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Abstract. Simulations are often used for training novice operators to
avoid accidents, while they are still polishing their skills. To ensure the
experience gained in the simulation be applicable in real-world scenarios,
the simulation has to be made as realistic as possible. This paper inves-
tigated how to make the lifting capacity of a virtual mobile crane behave
similarly like its real counterpart. We initially planned to use informa-
tion from the load charts, which document how the lifting capacity of a
mobile crane works, but the data in the load charts were very limited.
To mitigate this issue, we trained an artificial neural network (ANN)
using 90% of random data from two official load charts of a real mobile
crane. The trained model could predict the lifting capacity based on the
real-time states of the boom length, the load radius, and the counter-
weight of the virtual mobile crane. To evaluate the accuracy of the ANN
predictions, we conducted a real-time experiment inside the simulation,
where we compared the lifting capacity predicted by the ANN and the
remaining 10% of the data from the load charts. The results showed that
the ANN could predict the lifting capacity with small deviation rates.
The deviation rates also had no significant impact on the lifting capacity,
except when both boom length and load radius were approaching their
maximum states. Therefore, the predicted lifting capacity generated by
the ANN could be assumed to be close enough to the values in the load
charts.

Keywords: Neural network · Virtual reality · Mobile crane · Lifting
capacity · Realism

1 Introduction

Cranes are typically used for lifting and moving objects from one place to an-
other. Cranes come in different types and sizes, which range from bigger fixed-
position cranes that should be assembled first, such as tower cranes, to smaller
cranes that can be mobilized immediately, also known as ’mobile cranes’. Al-
though modern cranes are increasingly equipped with information systems that
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are designed to assist operators performing their work, operators’ knowledge
and experience still play a vital role for ensuring safe lifting operations [18].
Due to the dangerous nature of crane operations, it is common for novice oper-
ators to train using simulations [10]. Therefore, any accident could be avoided,
while novice operators are still polishing their skills. The advent of virtual real-
ity (VR) offers opportunities to provide immersive training to novice operators,
which could enhance their learning experience [26]. It is also essential that the
simulation is made as realistic as possible, thus the learning experience from the
simulation is transferable to real-world scenarios [12].

Fig. 1. The left image shows some parts of mobile cranes that are relevant to know
in this paper. The right image shows the concepts of boom length and load radius in
mobile crane operations.

In this paper, we investigated the aspect of realism with focus on the real-time
lifting capacity of a virtual mobile crane in a simulator built in the Unity game
engine3, which is a common platform for making VR applications4. Mobile cranes
were chosen as the use case, as they contributed the majority of crane-related
accidents [15]. The real-time lifting capacity refers to the maximum weight that
the crane can currently lift based on two dynamic parameters: (1) how far the
boom is currently extended (the boom length) and (2) the current distance
between the lifted load and the crane’s center (the load radius). The left image
in Figure 1 illustrates the parts of mobile cranes that are relevant to know in this
paper, while the right image in Figure 1 depicts the concepts of boom length
and load radius in mobile crane operations. The lifting capacity is decreasing
when the boom length and the load radius are increasing, and vice versa. The
lifting capacity in different states of boom length and load radius are usually
documented in a ’load chart’ provided by crane manufacturers (see [20, pp. 23–
47] for some examples of the load chart). Mobile crane operators are strongly
advised to refer to the load chart before any lifting operation, since exceeding
the limit will make the mobile crane lose its balance. Operating cranes beyond

3 https://unity.com/
4 https://unity3d.com/unity/features/multiplatform/vr-ar
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permissible operational limits is also one of the causal factors of crane-related
accidents [21].

