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The contemporary processors are unable to meet the increasing data-intensive and computation-demanding
requirements in autonomous vehicle software applications. Recently, the new Heterogeneous System Archi-
tecture (HSA) has emerged as a promising solution to meet these requirements. The HSA reduces the latency
of data exchange between the compute units and cache-coherent shared memory, which is not supported
by the non-HSA compliant heterogeneous platforms with acceleration support. The main goal of the paper
is to investigate the performance gain by the HSA and conduct a comparative evaluation of the HSA and
non-HSA compliant heterogeneous platforms. The paper aims at evaluating these platforms by using two
computation-intensive software functions in autonomous vehicles, namely the object detection and vehicle
movement. In order to achieve this goal, the CUDA-accelerated source code of the functions is ported from
a non-HSA compliant heterogeneous platform to the HSA platform. In this regard, the paper presents the
architecture of a proof-of-concept prototype and provides evaluation using the prototype.
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1 INTRODUCTION
There is a huge interest in developing autonomous vehicles in the construction equipment vehicle
industry. Such a vehicle is capable of sensing its environment and navigating as well as performing
the construction operations (e.g., excavating, digging, crushing, paving, loading, moving and
identifying objects) without human operators. These vehicles are designed to handle unexpected
situations and failures without posing any hazards to people and other objects and at the same time
meet the demands on productivity. Navigation, object detection and obstacle avoidance are some
of the key functions that enable these operations. The algorithms implementing these functions
provide a support for localizing and predicting bounding boxes for every perceived or targeted
object. These vehicles include many computation-demanding functions that require data-intensive
computations [2]. Making full use of sensing data improves the quality of service in these vehicles.
Heterogeneous processors, such as the Heterogeneous System Architecture (HSA) [8], provide
massive computation power to execute these data-intensive functions. HSA is a new computer
architecture standard/specification to handle heterogeneous processors including CPU, multi-
cores, Graphical Processing Unit (GPU) and others on the same board with improvements such as
cache-coherent shared memory [19].

1.1 Problem Statement and Paper Contribution
The classical computation platforms (single-core or even multi-core processors) are unable to
provide the high levels of computational power required by the data- and computation-intensive
functions in autonomous construction equipment vehicles. The HSA is an emerging architecture
that provides a promising solution to address these requirements.

The aim of the HSA is to ease the development of heterogeneous programming which is compli-
cated in traditional non-HSA compliant heterogeneous platforms. A notable feature of the HSA
is the zero memory copy, which allows reduced latency for data exchange between the compute
units and cache-coherent shared memory [19]. In comparison to the HSA, the non-HSA compliant
heterogeneous platforms lower the latency for the data exchange by using the traditional pipeline
techniques. However, these techniques incur an additional delay due to copying of data between
the compute units and memories, which is avoided by the zero memory copy feature in the HSA.
Hence, the HSA is expected to provide better performance in terms of execution times as compared
to the non-HSA compliant heterogeneous platforms. However, to the best of our knowledge, there
is no existing work that provides a comprehensive comparative evaluation between the HSA and
non-HSA compliant heterogeneous platforms that implement various acceleration techniques (e.g.,
pipelining). Within this context, we take the first step to evaluate these platforms.
The main goal of the work presented in this paper is to investigate the performance gain that

can be achieved by running computation-intensive software applications on the HSA platform. For
this purpose, we conduct a comprehensive comparative evaluation between the HSA and non-HSA
compliant heterogeneous platforms (implementing various acceleration techniques).

A proof of concept is provided by migrating and executing some of the data- and computation-
intensive functions of an existing autonomous vehicle application from legacy platforms (both
multi-core and non-HSA compliant) to an HSA-compliant platform. In particular, this requires
porting a CUDA-based application to the HSA Radeon Open Compute (ROCm) platform. The
functions in focus are vehicle movement and object detection. The functions are based on a
real-time object detection system named You Only Look Once (YOLO) [15], which implements a
convolutional neural network (CNN) that analyses visual imagery in order to detect the objects.
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1.2 Paper Outline
The rest of the paper is organized as follows. Section 2 introduces related work. Section 3 discusses
proposed migration approach for the autonomous vehicle functions to the HSA platform. The
implementation of a prototype is presented in Section 4. The evaluation results are presented in
Section 5. Finally, conclusions are drawn in Section 6.

