes with the
drawback that there might be a chance that model variants can be derived
with missing features. This issue is later addressed in Contribution 4.

• The evaluation according to the family evaluation framework for prod-
uct lines [6]. Regarding the pre-planning effort, our approach enables the
product line to be annotated as system models are evolving, with little pre-
planning. For traceability, a feature can be mapped to any number of model
elements that implement the given feature. Considering the separation of

1https://www.pure-systems.com/
2https://www.modelio.org/
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Figure 4.5: Left: Problem domain, Right: Solution domain

concerns, annotating model elements with variability information explic-
itly exposes cross-cutting features, thus facilitates separation of concerns
even when there exist cross-cutting features. Encapsulated model elements
of any feature can be annotated with variability, thus enabling information
hiding with regards to features. When looking at granularity, our approach
allows annotation on all model element types and properties of such ele-
ments, as well as annotation on the relationship links between elements.
And finally, the toolchain provides good uniformity as all product artifacts
are SysML model elements and are annotated in the same fashion.

By extending the system modeling tool with variability mechanisms in
Contribution 3, we have also created a setup, which we can use to define and
test methodologies for consistency checking between the variability model and
SysML model, which was done in the last contribution.

Contribution 4

As variability models constrain how the implementation (SysML) models can
be configured, it is crucial for the models to be consistent. Features with con-
straints in the problem domain (e.g. in a feature model) might implicitly have
additional conflicting constraints resulting from the over-specified product line
model. These issues are not always obvious and are difficult to identify manu-
ally.
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Figure 4.6: Left: V1, Middle: V2, Right: V3

Consider the example in Figure 4.5. The feature model (left) describes that
the Car has two mutually exclusive features: Standard and Comfort. The sys-
tem model (right) describes the implementation of the system. The Car contains
Standard Seats (which are mapped to the Standard feature) and the Electronic Ad-
justment (mapped to feature Comfort) is specified as part of the Standard Seats.
There are three possible variants of the system, and each is well-formed when
modeled in the toolchain from Contribution 3. The variants are listed below and
also illustrated in Figure 4.6:

V1 = {Car}
V2 = {Car ,Standard}
V3 = {Car ,Comfort}

Standard and Comfort are mutually exclusive, yet, elements to which
these features are mapped, Standard Seats and Electronic Adjustment, are
related through a SysML composition relation. The Electronic Adjustment
is specified as part of Standard Seats. Therefore, the variant V3, although a
well-formed model and a valid combination of features is suspicious from a
system perspective, it does not make sense to have electronic adjustment of
seats if the seats do not even exist in the system. Due to the constraint from
the problem domain, the composition relation between Standard Seats and
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Electronic Adjustment (shown in Figure 4.5) can never exist in any variant as
illustrated in Figure 4.6.

Although obvious in this small example, considerable effort is necessary to
manually detect such issues in larger systems.

In Contribution 4, we define an approach to identify inconsistencies between
the variability model and feature relations in the over-specified system model.
We firstly restrict the use of certain SysML relations for annotative modeling
with the aim to avoid ambiguous model constructs. Secondly, we extract fea-
ture constraints from the over-specified system model and analyze them together
with feature constraints from the variability model with the goal of identifying
variability-related inconsistencies.

The rules for use of SysML in annotative modeling are as follows (quoted
from Paper D):

• Each relation in the over-specified model must be able to exist in at least
one instance of the product line model.

• If a block is a composite part of (owned by) at least one other block, then
it requires the presence of exactly one owning block in each product-family
configuration (variant) in which it exists itself.

• If a block is a subtype of at least one other supertype, then it requires the
presence of exactly one supertype in each of the product-family configura-
tions in which it exists itself.

• A feature-annotated block property requires the presence of the block,
which owns the property in all product-family configurations in which the
property exists itself.

• A feature-annotated block property requires the presence of the data type
of that property.

• A feature-annotated operation within a block requires the presence of the
block which owns the operation in all product-family configurations in
which the operation exists itself.

• If a client block A has a dependency to supplier block B, then it requires
the presence of the supplier block in all the product-family configurations
in which the client exists.
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Based on these rules, propositional logic constraints are extracted from the
system model (model on the right side of Figure 4.5). These are then combined
with constraints from the variability model (left side of Figure 4.5). By combin-
ing the two sets of constraints, we can analyse the system to detect:

• Dead features – features which can never exist in any variant of the product
line

• False optional features – features, which are specified as optional in the
variability model, but must actually be present in all variants of the product
line.

• Dead relations – relations between model entities, which can never exist
in any variant of the product line (an example is the composition relation
between Standard Seats and Electronic Adjustment from Figure 4.5).

Promising results were obtained on an prototype evaluation on the product
line models from Papers A and C. During the analysis, we have detected several
inconsistencies on models that have gone through several iterations and which
were considered as complete by the engineers within the organization that pro-
vided the use cases.

Contribution 4 also concludes the research work in this Licentiate thesis.
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Chapter 5

Summary

5.1 Discussion

PLE makes the greatest promises in terms of a reduction in development efforts
while increasing product quality [10, 78]. Although these studies describe suc-
cess stories with PLE, all of them report that there is no silver bullet. In order to
succeed, the processes and methods must be tailored to suit the specific needs of
the organization that is adopting the practices.