The research question in this paper is ”How can we make the virtual mobile
crane in the Unity game engine behave similarly to a real mobile crane in terms
of the real-time lifting capacity?”. For example, if a specific mobile crane model
can only lift an object of up to 10 tonnes in certain states of boom length and load
radius, then the virtual mobile crane should not be able to lift an object heavier
than 10 tonnes in the corresponding states. In other words, if the real-time
lifting capacity is 10 tonnes and the virtual mobile crane is lifting an 11-tonne
object, then the virtual mobile crane should collapse. It is also important that
the virtual mobile crane should not collapse in arbitrary conditions, as novice
operators would be clueless whether they perform the correct thing or not. We
expect that there would be two possible benefits of having this mechanism:
(1) improving the realistic aspect of the simulation and (2) providing relevant
learning experience to novice operators.

We used two official load charts [20, pp. 23 and 29] from a crane manufac-
turer as a source of information on how the lifting capacity of a mobile crane
should work, and thus we planned to replicate the mechanism in the Unity game
engine. However, achieving such objective was later found to be difficult, since
the load charts document the lifting capacity in some states of boom length and
load radius only. This would make the simulation less realistic, since the lifting
capacity would jump when the virtual mobile crane were moving between the
documented states in the load charts. In a real mobile crane, the lifting capacity
gradually increases or decreases as the crane progressively moves. In addition, we
also could not find reliable sources of information regarding the formula behind
the load charts. To solve this problem, we used 90% of random data from the
load charts to train an Artificial Neural Network (ANN) to predict the lifting
capacity based on the real-time states of boom length and load radius of the
virtual mobile crane. With this approach, we could predict the lifting capacity
in any states of boom length and load radius using the ANN, although the infor-
mation documented in the load charts was limited. We then compared the lifting
capacity between the ANN predictions and the remaining 10% of the data in the
load charts to evaluate the accuracy of the ANN.

2 Related Work

This section is divided into two parts. The first part describes how realism in
crane simulations has been investigated, while the second part describes how
ANN has been used to support realism in VR applications.

2.1 Realism in Crane Simulations

The realistic aspects of crane simulations have been investigated since two decades
ago with various focuses, such as simulation setup [10], depth perception [12],
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resemblance of scenarios and virtual objects with their real counterparts [7,13],
physics [3], and immersion [6,26].

Huang and Gau [10] focused on providing a realistic simulation setup that
consisted of panels and controls that could be found in the mobile crane’s cabin,
as well as a motion platform that could mimic the cabin’s movement. Despite
having a realistic setup, their users commented that the developed simulation was
deemed to be less realistic due to three factors: (1) the scenario was not the same
as the real-world scenario, (2) the lack of depth perception, and (3) the visual
quality of the simulation. The lack of depth perception in crane simulations was
then addressed by Juang et al. [12] by providing stereoscopic view, where individ-
ual images were generated to each eye, and kinesthetic vision, which simulated
the operator’s head movement. These additional features improved operators’
confidence due to the realistic and intuitive behavior of the depth perception.

There were two studies that focused on the realistic aspect of scenarios and
virtual objects inside crane simulations. Fang et al. [7] focused on making real-
istic scenarios and virtual objects that closely resembled their real counterparts
by integrating data from Building Information Modelling (BIM) and real-time
location tracking inside the simulation. Although they aimed to make the virtual
cranes as realistic as possible, their study was limited to the visual appearance of
the virtual cranes. Kan et al. [13] also aimed to make realistic scenarios by taking
into account causal factors of crane-related accidents and safety guidelines when
designing their simulation. Their simulation could be used to generate realistic
and dynamic crane-operating scenarios, which could expose novice operators to
possible hazardous situations that may occur in real operations.

Due to the immersion that the technology could provide, the use of VR for
crane simulations has also been investigated in two studies. Dong et al. [6] devel-
oped a VR overhead crane simulation and Patrão and Menezes [26] developed a
VR tower crane simulation. While VR could provide immersion to the user, the
immersion could be broken if there is a mismatch between what the user is ex-
pecting and what the simulation is generating, due to the additional attention to
detail that the immersion could provide compared to a non-VR simulation [29].