2 RELATEDWORK
Power et al. [13] use the HSA in a database environment. They advocate that the execution
performance can be increased by migrating parallel software to an HSA platform. Mukherjee et
al. [9] create both micro benchmarks and test applications to compare the execution performance
of OpenCL 1.2, OpenCL 2.0 and HSA 1.0. They show a significant improvement in the performance
of the applications by using the HSA platform. Bao et al. [1] implement a framework to accelerate
the classification and training processes of an arbitrary CNN. They show that the computation
performance can be increased 4-10 folds by using the HSA as compared to using the CPU.

CUDA has several limitations. One major limitation is that it is confined to one specific platform,
namelyNVIDIA. All CUDA applications that implement DeepNeural Network (DNN) are required to
use the proprietary cuDNN library which restricts their portability to other platforms. To overcome
such constraints, it is necessary to have a platform-independent open standard programming model
which provides more alternatives for hardware and development tools. In this regard, the HIP
tool-set1 is used to port the CUDA-based application to the HSA in the CAFFE framework [16]. The
ported code gives better performance on AMD’s ROCm platform with the MIOpen2 library than
on the CUDA platform. The performance of different programming frameworks including OpenCL,
HC++ and HIP on both an integrated Accelerated Processing Unit (APU) and a discrete GPU is
evaluated in [17, 18, 20]. The results demonstrate that with an identical kernel implementation
on all frameworks, OpenCL introduced additional runtime overhead on AMD’s ROCm platform.
On the other hand, HIP shows better performance on both AMD and NVIDIA. In this paper, we
employ the HIP tool-set for porting the autonomous vehicle application to the HSA.

3 PROPOSED MIGRATION APPROACH
This section presents the proposed approach to port the autonomous vehicle functions to the HSA
platform. Moreover, the section presents a discussion about the development of a CNN on the
ROCm Platform.

3.1 Application Porting to the HSA Platform
The system architecture considered in this paper is illustrated in Figure 1. The object detection
functionality in the existing vehicle application utilizes the Darknet - a neural network frame-
work [14]. The Darknet utilizes the YOLO neural network for object classification and provides
acceleration with CUDA. Since CUDA only complies with Nvidia GPUs (a reference platform), the
source code needs to be migrated ensuring compatibility with the target platform - an AMD A10
APU (a target platform). The first step is to set up the system by installing Ubuntu 16.04 and AMD’s
ROCm3 1.7 platform on top of it. The migration of the application from the existing platform is
performed using the HIP tool set that comes with the ROCm platform. The HIP tool automatically
translates the CUDA-based code (.cu-files) to portable C++ code, where all CUDA-function calls are

1https://gpuopen.com/tag/hip/
2https://gpuopen.com/compute-product/miopen/
3https://github.com/RadeonOpenCompute/ROCm
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replaced by the HIP-function calls. This method accelerates the porting process since the developer
does not need to manually change the CUDA code.

Fig. 1. System architecture.

There are several challenges involved in “hipifying" the CUDA code in the autonomous vehicle
applications. For instance, the YOLO source code utilizes CUDA’s own DNN library, cuDNN. Neither
cuDNN nor the parts of the YOLO source code that use this library are hipifiable. This holds true
despite the fact that there exists an AMD equivalent of cuDNN, called MIOpen. These libraries are
similar in a number of ways, e.g., both of them include primitives for deep neural networks and
have similar function calls (e.g., cudnnSetTensor4dDescriptor and miopenSet4dTensorDescriptor).
Nevertheless, the two libraries do not have a one-to-one equivalence and therefore, it is not

possible to merely swap the cuDNN and MIOpen function calls, i.e. to hipify them. Without the
ability to hipify the aforementioned parts of the YOLO source code, the application needs to be
manually ported. This can be achieved by manually replacing the functionality of cuDNN with the
functionality of MIOpen (i.e., the HIP implementation of MIOpen).