In [78], nine large organizations report on their experiences on the adoption
of PLE. Yet, each of them described a slightly different approach of doing it. For
example, looking only at the highest level of documenting variability, two orga-
nizations reported the use of standard feature models or a very similar concept,
while others developed their custom approaches for variability modeling. This
was also the case during the research in Papers A, B and C. We looked into two
common approaches, feature modeling and OVM. Although they are essentially
very similar, it was noted that both had their benefits in different situations. For
example, OVM was seen as more useful when adding new variation points espe-
cially when getting into fine-grained variation points, while feature models were
seen as a better approach for management due to the overview of the complete
variability space, which it provides.

Going further into the product line implementation, in Papers A and C, we
have used an annotative approach to model a subsystem of the engine. Initially,
the annotative approach worked well for the software part of the system. The
reason was that the software already had been developed for quite some time in
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40 Chapter 5. Summary

an approach where various parts of the software platform could be enabled or
disabled by setting necessary parameters. That is also the basic idea behind an-
notative product lines: features are enabled or disabled based on whether feature
presence conditions evaluate to true or false. However, from a hardware perspec-
tive, the annotative approach causes the models to become quite complex even
though a small number of features was modeled. A composition-based approach
could have worked better as variants of engine systems were built on a platform
on which parts were either replaced with different ones or completely new parts
were added. The interfaces between physical parts and the engine platform did
not change for the majority of feature variations. Thus, instead of an annotative
approach, modeling each feature separately from the platform would allow the
system model to be composed based on selected features. This compositional
type of approach would avoid the issue of having multiple features connect to
the same interfaces in a single model, as well as avoid the need of consistently
removing features which were selected from the model.

Moreover, the need for automated analysis of annotated product line models
was identified in Papers A and C and addressed in Paper D. We have developed
a consistency checker that ensures well-formedness of variants of the product
line model, but also ensures that the product line model itself follows our SysML
modeling rules as described in Section 4.2. Although the consistency checker has
proven to be useful, it can still detect only syntax errors. To this end, we plan to
extend our work and allow users to create custom rules that can be used to check
different properties on the complete product line.

From a tooling perspective, the most comprehensive commercial MBSE tool
is the Integrity Modeler1, which supports the UML and SysML standards as well
as OVM as a variability modeling language. Other specialized tool solutions for
variability modeling are BigLevers Gears2, and pure::variants3. These variability
modeling tools enable variant configuration management and can be connected
to other modeling tools through means of plugins. Other academic tools include
FeatureIDE4 and the BVR tool5, tools for configuration management and feature
modeling. They can be used, for example, with Eclipse Modeling Framework6

1Integrity Modeler by PTC - https://www.ptc.com
2BigLever Software Gears - https://biglever.com/
3pure::variants - https://www.pure-systems.com/
4FeatureIDE, https://featureide.github.io/
5BVR tool https://github.com/SINTEF-9012/bvr
6Eclipse Modeling Framework, https://www.eclipse.org/modeling/emf/
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5.2. Conclusion 41

compatible models to enable PLE. A comprehensive overview of variability man-
agement tools was written by Pereira et al. and can be found in [62].

Nevertheless, technical solutions are only a part of the actual problem solu-
tion. The questions of solution ownership, education, training, etc., sometimes
are more important than the actual technical solutions such as the ones proposed
in this thesis. Organizational change is not only a technical task. After all, it is a
cultural shift with humans in the center of change.

5.2 Conclusion

The research had started with a more general objective: to apply model-based
PLE in an industrial environment. Thus, the research was initially based on an
industrial use case where we performed pilot studies with the aim to understand
how model-based PLE can help with configuration management in hardware and
software of already existing variable systems (Contribution 1, Contribution 2).

The main point was that PLE increased the complexity of system models
significantly when variability in physical components was considered, while it
enabled more efficient variability management in software. Then, the scope of the
industrial case study was expanded to the complete development process at Volvo
CE Engine Controls. It was shown that model-based PLE can be particularly
useful during requirement engineering as it makes the system variability the main
factor for decision making. Moreover, it was demonstrated to be of great benefit
during testing because it allowed for automated test procedure derivation.

Based on results and feedback from the industrial case studies, we contin-
ued the work on developing an open source toolchain that allows integration of
non-model elements into the model-based product line. Compared to currently
existing approaches, we have changed the mechanism for handling relations and
model elements when deriving individual variants from an over-specified model
(Contribution 3).

Furthermore, we have defined modeling rules for creating over-specified
models in order to avoid ambiguities during the derivation process. Then, based
on these rules, we have developed a consistency checking approach, which
ensures that all system variants will be well-formed and that there exist no
anomalies in the product line such as dead features, false optional features and
dead relations between model elements (Contribution 4).
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42 Chapter 5. Summary

5.3 Future Work

In the close future, the plan is to extend the consistency checking approach be-
yond block definition diagrams, to ensure well-formedness for over-specified
models across multiple model views. Further, we want to define modeling guide-
lines and a modeling methodology for over-specified SysML product lines.

As mentioned in the background section, there exist several methods for mod-
eling product lines, the main three being: annotation-based, composition-based
and delta-based product lines. An interesting study would be to perform an in-
dustrial case study and compare modeling approaches belonging to these three
groups and to try to assess their benefits and drawbacks for representing various
system aspects, e.g. requirements, system (SW and HW) design, tests, etc.

Another potential direction is the exploration of automated test generation
from over-specified product line models. Model-based testing has been exten-
sively studied in the literature ([73, 53, 34, 21, 32]) as well as product line test-
ing ([31, 47, 2]). Since over-specified product line models implicitly describe
all variants within a single model, the number of generated test cases can be
very large. Although there is research on model-based testing of product lines
([61, 49, 66, 60]), it would be interesting to consider if the extracted constraints
as described in Contribution 4 can be utilized for test prioritization or reduction
of the generated test sets, etc.
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