Contrast to the studies mentioned above, Chi and Kang [3] developed a
simulation that focused on the physical aspect of two collaborating cranes, which
could be used for planning purposes. Using their simulation, problems could be
discovered before carrying out the real operation. The crane’s physics was split
into kinematic and dynamic rigid bodies. The cabin and the boom were made
kinematic, which means they are objects without mass and force that could be
manipulated by transformation matrices. The cable and the hook were made
dynamic rigid bodies, which mean they were affected by mass and force. This
approach made it possible to simulate some physical behaviours, such as object
collisions and swinging cables. Although they considered the crane’s physics in
the simulation to be realistic enough, the technical evaluation that was carried
out did not evaluate how realistic the crane’s physics was.

Looking at the studies that specifically mentioned which tools that were
used for developing their simulations, none of them explicitly stated that the
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tools being used as the main limitation. Chi and Kang [3] used Open dynamics
engine for simulating physics and OpenGL for rendering. Dong et al. [6] also
used two different tools: Bullet Physics Library was used for simulating physics
and OpenAR for rendering. Juang et al. [12] used a tool called SimCrane 3D+
for both rendering and simulating physics. Kan et al.[13] used the Unity game
engine as the single tool for both rendering and simulating physics.

Our approach has some similarities with the prior work. Firstly, related to
the study that investigated the physics of the virtual crane [3], this study also
focused on how the states of boom length and load radius affect the lifting
capacity. Secondly, identical to Kan et al. [13], we also used the Unity game
engine for our simulation. Furthermore, since almost of the mentioned prior
studies did not use a game engine to implement their simulations, this study
could further demonstrate how a game engine, such as Unity game engine, could
be utilized for crane-related research.

2.2 Using Artificial Neural Network to Support Realism in Virtual
Reality

The use of ANNs to support realism in VR applications could be tracked back
to Caudell et al. [2], where they used the ANN to generate head silhouettes
in teleconference VR applications. The ANN was trained using 3D data and
videos of a person talking and making various facial expressions, although only
in the form of silhouettes. Olszewski et al. [25] used the ANN to predict how the
avatar’s mouth should be animated based on the user’s mouth movement. The
ANN was trained using videos of mouth movements from ten people. Slightly
different from the previous examples, Seele et al. [30] used the ANN to guide the
eye movement of the avatar. The ANN was trained using eye tracking data of a
person who looked at different visual stimuli.

There were four studies that used ANNs for generating realistic feedback
based on what the user does. Specifically for VR port simulations, Garćıa-
Fernández et al. [8] used the ANN to generate realistic impact of two collid-
ing virtual containers based on their positions and the point of collision. They
trained the ANN using collision models on different points of collision. In the
context of VR welding simulations, Yang et al. [34] used the ANN to predict the
form of virtual welding beads based on the user’s performance. Their ANN was
trained with welding data from both simulation and practical experiments. In
the context of VR tennis games, Hambli et al. [9] used the ANN to predict how
much force feedback should be given to the user’s hand based on the deformation
of the virtual racket, which collided with the virtual tennis ball. The ANN was
trained using object deformation data generated from a finite element simula-
tion. Wu et al. [33] used the ANN to generate haptic feedback when typing on a
virtual keyboard. Data from vibration sensors on a physical keyboard were used
train the ANN.

Using ANNs to facilitate interaction techniques in VR has also been investi-
gated in three studies. In the context of VR drum games, Rosa-Pujazón et al. [27]
used the ANN to determine whether the user’s fast hand movements matched
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with specified drum-hitting gestures. The ANN was trained with data of drum-
hitting motion from three people. Specifically for VR sword-fighting games,
Dehesa et al. [5] used the ANN to check whether the user’s movement could
match with the predefined sword-fighting movements. The ANN was trained us-
ing motion-capture data from one person. Kang et al. [14] also used the ANN
for a similar purpose, for example, when the user positioned his/her hands like
holding a sword, the avatar would then be equipped with a virtual sword. They
trained the ANN with hand gesture images.