3.2 Development of a CNN on the ROCm Platform
Exploring the state of the art revealed that there are very few HSA-compliant deep learning
frameworks. Some efforts in this context include OpenCL-Caffe [7], clCaffe [3], HIP-Caffe [16]
and HC-Caffe [10], HcTorch [11], Cltorch [12] and hipTensorflow [5]. However, none of these
frameworks are mature enough to be used in the context of this work. In order to overcome this
limitation we create an MIOpen-based implementation of a CNN that could serve as a classifier on
the HSA-compliant AMD platforms. This is achieved by leveraging the MIOpen API. A classifier
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CNN is set up based on the method in [6] together with cuDNN. This method involves calling
MIOpen functions in place of cuDNN functions for neural network primitives, andOpenCL functions
in place of the CUDA functions for memory allocation. The execution time of the CUDA sample
code is measured on the CUDA platform. The measured execution time is then compared to the
execution time of the MIOpen code on the ROCm platform. The DNN toolset in MATLAB is used
to design the CNN architecture. The CNN is trained and the weighted values are saved for reuse in
the MIOpen implementation discussed in the next section.

Fig. 2. Prototype architecture: the green, red and yellow fields show the input, convolution and activation
layers respectively.

4 IMPLEMENTATION
This section presents the implementation of a prototype to demonstrate the CNN. The high-level
functions in MATLAB call the low-level functions from other frameworks, such as MIOpen and
CuDNN, for memory management and creation of various types of CNN layers.

4.1 The MIOpen Implementation
The prototype architecture is a three-layer architecture as shown in Figure 2. The layers include: (i)
Input layer, (ii) Convolution layer, and (iii) Activation layer.

4.1.1 Input Layer. This layer includes an input image and an input tensor. The input image is
stored as a gray-scale OpenCV-matrix. The input tensor is defined to have two dimensions which
are appropriate for gray-scale images like the ones used in the work presented in this paper.

4.1.2 Convolution Layer. This layer applies a filter - called kernel - that convolves around the input
image and outputs a feature map. This layer is set up by defining a kernel tensor, kernel weights, the
method of convolution and an output tensor. The kernel tensor that convolves around the input
image is defined to be a two-dimensional filter since the dimensions of the kernel have to match
with the dimensions of the input image. The values for the kernel weights describe a three-by-three
edge detector filter as shown below.
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𝑘𝑒𝑟𝑛𝑒𝑙_𝑤𝑒𝑖𝑔ℎ𝑡𝑠 =

1 1 1
1 −8 1
1 1 1


The stride and padding of this filter are both defined as 1, for simplicity. The cross-correlation
convolution method is applied. The output of this layer, i.e., the feature map is stored in the output
tensor.

4.1.3 Activation Layer. The activation layer operates on the output provided by the convolution
layer and uses the softRELU function 𝑙𝑜𝑔(1 + 𝑒𝑥 ) to calculate the result.

4.2 MIOpen with OpenCL support
MIOpen supports two programming models, HIP and OpenCL. When using MIOpen with OpenCL,
memory allocation has to be done with the help of the OpenCL APIs. Allocating memory for the
entire size of the input image, the kernel, the output image, as well as the convolution workspace,
is necessary. This is done by creating and initializing the necessary command queue and OpenCL
context. After that, the OpenCL memory buffers are created on the device. This operation requires
correct size of the buffers in bytes. Therefore, these values are calculated in prior. The content of
each object is copied from the host memory to their respective device buffers.

4.3 Training of the CNN Architecture
MATLAB has built in neural network toolbox that provides algorithms for training and visualizing
deep neural networks. The contribution of this tool in this work is two fold. First, it enables the rapid
design process and quick accuracy-evaluation of various CNN architectures. Second, it facilitates
the training of the network, through which the appropriate weight values can be obtained. The
training dataset and the final architecture with the best performance is discussed below.

4.3.1 Training Dataset. There are different ways of training a CNN for image analysis. First,
training the model from scratch, i.e. by back propagation. Second, by applying transfer learning
that is based on the knowledge of one type of problem which can solve a similar problem. Third,
by extracting features (weights) from a pre-trained CNN for reuse in the model. We use the first
approach in the work presented in this paper and accordingly train the model from the scratch.
In this method, images from the MNIST4 handwritten digit dataset are used for both the training
and evaluation. We hand pick 600 images randomly. The images are sorted by digits 0-9 into
different folders, each folder containing 60 images. These image folders have been separated by the
splitEachLabel MATLAB function into training and test categories, containing 480 and 120 images,
respectively. Some of the digits in this dataset exhibit slight differences, which can be hard for
humans to tell apart (e.g., a 0 looks like a 6). The network is trained using the training category.
The plot in Figure 3 depicts the final validation of the accuracy and the loss value. As the loss value
approaches zero, the training process is completed.