The last examples used ANNs to render realistic virtual objects and envi-
ronments. Iwahori et al. [11] used two ANNs to generate virtual objects with
color reflection. The first ANN collected the 3D object of target objects and
their reflection factors, while the the second ANN estimated how virtual objects
should be colored. The rendering results showed that the generated virtual ob-
jects looked very similar to the image of corresponding real objects. Lastly, Tang
and Xiao [32] used the ANN to mimic human vision, where some areas of the
virtual environment were blurred based on where the user’s gaze was. The ANN
was trained using a schematic eye model.

3 Mobile Crane Simulation

In this study, we used an available mobile crane simulation that was purchased
from the Unity Assets Store. The simulation was then modified, so that we could
implement the ANN and conduct the experiment. This section provides a brief
description about the initial simulation, the modifications that we made on the
simulation, and how we designed the ANN.

3.1 Initial Simulation

To speed up the implementation, we purchased an available mobile crane simula-
tion from the Unity Asset Store5, thus we did not have to develop everything from
scratch. The simulation included two fully-functioning mobile cranes, but the
one that we used in this study was the one named ’HTR1045’ in the downloaded
project. Although not the exact replica, the virtual mobile crane had a very
close resemblance with the Liebherr’s LTC 1050-3.1 compact mobile crane [20].
The virtual environment was made of a flat ground without additional weather
conditions. We kept this initial setup, since a mobile crane should be operated
on the solid flat ground due to safety recommendations [28,24]. As described in
Section 1, the lifting capacity is based on two dynamic factors: the boom length
and the load radius. However, the Liebherr’s LTC 1050-3.1 crane could be used
with two counterweight configurations: 4.8 tonnes and 6.5 tonnes [20]. The coun-
terweight also plays an important role here, since heavier counterweights mean
that the crane could lift heavier objects, and vice versa. Another factor that

5 https://assetstore.unity.com/packages/3d/vehicles/land/crane-simulator-v-2-
designer-150285
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could affect the lifting capacity is wind [19], but we excluded this factor in this
study, since the information in the load charts is applicable only if the wind
speed does not exceed 9 m/s. Therefore, the factors in the simulation that af-
fected the lifting capacity were the counterweight being used, the boom length,
and the load radius.

3.2 Modified Simulation

This subsection describes the modifications that we made on the initial simula-
tion, which enabled us to train the ANN and conduct the experiment.

Establishing a Metric Measurement. We had to establish a constant met-
ric system in the simulation in order to conduct the experiment, since the load
charts in [20, pp. 23 and 29] were documented in meters. From the load charts,
we found that the maximum boom length for the LTC 1050-3 crane is 36 me-
ters. We defined a new conversion rate by dividing the virtual mobile crane’s
maximum boom length in the Unity coordinates with the LTC 1050-3 crane’s
maximum boom length, which gave us a conversion rate of 0.88264784. By mul-
tiplying the Unity coordinates with the new conversion rate, we could establish a
measurement that constantly defined the length of one meter in the simulation.
This calculation was always used for measuring boom length and load radius of
the virtual mobile crane.

Implementing the Artificial Neural Network. We used a python ANN
Library called Keras6 to train the ANN model. We also used a Unity plugin
called Noedify7, which allowed us to import the trained model from Keras into
the Unity game engine. In order to do so, we wrote two scripts: (1) a python
script for training the ANN using Keras and (2) a Noedify script for exporting
the trained ANN to a text file. The scripts read a specified text file that contained
the training data, trained the model using the provided data, and then exported
the model to another specified text file. See the illustration of the process in
Figure 2.

The ANN structure in this study was designed after a trial-and-error process,
where we tried different options, such as different number of nodes in the hidden
layer, different number of hidden layers, and different activation functions, to see
which configuration that provided the highest accuracy. We started the process
with a three-layer structure: one input layer, one hidden layer, and one output
layer. During the trial-and-error process, the accuracy of the ANN was improving
when the number of nodes within the hidden layer was increased up to 100. When
the hidden layer went beyond 100 nodes, the accuracy stopped improving. In an
attempt to improve the accuracy further, another hidden layer was added, but

6 https://keras.io/
7 https://assetstore.unity.com/packages/tools/ai/noedify-easy-neural-networks-

161940
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Fig. 2. The process of exporting and importing the trained ANN model from Keras to
the simulation.

the accuracy was decreased. We also tested other activation functions, such as
the Sigmoid function [22], but the accuracy was lower than when the Exponential
Linear Unit (ELU) function [4] was used.

The final ANN structure was a three-layer structure consisted of three input
nodes (counterweight being used, current boom length, and current load radius),
100 nodes in the hidden layer that used the ELU function, and one output node
for the predicted lifting capacity (see Figure 3). We defined the input nodes
this way, since the load charts documented the lifting capacity based on these
three factors. We finally trained the model with 6000 iterations and an optimizer
called Adam [16] with a learning rate of 0.001. The process was almost completely
automated, as we only had to provide the training data, which contained 90% of
the randomly selected data from the load charts of both 4.8-tonne and 6.5-tonne
counterweights [20, pp. 23 and 29].

Fig. 3. The structure of the ANN that we used to predict the real-time lifting capacity.
The prediction was made based on which counterweight configuration being used and
the current states of boom length and load radius.
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Implementing a Logging Feature. We also added a logging feature that
could be used for recording four kinds of information from the virtual mobile
crane: (1) the boom length, (2) the load radius, (3) the predicted lifting capacity
from the ANN, and (4) the corresponding lifting capacity based on the load
charts. This approach enabled us to directly compare the lifting capacity based
on the ANN predictions and the load charts. The type of counterweight being
used was also written as the file name when exporting the data into a file.
We designed the logging feature to be manually controlled by the user in the
run-time, where the user operated the virtual mobile crane into specific states
of boom length and load radius, and then pressed a button on the keyboard
in order to save the data. When the user finished logging everything, another
button on the keyboard was pressed to store all the saved data into a file with
CSV format.

4 Experimental Procedure

Before conducting the experiment, we randomly divided the data from the load
charts [20, pp. 23 and 29] into the training dataset and the testing dataset with
a ratio of 90%:10% by using another python script. This ratio was chosen, as the
data from the load charts were very limited. Since the experiment was done inside
the simulation, we had to know which data were assigned into the testing dataset.
The script for dividing the data also exported a text file that contained the data
inside the testing dataset. We then trained the ANN described in Section 3.2
with the training dataset. After that, we imported the trained model into the
simulation.

We started the experiment by running the simulation, selecting which coun-
terweight configuration that would be used, and then operating the virtual mo-
bile crane into the lifting mode. We then operated the virtual mobile crane, so
that the boom length and the load radius were moved to the states of boom
length and load radius in the testing dataset. Once we were sure that the virtual
mobile crane has been moved to the designated state of boom length and load
radius, we pressed a button on the keyboard to save the data, and then the
graphical user interface (GUI) in the simulation would show the next state to
be logged. We repeated this process until all states in the testing dataset have
been logged. After that, we pressed another button on the keyboard to export
the logged data into a CSV file. The whole process was repeated twice, since
there were two different counterweights (4.8 tonnes and 6.5 tonnes) that could
be used by the virtual mobile crane.

5 Results

To calculate the overall prediction accuracy of the ANN, we used Mean Absolute
Error (MAE) and Root Mean Square Error (RMSE), which are common metrics
for measuring the accuracy of ANNs [1]. We took all the values in the testing
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dataset and the prediction values from the ANN, and then calculated the met-
rics. Note that the load charts for both 4.8-tonne and 6.5-tonne counterweights
document the same states of boom length and load radius, and thus the predic-
tions were made based on the same states. The MAE of the ANN predictions
was 0.16 tonnes, while the RMSE was 0.24 tonnes.