To verify the performance of the CNN architecture, the test image category is used. Four of each
digits 0-9 in this category are distorted using Adobe Photoshop. Distortion of the test images refers
to changing the position or scaling of the image. As a result of the distortion, some digits appear at
different positions in the image and with different digit-size-to-image-size ratio.

4https://www.kaggle.com/scolianni/mnistasjpg

6



Supporting Autonomous Vehicle Applications on HSA ECBS 2021, May 26–27, 2021, Novi Sad, Serbia

Fig. 3. Training Progress.

4.3.2 The Network Layers. The architecture of the CNN is illustrated in Figure 4. The architecture
consists of an input layer, some hidden layers and an output layer. The hidden layers consist of
a convolution layer with six 5x5 filters, one activation layer using the ReLU method, and one
max-pooling layer with a pooling size of 2x2. The output layer consists of a fully connected layer
with output size 10, for the digits 0-9, a softmax layer and finally, a classification layer.

Fig. 4. Illustration of the CNN Architecture.

The convolution layer is trained with iterations of 50 epochs, by the sgdm (stochastic gradient
descent with momentum) method. The CNN receives a 28x28 gray-scale input image. Figure 5
shows 30 of the 600 test images.
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Fig. 5. Example: 30 out of the 600 test images.

5 EVALUATION
This section explains the results of the implementation by both MATLAB and MIOpen.

5.1 Experiment Setting
5.1.1 Hardware configuration. As introduced in Section 3 and presented in Figure 1, we consider a
MATLAB model for preparing the weights of the CNN architecture used at the hardware level of
abstraction. At this level, two platforms are considered: one as a target and the other as a reference.
The target platform is an Acer Aspire E15 laptop with an AMD A10-8700P APU, which employs A10
1.8GHz CPU and Radeon R6 GPU 800MHz, with 8GB RAM. The platform is able to install ROCm
software stack and supports HSA fully. The platform is able to use a machine learning library,
MIOpen, and programming models, HIP and OpenCL. On the other hand, as the reference laptop,
we consider a Lenovo P50s laptop with Nvidia’s Quadro M500M 1029MHz GPU and Intel i7-6500U
2.5GHz CPU, with 8GB RAM for the CUDA programming. The release date of these platforms is
around 2015. Both AMD A10-8700P APU and Nvidia Quadro M500M’s are fabricated on a 28nm
process. Besides, Intel’s CPU is manufactured in 14nm. Furthermore, AMD A10-8700P is the first
HSA-compliant and ROCm supported platform. Therefore, we consider that these platforms are an
appropriate representative for evaluation.

5.1.2 Experiment configuration. Two challenges are considered in this paper. First, we evaluate
how the proposed migration approach completes successful. In order to handle this evaluation,
we consider the comparison study of execution time for processing through the prepared CNN
architecture between the target and reference platforms. The second challenge is how efficiently
the prepared CNN architecture handles. We conduct experiments with non-distorted and distorted
input images.

5.2 Evaluation of the Proposed Migration Approach using MIOpen
Figure 6a illustrates the grayscale input image that is sent to the convolution layer. The result of the
input image by the filter application is depicted in Figure 6b. This output feature map is a result of
an edge detector filter as we can only see the outlines of the image. Figure 6c describes the results
after the activation layer, where the activation mode is the softRELU (𝑙𝑜𝑔(1 + 𝑒𝑥 )) method.

We consider and measure the execution time of the prepared CNN architecture on the target and
reference platforms using two different images. The first image (Figure 7) is 10x10 and the second
(Figure 8) is 706x529 pixels. The measurement shows that the first (small) image takes an average
1.20 seconds and the second (large) image takes an average 1.60 seconds after running 20 times each.
These numbers seem high for three reasons. For the first, the measurements include the execution
time of the whole application, not only the execution time of the convolution layer. Secondly,
there is a high overhead per image for running the application. In a real use case, the images are
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(a) An input image to convolution layer.

(b) A result image by the filter-application.

(c) The activation layer result.

Fig. 6. Results.
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processed in batches, rather than one-by-one. Such processing reduces the overhead. The last, the
original CUDA code on the reference platform takes approximately 0.60 seconds (20 times) on the
small image, which is twice as fast as on the target platform. Further, the reference platform has
about 1.4 times more computing capability and the version of MIOpen is still development stage. It
is important to note that this study is based on the comparison study between the original CUDA
(optimized) code on the reference platform and the non-optimized migrated code on the target
platform. In addition, the difference in CPU power on the target and reference platforms affects
the experimental result. This is reason why the effectiveness of the HSA contradicts the expected
outcomes. Moreover, we can state that we have successfully migrated the CUDA code to the target
platform, which is HSA-compliant. We confirm that the HIP version of MIOpen can accelerate
the execution time of the proposed migration approach as the latest version of HIP programming
model is fully interpretable with CUDA programming.

Fig. 7. Test image (small - 10x10 pixels).

Fig. 8. Test image (large - 706x529 pixels).

5.3 Evaluation of the Prepared CNN Architecture using MATLAB
Figure 9 describes the weight values that are obtained by training the CNN architecture using
MATLAB. The CNN architecture on MATLAB correctly categorized the test images 91% of the time
when tested on non-distorted images, which is an acceptable result. However, when tested on the
distorted category, only 50% of the images were classified correctly. Figure 10 illustrates a sample
of a non-centered, i.e. distorted digit. The distorted category result might be due to some of the
images being too small and low resolution. Another reason could be the relatively low number of
training images.

10
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Fig. 9. Matlab weights.

Fig. 10. Distorted image.

6 CONCLUSION AND FUTUREWORK
TheMIOpen library for deep learning is a relatively new framework, which has a limited footprint in
the research community. After exploring the state of the art, we found that there are no implementa-
tions except for the source code of theMIOpen Driver application that is implemented by AMD. The
software application considered in this paper implements a combination of the input, convolution
and activation layers. Currently, this implementation supports visualization of the resulting feature
maps produced by the convolution. For instance, the convolution of an edge-detector filter on the
input image produces the expected visual effect. The MATLAB framework is utilized to visualize
and demonstrate the proposed idea for the CNN architecture. To create a simple but complete
classifier CNN, only a fully connected layer - and optionally a pooling layer - are missing, which
constitutes the ongoing work. When these layers are implemented, it would be possible to do the
classification, provided that a sufficient amount of filters are supplied to the system. Such filters
could be obtained by training an identical CNN via MATLAB and reusing the trained filter weights.
Another way to obtain the necessary weights would be to implement back-propagation by the
MIOpen API. This would allow the training of the CNN.
Another ongoing work is to implement a higher-level framework - such as TensorFlow, Caffe

and Torch - by integrating the MIOpen library [4]. Such a framework would enable faster creation
and simpler customization of different deep learning architectures, as well as it would hide the
low-level GPU allocations from the user. MIOpen supports two different frameworks for GPU
acceleration: HIP and OpenCL. OpenCL has been used in this work because it is an older, thus
more mature, technology. However, the HIP framework seems quite promising, and in hindsight, it
might have been the easier way to port the CUDA code. The reason for this is that the HIP and
the CUDA APIs are very similar, unlike the OpenCL and CUDA. The reference platform achieves
twice faster performance by using 1.4 times more computing capability because the experiment
on the target platform has been handled under the limited conditions of development version
of MIOpen. Furthermore, the comparison study is performed between the original code on the
reference platform and the corresponding non-optimized code on the target platform. Therefore, it
would be an interesting future work to compare the execution time of the original CUDA code with
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that of both the OpenCL and the HIP implementations. Using the implementation of the ongoing
works, we will conduct a comparative evaluation of the original CUDA code and both the OpenCL
and HIP implementations to understand and demonstrate the advantages and disadvantages of
HSA vs. non-HSA compliant heterogeneous platforms.
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