Although the MAE and the RMSE could indicate the overall accuracy of the
ANN predictions, it is also interesting to see how the predictions varied among
different states of the virtual mobile crane. We took the values from the testing
dataset and the ANN predictions, and then calculated the mean deviation for
each load radius. The same calculation could also be done based on each boom
length, but we decided to calculate based on the load radius, since it was more
documented in the load charts. Figure 4 illustrates that the deviations seem to
be leaning towards the negative side, except when the load radii were small. This
means that the predicted lifting capacity generally tends to be slightly lower than
the values in the load charts. This suggests that, in the current simulation, the
virtual mobile crane could not lift heavier objects than what the real counterpart
could lift. In practice, lifting something heavier than the lifting capacity would
make the mobile crane collapse. Therefore, from a safety point of view, it is more
favorable if the ANN predictions are lower, if the predicted values could not be
made precisely the same as the ones in the load charts.

Fig. 4. The mean deviations of the predicted lifting capacity based on various states of
load radius in the testing dataset. The x-axis shows whether the deviations were higher
or lower than the values from the load charts. The y-axis shows the mean deviations
of the predicted lifting capacity for each state of load radius.
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6 Discussion

The presented results in Section 5 suggest that the lifting capacity of the virtual
mobile crane was quite close to the real crane, as the MAE was 0.16 tonnes and
the RMSE was 0.24 tonnes. Although the overall deviations in both metrics were
rather small, they could affect the lifting capacity differently depending on the
states of the virtual mobile crane. To put things into perspective, we present
some lifting capacity values from the load charts [20, pp. 23 and 29] in Table 1
and show how the MAE value of 0.16 tonnes would influence the lifting capacity
in different states of boom length and load radius. For simplification purposes,
we only used the MAE value in Table 1, since RMSE squared the deviations
before they were averaged.

Table 1. The values inside the brackets show how the deviation based on the MAE
value would influence the lifting capacity (in percentages) in some states of boom length
and load radius.The white rows show some of the lifting capacities (in tonnes) in the
4.8-tonne load chart [20, pp. 29], while the grey rows show some of the lifting capacities
(in tonnes) in the 6.5-tonne load chart [20, pp. 23].

Load radius Boom length (in meters)
(in meters) 8.2 13.8 19.3 24.9 30.4 36

3.0 44.4 [0.36%] 40.0 [0.4%] 30.0 [0.53%] 20.4 [0.78%]
3.0 44.4 [0.36%] 40.0 [0.4%] 30.0 [0.53%] 20.4 [0.78%]
9.0 12.5 [1.28%] 12.5 [1.28%] 11.9 [1.34%] 10.7 [1.49%] 7.8 [2.05%]
9.0 13.6 [1.17%] 13.6 [1.17%] 12.5 [1.28%] 11.2 [1.42%] 7.8 [2.05%]
15.0 5.6 [2.8%] 5.6 [2.8%] 5.5 [2.90%] 5.2 [3.07%]
15.0 6.3 [2.53%] 6.2 [2.58%] 6.1 [2.62%] 5.8 [2.75%]
21.0 3.2 [5.0%] 3.1 [5.16%] 2.8 [5.71%]
21.0 3.6 [4.44%] 3.5 [4.57%] 3.2 [5.0%]
27.0 1.9 [8.42%] 1.6 [10.0%]
27.0 2.2 [7.27%] 1.9 [8.42%]
33.0 0.8 [20.0%]
33.0 1.1 [14.54%]

As shown in Table 1, the deviation rate based on the MAE value would affect
the lifting capacity differently. For example, when the boom length is 8.2 meters
and the load radius is 3 meters, the deviation rate would only influence 0.36% of
the lifting capacity. The influence is increasing as the boom length and the load
radius are increasing, even though the influence is mostly negligible. Only when
the boom length and the load radius are approaching their maximum states,
the overall deviation rate would influence more than 10% of the lifting capacity
(see the bottom-right numbers in Table 1). Taking this into account, it could be
assumed that the ANN predictions were realistic enough for most of the states,
except when both boom length and load radius were approaching their maximum
states.
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Using this approach, we could make the virtual mobile crane to collapse if
the user lifts something heavier than the predicted lifting capacity in any state
of boom length and load radius. Another use of the predicted lifting capacity
is that we could also simulate the Load Moment Indicator (LMI), which is a
supportive system inside the crane’s cabin that shows similar information as
what is documented in the load chart [23]. Instead of presenting arbitrary visual
information to the operator, the presented virtual information would resemble
what the real LMI would show. For example, Kvalberg [17] investigated the use
of transparent displays for presenting the lifting capacity of off-shore cranes,
but the information presented had to be manually inserted by the user. There-
fore, researchers could also use the simulation modified in this study as a tool
to investigate new visualization approaches in mobile cranes. Due to the haz-
ardous nature of heavy machinery operations, it is also common to evaluate new
technologies in simulations before they are installed in real machines [31].

7 Limitations and Future Work

Although there are many machine learning algorithms that could be used for
predicting missing data, this study was limited to what was compatible with
the Unity game engine. To the best of our knowledge, Unity game engine so far
supports reinforcement learning8 and neural network9 only. Therefore, we could
not benchmark the ANN against other prediction algorithms in this study. There
are three studies presented in Section 2.2 that explicitly used the Unity game
engine [33,30,14] and the proposed ANNs were also not benchmarked against
other prediction algorithms. However, the limitations that prevented them from
doing so were not explicitly written in the papers.

As described in Section 3.2, we mostly used the overall accuracy when we
were exploring which ANN configuration that provided the highest accuracy.
Therefore, during the trial-and-error process, we were not aware that the devi-
ation rates were slightly higher when the boom length and the load radius were
short. This was probably because the differences between one documented lifting
capacity and the next ones were high in these conditions, and thus leading to
slightly higher deviation rates. Nevertheless. it would be interesting to investi-
gate how the ANN accuracy in general and in specific states could be improved
by further exploring different ANN configurations.

In this study, we used a virtual mobile crane that had a close resemblance
to the LTC 1050-3.1 crane, and thus we used the official load charts for this
mobile crane model. To further investigate the generalizability of the proposed
ANN, it would also be interesting to use different mobile crane models and
their corresponding official load charts. Therefore, we could further investigate
to what extent the proposed ANN would also be applicable for different mobile
crane models.

8 https://unity.com/products/machine-learning-agents
9 https://docs.unity3d.com/Packages/com.unity.barracuda@1.0/manual/index.html
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8 Conclusion

This paper presents another use of ANN to support realism in the virtual envi-
ronment, where we investigated how a virtual mobile crane could have a realistic
lifting capacity behavior that mimics its real counterpart. Although the official
load charts contained relevant information on how the lifting capacity of a mo-
bile crane should behave, the available information was limited. We trained the
ANN using the training dataset from the load charts, to predict the lifting ca-
pacity of the virtual mobile crane. This approach enabled us to predict the lifting
capacity in any states of boom length and load radius. We then compared the
ANN predictions and the testing dataset from the load charts to evaluate the
ANN accuracy and we found that the deviation rates measured in Mean Abso-
lute Error and Root Mean Squared Error were relatively small. We also found
that the prediction deviations did not provide significant impacts on the lifting
capacity for most of the states, except when the boom length and the load ra-
dius were approaching their maximum states. Therefore, we could assume that
the predicted lifting capacity made by the ANN to be close enough to the load
charts.
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